JP2004072114A - 露光装置において照明源を特性付けるための方法 - Google Patents
露光装置において照明源を特性付けるための方法 Download PDFInfo
- Publication number
- JP2004072114A JP2004072114A JP2003288305A JP2003288305A JP2004072114A JP 2004072114 A JP2004072114 A JP 2004072114A JP 2003288305 A JP2003288305 A JP 2003288305A JP 2003288305 A JP2003288305 A JP 2003288305A JP 2004072114 A JP2004072114 A JP 2004072114A
- Authority
- JP
- Japan
- Prior art keywords
- mask
- illumination source
- opaque layer
- slits
- interference pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000003384 imaging method Methods 0.000 claims abstract description 3
- 238000009826 distribution Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 abstract description 2
- 238000012512 characterization method Methods 0.000 description 9
- 230000001427 coherent effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70133—Measurement of illumination distribution, in pupil plane or field plane
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/38—Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
- G03F1/44—Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70141—Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
【課題】
露光装置における照明源を特性付ける方法を提供すること
【解決手段】
露光装置における照明源を特性付ける方法であって、該露光装置を提供する工程と、不透明層が配置される第1の面および表面を有する反対側に位置する第2の面を有するマスクを提供する工程と、該マスクを該マスクホルダーに付与する工程と、該マスクの該第2の面の該表面上に、該少なくとも2つの互いに平行するスリットの干渉パターンを形成するために、該照明源を用いて該不透明層を照明する工程と、該マスクの該第2の面上に形成された干渉パターンを、該光学レンズ系を通じて該基板面に結像させる工程と、該基板面における該結像された干渉パターンの像信号を受信する工程とを包含する、方法。
【選択図】 図7
Description
本発明は、光源、マスクホルダー、光学レンズ系、および基板面を含む露光装置における照明源を特性付ける方法に関する。本発明は、特に、露光装置における照明源の光源の分布を決定する方法に関する。以下に発明の詳細な説明を記載する。
半導体製造分野において、基板への構造化は、露光装置において、その基板上の感光性層を露光することによって行われる。この基板は、例えば、半導体ウェハ、マスクまたはフラットパネル等に関するものであり得る。現像工程が実行された後、露光された構造が、通常、エッチング工程において基板に転写される。多くの場合、可能な限り高い構造密度が達成される必要があるので、この工程において可能な限り小さい構造幅を有する構造を生成することは、大きな挑戦を意味する。
類似の問題を伴うのは、回路の種々の構造面が互いに対して可能な限り大きい位置精度を達成するという目的である。その際、最近、露光装置、特に、その照明源およびレンズ系に起因する誤差が益々明らかになってきている。この原因は、質の高いレンズ系のさらなる開発が、構造形成の精度に関するプロセス技術のさらなる開発に遅れをとり得ることである。
照明源またはレンズ系の領域における誤差は、特に、基板上に種々のパターン面が異なった露光装置内で連続的に生成される場合に影響をもたらす。多くの場合、誤差は、同一の基板の異なった構造面に対して、レンズ系、アパーチャまたは照明源にそれぞれ異なった照明設定が用いられる場合にもまた生じる。
従って、今日、構造をマスクから基板に投影する際に、照明設定または現在投影されるべき構造に依存して、予測される誤差を見積もることができるように、あるいは必要に応じて投影光学系の位置合わせまたは較正を行うために、照明源およびそのレンズ系の特性付けが行われることが多くなった。
照明源の不完全であることが原因で生じる効果は、特に、焦点に依存する拡大による変形、焦点によって引き起こされる(focusbedingt)横方向のずれ、光学系の解像度の限界に近い構造幅を有する、構造設計に依存して変化する構造の印刷可能性、あるいは露光野にわたって変化する照明強度、すなわち、階調度の存在である。特性付けによって検出される特性は、異なった装置間で比較されて、そこから、例えば、構造面を基板上に投影するために次に用いられるべき露光装置を選択することができる。
