+

JP2016064378A - Light irradiation apparatus and light irradiation method - Google Patents

Light irradiation apparatus and light irradiation method Download PDF

Info

Publication number
JP2016064378A
JP2016064378A JP2014195824A JP2014195824A JP2016064378A JP 2016064378 A JP2016064378 A JP 2016064378A JP 2014195824 A JP2014195824 A JP 2014195824A JP 2014195824 A JP2014195824 A JP 2014195824A JP 2016064378 A JP2016064378 A JP 2016064378A
Authority
JP
Japan
Prior art keywords
light
light emitting
irradiation
ultraviolet light
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014195824A
Other languages
Japanese (ja)
Inventor
弘喜 日野
Hiroyoshi Hino
弘喜 日野
純 藤岡
Jun Fujioka
純 藤岡
剛雄 加藤
Takeo Kato
剛雄 加藤
祥平 前田
Shohei Maeda
祥平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2014195824A priority Critical patent/JP2016064378A/en
Priority to KR1020150033756A priority patent/KR20160036460A/en
Priority to CN201520158734.2U priority patent/CN204515295U/en
Priority to TW104108975A priority patent/TWI652866B/en
Publication of JP2016064378A publication Critical patent/JP2016064378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Polymerisation Methods In General (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light irradiation device suppressing insufficient curing of photo-curable resin for irradiation-target objects: and to provide a light irradiation method.SOLUTION: A light irradiation apparatus 1 includes: a light-emitting part 10 having at least one light-emitting element emitting ultraviolet light; and control means 40 making the light-emitting part 10 emit the ultraviolet light to a plurality of irradiation target objects W in order. The control means 40 repeats reduction in relative illuminance of the ultraviolet light emitted to each of the irradiation-target objects W by the light-emitting element within a prescribed period of time as time advances, for each of the irradiation-target objects W.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、発光素子を備えた光照射装置及び光照射方法に関する。   Embodiments described herein relate generally to a light irradiation apparatus and a light irradiation method including a light emitting element.

現在、液晶パネルの硬化や重合、貼り合わせで用いられる光照射装置で、管内に封入した金属を励起することによって光を放出する、放電ランプ(例えば低圧蛍光ランプ、高圧水銀ランプ、メタルハライドランプ)が用いられている。   Currently, there are discharge lamps (for example, low-pressure fluorescent lamps, high-pressure mercury lamps, metal halide lamps) that emit light by exciting the metal enclosed in the tube with a light irradiation device used for curing, polymerization and bonding of liquid crystal panels. It is used.

特開昭59−43320号公報JP 59-43320 A 特開昭60−59733号公報JP 60-59733 A

ところで、従来技術においては、例えば、光を照射して被照射物の光硬化型の樹脂を硬化させる際に、不十分な硬化を抑制することが求められる。   By the way, in the prior art, for example, when light is cured to cure the photocurable resin of the irradiated object, it is required to suppress insufficient curing.

本発明は、被照射物の光化学反応の不均一を抑制する光照射装置及び光照射方法を提供することを目的とする。   An object of this invention is to provide the light irradiation apparatus and light irradiation method which suppress the nonuniformity of the photochemical reaction of a to-be-irradiated object.

実施形態の光照射装置は、紫外光を放出する発光素子を少なくとも一つ有する光放出部と、光放出部から複数の被照射物に順に紫外光を照射させる制御手段と、を具備する。制御手段は、各被照射物に対する所定時間内の発光素子が放出する紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物毎に繰り返す。   The light irradiation apparatus according to the embodiment includes a light emitting unit having at least one light emitting element that emits ultraviolet light, and a control unit that sequentially irradiates a plurality of objects to be irradiated with ultraviolet light from the light emitting unit. The control means repeats, for each object to be irradiated, the relative illuminance of the ultraviolet light emitted by the light emitting element within a predetermined time with respect to each object to be irradiated is decreased with time.

実施形態の光照射方法は、発光素子から放出した紫外光を複数の被照射物に順に照射する。光照射方法は、各被照射物に対する所定時間内の発光素子が放出する紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物毎に繰り返す。   In the light irradiation method of the embodiment, ultraviolet light emitted from a light emitting element is sequentially irradiated onto a plurality of irradiated objects. In the light irradiation method, the relative illuminance of the ultraviolet light emitted from the light emitting element within a predetermined time with respect to each object to be irradiated is decreased for each object to be irradiated with time.

本発明によれば、被照射物の光化学反応の不均一を抑制する光照射装置及び光照射方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light irradiation apparatus and light irradiation method which suppress the nonuniformity of the photochemical reaction of a to-be-irradiated object can be provided.

図1は、実施形態に係る光照射装置の概略の構成を示す斜視図である。FIG. 1 is a perspective view illustrating a schematic configuration of a light irradiation apparatus according to an embodiment. 図2は、図1に示す光照射装置のX軸方向視の断面図である。FIG. 2 is a cross-sectional view of the light irradiation apparatus shown in FIG. 1 as viewed in the X-axis direction. 図3は、図1に示す光照射装置の光放出部の平面図である。FIG. 3 is a plan view of a light emitting portion of the light irradiation device shown in FIG. 図4は、図3に示された光放出部のX軸方向視の断面図である。FIG. 4 is a cross-sectional view of the light emitting unit shown in FIG. 3 as viewed in the X-axis direction. 図5は、図1に示す光照射装置の光放出部の相対照度の変化を示す図である。FIG. 5 is a diagram illustrating a change in relative illuminance of the light emitting unit of the light irradiation device illustrated in FIG. 1. 図6は、図1に示す光照射装置の制御手段のフローチャートの一例である。FIG. 6 is an example of a flowchart of the control means of the light irradiation apparatus shown in FIG. 図7は、本発明品と比較例1〜3を作動させてからの相対照度の変化を示す図である。FIG. 7 is a diagram showing a change in relative illuminance after the product of the present invention and Comparative Examples 1 to 3 are operated. 図8は、実施形態の変形例1に係る光照射装置の概略の構成を示すX軸方向視の断面図である。FIG. 8 is a cross-sectional view in the X-axis direction showing a schematic configuration of the light irradiation apparatus according to the first modification of the embodiment. 図9は、実施形態の変形例2に係る光照射装置の概略の構成を示すX軸方向視の断面図である。FIG. 9 is a cross-sectional view in the X-axis direction showing a schematic configuration of a light irradiation apparatus according to Modification 2 of the embodiment. 図10は、実施形態の変形例3に係る光照射装置の概略の構成を示すX軸方向視の断面図である。FIG. 10 is a cross-sectional view in the X-axis direction showing a schematic configuration of a light irradiation apparatus according to Modification 3 of the embodiment. 図11は、図5に示された光照射装置の光放出部の相対照度の変化の変形例を示す図である。FIG. 11 is a diagram illustrating a modification of the change in relative illuminance of the light emitting unit of the light irradiation device illustrated in FIG. 5. 図12は、実施形態の変形例4に係る光照射装置の概略の構成を示す斜視図である。FIG. 12 is a perspective view illustrating a schematic configuration of a light irradiation apparatus according to Modification 4 of the embodiment. 図13は、実施形態の変形例5に係る光照射装置の光放出部の側面図である。FIG. 13 is a side view of the light emitting unit of the light irradiation apparatus according to Modification 5 of the embodiment. 図14は、図13に示された光放出部を下からみた平面図である。FIG. 14 is a plan view of the light emitting unit shown in FIG. 13 as viewed from below. 図15は、実施形態の変形例6に係る光照射装置の光放出部を下からみた平面図である。FIG. 15 is a plan view of the light emitting unit of the light irradiation apparatus according to the sixth modification of the embodiment as viewed from below. 図16は、実施形態の変形例7に係る光照射装置の概略の構成を示す図である。FIG. 16 is a diagram illustrating a schematic configuration of a light irradiation apparatus according to Modification 7 of the embodiment.

以下で説明する実施形態及び変形例1〜7に係る光照射装置1,1−1,1−2,1−3,1−4,1−5,1−6,1−7は、紫外光を放出する発光素子12を少なくとも一つ有する光放出部10と、光放出部10から複数の被照射物Wに順に紫外光を照射させる制御手段40と、を具備する。制御手段40は、各被照射物Wに対する所定時間T内の発光素子12が放出する紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物W毎に繰り返す。   The light irradiation devices 1,1-1,1-2,1-3,1-4,1-5,1-6,1-7 according to the embodiments and modifications 1 to 7 described below are ultraviolet light. A light emitting unit 10 having at least one light emitting element 12 that emits light, and a control unit 40 that sequentially irradiates a plurality of irradiated objects W from the light emitting unit 10 with ultraviolet light. The control means 40 repeats decreasing the relative illuminance of the ultraviolet light emitted from the light emitting element 12 within the predetermined time T with respect to each irradiation object W over time for each irradiation object W.

