+

JP2019146944A - Non-invasive blood sugar level measuring device for estimating blood sugar level from change in temperature of human body - Google Patents

Non-invasive blood sugar level measuring device for estimating blood sugar level from change in temperature of human body Download PDF

Info

Publication number
JP2019146944A
JP2019146944A JP2018047271A JP2018047271A JP2019146944A JP 2019146944 A JP2019146944 A JP 2019146944A JP 2018047271 A JP2018047271 A JP 2018047271A JP 2018047271 A JP2018047271 A JP 2018047271A JP 2019146944 A JP2019146944 A JP 2019146944A
Authority
JP
Japan
Prior art keywords
blood glucose
glucose level
blood
unit
blood sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018047271A
Other languages
Japanese (ja)
Inventor
敦生 瀬尾
Atsuo Seo
敦生 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018047271A priority Critical patent/JP2019146944A/en
Publication of JP2019146944A publication Critical patent/JP2019146944A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

【課題】採血を必要とせず人体の温度変化から血糖値を測定する非侵襲型血糖値計測装置を提供する。【解決手段】健常者が生活中に気軽に使えるよう、小形な血糖値計測装置を実現する。人体が血糖値を消費する際、体表面上で熱放散を起こす事象を使った、独自の非侵襲型血糖値計測装置を提案する。従来は、血中酸素濃度や血中酸素供給量のパラメータなどが必要であったが、本提案技術では、事前にそれらの差異を吸収できるよう、事前に調整パラメータのテーブルを用意し、センサ側に各種パラメータの記憶部を用意することで、小型・簡易化に成功した。【選択図】図1A non-invasive blood glucose level measuring device for measuring a blood glucose level from a temperature change of a human body without requiring blood collection. A small-sized blood sugar level measuring device is realized so that a healthy person can easily use it in life. We propose a unique non-invasive blood glucose measurement device that uses the phenomenon of heat dissipation on the body surface when the human body consumes blood glucose. Conventionally, parameters such as blood oxygen concentration and blood oxygen supply were required.In this proposed technology, a table of adjustment parameters is prepared in advance so that these differences can be absorbed in advance, and the sensor side By providing a storage unit for various parameters, we succeeded in miniaturization and simplification. [Selection diagram] FIG.

Description

本発明は、採血を必要とせず人体の血糖値を測定する非侵襲型血糖値計測装置に関する。  The present invention relates to a non-invasive blood sugar level measuring apparatus that measures blood sugar levels of a human body without requiring blood collection.

従来の指穿(しせん)刺法を用いた血糖値測定方法は痛いだけでなく、針とチップが再利用できないため糖尿病患者の負担となっている。非侵襲的に人体の血糖を測定する血糖測定装置として、人体に可視光や赤外線の光を当て、その透過または反射光のスペクトルを解析するという分光分析装置が知られている。例えば、特開平3−173535号公報や特開平5−176917号公報では、近赤外線光を人体に照射し、その透過光の強度を測定することによって人体の血糖値を推定する。また、特開平2−286132号公報や特開平4−144545号公報では、低侵襲的に人体の血糖値を測定する方式として、人体から体液をしみ出させて、この体液中の血糖値を測定する方式を利用している。これらは一部の例であり、他にも非侵襲的または低侵襲的に血糖値を測定する装置は各種発明されているが、実際に実用化に至った例は、未だ存在しない。  The blood glucose level measurement method using the conventional finger pricking method is not only painful but also burdens diabetic patients because the needle and tip cannot be reused. 2. Description of the Related Art As a blood glucose measurement device that non-invasively measures blood glucose in a human body, a spectroscopic analysis device that applies visible light or infrared light to the human body and analyzes the spectrum of transmitted or reflected light is known. For example, in Japanese Patent Application Laid-Open No. 3-173535 and Japanese Patent Application Laid-Open No. 5-176717, a human body is irradiated with near infrared light, and the blood glucose level of the human body is estimated by measuring the intensity of the transmitted light. In Japanese Patent Laid-Open No. 2-286132 and Japanese Patent Laid-Open No. 4-144545, as a method of measuring blood glucose level of a human body in a minimally invasive manner, blood fluid is oozed from the human body and the blood glucose level in the body fluid is measured. Is used. These are some examples, and various other devices for measuring blood glucose levels in a noninvasive or minimally invasive manner have been invented, but no examples have actually been put into practical use.