ここで、特に、異なった製造業者によって提供された露光装置のグループ間で著しく異なるということになり得るので、特性付けの結果は、すでに、製造設備を設計する際に特定の役割を演じ得る。
新しいリソグラフィ技術をさらに開発する際にもまた、それぞれ観察される照明源の性状が重要な役割を演じるので、特性付けの結果は、リソグラフィプロセスをシミュレーションするための入力データとして用いられ得る。
これまで、照明源を特性付けるために、基板上に一連の照明が行われていた。レンズ系は、基板上に照明源が直接結像されるように設定されていた。この際、一連の露光フィールドが生成され、ここで、照明源のそれぞれの結像を有する各露光フィールドについて、照明源の露光量の1つの異なった値が用いられ得る。検査装置、例えば、顕微鏡または走査型電子顕微鏡で、現像されたパターンが測定および評価される。しかしながら、このような手順は、露光工程と測定工程との間に必ず実行される連続的プロセスが測定結果に欠点がある影響を及ぼし得るという不利な点を隠し持つ。さらに、例えば、例えば、測定されたレンズプロファイルが局所的露光強度に割り当てられる、特許文献1から公知の方法等の較正法は、費用と労力がかかり、かつ部分的に欠点がある。
米国特許第6,356,345 B1号公報
従って、本発明の課題は、露光装置における照明源を特性付ける方法を提供することである。この方法では、特性付けの質が向上し、かつ照明源と関連しない外部の影響が大幅に低減される。さらに、本発明の課題は、照明源またはレンズ系の特性付けを実行するための費用および労力を低減することである。
本課題は、項1の特徴を有する方法によって解決される。有利な実施形態は、従属項から読み取られ得る。従って、本発明は、以下を提供する。
1.露光装置における照明源(1)を特性付ける方法であって、上記露光装置は、上記照明源(1)、マスクホルダー(3)、光学レンズ系(4)および基板面(5)を備え、上記方法は、
上記露光装置を提供する工程と、
不透明層(25)が配置される第1の面(11)および表面を有する反対側に位置する第2の面(12)を有するマスクを提供する工程であって、上記不透明層(25)において、少なくとも2つの互いに平行するスリット(20)が配置され、上記スリットは、間隔(d)によって互いに分離される、工程と、
上記マスク(10)を上記マスクホルダー(3)に付与する工程であって、上記不透明層(25)を有する上記第1の面は、上記照明源(1)に向けられる、工程と、
上記マスク(10)の上記第2の面(12)の上記表面上に、上記少なくとも2つの互いに平行するスリット(20)の干渉パターン(30)を形成するために、上記照明源(1)を用いて上記不透明層(25)を照明する工程と、
上記マスク(10)の上記第2の面(12)上に形成された干渉パターン(30)を、上記光学レンズ系(4)を通じて上記基板面(5)に結像させる工程と、
上記基板面(5)における上記結像された干渉パターン(30)の像信号を受信する工程であって、上記信号は、上記照明源(1)を特性付けるために上記照明源の上記光の分布を表す、工程と
を包含する、方法。
上記露光装置を提供する工程と、
不透明層(25)が配置される第1の面(11)および表面を有する反対側に位置する第2の面(12)を有するマスクを提供する工程であって、上記不透明層(25)において、少なくとも2つの互いに平行するスリット(20)が配置され、上記スリットは、間隔(d)によって互いに分離される、工程と、
上記マスク(10)を上記マスクホルダー(3)に付与する工程であって、上記不透明層(25)を有する上記第1の面は、上記照明源(1)に向けられる、工程と、
上記マスク(10)の上記第2の面(12)の上記表面上に、上記少なくとも2つの互いに平行するスリット(20)の干渉パターン(30)を形成するために、上記照明源(1)を用いて上記不透明層(25)を照明する工程と、
上記マスク(10)の上記第2の面(12)上に形成された干渉パターン(30)を、上記光学レンズ系(4)を通じて上記基板面(5)に結像させる工程と、
上記基板面(5)における上記結像された干渉パターン(30)の像信号を受信する工程であって、上記信号は、上記照明源(1)を特性付けるために上記照明源の上記光の分布を表す、工程と
を包含する、方法。
2.コントラスト(c)を決定するために、上記受信された像信号から上記干渉パターン(30)の強度の最大値および最小値をめらることと、
上記互いに平行するスリット(20)の上記間隔(d)と上記求められたコントラスト(c)とから、コントラスト関数を算出することと、
上記照明源(1)の上記光の分布を決定するために、上記コントラスト関数からフーリエ変換された値が算出されることと
を特徴とする、項1に記載の方法。
上記互いに平行するスリット(20)の上記間隔(d)と上記求められたコントラスト(c)とから、コントラスト関数を算出することと、
上記照明源(1)の上記光の分布を決定するために、上記コントラスト関数からフーリエ変換された値が算出されることと
を特徴とする、項1に記載の方法。
3.上記像信号の上記受信は、
上記基板面(5)における基板上の感光性レジストの露光と、
次の、露光されたレジスト部分を除去するための、上記基板(5)の現像工程と、
その次の、露光されたレジスト部分の高さプロファイルの顕微鏡での測定とによって行われることを特徴とする、項1または2に記載の方法。
上記基板面(5)における基板上の感光性レジストの露光と、
次の、露光されたレジスト部分を除去するための、上記基板(5)の現像工程と、
その次の、露光されたレジスト部分の高さプロファイルの顕微鏡での測定とによって行われることを特徴とする、項1または2に記載の方法。
4.上記像信号の上記受信は、上記基板面(5)で可動のセンサを用いて行われることを特徴とする、項1または2に記載の方法。