また、実施形態及び変形例1〜7に係る光照射装置1,1−1,1−2,1−3,1−4,1−5,1−6,1−7において、前記発光素子12は、ピーク波長が240nm〜450nmの紫外光を放出する。   In the light irradiation devices 1,1-1,1-2,1-3,1-4,1-5,1-6,1-7 according to the embodiment and the first to seventh modifications, the light emitting element 12 is used. Emits ultraviolet light having a peak wavelength of 240 nm to 450 nm.

また、実施形態及び変形例1〜7に係る光照射装置1,1−1,1−2,1−3,1−4,1−5,1−6,1−7において、制御手段40は、所定時間T内の発光素子12が放出する紫外光の相対照度を、放出直後を最強とし、時間の経過とともに弱くする。   Moreover, in the light irradiation apparatus 1,1-1,1-2,1-3,1-4,1-5,1-6,1-7 which concerns on embodiment and the modifications 1-7, the control means 40 is The relative illuminance of the ultraviolet light emitted by the light emitting element 12 within the predetermined time T is set to the strongest immediately after the emission and is decreased with the passage of time.

また、実施形態及び変形例1〜7に係る光照射装置1,1−1,1−2,1−3,1−4,1−5,1−6,1−7は、被照射物Wが樹脂を含む。   In addition, the light irradiation devices 1,1-1,1-2,1-3,1-4,1-5,1-6,1-7 according to the embodiment and the modifications 1 to 7 are irradiated objects W. Contains resin.

また、実施形態及び変形例1〜7に係る光照射装置1,1−1,1−2,1−3,1−4,1−5,1−6,1−7は、光放出部10と前記被照射物Wとの間に、前記光放出部10から放出された紫外光の偏光成分を取り出す偏光素子70を有する。   In addition, the light irradiation devices 1, 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, and 1-7 according to the embodiment and the modified examples 1 to 7 And a polarization element 70 for extracting a polarization component of the ultraviolet light emitted from the light emitting unit 10.

また、以下で説明する実施形態及び変形例1〜7に係る光照射方法は、発光素子12から放出した紫外光を複数の被照射物Wに順に照射する。光照射方法は、各被照射物Wに対する所定時間T内の発光素子12が放出する紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物W毎に繰り返す。   Moreover, the light irradiation method which concerns on embodiment and the modifications 1-7 demonstrated below irradiates the some to-be-irradiated object W in order with the ultraviolet light discharge | released from the light emitting element 12. FIG. In the light irradiation method, the relative illuminance of the ultraviolet light emitted from the light emitting element 12 within the predetermined time T with respect to each irradiation object W is gradually reduced for each irradiation object W with time.

[実施形態]
次に、本発明の実施形態に係る光照射装置1及び光照射方法を図面に基づいて説明する。図1は、実施形態に係る光照射装置の概略の構成を示す斜視図、図2は、図1に示す光照射装置のX軸方向視の断面図、図3は、図1に示す光照射装置の光放出部の平面図、図4は、図3に示された光放出部のX軸方向視の断面図、図5は、図1に示す光照射装置の光放出部の相対照度の変化を示す図である。
[Embodiment]
Next, the light irradiation apparatus 1 and the light irradiation method which concern on embodiment of this invention are demonstrated based on drawing. 1 is a perspective view illustrating a schematic configuration of a light irradiation apparatus according to the embodiment, FIG. 2 is a cross-sectional view of the light irradiation apparatus shown in FIG. 1 as viewed in the X-axis direction, and FIG. 3 is a light irradiation illustrated in FIG. 4 is a cross-sectional view of the light emitting unit shown in FIG. 3 as viewed in the X-axis direction, and FIG. 5 is a graph showing the relative illuminance of the light emitting unit of the light emitting device shown in FIG. It is a figure which shows a change.

実施形態に係る光照射装置1(以下、単に光照射装置と記す)は、紫外線硬化樹脂(光硬化型の樹脂に相当)を有する被照射物W(図1に示す)に少なくとも紫外線を含む光(紫外光)を照射して、被照射物Wの紫外線硬化樹脂を硬化する装置である。光照射装置1は、一つずつ順に被照射物Wに紫外光を照射して、複数の被照射物Wに照射する装置である。以下、被照射物Wの幅方向をX軸方向といい、X軸方向に直交し、且つ、被照射物Wの長手方向(搬送方向ともいう)をY軸方向といい、Y軸方向及びX軸方向に直交する方向をZ軸方向と呼ぶ。   The light irradiation device 1 according to the embodiment (hereinafter simply referred to as a light irradiation device) is a light containing at least ultraviolet rays in an irradiated object W (shown in FIG. 1) having an ultraviolet curable resin (corresponding to a photocurable resin). It is an apparatus that irradiates (ultraviolet light) to cure the ultraviolet curable resin of the irradiated object W. The light irradiation device 1 is a device that irradiates a plurality of irradiated objects W by irradiating the irradiated objects W with ultraviolet light one by one. Hereinafter, the width direction of the irradiation object W is referred to as the X-axis direction, and the longitudinal direction of the irradiation object W (also referred to as the conveyance direction) is referred to as the Y-axis direction. A direction orthogonal to the axial direction is referred to as a Z-axis direction.

光照射装置1は、図1に示すように、紫外光を放出する光放出部10と、光放出部10から放出される紫外光の配光を制御する反射板20と、反射板20に対して、反射板20で配光が制御された紫外光の進行方向側に配設されると共に、被照射物Wを搬送する搬送手段30(図2に示す)と、制御手段40などを具備する。   As shown in FIG. 1, the light irradiation device 1 includes a light emitting unit 10 that emits ultraviolet light, a reflecting plate 20 that controls light distribution of ultraviolet light emitted from the light emitting unit 10, and a reflecting plate 20. In addition, it is arranged on the traveling direction side of the ultraviolet light whose light distribution is controlled by the reflecting plate 20, and includes a transport means 30 (shown in FIG. 2) for transporting the irradiated object W, a control means 40, and the like. .

光放出部10は、棒状、或いは線状の光源になっている。また、光放出部10は、例えば、図3及び図4に示すように、外観が円柱状の本体部材11の外表面に発光素子12が複数取り付けられて、発光素子12を少なくとも一つ有した直線状の発光部を有している。光放出部10の発光部の長手方向は、X軸方向と平行であり、光放出部10の発光部の長さは、被照射物Wの幅よりも長くなっている。   The light emitting unit 10 is a rod-shaped or linear light source. In addition, as shown in FIGS. 3 and 4, for example, the light emitting unit 10 includes at least one light emitting element 12 in which a plurality of light emitting elements 12 are attached to the outer surface of the body member 11 having a cylindrical appearance. It has a linear light emitting part. The longitudinal direction of the light emitting part of the light emitting part 10 is parallel to the X-axis direction, and the length of the light emitting part of the light emitting part 10 is longer than the width of the irradiated object W.

発光素子12は、少なくとも紫外光を放出するものであって、LED(Light Emitting Diode)や、LD(Laser Diode)などの半導体で構成される。発光素子12は、本体部材11の外表面に周方向に間隔をあけて取り付けられているとともに、本体部材11の長手方向即ちX軸方向に間隔をあけて取り付けられている。   The light emitting element 12 emits at least ultraviolet light, and is composed of a semiconductor such as an LED (Light Emitting Diode) or an LD (Laser Diode). The light emitting elements 12 are attached to the outer surface of the main body member 11 at intervals in the circumferential direction, and are attached at intervals in the longitudinal direction of the main body member 11, that is, the X-axis direction.

発光素子12は、ピーク波長が254nm、313nm、365nm、385nm、405nmのうちいずれかである紫外線を放出するものが用いられる。即ち、本発明で、光放出部10を構成する複数の発光素子12は、ピーク波長が254nmである発光素子12と、ピーク波長が313nmである発光素子12と、ピーク波長が365nmである発光素子12と、ピーク波長が385nmである発光素子12と、ピーク波長が405nmである発光素子12のうち一つ以上のものが用いられる。即ち、発光素子12は、ピーク波長が240nm〜450nmの紫外光を放出する。これらのピーク波長を有する発光素子12は、被照射物Wに応じて適宜選択される。なお、本明細書でいうピーク波長とは、発光素子12が放出する紫外光のうちの相対照度が最も強い紫外光の波長をいう。   The light emitting element 12 emits ultraviolet rays having a peak wavelength of 254 nm, 313 nm, 365 nm, 385 nm, or 405 nm. That is, in the present invention, the plurality of light emitting elements 12 constituting the light emitting unit 10 are the light emitting element 12 having a peak wavelength of 254 nm, the light emitting element 12 having a peak wavelength of 313 nm, and the light emitting element having a peak wavelength of 365 nm. 12, one or more of the light emitting element 12 having a peak wavelength of 385 nm and the light emitting element 12 having a peak wavelength of 405 nm are used. That is, the light emitting element 12 emits ultraviolet light having a peak wavelength of 240 nm to 450 nm. The light emitting element 12 having these peak wavelengths is appropriately selected according to the irradiated object W. Note that the peak wavelength in this specification refers to the wavelength of ultraviolet light having the strongest relative illuminance among the ultraviolet light emitted from the light emitting element 12.