特開平3−173535号公報Japanese Patent Laid-Open No. 3-173535 特開平5−176917号公報Japanese Patent Application Laid-Open No. 5-176717 特開平2−286132号公報JP-A-2-286132 特開平4−144545号公報JP-A-4-144545 特許第3884036号Japanese Patent No. 3884036

Diabete&Metabolisme,”Facial and sublingual temperature changes following intravenous glucose injection in diabetics”by R.M.Hilson and T.D.R Hockaday,1982.8.15−19Diabete & Metabolisme, “Facial and substituting temporary changes following intravenous glucose injection in diabetics” by R.D. M.M. Hilson and T. D. R Hockday, 1982. 8.15-19 Temperature Influence on Non−invasive Blood Glucose Measurement.Zhang,X.,& Yeo,J.H.,doi:10.1117/12.804281,2009Temperature Influencing on Non-invasive Blood Glucose Measurement. Zhang, X. et al. , & Yeo, J .; H. , Doi: 10.1117 / 12.804281, 2009

血液中のグルコース(これの値を血糖値という。)は細胞内でグルコース酸化反応に利用され、身体の維持に必要なエネルギーを生産する。特に、生産されたエネルギーの大部分は体温を維持するための熱エネルギーであるため、血糖値と体温との間には関係がある。
実際、Hilsonらによって行われた研究「Facial and Sublingual Temperature Changes Following Intravenous Glucose Injection in Diabetes」では、人体にブドウ糖を注射して2分以内に皮膚(頬)の温度変化を確認している。しかし、現在これらの研究(Hilsonら・Zhangらの研究)で証明されているのは、皮膚の温度変化を加味することで近赤外分光法による血糖値推定の精度が向上するということだけである。現状のままでは、非侵襲型血糖値計測装置がレーザ光と温度センサを必要とし、計測装置の簡単化が難しく、生活利用にハードルが残る。
Glucose in blood (this value is referred to as blood glucose level) is used in the cell for the glucose oxidation reaction, and produces energy necessary for maintaining the body. In particular, since most of the produced energy is thermal energy for maintaining body temperature, there is a relationship between blood glucose level and body temperature.
In fact, in the study “Facical and Substituting Temperature Changing Flowing Intravenous Glucose Injection in Diabetes” conducted by Hilson et al., Glucose was injected into the human body and the temperature of the skin (cheek) was confirmed within 2 minutes. However, these studies (Hilson et al. & Zhang et al.) Have only proved that the accuracy of blood glucose estimation by near-infrared spectroscopy is improved by taking into account changes in skin temperature. is there. As it is, the non-invasive blood sugar level measuring device requires a laser beam and a temperature sensor, which makes it difficult to simplify the measuring device, and hurdles remain in daily use.

この発明の血糖値計測装置は、非侵襲の血糖値を計測するものであり、起床時血糖値と生活中血糖値やユーザの性別や年齢などを記憶する記憶部と、身体の熱放散を捉える熱量測定部、熱量測定部から入力された情報をもとに血糖値を算出し、記憶部に記憶されたパラメータから算出された血糖値を補正する機能を持つ測定装置である。
血糖は血管系、特に毛細血管によって全身の細胞に供給されている。人体には複雑かつ多様な代謝伝達経路を内包しているが、グルコース(血糖)の酸化とは、すなわち血糖と酸素が反応し、水と二酸化炭素がエネルギーを生産することである。この酸素とは、血液から細胞へ供給される酸素である。また、一方でグルコース酸化によって人体が発した熱は、人体の熱熱放散と表せる。熱放散は一般的に、対流熱量と放射熱量のみで表すことが可能である。
The blood glucose level measuring apparatus of the present invention measures a non-invasive blood glucose level, and captures the heat dissipation of the body, the storage unit for storing the rising blood glucose level, the blood glucose level during life, the sex and age of the user, and the like. It is a measuring device having a function of calculating a blood sugar level based on information input from the calorie measuring unit and the calorie measuring unit and correcting the blood sugar level calculated from the parameters stored in the storage unit.
Blood sugar is supplied to cells throughout the body by the vascular system, particularly by capillaries. The human body contains complicated and diverse metabolic transmission pathways. Glucose (blood glucose) oxidation means that blood glucose and oxygen react, and water and carbon dioxide produce energy. This oxygen is oxygen supplied from the blood to the cells. On the other hand, heat generated by the human body due to glucose oxidation can be expressed as heat dissipation of the human body. In general, heat dissipation can be expressed only by convective heat and radiant heat.