5.上記照明源(1)は、さらなる光学レンズおよび/またはミラー系を備えることを特徴とする、項1〜4のいずれか1つに記載の方法。
6.上記照明源(1)から照射される光の波長(λ)を決定することと、
上記マスク(10)を提供する工程のために、
a)上記第1の面(11)上の上記不透明層(25)と上記マスクの上記第2の面(12)との間の厚さ(z)および/または
b)上記互いに平行するスリット構造(20)のそれぞれの幅(s)を、上記幅(s)の二乗の2倍を上記厚さ(z)で割った商が、上記波長(λ)よりも小さいように選択することと
を特徴とする、項1〜5のいずれか1つに記載の方法。
上記マスク(10)を提供する工程のために、
a)上記第1の面(11)上の上記不透明層(25)と上記マスクの上記第2の面(12)との間の厚さ(z)および/または
b)上記互いに平行するスリット構造(20)のそれぞれの幅(s)を、上記幅(s)の二乗の2倍を上記厚さ(z)で割った商が、上記波長(λ)よりも小さいように選択することと
を特徴とする、項1〜5のいずれか1つに記載の方法。
7.上記光学レンズ系(2、4)の絞りの開口数(NA)が決定されることと、
マスク(10)を提供する工程のために、
a)上記マスク(10)の上記第1の面(11)上の上記不透明層と、上記第2の面(12)との間の厚さおよび/または
b)上記互いに平行するスリット構造(20)が互いに分離される上記間隔(d)を、上記間隔(d)を上記厚さ(z)で割った商が上記開口数(NA)よりも小さいように選択することと
を特徴とする、項1〜6のいずれか1つに記載の方法。
マスク(10)を提供する工程のために、
a)上記マスク(10)の上記第1の面(11)上の上記不透明層と、上記第2の面(12)との間の厚さおよび/または
b)上記互いに平行するスリット構造(20)が互いに分離される上記間隔(d)を、上記間隔(d)を上記厚さ(z)で割った商が上記開口数(NA)よりも小さいように選択することと
を特徴とする、項1〜6のいずれか1つに記載の方法。
8.照明源(1)を特性付けるマスクであって、
透明な支持体材料と、
不透明層(25)と、
2つの互いに平行するスリットの第1の対(20’’’)であって、第1の間隔(d1)によって互いに分離され、かつ上記不透明層(25)に配置される、対と、
互いに平行するスリットの第2の対(20”)であって、第2の間隔(d2)によって互いに分離され、かつ上記不透明層(25)に配置される、対とを備え、
上記第2の間隔(d2)は、上記第1の間隔(d1)よりも大きい、マスク。
透明な支持体材料と、
不透明層(25)と、
2つの互いに平行するスリットの第1の対(20’’’)であって、第1の間隔(d1)によって互いに分離され、かつ上記不透明層(25)に配置される、対と、
互いに平行するスリットの第2の対(20”)であって、第2の間隔(d2)によって互いに分離され、かつ上記不透明層(25)に配置される、対とを備え、
上記第2の間隔(d2)は、上記第1の間隔(d1)よりも大きい、マスク。
9.上記第1の間隔(d1)によって互いに分離され、かつ上記不透明層(25)に配置される互いに平行するスリットの第3の対(20’’’’)であって、
上記第1の対の上記スリットは、上記不透明層に第1の配向を有する長手方向側(90)を有する、対であることと、
上記第2の対の上記スリットは、上記不透明層に第2の配向を有する長手方向側(91)を有することと、
上記第1の配向および上記第2の配向は、角度(γ)を含むことと
を特徴とする、項8に記載のマスク。
上記第1の対の上記スリットは、上記不透明層に第1の配向を有する長手方向側(90)を有する、対であることと、
上記第2の対の上記スリットは、上記不透明層に第2の配向を有する長手方向側(91)を有することと、
上記第1の配向および上記第2の配向は、角度(γ)を含むことと
を特徴とする、項8に記載のマスク。
10.それぞれ互いに平行して形成されたスリットの複数の対(20’、20”、20’’’、20’’’’)のマトリックス形状の構成(100)であって、
a)上記それぞれの対の上記スリットは、
異なった間隔(d1〜d4)で互いに分離され、
上記不透明層(25)において異なった配向を有する長手方向側(90、91)を有し、
b)上記マトリックス形状(100)は、列(101)と行(102)とを有し、互いに平行するスリット(20)は、
上記マトリックスの列(101)に上記スリット(20)の異なった間隔(d1〜d4)の正確に1つの値を有し、
上記マトリックスの行(102)に、上記スリット(20)の上記長手方向側(90、91)の異なった配向の数の正確に1つの角度(γ)を有する、構成を特徴とする、項8または9に記載のマスク。
a)上記それぞれの対の上記スリットは、
異なった間隔(d1〜d4)で互いに分離され、
上記不透明層(25)において異なった配向を有する長手方向側(90、91)を有し、
b)上記マトリックス形状(100)は、列(101)と行(102)とを有し、互いに平行するスリット(20)は、
上記マトリックスの列(101)に上記スリット(20)の異なった間隔(d1〜d4)の正確に1つの値を有し、
上記マトリックスの行(102)に、上記スリット(20)の上記長手方向側(90、91)の異なった配向の数の正確に1つの角度(γ)を有する、構成を特徴とする、項8または9に記載のマスク。
従って、本発明によって、特性付けの質が向上し、かつ照明源と関連しない外部の影響が大幅に低減される。さらに、本発明によって、照明源またはレンズ系の特性付けを実行するための費用および労力が低減する。
以下に発明の実施の形態を説明する。