また、本発明でいう相対照度とは、光放出部10、すなわち、発光素子12から放出される紫外線の相対照度を表す指標である。相対照度は、例えばウシオ電機製の紫外線積算光量計UIT−250、受光器UVD−S365などのいわゆる照度計を用いて測定した照度を規格化し相対照度として用いることができる。なお、照度計は上記に限定されず、例えばオーク製作所製のUV−MO3A、受光器UV−SN35を用いてもよい。また、相対照度は、例えば被照射物が置かれる位置に、紫外光を受光して電気信号を出力する受光素子を用いて相対的に紫外光の強度の変化を検出するものでもよい。   In addition, the relative illuminance referred to in the present invention is an index representing the relative illuminance of ultraviolet rays emitted from the light emitting unit 10, that is, the light emitting element 12. The relative illuminance can be used as the relative illuminance by standardizing the illuminance measured using a so-called illuminometer such as Ushio Electric's UV integrated light meter UIT-250, photoreceiver UVD-S365. The illuminance meter is not limited to the above, and for example, UV-MO3A manufactured by Oak Manufacturing Co., Ltd., or a light receiver UV-SN35 may be used. In addition, the relative illuminance may be such that, for example, a change in the intensity of the ultraviolet light is detected relatively by using a light receiving element that receives the ultraviolet light and outputs an electrical signal at a position where the irradiated object is placed.

光放出部10は、線状の発光部から、例えば波長が240nmから450nmの紫外光を放出することが可能になっており、光放出部10が放出する紫外光は、さまざまな偏光軸成分を有する、いわゆる非偏光の紫外光になっている。光放出部10の直径Rは、例えば、15.5mmであり、光放出部10の長さLは、例えば、1149mmである。   The light emitting unit 10 can emit ultraviolet light having a wavelength of 240 nm to 450 nm, for example, from a linear light emitting unit, and the ultraviolet light emitted from the light emitting unit 10 has various polarization axis components. It has so-called non-polarized ultraviolet light. The diameter R of the light emitting unit 10 is, for example, 15.5 mm, and the length L of the light emitting unit 10 is, for example, 1149 mm.

反射板20は、光放出部10に対向する面に、光放出部10から放出される紫外光を反射する反射面21を有している。反射面21は、棒状に形成される光放出部10の軸心に沿った方向に見た場合における形状である軸心方向視の形状、即ち、X軸方向視における形状が、楕円の一部が開口した形状になっている。反射板20は、光放出部10から放出された紫外光を反射面21により被照射物Wに向かって反射させる。また、反射板20は、Z軸方向に開口する向きで配設されている。   The reflecting plate 20 has a reflecting surface 21 that reflects the ultraviolet light emitted from the light emitting unit 10 on the surface facing the light emitting unit 10. The reflection surface 21 is a part of an ellipse when viewed in the axial direction, that is, when viewed in the direction along the axial center of the light emitting unit 10 formed in a rod shape, that is, when viewed in the X-axis direction. Has an open shape. The reflecting plate 20 reflects the ultraviolet light emitted from the light emitting unit 10 toward the irradiated object W by the reflecting surface 21. Moreover, the reflecting plate 20 is disposed in a direction that opens in the Z-axis direction.

反射板20は、棒状に形成される光放出部10に沿って、これらの形状で光放出部10に対して平行に延びている。さらに、反射板20は、反射面21の楕円が開口している側の反対側の部分で、楕円の曲率が最大になる部分付近に、楕円の周方向、或いはY軸方向にあいた空隙である空隙部22が形成されている。即ち、空隙部22は、光放出部10から見て、Z軸方向において反射面21の楕円が開口している側の反対側に形成されている。反射板20は、この空隙部22で、楕円の内側と外側との空間が連通している。また、反射板20は、基材がアルミニウム合金からなり、多層膜によって反射面21が構成されている。なお、反射板20は、アルミニウム合金から構成されるものに限定されず、光放出部10から放出される熱を透過するコールドミラーであってもよい。   The reflector 20 extends in parallel with the light emitting unit 10 in the shape of the light emitting unit 10 formed in a rod shape. Further, the reflecting plate 20 is a gap in the circumferential direction of the ellipse or in the Y-axis direction in the vicinity of the portion where the curvature of the ellipse is the maximum on the opposite side of the reflecting surface 21 where the ellipse is open. A gap portion 22 is formed. That is, the gap 22 is formed on the side opposite to the side where the ellipse of the reflection surface 21 is opened in the Z-axis direction when viewed from the light emitting unit 10. The reflection plate 20 is connected to the space between the inner side and the outer side of the ellipse at the gap portion 22. Further, the reflecting plate 20 has a base material made of an aluminum alloy, and a reflecting surface 21 is constituted by a multilayer film. In addition, the reflecting plate 20 is not limited to what is comprised from an aluminum alloy, The cold mirror which permeate | transmits the heat | fever emitted from the light emission part 10 may be sufficient.

搬送手段30は、光放出部10から放出されかつ反射板20によって反射された紫外光が照射される照射位置(図2に示す)と、照射位置から離間した離間位置とに亘って、被照射物Wを搬送するものである。搬送手段30は、複数の被照射物Wのうち、一つずつ順に照射位置に搬送することとなる。   The conveying means 30 is irradiated between an irradiation position (shown in FIG. 2) where the ultraviolet light emitted from the light emitting unit 10 and reflected by the reflecting plate 20 is irradiated, and a spaced position apart from the irradiation position. The object W is conveyed. The conveyance means 30 will convey one by one to the irradiation position one by one among the plurality of irradiated objects W.

制御手段40は、光放出部10から複数の被照射物Wに一つずつ順に紫外光を放出(即ち照射)させて、光照射装置1による紫外光の照射動作を制御するものである。制御手段40は、例えばCPU等で構成された演算処理装置やROM、RAM等を備える図示しないマイクロプロセッサを主体として構成されており、処理動作の状態を表示する表示手段や、オペレータが照射内容情報などを登録する際に用いる操作手段と接続されている。   The control means 40 controls the irradiation operation of the ultraviolet light by the light irradiation apparatus 1 by sequentially emitting (i.e., irradiating) ultraviolet light from the light emitting unit 10 to the plurality of irradiated objects W one by one. The control means 40 is mainly composed of an arithmetic processing unit constituted by a CPU or the like, and a microprocessor (not shown) provided with a ROM, a RAM and the like. Etc. are connected to the operation means used when registering.

次に、光照射装置1の被照射物Wの照射動作即ち光照射方法を説明する。光照射方法は、発光素子12から放出した紫外光を複数の被照射物Wに順に照射する方法である。図6は、図1に示す光照射装置の制御手段のフローチャートの一例である。まず、オペレータが照射内容情報を制御手段40に登録し、照射動作の開始指示があった場合に、照射動作を開始する。まず、照射動作で、制御手段40は、搬送手段30に最初に紫外光を照射する一つの被照射物Wを照射位置に停止させ、光放出部10から紫外光を時間t0(図5に示す)からt1(図5に示す)までの所定時間T放出させる(ステップST1)。そして、制御手段40は、一つの被照射物Wに所定時間T紫外光を照射する。   Next, the irradiation operation of the irradiation object W of the light irradiation apparatus 1, that is, the light irradiation method will be described. The light irradiation method is a method of sequentially irradiating a plurality of irradiated objects W with ultraviolet light emitted from the light emitting element 12. FIG. 6 is an example of a flowchart of the control means of the light irradiation apparatus shown in FIG. First, the operator registers the irradiation content information in the control means 40, and starts the irradiation operation when there is an instruction to start the irradiation operation. First, in the irradiation operation, the control means 40 stops one irradiated object W that first irradiates the ultraviolet light on the conveying means 30 at the irradiation position, and the ultraviolet light is emitted from the light emitting unit 10 at time t0 (shown in FIG. 5). ) To t1 (shown in FIG. 5) for a predetermined time T (step ST1). Then, the control means 40 irradiates one irradiated object W with T ultraviolet light for a predetermined time.

このとき、制御手段40は、図5に示すように、各被照射物Wに対する所定時間T内の光放出部10の発光素子12が放出する紫外光の相対照度を、時間t0即ち放出直後を最強とし、時間t0から時間t1に向かって時間の経過とともに徐々に弱くさせる。なお、図5の横軸は、照射動作を開始してからの経過時間を示し、縦軸は、光放出部10が放出した最も強い紫外光の相対照度を100%として光放出部10が放出する紫外光の相対照度を示している。なおここでいう「紫外光の放出直後」とは、現に「紫外光の放出直後」から「紫外光の放出後1秒」までの期間を含む。また、所定時間T、すなわち、時間t0から時間t1までの時間は、例えば2秒から2時間、好ましくは2秒から900秒の範囲の任意の値で設定される。   At this time, as shown in FIG. 5, the control means 40 sets the relative illuminance of the ultraviolet light emitted from the light emitting element 12 of the light emitting unit 10 within a predetermined time T for each irradiation object W at the time t0, that is, immediately after the emission. The strongest is set to be gradually weakened with the passage of time from time t0 to time t1. The horizontal axis in FIG. 5 indicates the elapsed time from the start of the irradiation operation, and the vertical axis indicates that the light emitting unit 10 emits the relative illuminance of the strongest ultraviolet light emitted by the light emitting unit 10 as 100%. The relative illuminance of ultraviolet light is shown. Here, “immediately after the emission of ultraviolet light” actually includes a period from “immediately after the emission of ultraviolet light” to “1 second after the emission of ultraviolet light”. The predetermined time T, that is, the time from the time t0 to the time t1, is set to an arbitrary value in the range of 2 seconds to 2 hours, preferably 2 seconds to 900 seconds, for example.