実際に特許第3884036号の提案では、以下のモデルが提案されている。
(1)熱放散量は血糖値と血中内の酸素供給量の関数で表せる。
(2)酸素供給量は血中ヘモグロビン濃度と血中ヘモグロビン酸素飽和度と、毛細血管内の血流量によって決まる。
(3)熱放散量は、主に対流熱と放射熱によって定まる。
このモデルに従い、体表を熱測定し、同時に血液中の酸素濃度に関するパラメータを測定し、これらの測定結果を用いて血糖値を高精度に求めることができることが証明されている。この一例として、上記パラメータを求めるための測定は、人体の一部、指先が挙げられている。対流・放射熱に関しては熱測定で求められる。血中ヘモグロビン濃度及び血中ヘモグロビン酸素飽和度は血液中のヘモグロビンを分光学的に測定し、酸素と結合しているヘモグロビンの濃度比率を求めることで分かる。
Actually, the following model is proposed in the proposal of Japanese Patent No. 3884036.
(1) The amount of heat dissipation can be expressed as a function of blood glucose level and oxygen supply in the blood.
(2) The oxygen supply amount is determined by the blood hemoglobin concentration, the blood hemoglobin oxygen saturation, and the blood flow in the capillaries.
(3) The amount of heat dissipation is determined mainly by convection heat and radiant heat.
According to this model, it has been proved that the body surface can be measured by heat, and at the same time, parameters relating to oxygen concentration in the blood can be measured, and the blood glucose level can be determined with high accuracy using these measurement results. As an example of this, a part of a human body and a fingertip are cited as the measurement for obtaining the parameter. Convection and radiant heat can be obtained by thermal measurement. The blood hemoglobin concentration and blood hemoglobin oxygen saturation can be determined by spectroscopically measuring hemoglobin in blood and determining the concentration ratio of hemoglobin bound to oxygen.

しかし、特許第3884036号の手法では構成上、必ず2波長以上の光を用いる光学測定部が必要となり、ハードウェアの小型化が難しくなる。我々は血糖値計測を、温度センサなどの簡易な物のみで実現できないかを考えた。そこで、以下のような実験をし、結果を解析した。
□ 実験概要
1.被験者に室内に入ってもらう
2.室内の気温を測定
3.皮膚温・体温の測定
4.熱放散量(放射熱・対流熱)などの算出を行う
5.既存の侵襲型自己血糖測定器で血糖値を測定する
4について、放射熱はステファンボルツマンの理論より表面温度の4乗に比例すること、対流熱は熱伝達係数(人体皮膚の場合4〜5)と表面温度と気温の差分の積となることが分かっているので、数1と数2の式で導出できる。
However, in the method of Japanese Patent No. 3884036, an optical measurement unit that always uses light having two or more wavelengths is necessary because of the configuration, and it is difficult to reduce the size of hardware. We considered whether blood glucose levels could be measured with simple objects such as temperature sensors. Therefore, the following experiment was performed and the results were analyzed.
□ Outline of experiment Have the subject enter the room. Measure indoor temperature 3. 3. Measurement of skin temperature and body temperature 4. Calculate heat dissipation (radiant heat, convection heat), etc. Measure blood glucose level with an existing invasive auto-blood glucose meter 4. For Stefan Boltzmann theory, radiant heat is proportional to the fourth power of the surface temperature, convective heat is a heat transfer coefficient (4-5 for human skin) Since it is known that this is the product of the difference between the surface temperature and the air temperature, it can be derived by the formulas (1) and (2).