本発明によると、照明源として理解されるのは、例えば、レーザまたはハロゲンランプ等の発光素子、ならびに露光装置の光路(Strahlengang)においてマスクホルダーの場所の前に配置されたレンズ系の部分を含む発光素子である。光路において露光源から見てマスクホルダーの前に配置されたレンズ系の部分は、照明の設定を規定する、例えば、環状の照明を設定するための、アパーチャおよび絞りを備える。レンズ系のこの部分は、さらに、マスクホルダーに配置されたマスク上に落ちる、実質的に平行する光束を形成するための光線を平行にする、いわゆるコンデンサレンズもまた含む。
本発明によると、前面に、少なくとも1つの2重のスリットが配置される不透明層を有する特別なマスクが提供される。不透明層は、マスクの透明な支持体材料上に位置する。従って、2重スリットは、このスリットおよびマスクの透明な支持体材料をビームが通過することを可能にする。2重スリットは、互いに平行な2つのスリットからなる。マスクは、さらに、異なった大きさおよびマスクの表面上での異なった配向の複数の2重スリットの組を有し得る。
像を縮小するためのレチクルとしても実行され得るマスクは、前面および裏面を有する。本明細書において、前面は、中に2重スリット構造が形成された不透明層が載せられる面と示される。さらなる透明または半透明の層が前面または裏面に配置されることが可能である。本記載の代わりに、裏面が透明なガラス支持体材料の表面によって形成されることが想定される。その上に半透明または透明層が形成される場合、その表面も裏面の表面として想定され得る。
露光装置におけるマスクホルダーは、光学レンズ系および基板面の配置との配置において、中に導入されたマスクの裏面が、露光の間、光学レンズ系を介して基板面にシャープな像を結ぶという特徴を有する。従って、従来の露光の場合、マスクの前面は、マスクホルダーの下方に向けられる。これは、従来技術によると、透明なガラス支持体基板の表面を有する裏面は、光路において光源に向けられることを意味する。
これに対して、本発明によると、少なくとも1つの2重スリットを含む記載されたマスクは、前面が照明源の方向でマスクホルダーの中に装着(eingespannt)される。マスクの裏側は、ここで、マスクの上に形成された構造が、シャープなコントラストで基板面に結像される位置、すなわち、マスクホルダーの下側に位置する。前面とこの位置との間隔は、マスク、またはガラス支持体材料の厚さに対応する。これは、今日用いられているマスクの場合、例えば、約6.000μmである。
次の工程として、露光源がオンにされて、不透明層およびその中に形成された2重スリットが照明される。2重スリットであるために、マスクの裏側、すなわちガラス支持体材料の表面上に、いわゆる遠視野干渉パターン(Fernfeld−Interferenzmuster)が形成される。この遠視野干渉パターンは、光学レンズ系を通じて基板面にシャープに結像される。ここで、干渉パターンの像信号が受信され、これは、少なくとも1つの有利な実施形態によると、異なった態様で実行され得る。
受信された干渉パターンは、照明源の広がり、露光波長、および2重スリットの2つのスリット間の間隔に依存する形態を有する。露光波長および2重スリットの間隔が知られる場合、干渉パターンの形態から照明源の広がりおよび輝度分布が導出され得る。
干渉パターンの受信された像信号から照明源の広がりを決定するアプローチは、資料において、例えば、ヤングの2重スリットの実験として公知である。このアプローチは、以下において、図面を用いて詳細に説明される。
有利な実施形態によると、基板面における像は、感光性レジストで被覆された半導体ウェハによって受信される。受信された干渉パターンは、次に、検査装置で検査され得、ここで、干渉パターンの生じた線は、その幅について測定され得る。走査型電子顕微鏡(SEM、scanning electron microscope)が用いられる場合、露光された半導体ウェハ上の干渉パターンの局所的強度に対応する三次元の線プロファイルもまた検出され得る。
さらなる実施形態によると、基板面における干渉パターンの局所的強度を測定するために、基板面における基板ホルダー上に提供されたセンサが用いられ得る。これに加えて、有利にも、基板ホルダーは、基板面内で水平に、センサが干渉パターンを通り抜ける。この場合、基板ホルダーまたはセンサの位置に依存して、それぞれの強度が測定されて、干渉パターンのプロファイルが生じる。
本発明は、ここで、図面を参照する実施例を用いて、より詳細に説明される。
本発明の実施例は、図1に模式的に示される。その構成は、広がりθを有する露光源1、コンデンサレンズ2、反転されたマスク10が配置されたマスクホルダー3、対物レンズ4および基板面5を示す。マスク10は、マスク10の前面上の不透明な層25に形成される2重スリット構造20がコンデンサレンズ2または照明源1と面するように反転される。マスク10の裏側12は、マスク10が装着されているマスクホルダー3を対物レンズ系4および基板面5に対して位置調整することにより、基板面5にシャープな像が結ばれる。
図2の模式図において、基板面5において生じる干渉パターン30が示される。照明源1は、波長λの光を照射する。この光は、スリットの間隔dを有する2重スリットを通ってマスク10の裏側の干渉パターン30に至る。
マスクを通る工程は、図3に示される。マスク10は、6.300μmの厚さzを有する。マスク10のガラス支持体基板の裏側の干渉パターン30は、対物レンズ系4を介して基板面5に結像される。ここで、干渉パターンは、可動のセンサによって走査される。典型的に現れる信号が図4に示される。ここで、センサを用いて測定される強度は、ウェハ上の位置に対してプロットされる。その際、干渉パターンは、150nmの解像度でセンサを通じて復元される。この限界は、種々の製造業者の基板ホルダー上で、今日すでに用いられているセンサに対応するが、ここでは、一般的に、基板ホルダーの調整のためにもちいられる。