そして、光照射装置1は、前述した一つの被照射物Wへの紫外光の照射を終了すると、オペレータから登録された照射内容情報を参照して、登録された所定数の被照射物Wへの紫外光の照射が完了したか否かを判定する(ステップST2)。制御手段40は、登録された所定数の被照射物Wへの紫外光の照射が完了していないと判定する(ステップST2:No)と、前述した一つの被照射物Wへの紫外光の照射を終了してから第2の所定時間T2(図5に示す)経過したか否かを判定するとともに、搬送手段30が光照射が完了した被照射物Wを離間位置に搬送し光照射前の被照射物Wを照射位置に搬送する(ステップST3)。なおここでいう所定時間T2、すなわち、時間t1から時間t2までの時間は、例えば1秒から15分、好ましくは1秒から10分の範囲の任意の値で設定される。   And the light irradiation apparatus 1 will complete | finish the irradiation of the ultraviolet light to the one to-be-irradiated object W mentioned above, will refer to the irradiation content information registered from the operator, and will be registered to the predetermined number of to-be-irradiated objects W It is determined whether or not the irradiation of the ultraviolet light is completed (step ST2). When the control means 40 determines that the irradiation of ultraviolet light to the predetermined number of registered objects W has not been completed (step ST2: No), the control unit 40 transmits the ultraviolet light to the one object W described above. It is determined whether or not a second predetermined time T2 (shown in FIG. 5) has elapsed since the end of the irradiation, and the conveying means 30 conveys the irradiated object W to which the light irradiation has been completed to a separated position before the light irradiation. The object W to be irradiated is transported to the irradiation position (step ST3). Here, the predetermined time T2, that is, the time from the time t1 to the time t2, is set to an arbitrary value in the range of, for example, 1 second to 15 minutes, preferably 1 second to 10 minutes.

制御手段40は、前述した一つの被照射物Wへの紫外光の照射を終了してから第2の所定時間T2経過していないと判定する(ステップST3:No)と、ステップST3を繰り返す。制御手段40は、前述した一つの被照射物Wへの紫外光の照射を終了してから第2の所定時間T2経過したと判定する(ステップST3:Yes)と、ステップST1に戻り、制御手段40は、光放出部10から紫外光を時間t2(図5に示す)即ち放出直後を最強とし、時間t2からt3(図5に示す)までの所定時間T放出させ(ステップST1)、登録された所定数の被照射物Wへの紫外光の照射が完了した否かを判定(ステップST2:No)し、紫外光の照射を終了してから第2の所定時間T2(図5に示す)経過したか否かを判定する(ステップST3)。このように、制御手段40は、図5に示すように、各被照射物Wに対する所定時間T内の発光素子12が放出する紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物W毎に繰り返して実行する。   When the control means 40 determines that the second predetermined time T2 has not elapsed since the irradiation of the ultraviolet light to the one irradiation object W described above has been completed (step ST3: No), step ST3 is repeated. When it is determined that the second predetermined time T2 has elapsed since the irradiation of the ultraviolet light to the one irradiation object W described above is completed (step ST3: Yes), the control unit 40 returns to step ST1, and the control unit 40, the ultraviolet light is emitted from the light emitting unit 10 at time t2 (shown in FIG. 5), that is, the strongest immediately after emission, and is emitted for a predetermined time T from time t2 to t3 (shown in FIG. 5) (step ST1). It is determined whether or not the irradiation of the predetermined number of irradiated objects W has been completed (step ST2: No), and the second predetermined time T2 (shown in FIG. 5) after the irradiation of the ultraviolet light is completed. It is determined whether or not it has elapsed (step ST3). In this way, as shown in FIG. 5, the control means 40 reduces the relative illuminance of the ultraviolet light emitted by the light emitting element 12 within a predetermined time T with respect to each irradiation object W over time. This is repeated for each irradiation object W.

制御手段40は、登録された所定数の被照射物Wへの紫外光の照射が完了したと判定する(ステップST2:Yes)と、照射動作を終了する。このように、光照射装置1を用いた被照射物Wへの光照射方法は、各被照射物Wに対する所定時間T内の発光素子12が放出する紫外光の相対照度を時間の経過とともに弱くする。光照射方法は、所定時間T内の発光素子12が放出する紫外光の相対照度を時間の経過とともに弱くすることを、第2の所定時間T2おきに各被照射物W毎に繰り返して、発光素子12から放出した紫外光を複数の被照射物Wに一つずつ順に照射する。   When the control means 40 determines that the irradiation of ultraviolet light to the predetermined number of registered objects W has been completed (step ST2: Yes), the irradiation operation is terminated. As described above, the light irradiation method to the irradiation object W using the light irradiation apparatus 1 weakens the relative illuminance of the ultraviolet light emitted from the light emitting element 12 within the predetermined time T with respect to each irradiation object W with time. To do. In the light irradiation method, the relative illuminance of the ultraviolet light emitted from the light emitting element 12 within a predetermined time T is weakened with the passage of time, and light emission is repeated for each irradiation object W every second predetermined time T2. The ultraviolet light emitted from the element 12 is sequentially irradiated onto the plurality of irradiated objects W one by one.

次に、本発明の発明者は、実施形態の光照射装置1の効果を確認した。結果を図7に示す。図7は、本発明品と比較例1〜3を作動させてからの相対照度の変化を示す図である。図7の横軸は、紫外光の放出を開始してからの経過時間を示し、縦軸は、被照射物Wに照射される最も強い紫外光の相対照度を100%として、被照射物Wに照射される紫外光の相対照度を示している。   Next, the inventor of this invention confirmed the effect of the light irradiation apparatus 1 of embodiment. The results are shown in FIG. FIG. 7 is a diagram showing a change in relative illuminance after the product of the present invention and Comparative Examples 1 to 3 are operated. The horizontal axis of FIG. 7 shows the elapsed time since the start of the emission of ultraviolet light, and the vertical axis shows the relative illuminance of the strongest ultraviolet light irradiated to the irradiation object W as 100%, and the irradiation object W Shows the relative illuminance of the ultraviolet light irradiated to.

図7に実線で示す本発明品は、実施形態に記載された発光素子12を備えた光放出部10から紫外光を放出した。図7に点線で示す比較例1は、低圧水銀灯の発光管内面に蛍光物質を塗布した低圧蛍光ランプから紫外光を放出した。図7に一点鎖線で示す比較例2は、紫外線透過性のガラス管内に水銀、アルゴン、キセノンなどの希ガスが封入された高圧水銀ランプから紫外光を放出した。図7に二点鎖線で示す比較例3は、直管状の気密容器に水銀や希ガスを封入した高圧水銀ランプや、直管状の気密容器に水銀と鉄やヨウ素などのメタルハライドが更に封入されたメタルハライドランプから紫外光を放出した。   The product of the present invention indicated by a solid line in FIG. 7 emits ultraviolet light from the light emitting unit 10 including the light emitting element 12 described in the embodiment. In Comparative Example 1 indicated by a dotted line in FIG. 7, ultraviolet light was emitted from a low-pressure fluorescent lamp in which a fluorescent material was applied to the inner surface of the arc tube of the low-pressure mercury lamp. In Comparative Example 2 indicated by a one-dot chain line in FIG. 7, ultraviolet light was emitted from a high-pressure mercury lamp in which a rare gas such as mercury, argon, or xenon was sealed in an ultraviolet light transmissive glass tube. In Comparative Example 3 indicated by a two-dot chain line in FIG. 7, a high pressure mercury lamp in which mercury or a rare gas is sealed in a straight tubular airtight container, or a metal halide such as mercury, iron or iodine is further sealed in a straight tubular airtight container. Ultraviolet light was emitted from a metal halide lamp.

図7によれば、比較例1〜3は、作動させても所望の相対照度が得られるまで100sec〜500sec程度かかるのに対し、本発明品は、作動させると直ちに所望の相対照度が得られることが明らかとなった。このように、発光素子12を有する光放出部10を用いることで、被照射物Wに適切な相対照度の紫外光を照射でき、各被照射物Wに対する所定時間T内の紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物W毎に繰り返すことができることが明らかとなった。   According to FIG. 7, it takes about 100 sec to 500 sec until the desired relative illuminance is obtained even when operated in Comparative Examples 1 to 3, whereas the product according to the present invention can obtain the desired relative illuminance immediately when operated. It became clear. As described above, by using the light emitting unit 10 having the light emitting element 12, the irradiation object W can be irradiated with ultraviolet light having an appropriate relative illuminance, and the relative illuminance of the ultraviolet light within the predetermined time T with respect to each irradiation object W. It has become clear that it can be repeated for each irradiation object W to weaken as time elapses.