Figure 2019146944
Figure 2019146944
Figure 2019146944
Figure 2019146944

今回、1人の被験者に対して8回の実験を行い、結果をまとめた。表1は実験時に取れた血糖値の一覧を表している。部屋の気温はエアコンを利用し、28度に保ち、赤外線温度計で皮膚温度を測定した。取得できた血糖値を目的変数、対流熱・放射熱を説明変数として線形回帰分析を行うことで数3の式を得た。

Figure 2019146944
This time, eight experiments were performed on one subject and the results were summarized. Table 1 shows a list of blood glucose levels obtained during the experiment. The room temperature was kept at 28 degrees using an air conditioner, and the skin temperature was measured with an infrared thermometer. Equation 3 was obtained by performing linear regression analysis using the obtained blood glucose level as an objective variable and convection heat / radiant heat as explanatory variables.
Figure 2019146944

Figure 2019146944
Figure 2019146944

数3の式を対象に、血糖値計測精度を調べるためEGA解析を行うと、図4の結果を得た。表2は実際の血糖値と数3の式から推定した血糖値の一覧を、図2はEGA解析の結果をそれぞれ表したものである。EGA解析とは、開発した血糖値測定装置の精度を調べるための国際的手法である。図3のゾーンAは臨床用途でも利用可能、ゾーンBは許容誤差内となっている。このため、数3の式を使えば血中酸素飽和度・酸素供給量を必要とせず、高精度で血糖値が求められる。

Figure 2019146944
When EGA analysis was performed to examine the blood glucose level measurement accuracy with respect to Equation 3, the result of FIG. 4 was obtained. Table 2 shows a list of actual blood sugar levels and blood sugar levels estimated from the equation (3), and FIG. 2 shows the results of EGA analysis. The EGA analysis is an international method for examining the accuracy of the developed blood glucose level measuring apparatus. Zone A in FIG. 3 can be used for clinical use, and zone B is within tolerance. For this reason, if Equation 3 is used, blood oxygen saturation and oxygen supply amount are not required, and the blood glucose level is obtained with high accuracy.
Figure 2019146944

また、数3の式から推定された血糖値は、ユーザが定期的に血液検査等を行い、その結果を使うことで補正を行うことができる。例として、数3の式を使い起床時の血糖値が「95」と出て、血液検査の結果で血糖値が「92」とする。その際の温度と皮膚温・及び結果の値から計測値に対して「+3」の誤差があることが分かる。以降の計測ではそれを加味することでより高い精度を実現できる。  Further, the blood glucose level estimated from the equation (3) can be corrected by a user periodically performing a blood test and using the result. As an example, using the formula (3), the blood glucose level upon waking up is “95”, and the blood glucose level is “92” as a result of the blood test. It can be seen that there is an error of “+3” with respect to the measured value from the temperature and skin temperature at that time and the value of the result. In the subsequent measurement, higher accuracy can be realized by taking this into account.

加えて、人体の熱放散は年齢や性別ごとに差が出る。そのため、熱放散のモデルを年齢及び性別ごとに立て、線形回帰分析をして数式を別々に算出しておく。これらを記憶し、ユーザに合わせて利用する式を切り替えることで常に最良の結果を得ることができる。  In addition, the heat dissipation of the human body varies by age and gender. Therefore, a model of heat dissipation is established for each age and gender, and linear regression analysis is performed to calculate mathematical formulas separately. The best results can always be obtained by storing these and switching the formula to be used according to the user.

さらに、前記の血液検査の結果や年齢・性別による補正手段は両方同時に利用することも可能である。  Further, both the blood test results and the correction means based on age and sex can be used at the same time.

本発明の理論を用いた非侵襲型血糖値測定装置の構成図Configuration diagram of a non-invasive blood sugar level measuring device using the theory of the present invention EGA分析の結果Results of EGA analysis 血糖値測定のPAD図PAD diagram of blood glucose level measurement 処理結果表示方法Processing result display method

次に、本発明の原理にしたがって非侵襲血糖値測定を実現する具体的な装置構成について説明する。  Next, a specific apparatus configuration for realizing non-invasive blood sugar level measurement according to the principle of the present invention will be described.

図1は本発明で提案する非侵襲型血糖値計測装置の構成図を示している。装置には気温や指先からの熱放散を測定する熱量測定部(気温を測定するセンサと熱放散を測定するセンサは別)とユーザの起床時血糖値や性別・年齢を記憶する情報記憶部が存在する。  FIG. 1 shows a configuration diagram of a noninvasive blood sugar level measuring apparatus proposed in the present invention. The device has a calorific value measurement unit that measures temperature and heat dissipation from the fingertips (a sensor that measures temperature and a sensor that measures heat dissipation are different) and an information storage unit that stores the user's rising blood glucose level, sex, and age. Exists.