実施例において、図7に示されるようなマスク10が用いられる。このマスクは、複数の2重スリット20、20’、20”、20’’’を有する。これらは、それぞれ異なった大きさのスリット間隔d1、d2、d3等によって区別される。
図7に示されるマスク10によって、複数のスリット構造がマスク10の裏側12の干渉パターン30に移送される。基板5において受信された投影された干渉パターン30の像信号は、3つのスリット構造に関する図5において示される。正確に1つのマスクのみが用いられたので、照明条件、すなわち露光源の広がりθ、およびスリット構造のためのレンズ設定はそれぞれ同一である。スリット間隔の変形は、図5に見出され得るように異なった干渉パターンをもたらす。干渉パターンから、コヒーレント関数とも呼ばれるコントラストc1、c2、c3が決定される。
図6において、このように決定されたコントラストは、スリット間隔dの関数としてプロットされる。関数は、数学的スリット関数(Spaltfunktion)に対応する。この関数は、0点を有する。すなわち、特定の2重スリット間隔dについて、コントラストが消滅する。実施例によると、公知の2重スリット間隔、照明源の公知の波長の場合、コントラストが検出される。このために、本発明により、マスク上に2重スリットを1つ有するデバイスでも十分である。しかしながら、ばらつき(Streufehler)を回避するために、図7に示されるマスク10を、異なった二重スリット間隔d1〜d4で多数の2重スリット構造20〜20’’’を用いることが有用である。
次の工程として、図6に示されるコヒーレント関数またはコントラストが2重スリット間隔dの関数としてフーリエ変換されて、ここから、照明源の空間的分布がVan Cittert−Zernike定理を利用して検出される。「空間的」という概念は、ここでは、方向に依存する輝度分布I(Φ、θ)であると理解されるべきである。
図8において、異なったスリットの大きさまたはスリットの幅sのシミュレーション結果が示される。ここで、照明源の設定として、0.7の開口数が248nmの波長の場合に用いられた。引かれた線は、図6によると幾何学的関係から生じた理論曲線、および図7に見出され得るように、2重スリット構造により干渉パターン30を投影するためのシミュレーション結果の集団として示す。
特に遠視野の干渉構造を取得することができるように、2重スリットのスリット構造20は、特定の限界値よりも小さくなくてはならない。別の場合、単に、スリット開口部の投影をマスク10の裏側12に行われる。その条件は、
λ・z>2・s2
である。
λ・z>2・s2
である。
投影レンズの開口数もまた、下限値を有する。この値よりも上で、干渉パターンの投影が有利におこなわれ得、
NA>d/z
である。
NA>d/z
である。
この2つの条件を遵守すると、特に、この限界値との差異が大きくなるように考慮すると、高い質の、特に有利な測定結果がもたらされる。
図7は、光源を完全に測定するための配置を示す。角度γで回転された配置によって、さらなる2重スリット20’’’’を用いて、照明源1は、その光の分布のさらなる方向で測定される。従って、図7に示されたマトリックスは、光源の空間的輝度分布を検出することを可能にする。
干渉パターンは、照明源1の絶対的広がりだけでなく、むしろ、所与の光源の強度の輪郭線の広がりθもまた表す。従って、フーリエ変換により、光の分布内の階調度もまた決定され得る。
さらなる実施例において、本発明による方法は、照明源のテレセントリックを決定するために用いられる。図9に見出され得るように、照明源の場合、照明源の照射方向がレンズ系の光学軸に対して傾斜する、または光学軸の中心から離れ得る。このように照明源が中心から離れると、マスク10の裏側12の干渉パターンが横方向にずれる。しかしながら、これは、特に小さいスリット間隔dを有する2重スリット構造20の干渉パターンについてのみ当てはまる。特に小さいスリット間隔dを有するスリット構造20は、特に幅広い干渉パターン30を生じさせる。
この場合、干渉パターン30から、基板5における強度が干渉パターン30全体に対して最も大きい干渉線が見つけ出される。この位置は、2重スリットの位置と比較され得る。2重スリットの基準位置は、種々の方法で基板面に転写され得る。これは、この実施例においては、例えば、第1の、反転されないマスクを用いるさらなる工程における2重露光において、前もって、2重スリット構造20の周辺部における基準マスクを基板面5に結像されることによって行われる。その後、2重スリットを有するマスクは、遠視野干渉パターン30を形成するために、本発明による方法とともに用いられる。
図10は、光学軸に対する照明源1の照射方向の小さい傾斜角度に対してのみ、半導体基板上の横方向のずれとの直線的関係に至ることを示す。実施例において、0.7の開口数およびσ=0.1が用いられた。露光波長λは248nmであり、デフォーカス50μmである。0〜0.4mradの傾斜角度の範囲が示される。10mradの露光源の実際の傾斜は、この関係において0.5μmの横方向のずれが生じる。6.300μmのマスク10の厚さzの場合、ここから、1mradテレセントリックごとに6.3μmの横方向のずれが生じる。従って、基板面5における基板ホルダー上のセンサの解像度が150nmである場合、10μradの傾斜角度の解像度が技術的に実行可能である。
(発明の要旨)