前述した構成の実施形態に係る光照射装置1は、光放出部10が発光素子12を有しているので、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wに照射する紫外光の相対照度も被照射物Wに応じて適切に変更することができる。また、光照射装置1は、各被照射物Wに紫外光を照射する際に、光放出部10が放出する紫外光の相対照度を時間の経過とともに弱くする。このために、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制させることができる。また、光照射装置1は、複数の被照射物Wに一つずつ紫外光を照射する際に、光放出部10が放出する紫外光の相対照度を時間の経過とともに弱くすることを第2の所定時間T2おきに各被照射物W毎に繰り返すので、複数の被照射物Wの光化学反応の不均一を抑制させることができる。   In the light irradiation apparatus 1 according to the embodiment having the above-described configuration, since the light emitting unit 10 includes the light emitting element 12, as soon as the light emitting unit 10 is operated, ultraviolet light having a desired relative illuminance is irradiated. The relative illuminance of the ultraviolet light applied to the irradiation object W can be appropriately changed according to the irradiation object W. Moreover, the light irradiation apparatus 1 weakens the relative illuminance of the ultraviolet light emitted from the light emitting unit 10 as time elapses when each object W is irradiated with ultraviolet light. For this reason, ultraviolet light can be irradiated to the depth of the ultraviolet curable resin of the irradiation object W, and the nonuniformity of the photochemical reaction of the irradiation object W can be suppressed. In addition, when the light irradiation device 1 irradiates a plurality of irradiated objects W one by one with ultraviolet light one by one, the relative illuminance of the ultraviolet light emitted by the light emitting unit 10 is reduced as time passes. Since it repeats for every to-be-irradiated object W every predetermined time T2, the nonuniformity of the photochemical reaction of the some to-be-irradiated object W can be suppressed.

また、実施形態に係る光照射装置1は、発光素子12のピーク波長が240nm〜450nmの紫外光を放出するので、被照射物Wに対してよりエネルギーが高い光である短波長の紫外光を照射することができるため、被照射物Wの光化学反応の不均一を抑制することができる。   Moreover, since the light irradiation apparatus 1 which concerns on embodiment discharge | releases the ultraviolet light whose peak wavelength of the light emitting element 12 is 240 nm-450 nm, it is the short wavelength ultraviolet light which is light with higher energy with respect to the to-be-irradiated object W. Since it can irradiate, the nonuniformity of the photochemical reaction of the to-be-irradiated object W can be suppressed.

また、実施形態に係る光照射装置1は、制御手段40が、所定時間内の発光素子12が放出する紫外光の相対照度を、放出直後を最強とし、時間の経過とともに弱くすることで、例えば紫外光が当たると瞬時に硬化するような被照射物Wを用いても、被照射物Wの深さ方向の深い位置から逐次深さ方向の浅い位置へと硬化させる処理ができるため、被照射物Wの光化学反応の不均一を抑制することができる。   Further, in the light irradiation apparatus 1 according to the embodiment, the control unit 40 makes the relative illuminance of the ultraviolet light emitted by the light emitting element 12 within a predetermined time the strongest immediately after the emission and weakens with the passage of time, for example, Even if an irradiation object W that instantly cures when irradiated with ultraviolet light is used, the irradiation object W can be cured from a deep position in the depth direction to a shallow position in the depth direction. Nonuniformity of the photochemical reaction of the object W can be suppressed.

また、実施形態に係る光照射装置1は、被照射物Wが樹脂を含むことで、被照射物Wの深さ方向の深い位置から逐次深さ方向の浅い位置へと硬化させる処理ができるため、被照射物Wの光化学反応の不均一を抑制することができる。   Moreover, since the light irradiation apparatus 1 which concerns on embodiment can perform the process hardened from the deep position of the depth direction of the to-be-irradiated object W to the shallow position of the depth direction sequentially, because the to-be-irradiated object W contains resin. , Non-uniformity of the photochemical reaction of the irradiated object W can be suppressed.

[変形例1]
次に、本発明の実施形態の変形例1に係る光照射装置1−1を図面に基づいて説明する。図8は、実施形態の変形例1に係る光照射装置の概略の構成を示すX軸方向視の断面図である。図8において、前述した実施形態と同一部分には、同一符号を付して説明を省略する。
[Modification 1]
Next, the light irradiation apparatus 1-1 which concerns on the modification 1 of embodiment of this invention is demonstrated based on drawing. FIG. 8 is a cross-sectional view in the X-axis direction showing a schematic configuration of the light irradiation apparatus according to the first modification of the embodiment. In FIG. 8, the same parts as those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

実施形態の変形例1に係る光照射装置1−1は、図8に示すように、搬送手段30の代わりに、複数の被照射物WをY軸方向に連続的に移動させて、被照射物Wを一つずつ順に照射位置に移動させる移動搬送手段50を備えている。移動搬送手段50は、モータなどにより回転駆動される駆動ローラ51と、回転自在に設けられた従動ローラ52と、駆動ローラ51と従動ローラ52とに亘って掛け渡されて駆動ローラ51と従動ローラ52との間を循環走行する搬送ベルト53などを備えている。   As illustrated in FIG. 8, the light irradiation device 1-1 according to the first modification of the embodiment continuously moves a plurality of irradiated objects W in the Y-axis direction instead of the conveyance unit 30 to be irradiated. A moving conveyance means 50 is provided for moving the objects W one after another to the irradiation position. The moving and conveying means 50 includes a driving roller 51 that is rotationally driven by a motor or the like, a driven roller 52 that is rotatably provided, and spans between the driving roller 51 and the driven roller 52 to drive the driving roller 51 and the driven roller. A conveyance belt 53 that circulates between and the like is provided.

光照射装置1−1は、搬送ベルト53上に複数の被照射物Wを載置し、駆動ローラ51が搬送ベルト53をY軸方向に移動させることで、被照射物WをY軸方向に移動させながら光放出部10が放出した紫外光を被照射物Wの一つずつに照射する。   The light irradiation device 1-1 places a plurality of irradiated objects W on the conveyor belt 53, and the drive roller 51 moves the conveyor belt 53 in the Y-axis direction, thereby moving the irradiated object W in the Y-axis direction. The ultraviolet light emitted from the light emitting unit 10 is irradiated to each irradiation object W one by one while being moved.

変形例1に係る光照射装置1−1は、実施形態と同様に、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制することができる。   Similarly to the embodiment, the light irradiation device 1-1 according to the modification 1 can immediately irradiate the irradiation object W with ultraviolet light having a desired relative illuminance when the light emitting unit 10 is operated. Ultraviolet light can be irradiated to the back of the ultraviolet curable resin of W, and nonuniformity of the photochemical reaction of the irradiated object W can be suppressed.

[変形例2]
次に、本発明の実施形態の変形例2に係る光照射装置1−2を図面に基づいて説明する。図9は、実施形態の変形例2に係る光照射装置の概略の構成を示すX軸方向視の断面図である。図9において、前述した実施形態と同一部分には、同一符号を付して説明を省略する。
[Modification 2]
Next, the light irradiation apparatus 1-2 which concerns on the modification 2 of embodiment of this invention is demonstrated based on drawing. FIG. 9 is a cross-sectional view in the X-axis direction showing a schematic configuration of a light irradiation apparatus according to Modification 2 of the embodiment. In FIG. 9, the same parts as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.

実施形態の変形例2に係る光照射装置1−2は、図9に示すように、搬送手段30の代わりに、光放出部10をY軸方向に連続的に移動させて、Y軸方向に並べられた複数の被照射物Wを光放出部10に対して一つずつ順に照射位置に移動させる光源移動手段60を備えている。   As illustrated in FIG. 9, the light irradiation device 1-2 according to the second modification of the embodiment moves the light emitting unit 10 continuously in the Y axis direction instead of the transport unit 30, and moves the light emitting unit 10 in the Y axis direction. A light source moving means 60 is provided for moving the arranged plurality of irradiated objects W to the irradiation position one by one with respect to the light emitting unit 10 one by one.

光源移動手段60は、光放出部10、反射板20などが取り付けられたスライダ61と、スライダ61をY軸方向に移動自在にするレール62と、スライダ61をレール62に対してスライド移動させる図示しない駆動源などを備えている。光照射装置1−2は、Y軸方向に複数の被照射物Wを並べ、光源移動手段60が光放出部10などをY軸方向に移動させることで、光放出部10などをY軸方向に移動させながら光放出部10が放出した紫外光を被照射物Wの一つずつに照射する。   The light source moving means 60 includes a slider 61 to which the light emitting unit 10 and the reflection plate 20 are attached, a rail 62 that allows the slider 61 to move in the Y-axis direction, and a slider 61 that slides relative to the rail 62. Not equipped with a drive source. The light irradiation device 1-2 arranges a plurality of irradiated objects W in the Y-axis direction, and the light source moving unit 60 moves the light emission unit 10 and the like in the Y-axis direction, thereby moving the light emission unit 10 and the like in the Y-axis direction. Each of the irradiated objects W is irradiated with ultraviolet light emitted by the light emitting unit 10 while being moved.