本発明で提案する実施形態(図1参照)では、記憶部・血糖値推定部と熱量測定部がそれぞれ2つのハードウェアに分割して実現している。本形態では、前記記憶部・血糖値推定部をスマートフォンに、熱量測定部を小形マイコンボードに実装して実現している。
また、小形マイコンボード側には、熱量測定部で測定した情報やスマートフォンからの通信を無線通信で送受信できる情報通信部を備えている。
In the embodiment proposed in the present invention (see FIG. 1), the storage unit / blood glucose level estimation unit and calorific value measurement unit are each divided into two pieces of hardware. In this embodiment, the storage unit / blood glucose level estimation unit is implemented on a smartphone, and the calorific value measurement unit is implemented on a small microcomputer board.
Moreover, the information communication part which can transmit / receive the information measured by the calorie | heat amount measurement part and the communication from a smart phone by radio | wireless communication is provided in the small microcomputer board side.

前記熱量測定部は、気温を測定するセンサとユーザの熱放散を捉えるセンサも別々になっている。ユーザには熱放散を取得するセンサ(図1,S1参照)に指先を接触してもらうことで血糖値測定を行う。  In the calorimeter, a sensor for measuring the temperature and a sensor for detecting the heat dissipation of the user are also separate. The user measures the blood glucose level by having his / her fingertip touch a sensor (see FIG. 1, S1) that acquires heat dissipation.

図3に本提案の血糖値計測における、小形マイコンボード/スマートフォン側での処理フローを示す。  FIG. 3 shows a processing flow on the small microcomputer board / smartphone side in the blood glucose level measurement of the present proposal.

ユーザは最初、血糖値を測定する前に年齢・性別、普段の血糖値等をスマートフォンから入力を行う。後、気温計測の間(1〜10秒程度)待機してもらう。気温計測が完了した後、指先を熱放散取得センサに置いてもらって30秒ほどで人体の熱放散を取得する。
取得した気温・熱放散を本発明で提案した数1〜3の式に代入し、血糖値を推定する。その際には情報記憶部に入力・記憶されている情報を使って、推定された血糖値の補正処理を行う。
The user first inputs age / sex, normal blood sugar level, etc. from the smartphone before measuring the blood sugar level. Then, wait for the temperature measurement (1-10 seconds). After the temperature measurement is completed, the fingertip is placed on the heat dissipation acquisition sensor, and the heat dissipation of the human body is acquired in about 30 seconds.
The obtained temperature and heat dissipation are substituted into the formulas 1 to 3 proposed in the present invention, and the blood glucose level is estimated. At that time, the estimated blood glucose level is corrected using the information input / stored in the information storage unit.

また、前記の各処理ごとに、情報通信部は通信を行い、スマートフォン側に通知を行う。スマートフォンでは通知の内容に合わせて、画面・音声を行いユーザに処理の結果を表示する。  Moreover, an information communication part communicates for every said process, and notifies to the smart phone side. The smartphone displays the result of processing to the user by performing screen / sound according to the content of the notification.

熱放散の測定には、指先以外の体表面も利用可能である。温度安定性が高く、計測に適した箇所として耳たぶ・前腕部・手首などの皮膚が例として上げられる。  Body surfaces other than fingertips can also be used to measure heat dissipation. For example, skin of earlobe, forearm, wrist, etc. can be cited as an example of a place with high temperature stability and suitable for measurement.

以下、図2内の符号を説明する。
A:推定された血糖値は、実際の値から±20%(高精度)
B:推定された血糖値は、20%〜30%程度の差を持つ(許容誤差範囲内)
C:推定された血糖値は問題のある精度と判断される
D:検査に失敗している、もしくは実際にはありえない値(70以下など)
E:血糖値管理に重大な問題を起こしかねない
Hereinafter, the reference numerals in FIG. 2 will be described.
A: The estimated blood glucose level is ± 20% from the actual value (high accuracy)
B: The estimated blood glucose level has a difference of about 20% to 30% (within an allowable error range).
C: Estimated blood glucose level is judged to have a problematic accuracy D: Value that has failed or is impossible in practice (such as 70 or less)
E: Serious problems in blood glucose management