間隔(d)によって互いに分離されて不透明層(25)に配置される、互いに平行するスリット構造(20)の少なくとも1つの対を有するマスク(10)がマスクホルダー(3)に運ばれる。不透明層を有するマスクの面(11)は、ここで、照明源(1)の方向に向けられる。マスク(10)を露光する際に、スリット構造(20)を通じて、反対側に位置するマスク(10)の裏側(12)に遠視野干渉パターン(30)が生成される。露光装置のレンズ系(4)を通じて、基板面(5)に干渉パターン(30)が投影される。ウェハの感光性層を露光することによって、または可動の基板ホルダー上のセンサによって、干渉パターンが像信号として受信される。コントラスト(c)、および、次に、スリットの間隔(d)の関数として、このコントラストのフーリエ変換を求めることによって、ここから照明源(1)の光の分布が導出され得る。特に有利なマスク(10)は、複数の対のスリット構造(20)を有する。この構造は、好適な方向に対して異なった角度、および異なった間隔(d)で、マスク(10)にマトリックス形状で配置される。
間隔(d)によって互いに分離されて不透明層(25)に配置される、互いに平行するスリット構造(20)の少なくとも1つの対を有するマスク(10)がマスクホルダー(3)に運ばれる。不透明層を有するマスクの面(11)は、ここで、照明源(1)の方向に向けられる。マスク(10)を露光する際に、スリット構造(20)を通じて、反対側に位置するマスク(10)の裏側(12)に遠視野干渉パターン(30)が生成される。露光装置のレンズ系(4)を通じて、基板面(5)に干渉パターン(30)が投影される。ウェハの感光性層を露光することによって、または可動の基板ホルダー上のセンサによって、干渉パターンが像信号として受信される。コントラスト(c)、および、次に、スリットの間隔(d)の関数として、このコントラストのフーリエ変換を求めることによって、ここから照明源(1)の光の分布が導出され得る。特に有利なマスク(10)は、複数の対のスリット構造(20)を有する。この構造は、好適な方向に対して異なった角度、および異なった間隔(d)で、マスク(10)にマトリックス形状で配置される。
本発明によって、照明源またはレンズ系の特性付けを実行するための費用および労力が低減することから、特に露光装置に関連する産業において有用である。
1 照明源
2 コンデンサレンズ
3 マスクホルダー
4 対物レンズ
5 基板面
10 マスク、レチクル
11 不透明層を有するマスクの前面
12 透明な表面を有するマスクの裏面
20 平行するスリット
25 不透明層
30 干渉パターン
90、91 スリットの長手方向側
100 スリットの対のマトリックス構成
101 それぞれ同じ角度を有するマトリックス構成の列
102 それぞれ同じ間隔を有するマトリックス構成のスリット
c、c1〜c4 コントラスト、コヒーレント関数
d、d1〜d4 1対のスリット間の間隔
s スリットの幅
z マスクの厚さ
λ 照明源の波長
γ 好適な方向に対するスリットの長手方向側の角度
θ 照明源の広がり
2 コンデンサレンズ
3 マスクホルダー
4 対物レンズ
5 基板面
10 マスク、レチクル
11 不透明層を有するマスクの前面
12 透明な表面を有するマスクの裏面
20 平行するスリット
25 不透明層
30 干渉パターン
90、91 スリットの長手方向側
100 スリットの対のマトリックス構成
101 それぞれ同じ角度を有するマトリックス構成の列
102 それぞれ同じ間隔を有するマトリックス構成のスリット
c、c1〜c4 コントラスト、コヒーレント関数
d、d1〜d4 1対のスリット間の間隔
s スリットの幅
z マスクの厚さ
λ 照明源の波長
γ 好適な方向に対するスリットの長手方向側の角度
θ 照明源の広がり
Claims (10)
- 露光装置における照明源(1)を特性付ける方法であって、該露光装置は、該照明源(1)、マスクホルダー(3)、光学レンズ系(4)および基板面(5)を備え、該方法は、
該露光装置を提供する工程と、
不透明層(25)が配置される第1の面(11)および表面を有する反対側に位置する第2の面(12)を有するマスクを提供する工程であって、該不透明層(25)において、少なくとも2つの互いに平行するスリット(20)が配置され、該スリットは、間隔(d)によって互いに分離される、工程と、
該マスク(10)を該マスクホルダー(3)に付与する工程であって、該不透明層(25)を有する該第1の面は、該照明源(1)に向けられる、工程と、
該マスク(10)の該第2の面(12)の該表面上に、該少なくとも2つの互いに平行するスリット(20)の干渉パターン(30)を形成するために、該照明源(1)を用いて該不透明層(25)を照明する工程と、
該マスク(10)の該第2の面(12)上に形成された干渉パターン(30)を、該光学レンズ系(4)を通じて該基板面(5)に結像させる工程と、
該基板面(5)における該結像された干渉パターン(30)の像信号を受信する工程であって、該信号は、該照明源(1)を特性付けるために該照明源の該光の分布を表す、工程と
を包含する、方法。 - コントラスト(c)を決定するために、前記受信された像信号から前記干渉パターン(30)の強度の最大値および最小値をめらることと、
前記互いに平行するスリット(20)の前記間隔(d)と該求められたコントラスト(c)とから、コントラスト関数を算出することと、
前記照明源(1)の前記光の分布を決定するために、該コントラスト関数からフーリエ変換された値が算出されることと
を特徴とする、請求項1に記載の方法。 - 前記像信号の前記受信は、
前記基板面(5)における基板上の感光性レジストの露光と、
次の、露光されたレジスト部分を除去するための、該基板(5)の現像工程と、
その次の、露光されたレジスト部分の高さプロファイルの顕微鏡での測定とによって行われることを特徴とする、請求項1または2に記載の方法。 - 前記像信号の前記受信は、前記基板面(5)で可動のセンサを用いて行われることを特徴とする、請求項1または2に記載の方法。
- 前記照明源(1)は、さらなる光学レンズおよび/またはミラー系を備えることを特徴とする、請求項1〜4のいずれか1つに記載の方法。
- 前記照明源(1)から照射される光の波長(λ)を決定することと、
前記マスク(10)を提供する工程のために、