変形例2に係る光照射装置1−2は、実施形態及び変形例1と同様に、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制することができる。また、光放出部10が発熱の少ない発光素子12を備えているので、水冷ジャケットなどで光放出部10を冷却する必要がない。したがって、光放出部10を移動させても、水冷ジャケットの破損を抑制することができる。   As in the embodiment and the first modification, the light irradiation device 1-2 according to the second modification can immediately irradiate the irradiated object W with ultraviolet light having a desired relative illuminance when the light emitting unit 10 is operated. Further, it is possible to irradiate ultraviolet light to the back of the ultraviolet curable resin of the irradiation object W, and to suppress the nonuniformity of the photochemical reaction of the irradiation object W. In addition, since the light emitting unit 10 includes the light emitting element 12 that generates little heat, it is not necessary to cool the light emitting unit 10 with a water cooling jacket or the like. Therefore, even if the light emission part 10 is moved, damage to the water cooling jacket can be suppressed.

[変形例3]
次に、本発明の実施形態の変形例3に係る光照射装置1−3を図面に基づいて説明する。図10は、実施形態の変形例3に係る光照射装置の概略の構成を示すX軸方向視の断面図である。図10において、前述した実施形態、変形例1、変形例2と同一部分には、同一符号を付して説明を省略する。
[Modification 3]
Next, the light irradiation apparatus 1-3 which concerns on the modification 3 of embodiment of this invention is demonstrated based on drawing. FIG. 10 is a cross-sectional view in the X-axis direction showing a schematic configuration of a light irradiation apparatus according to Modification 3 of the embodiment. In FIG. 10, the same parts as those in the above-described embodiment, modification 1 and modification 2 are denoted by the same reference numerals and description thereof is omitted.

実施形態の変形例3に係る光照射装置1−3は、図10に示すように、搬送手段30の代わりに、複数の被照射物WをY軸方向に連続的に移動させて、被照射物Wを一つずつ順に照射位置に移動させる移動搬送手段50を備えている。さらに、光照射装置1−3は、光放出部10をY軸方向に連続的に移動させて、Y軸方向に並べられた複数の被照射物Wを光放出部10に対して一つずつ順に照射位置に移動させる光源移動手段60を備えている。   As illustrated in FIG. 10, the light irradiation device 1-3 according to the third modification of the embodiment continuously moves a plurality of irradiated objects W in the Y-axis direction instead of the conveyance unit 30 to be irradiated. A moving conveyance means 50 is provided for moving the objects W one after another to the irradiation position. Further, the light irradiation device 1-3 continuously moves the light emitting unit 10 in the Y-axis direction, and each of the plurality of irradiated objects W arranged in the Y-axis direction with respect to the light emitting unit 10 one by one. A light source moving means 60 for sequentially moving to the irradiation position is provided.

光照射装置1−3は、被照射物WをY軸方向に移動させ、かつ光放出部10をY軸方向に移動させながら光放出部10が放出した紫外光を被照射物Wの一つずつに照射する。   The light irradiation device 1-3 moves the irradiated object W in the Y-axis direction and moves the light emitting unit 10 in the Y-axis direction to emit ultraviolet light emitted by the light emitting unit 10 as one of the irradiated objects W. Irradiate each one.

変形例3に係る光照射装置1−3は、実施形態、変形例1、変形例2と同様に、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制することができる。   Similar to the embodiment, the first modification, and the second modification, the light irradiation device 1-3 according to the third modification irradiates the irradiated object W with ultraviolet light having a desired relative illuminance immediately when the light emitting unit 10 is operated. It is possible to irradiate ultraviolet light to the depth of the ultraviolet curable resin of the irradiation object W, and to suppress the nonuniformity of the photochemical reaction of the irradiation object W.

また、変形例3に係る光照射装置1−3は、光放出部10が発熱の少ない発光素子12を備えているので、水冷ジャケットなどで光放出部10を冷却する必要がない。したがって、光放出部10を移動させても、水冷ジャケットを設ける必要がないので、水冷ジャケットの破損を抑制することができる。   Further, in the light irradiation device 1-3 according to the modified example 3, since the light emitting unit 10 includes the light emitting element 12 with less heat generation, it is not necessary to cool the light emitting unit 10 with a water cooling jacket or the like. Therefore, even if the light emitting unit 10 is moved, it is not necessary to provide a water cooling jacket, so that damage to the water cooling jacket can be suppressed.

また、光照射装置1,1−2,1−3の制御手段40は、光放出部10から紫外光を所定時間T放出する際の相対照度を図11に示すようにしてもよい。なお、図11は、図5に示された光照射装置の光放出部の相対照度の変化の変形例を示す図である。制御手段40は、図11(a)の実線に示すように、所定時間T内の光放出部10が放出する紫外光の相対照度を、放出直後を最強とし、時間の経過とともに所謂のこぎり波状に複数段階で徐々に弱くさせてもよい。制御手段40は、図11(b)の実線に示すように、所定時間T内の光放出部10が放出する紫外光の相対照度を、放出直後を最強とし、時間の経過に比例させて徐々に弱くさせてもよい。制御手段40は、図11(c)の実線に示すように、所定時間T内の光放出部10が放出する紫外光の相対照度を、放出直後を最強とし、時間の経過にとともに段階的(図11(c)には2段階である場合を示す)に徐々に弱くさせてもよい。なお、図11(a)から図11(c)には、図5に示された光照射装置1の光放出部10の相対照度の変化を点線で示している。   Moreover, the control means 40 of the light irradiation devices 1, 1-2, and 1-3 may be configured so that the relative illuminance when the ultraviolet light is emitted from the light emitting unit 10 for a predetermined time T is shown in FIG. FIG. 11 is a diagram showing a modification of the change in relative illuminance of the light emitting unit of the light irradiation device shown in FIG. As shown by the solid line in FIG. 11 (a), the control means 40 sets the relative illuminance of the ultraviolet light emitted by the light emitting unit 10 within a predetermined time T to the strongest immediately after emission, and in a so-called sawtooth waveform as time elapses. You may make it weak gradually gradually in several steps. As shown by the solid line in FIG. 11 (b), the control means 40 gradually increases the relative illuminance of the ultraviolet light emitted by the light emitting unit 10 within a predetermined time T, with the strongest immediately after the emission, in proportion to the passage of time. May be weakened. As shown by the solid line in FIG. 11 (c), the control means 40 sets the relative illuminance of the ultraviolet light emitted by the light emitting unit 10 within a predetermined time T to be the strongest immediately after the emission, and gradually increases with the passage of time ( FIG. 11 (c) shows a case where there are two stages). 11A to 11C, the change in relative illuminance of the light emitting unit 10 of the light irradiation device 1 shown in FIG. 5 is indicated by a dotted line.

[変形例4]
次に、本発明の実施形態の変形例4に係る光照射装置を図面に基づいて説明する。図12は、実施形態の変形例4に係る光照射装置の概略の構成を示す斜視図である。なお、図12において、前述した実施形態等と同一部分には、同一符号を付して説明を省略する。
[Modification 4]
Next, the light irradiation apparatus which concerns on the modification 4 of embodiment of this invention is demonstrated based on drawing. FIG. 12 is a perspective view illustrating a schematic configuration of a light irradiation apparatus according to Modification 4 of the embodiment. In FIG. 12, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

実施形態の変形例4に係る光照射装置1−4は、光放出部10と被照射物Wとの間に、光放出部10から放出された紫外光の偏光成分を取り出す偏光素子70を有する。即ち、光照射装置1−4は、光放出部10の発光素子12と被照射物Wとの間に偏光素子70を設けている。   The light irradiation device 1-4 according to the modification 4 of the embodiment includes a polarizing element 70 that extracts a polarization component of ultraviolet light emitted from the light emitting unit 10 between the light emitting unit 10 and the irradiation object W. . That is, in the light irradiation device 1-4, the polarizing element 70 is provided between the light emitting element 12 of the light emitting unit 10 and the irradiated object W.

偏光素子70は、光放出部10が放出した紫外光のうち予め決められた基準方向と平行な偏光軸(振動方向ともいう)の紫外光を透過させて被照射物Wに照射させ、基準方向と交差する偏光軸の紫外光の透過を規制するものである。偏光素子70は、X軸方向に複数並べられ、これら複数の偏光素子70は、X軸方向とY軸方向とにおける周囲をフレーム71によって囲まれている。これにより複数の偏光素子70は、フレーム71によって支持されている。   The polarizing element 70 transmits ultraviolet light having a polarization axis (also referred to as a vibration direction) parallel to a predetermined reference direction out of the ultraviolet light emitted from the light emitting unit 10 and irradiates the irradiated object W with the reference light in the reference direction. The transmission of ultraviolet light with a polarization axis that intersects with is regulated. A plurality of polarizing elements 70 are arranged in the X-axis direction, and the plurality of polarizing elements 70 are surrounded by a frame 71 in the X-axis direction and the Y-axis direction. Accordingly, the plurality of polarizing elements 70 are supported by the frame 71.