以下、図3内の符号を説明する。
D1:初期プログラムの起動
D2:回路の動作試験プログラム
D3:温度センサによる、周囲の気温測定を行う
D4:通信部を利用し、指を置く指示をスマートフォンにさせるよう指示を行う
D5:指先の温度を30〜60秒測定し続ける
D6:温度センサの測定値などを通信部でスマートフォンに送信する
Hereinafter, the reference numerals in FIG. 3 will be described.
D1: Start of initial program D2: Circuit operation test program D3: Measure ambient air temperature with temperature sensor D4: Use communication unit to instruct to place smartphone on smartphone D5: Fingertip temperature D6: Transmitting the temperature sensor measurement value to the smartphone via the communication unit

以下、図4内の符号を説明する。
S1:初期プログラムの起動
S2:小形マイコンボードと通信中なら処理を継続する
S3,4:受信データが数値なら、記録を行う。違うならば、ユーザに画面通知を
S5,S6,S7:記録した値から熱放散・血糖値を求め、その後画面通知を。
Hereinafter, reference numerals in FIG. 4 will be described.
S1: Start of initial program S2: Continue processing if communicating with small microcomputer board S3, 4: If received data is numeric, record. If not, send a screen notification to the user. S5, S6, S7: Calculate the heat dissipation / blood glucose level from the recorded values, and then notify the screen.

Claims (7)

体表面に由来する温度を測定し、前記体表面からの熱放散に関する対流熱量と放射熱量の算出に用いる情報を得る熱量測定部と、既存血液検査キット・機器で別途採取したユーザの起床時血糖値と生活中血糖値を記憶した記憶部と、前記熱量測定部及び前記記憶部に入力・記憶された複数のパラメータからMHC理論をベースにした線形回帰分析から求められた式を元にユーザの血糖値を推定する血糖値推定部を持った機能を持つ、血糖値計測装置。  A calorimetry unit that measures the temperature derived from the body surface and obtains information used to calculate the convective and radiant heat related to heat dissipation from the body surface, and the blood glucose level at the time of user's wake-up collected separately by existing blood test kits and devices Based on the formula obtained from the linear regression analysis based on the MHC theory from the storage unit storing the blood glucose level and the daily blood glucose level, and the plurality of parameters input and stored in the calorific value measurement unit and the storage unit A blood sugar level measuring apparatus having a function having a blood sugar level estimating unit for estimating a blood sugar level. 請求項1記載の血糖値測定装置において、前記熱量測定部は、環境温度及び周囲の気温を測定する環境温度測定部と、身体の一部を接触させることで人体表面から発せられている温度を測定する2つの独立した温度測定センサを備えた血糖値測定装置。  2. The blood sugar level measuring apparatus according to claim 1, wherein the calorific value measuring unit measures an environmental temperature measuring unit that measures an environmental temperature and an ambient temperature, and a temperature emitted from the surface of the human body by contacting a part of the body. A blood glucose level measuring device comprising two independent temperature measuring sensors for measuring. 請求項2記載の血糖値測定装置において、前記熱量測定部の二つのセンサはそれぞれ物理的に一定の距離を保って配置され、互いの計測時に影響を及ぼし合わないように調整された血糖値計測装置。  3. The blood sugar level measuring apparatus according to claim 2, wherein the two sensors of the calorific value measuring unit are respectively arranged at a physically constant distance and adjusted so as not to affect each other during measurement. apparatus. 請求項1〜3記載の血糖値測定装置で前記測定された熱量を、事前に用意した年齢ごとの血糖値と熱量の関係式にあてはめ、血糖値を推定する機能に対応した熱量測定部と血糖値推定部を持つ、血糖値計測装置。  A calorific value measurement unit and a blood glucose level corresponding to a function for estimating a blood glucose level by applying the caloric value measured by the blood glucose level measuring device according to claim 1 to a relational expression of a blood glucose level and a caloric value for each age prepared in advance A blood glucose level measuring device having a value estimation unit. 請求項1〜3記載の血糖値測定装置で前記測定された熱量を、事前に用意した性別ごとの血糖値と熱量の関係式にあてはめ、血糖値を推定する機能に対応した熱量測定部と血糖値推定部を持つ、血糖値計測装置。  A calorific value measurement unit and a blood glucose level corresponding to a function of estimating a blood glucose level by applying the calorie measured by the blood glucose level measuring device according to claim 1 to a relational expression between a blood glucose level and a calorific value for each sex prepared in advance. A blood glucose level measuring device having a value estimation unit. 請求項5記載の血糖値測定装置で前記測定された熱量を、事前に用意した年齢・性別ごとの血糖値と熱量の関係式にあてはめ、血糖値を推定する機能に対応し、これらの関係式を記憶部に入力・保存された血液検査結果の値を元に補正する機能に対応した熱量測定部と血糖値推定部と記憶部を持つ、血糖値計測装置。  The calorific value measured by the blood sugar level measuring apparatus according to claim 5 is applied to a relational expression of blood sugar level and caloric value for each age and sex prepared in advance, and corresponds to a function for estimating a blood sugar level. Is a blood glucose level measuring device having a calorific value measuring unit, a blood glucose level estimating unit, and a storage unit corresponding to a function of correcting based on the value of the blood test result input and stored in the storage unit. 請求項6記載の血糖値測定器において、前記推定された血糖値は現在提案される手法と違い(代謝熱・血中酸素濃度・血流量利用型及びレーザによる赤外線分光技術利用型)、酸素供給量・血中酸素濃度のパラメータを必要とせず、熱量測定のみにより推定された血糖値であることを特徴とする血糖値計測装置。  7. The blood glucose level measuring apparatus according to claim 6, wherein the estimated blood glucose level is different from a currently proposed method (metabolic fever / blood oxygen concentration / blood flow utilization type and laser infrared spectroscopy technique utilization type), oxygen supply A blood glucose level measuring apparatus characterized in that it is a blood glucose level estimated only by calorimetry without requiring parameters of volume and blood oxygen concentration.
JP2018047271A 2018-02-26 2018-02-26 Non-invasive blood sugar level measuring device for estimating blood sugar level from change in temperature of human body Pending JP2019146944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047271A JP2019146944A (en) 2018-02-26 2018-02-26 Non-invasive blood sugar level measuring device for estimating blood sugar level from change in temperature of human body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047271A JP2019146944A (en) 2018-02-26 2018-02-26 Non-invasive blood sugar level measuring device for estimating blood sugar level from change in temperature of human body