a)前記第1の面(11)上の前記不透明層(25)と該マスクの前記第2の面(12)との間の厚さ(z)および/または
b)前記互いに平行するスリット構造(20)のそれぞれの幅(s)を、該幅(s)の二乗の2倍を該厚さ(z)で割った商が、該波長(λ)よりも小さいように選択することと
を特徴とする、請求項1〜5のいずれか1つに記載の方法。 - 前記光学レンズ系(2、4)の絞りの開口数(NA)が決定されることと、
マスク(10)を提供する工程のために、
a)該マスク(10)の前記第1の面(11)上の前記不透明層と、前記第2の面(12)との間の厚さおよび/または
b)前記互いに平行するスリット構造(20)が互いに分離される前記間隔(d)を、該間隔(d)を前記厚さ(z)で割った商が該開口数(NA)よりも小さいように選択することと
を特徴とする、請求項1〜6のいずれか1つに記載の方法。 - 照明源(1)を特性付けるマスクであって、
透明な支持体材料と、
不透明層(25)と、
2つの互いに平行するスリットの第1の対(20’’’)であって、第1の間隔(d1)によって互いに分離され、かつ該不透明層(25)に配置される、対と、
互いに平行するスリットの第2の対(20”)であって、第2の間隔(d2)によって互いに分離され、かつ該不透明層(25)に配置される、対とを備え、
該第2の間隔(d2)は、該第1の間隔(d1)よりも大きい、マスク。 - 前記第1の間隔(d1)によって互いに分離され、かつ前記不透明層(25)に配置される互いに平行するスリットの第3の対(20’’’’)であって、
前記第1の対の該スリットは、該不透明層に第1の配向を有する長手方向側(90)を有する、対であることと、
前記第2の対の該スリットは、該不透明層に第2の配向を有する長手方向側(91)を有することと、
該第1の配向および該第2の配向は、角度(γ)を含むことと
を特徴とする、請求項8に記載のマスク。 - それぞれ互いに平行して形成されたスリットの複数の対(20’、20”、20’’’、20’’’’)のマトリックス形状の構成(100)であって、
a)該それぞれの対の該スリットは、
異なった間隔(d1〜d4)で互いに分離され、
前記不透明層(25)において異なった配向を有する長手方向側(90、91)を有し、
b)該マトリックス形状(100)は、列(101)と行(102)とを有し、互いに平行するスリット(20)は、
該マトリックスの列(101)に該スリット(20)の異なった間隔(d1〜d4)の正確に1つの値を有し、
該マトリックスの行(102)に、該スリット(20)の該長手方向側(90、91)の異なった配向の数の正確に1つの角度(γ)を有する、構成を特徴とする、請求項8または9に記載のマスク。
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10236422A DE10236422A1 (de) | 2002-08-08 | 2002-08-08 | Verfahren zur Charakterisierung einer Beleuchtungsquelle in einem Belichtungsgerät |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2004072114A true JP2004072114A (ja) | 2004-03-04 |
Family
ID=30775094
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003288305A Withdrawn JP2004072114A (ja) | 2002-08-08 | 2003-08-06 | 露光装置において照明源を特性付けるための方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20040027553A1 (ja) |
| JP (1) | JP2004072114A (ja) |
| DE (1) | DE10236422A1 (ja) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101459642B1 (ko) | 2008-10-16 | 2014-11-11 | 삼성전자 주식회사 | 노광빔 위치 측정 방법 및 측정 장치 |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7648802B2 (en) * | 2004-02-24 | 2010-01-19 | The Regents Of The University Of California | Phase shifting test mask patterns for characterizing illumination and mask quality in image forming optical systems |
| SG153748A1 (en) * | 2007-12-17 | 2009-07-29 | Asml Holding Nv | Lithographic method and apparatus |
| CN102507156B (zh) * | 2011-11-09 | 2014-04-09 | 西安工业大学 | 对聚焦光学系统聚焦光斑尺寸测量的装置及其使用方法 |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4885232A (en) * | 1985-03-11 | 1989-12-05 | Hoechst Celanese Corporation | High temperature post exposure baking treatment for positive photoresist compositions |