なお、偏光素子70として、ワイヤーグリッドを用いて、基準方向と交差する偏光軸の紫外光を反射する所謂反射型偏光素子や、ガラス板に含まれる一定方向に揃った金属ナノ粒子を形成したものであって、基準方向と交差する偏光軸の紫外光を吸収する所謂吸収型偏光素子を用いることができる。吸収型偏光素子として、例えば、CODIXX社製のcolorpol(登録商標)UV375BC5を用いることができる。   As the polarizing element 70, a wire grid is used to form a so-called reflective polarizing element that reflects ultraviolet light having a polarization axis that intersects the reference direction, or metal nanoparticles aligned in a certain direction included in a glass plate. A so-called absorption polarizing element that absorbs ultraviolet light having a polarization axis that intersects the reference direction can be used. As an absorptive polarizing element, for example, colorpol (registered trademark) UV375BC5 manufactured by CODIXX can be used.

変形例4に係る光照射装置1−4は、実施形態、変形例1、変形例2、変形例3と同様に、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制することができる。   Similarly to the embodiment, the first modification, the second modification, and the third modification, the light irradiation device 1-4 according to the fourth modification is irradiated with ultraviolet light having a desired relative illuminance immediately when the light emitting unit 10 is operated. The object W can be irradiated, the ultraviolet light can be irradiated to the depth of the ultraviolet curable resin of the irradiation object W, and the nonuniformity of the photochemical reaction of the irradiation object W can be suppressed.

また、光照射装置1−4は、偏光素子70を備えているので、被照射物Wの表面に配向処理を施すために用いることができる。   Moreover, since the light irradiation apparatus 1-4 is provided with the polarizing element 70, it can be used in order to perform an alignment process on the surface of the irradiated object W.

[変形例5]
次に、本発明の実施形態の変形例5に係る光照射装置を図面に基づいて説明する。図13は、実施形態の変形例5に係る光照射装置の光放出部の側面図、図14は、図13に示された光放出部を下からみた平面図である。図13、図14において、前述した実施形態等と同一部分には、同一符号を付して説明を省略する。
[Modification 5]
Next, the light irradiation apparatus which concerns on the modification 5 of embodiment of this invention is demonstrated based on drawing. FIG. 13 is a side view of the light emitting unit of the light irradiation apparatus according to Modification 5 of the embodiment, and FIG. 14 is a plan view of the light emitting unit shown in FIG. 13 as viewed from below. In FIG. 13 and FIG. 14, the same reference numerals are given to the same portions as those in the above-described embodiment and the description thereof is omitted.

実施形態の変形例5に係る光照射装置1−5の光放出部10は、図13及び図14に示すように、内側に冷却水が循環されるとともに紫外光の放出を許容する水冷ジャケット80が取り付けられている。水冷ジャケット80は、光放出部10を冷却するためのものであり、内側に窒素ガスなどの不活性ガスが循環されるとともに紫外光の放出を許容する不活性ガス収容チャンバー90内に収容されている。光照射装置1−5の光放出部10は、図14に示すように、ピーク波長が254nm、313nm、365nm、385nm、405nmのうちいずれかである紫外光を放出する発光素子12を基板上にX軸方向に間隔をあけて並べている。   As shown in FIGS. 13 and 14, the light emitting unit 10 of the light irradiation device 1-5 according to the fifth modification of the embodiment includes a water cooling jacket 80 that circulates cooling water inside and allows the emission of ultraviolet light. Is attached. The water cooling jacket 80 is for cooling the light emitting unit 10 and is accommodated in an inert gas accommodating chamber 90 that circulates an inert gas such as nitrogen gas inside and permits the emission of ultraviolet light. Yes. As shown in FIG. 14, the light emitting unit 10 of the light irradiation device 1-5 has a light emitting element 12 that emits ultraviolet light having a peak wavelength of 254 nm, 313 nm, 365 nm, 385 nm, or 405 nm on the substrate. They are arranged at intervals in the X-axis direction.

実施形態の変形例5に係る光照射装置1−5は、実施形態などと同様に、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制することができる。   The light irradiation device 1-5 according to the fifth modification of the embodiment can irradiate the irradiated object W with ultraviolet light having a desired relative illuminance immediately when the light emitting unit 10 is operated, as in the embodiment and the like. Further, it is possible to irradiate ultraviolet light to the back of the ultraviolet curable resin of the irradiation object W, and to suppress the nonuniformity of the photochemical reaction of the irradiation object W.

また、光照射装置1−5は、光放出部10を冷却する水冷ジャケット80の周りに窒素ガスなどの不活性ガスが充填されるので、光放出部10を冷却しても、光放出部10が結露により不具合を生じることを抑制できる。   Moreover, since the light irradiation apparatus 1-5 is filled with inert gas, such as nitrogen gas, around the water cooling jacket 80 which cools the light emission part 10, even if the light emission part 10 is cooled, the light emission part 10 is filled. Can suppress the occurrence of defects due to condensation.

[変形例6]
次に、本発明の実施形態の変形例6に係る光照射装置を図面に基づいて説明する。図15は、実施形態の変形例6に係る光照射装置の光放出部を下からみた平面図である。図15において、前述した実施形態等と同一部分には、同一符号を付して説明を省略する。
[Modification 6]
Next, the light irradiation apparatus which concerns on the modification 6 of embodiment of this invention is demonstrated based on drawing. FIG. 15 is a plan view of the light emitting unit of the light irradiation apparatus according to the sixth modification of the embodiment as viewed from below. In FIG. 15, the same parts as those of the above-described embodiment and the like are denoted by the same reference numerals and description thereof is omitted.

実施形態の変形例6に係る光照射装置1−6の光放出部10は、図15に示すように、ピーク波長が254nm、313nm、365nm、385nm、405nmのうちいずれかである紫外光を放出する発光素子12を、基板上にX軸方向とY軸方向とに間隔をあけて並べている。   As shown in FIG. 15, the light emitting unit 10 of the light irradiation device 1-6 according to the modification 6 of the embodiment emits ultraviolet light whose peak wavelength is any one of 254 nm, 313 nm, 365 nm, 385 nm, and 405 nm. The light emitting elements 12 to be arranged are arranged on the substrate with an interval in the X-axis direction and the Y-axis direction.

実施形態の変形例6に係る光照射装置1−6は、実施形態などと同様に、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制することができる。   The light irradiation apparatus 1-6 according to the modification 6 of the embodiment can irradiate the irradiated object W with ultraviolet light having a desired relative illuminance immediately when the light emitting unit 10 is operated, as in the embodiment and the like. Further, it is possible to irradiate ultraviolet light to the back of the ultraviolet curable resin of the irradiation object W, and to suppress the nonuniformity of the photochemical reaction of the irradiation object W.

[変形例7]
次に、本発明の実施形態の変形例7に係る光照射装置を図面に基づいて説明する。図16は、実施形態の変形例7に係る光照射装置の概略の構成を示す図である。図16において、前述した実施形態等と同一部分には、同一符号を付して説明を省略する。
[Modification 7]
Next, the light irradiation apparatus which concerns on the modification 7 of embodiment of this invention is demonstrated based on drawing. FIG. 16 is a diagram illustrating a schematic configuration of a light irradiation apparatus according to Modification 7 of the embodiment. In FIG. 16, the same parts as those of the above-described embodiment and the like are denoted by the same reference numerals and description thereof is omitted.

実施形態の変形例7に係る光照射装置1−7の光放出部10は、図16に示すように、ピーク波長が254nm、313nm、365nm、385nm、405nmのうちいずれかである紫外光を放出する図示しない発光素子12が放出した紫外光を光ファイバ13を介して、被照射物Wに照射する。   The light emitting unit 10 of the light irradiation device 1-7 according to the modification 7 of the embodiment emits ultraviolet light having a peak wavelength of any one of 254 nm, 313 nm, 365 nm, 385 nm, and 405 nm, as shown in FIG. The irradiated object W is irradiated with ultraviolet light emitted from the light emitting element 12 (not shown) through the optical fiber 13.

実施形態の変形例7に係る光照射装置1−7は、実施形態などと同様に、光放出部10を作動させると直ちに所望の相対照度の紫外光を被照射物Wに照射することができ、被照射物Wの紫外線硬化樹脂の奥まで紫外光を照射することができ、被照射物Wの光化学反応の不均一を抑制することができる。   The light irradiation device 1-7 according to the modified example 7 of the embodiment can irradiate the irradiated object W with ultraviolet light having a desired relative illuminance immediately when the light emitting unit 10 is operated, as in the embodiment and the like. Further, it is possible to irradiate ultraviolet light to the back of the ultraviolet curable resin of the irradiation object W, and to suppress the nonuniformity of the photochemical reaction of the irradiation object W.