Publications (1)

Publication Number Publication Date
JP2019146944A true JP2019146944A (en) 2019-09-05

Family

ID=67849879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047271A Pending JP2019146944A (en) 2018-02-26 2018-02-26 Non-invasive blood sugar level measuring device for estimating blood sugar level from change in temperature of human body

Country Status (1)

Country Link
JP (1) JP2019146944A (en)

Similar Documents

Publication Publication Date Title
Stergiou et al. Cuffless blood pressure measuring devices: review and statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability
Stergiou et al. European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability
US20210275104A1 (en) Apparatus and method for correcting error of bio-information sensor, and apparatus and method for estimating bio-information
Lin et al. Non-invasive glucose monitoring: a review of challenges and recent advances
Mahmud et al. An integrated wearable sensor for unobtrusive continuous measurement of autonomic nervous system
Manta et al. An evaluation of biometric monitoring technologies for vital signs in the era of COVID‐19
Pai et al. Cloud computing-based non-invasive glucose monitoring for diabetic care
JP5216709B2 (en) Blood glucose level measuring device
CN105939658A (en) Method, system and apparatus for optimal positioning of sensors
JP2011062335A (en) Blood sugar level monitoring apparatus
Montoye et al. Comparative accuracy of a wrist-worn activity tracker and a smart shirt for physical activity assessment
Tamilselvi et al. Non-invasive tracking and monitoring glucose content using near infrared spectroscopy
Vesterinen et al. A contact-free, ballistocardiography-based monitoring system (Emfit QS) for measuring nocturnal heart rate and heart rate variability: validation study
Faisal et al. IoT based remote medical diagnosis system using NodeMCU
JP2007105323A (en) Metabolism measuring device
US20150297123A1 (en) Method and device for non-invasive monitoring of blood glucose level
Morales et al. Respiratory rate estimation on embedded system
Zhang et al. Innovative Metabolic Rate Sensing Approach for Probing Human Thermal Comfort
JP2019146944A (en) Non-invasive blood sugar level measuring device for estimating blood sugar level from change in temperature of human body
JP4754931B2 (en) Metabolism measuring device
JP3590049B1 (en) Blood glucose measurement device
Friedman et al. Self-reported sensitivity to continuous noninvasive blood pressure monitoring via the radial artery
US20200113516A1 (en) Metabolic rate measurement apparatus and method thereof
Prasath et al. Device for Monitoring Blood Components Using Sensors
Preejith et al. High altitude study on finger reflectance SpO 2
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载