本発明のいくつかの実施形態、変形例を説明したが、これらの実施形態、変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態、変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態、変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although some embodiments and modifications of the present invention have been described, these embodiments and modifications are presented as examples, and are not intended to limit the scope of the invention. These embodiments and modifications can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications are included in the scope of the invention and the gist thereof, and are also included in the invention described in the claims and the equivalents thereof.

1,1−1,1−2,1−3,1−4,1−5,1−6,1−7 光照射装置
10 光放出部
12 発光素子
40 制御手段
W 被照射物
DESCRIPTION OF SYMBOLS 1,1-1,1-2,1-3,1-4,1-5,1-6,1-7 Light irradiation apparatus 10 Light emission part 12 Light emitting element 40 Control means W Subject to be irradiated

Claims (6)

紫外光を放出する発光素子を少なくとも一つ有する光放出部と;
前記光放出部から複数の被照射物に順に紫外光を照射させる制御手段と;
を具備し、
前記制御手段は、各被照射物に対する所定時間内の前記発光素子が放出する紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物毎に繰り返す光照射装置。
A light emitting portion having at least one light emitting element that emits ultraviolet light;
Control means for sequentially irradiating a plurality of irradiated objects with ultraviolet light from the light emitting portion;
Comprising
The said control means is a light irradiation apparatus which repeats for every to-be-irradiated object to weaken the relative illumination intensity of the ultraviolet light which the said light emitting element discharge | releases within a predetermined time with respect to each to-be-irradiated object with progress of time.
前記発光素子は、ピーク波長が240nm〜450nmの紫外光を放出する
請求項1記載の光照射装置。
The light irradiation apparatus according to claim 1, wherein the light emitting element emits ultraviolet light having a peak wavelength of 240 nm to 450 nm.
前記制御手段は、前記所定時間内の前記発光素子が放出する紫外光の相対照度を、放出直後を最強とし、時間の経過とともに弱くする
請求項1または2に記載の光照射装置。
The light irradiation apparatus according to claim 1, wherein the control unit makes the relative illuminance of the ultraviolet light emitted by the light emitting element within the predetermined time the strongest immediately after the emission and weakens as time elapses.
前記被照射物は樹脂を含む請求項1〜3のうちいずれか一項に記載の光照射装置。   The said irradiation object is a light irradiation apparatus as described in any one of Claims 1-3 containing resin. 前記光放出部と前記被照射物との間に、前記光放出部から放出された紫外光の偏光成分を取り出す偏光素子を有する
請求項1〜4のうちいずれか一項に記載の光照射装置。
The light irradiation apparatus according to claim 1, further comprising: a polarizing element that extracts a polarization component of ultraviolet light emitted from the light emitting unit between the light emitting unit and the irradiation object. .
発光素子から放出した紫外光を複数の被照射物に順に照射する方法であって、
各被照射物に対する所定時間内の発光素子が放出する紫外光の相対照度を時間の経過とともに弱くすることを、各被照射物毎に繰り返す光照射方法。
A method of sequentially irradiating a plurality of irradiated objects with ultraviolet light emitted from a light emitting element,
A light irradiation method in which the relative illuminance of ultraviolet light emitted from a light emitting element within a predetermined time with respect to each irradiated object is weakened with time, for each irradiated object.
JP2014195824A 2014-09-25 2014-09-25 Light irradiation apparatus and light irradiation method Pending JP2016064378A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014195824A JP2016064378A (en) 2014-09-25 2014-09-25 Light irradiation apparatus and light irradiation method
KR1020150033756A KR20160036460A (en) 2014-09-25 2015-03-11 Light illuminating device and light illuminating method
CN201520158734.2U CN204515295U (en) 2014-09-25 2015-03-19 Light supply apparatus
TW104108975A TWI652866B (en) 2014-09-25 2015-03-20 Light source device and light irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195824A JP2016064378A (en) 2014-09-25 2014-09-25 Light irradiation apparatus and light irradiation method

Publications (1)

Publication Number Publication Date
JP2016064378A true JP2016064378A (en) 2016-04-28

Family

ID=55804728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195824A Pending JP2016064378A (en) 2014-09-25 2014-09-25 Light irradiation apparatus and light irradiation method

Country Status (1)

Country Link
JP (1) JP2016064378A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378781A (en) * 1989-08-22 1991-04-03 Brother Ind Ltd Image forming device
JPH05190444A (en) * 1992-01-13 1993-07-30 Fujitsu Ltd Resist film curing device
US20050128274A1 (en) * 2001-12-28 2005-06-16 Konica Minolta Holdings, Inc. Ink jet printer
JP2008170595A (en) * 2007-01-10 2008-07-24 Konica Minolta Business Technologies Inc Method for manufacturing electrophotographic photoreceptor, and electrophotographic photoreceptor
JP2011241310A (en) * 2010-05-19 2011-12-01 Dynic Corp Active energy ray-curable composition
JP2012253282A (en) * 2011-06-06 2012-12-20 Sony Chemical & Information Device Corp Connection method, connected-body production method and connected body
JP2013120791A (en) * 2011-12-06 2013-06-17 National Institute Of Advanced Industrial & Technology Exposure system
JP2013171882A (en) * 2012-02-17 2013-09-02 Nk Works Kk Light irradiation system
JP2013184400A (en) * 2012-03-08 2013-09-19 Seiko Epson Corp Printing apparatus and printing method
JP2014011107A (en) * 2012-07-02 2014-01-20 Hitachi High-Technologies Corp Led light source device and exposure device including the same
JP2014061608A (en) * 2012-09-20 2014-04-10 Muto Kogyo Kk Ultraviolet lamp and ink curing controller
JP2014119566A (en) * 2012-12-14 2014-06-30 Toshiba Lighting & Technology Corp Polarized light irradiation device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378781A (en) * 1989-08-22 1991-04-03 Brother Ind Ltd Image forming device
JPH05190444A (en) * 1992-01-13 1993-07-30 Fujitsu Ltd Resist film curing device
US20050128274A1 (en) * 2001-12-28 2005-06-16 Konica Minolta Holdings, Inc. Ink jet printer
JP2008170595A (en) * 2007-01-10 2008-07-24 Konica Minolta Business Technologies Inc Method for manufacturing electrophotographic photoreceptor, and electrophotographic photoreceptor
JP2011241310A (en) * 2010-05-19 2011-12-01 Dynic Corp Active energy ray-curable composition
JP2012253282A (en) * 2011-06-06 2012-12-20 Sony Chemical & Information Device Corp Connection method, connected-body production method and connected body
JP2013120791A (en) * 2011-12-06 2013-06-17 National Institute Of Advanced Industrial & Technology Exposure system
JP2013171882A (en) * 2012-02-17 2013-09-02 Nk Works Kk Light irradiation system
JP2013184400A (en) * 2012-03-08 2013-09-19 Seiko Epson Corp Printing apparatus and printing method
JP2014011107A (en) * 2012-07-02 2014-01-20 Hitachi High-Technologies Corp Led light source device and exposure device including the same
JP2014061608A (en) * 2012-09-20 2014-04-10 Muto Kogyo Kk Ultraviolet lamp and ink curing controller
JP2014119566A (en) * 2012-12-14 2014-06-30 Toshiba Lighting & Technology Corp Polarized light irradiation device

Similar Documents

Publication Publication Date Title
TWI652866B (en) Light source device and light irradiation method
US9777097B2 (en) Thermal and photo-initiation curing system of photopolymer resin for 3D printing
CN102792464B (en) For the UV LED base lamp of compact UV cure lamp assembly
US20100260945A1 (en) System and methods for optical curing using a reflector
JP2001316136A (en) Laser light curing system
JP2016066754A (en) Light source device
JP2010117531A (en) Ultraviolet irradiation apparatus, and coating formation method of optical fiber
JP6326746B2 (en) Polarized light irradiation device
TWI553355B (en) Polarization light irradiation apparatus for light alignment
TWI606287B (en) Ultraviolet illumination device
JP2013191628A5 (en)
JP2016064378A (en) Light irradiation apparatus and light irradiation method
JP6248130B2 (en) Manufacturing method of optical fiber
JP2008101947A (en) Ultraviolet irradiation device and its adjusting method
JP2015114435A (en) Ultraviolet-ray irradiation device
JP5421160B2 (en) Light irradiation apparatus and light irradiation method
JP6582815B2 (en) Optical fiber manufacturing method
JP6266172B2 (en) Optical fiber manufacturing method and ultraviolet irradiation device
KR20120106289A (en) Optical apparatus for exposure using uv light source
JP2016210668A (en) Ultraviolet irradiation equipment for optical fiber manufacturing
JP6533507B2 (en) Light irradiation device
JP2017042716A (en) Method for curing ultraviolet curable coating
JP6919425B2 (en) Optical processing equipment
JP6729036B2 (en) Optical fiber manufacturing method
JP6815942B2 (en) Light irradiation device, light irradiation method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180605

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载