| JP3095231B2 (ja) * | 1990-09-20 | 2000-10-03 | 浜松ホトニクス株式会社 | 偏光測定装置及び位相板測定装置 |
| JPH0567558A (ja) * | 1991-09-06 | 1993-03-19 | Nikon Corp | 露光方法 |
| KR0153796B1 (ko) * | 1993-09-24 | 1998-11-16 | 사토 후미오 | 노광장치 및 노광방법 |
| DE19732619C2 (de) * | 1997-07-29 | 1999-08-19 | Fraunhofer Ges Forschung | Optische Detektoreinrichtung |
| US6356345B1 (en) * | 1998-02-11 | 2002-03-12 | Litel Instruments | In-situ source metrology instrument and method of use |
| EP0985140B1 (de) * | 1998-03-27 | 2004-09-15 | Leica Camera AG | Linsen-prüfgerät |
| US7242464B2 (en) * | 1999-06-24 | 2007-07-10 | Asml Holdings N.V. | Method for characterizing optical systems using holographic reticles |
| JP2001274080A (ja) * | 2000-03-28 | 2001-10-05 | Canon Inc | 走査型投影露光装置及びその位置合わせ方法 |
-
2002
- 2002-08-08 DE DE10236422A patent/DE10236422A1/de not_active Ceased
-
2003
- 2003-08-06 JP JP2003288305A patent/JP2004072114A/ja not_active Withdrawn
- 2003-08-08 US US10/637,193 patent/US20040027553A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101459642B1 (ko) | 2008-10-16 | 2014-11-11 | 삼성전자 주식회사 | 노광빔 위치 측정 방법 및 측정 장치 |
Also Published As
| Publication number | Publication date |
|---|---|
| DE10236422A1 (de) | 2004-02-26 |
| US20040027553A1 (en) | 2004-02-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI695222B (zh) | 用於鑑定光微影倍縮光罩之方法、檢測系統及成像系統 | |
| JP4898766B2 (ja) | 物体の位置を測定する方法およびシステム | |
| JP6386569B2 (ja) | プロセスウィンドウを最適化する方法 | |
| JP6723269B2 (ja) | 焦点感応オーバーレイターゲットを使用する焦点決定のためのシステムおよび方法 | |
| US6573015B2 (en) | Method of measuring optical aberration | |
| JP4073735B2 (ja) | リソグラフィ装置の投影システムの収差を測定する方法、およびデバイス製造方法 | |
| JP2019168703A (ja) | 相互レシピ整合性に基づくレシピ選択 | |
| KR102170147B1 (ko) | 모듈레이션 기술을 이용한 메트롤로지를 위한 대체 타겟 디자인 | |
| TW201719783A (zh) | 用於模型化基礎臨界尺寸測量之技術及系統 | |
| JP5816297B2 (ja) | マスク上の構造を特徴付ける方法及び方法を実施するためのデバイス | |
| WO2007112625A1 (en) | Method for in-situ aberration measurement of optical imaging system in lithographic tools | |
| TWI809281B (zh) | 用於決定待測物件之產出空間影像的方法 | |
| JP2013502562A5 (ja) | ||
| JP6882338B2 (ja) | リソグラフィ方法及び装置 | |
| JP6979529B2 (ja) | リソグラフィプロセスにおける計測 | |
| TWI575228B (zh) | 影像感測器、感測方法及微影裝置 | |
| CN110174816A (zh) | 确定光刻掩模焦点位置的方法和执行这种方法的度量系统 | |
| CN110174821A (zh) | 确定光刻掩模的对线宽的波动的与结构无关的贡献的方法 | |
| JP2008267903A (ja) | レチクル欠陥検査装置およびこれを用いた検査方法 | |
| CN110140085A (zh) | 多图像粒子检测系统和方法 | |
| JP2004072114A (ja) | 露光装置において照明源を特性付けるための方法 | |
| TWI815419B (zh) | 用於判定與微影製程相關之隨機度量之方法 | |
| JP3900601B2 (ja) | 露光条件選択方法、及び該方法で使用される検査装置 | |
| CN108292111B (zh) | 用于在光刻设备中处理衬底的方法和设备 | |
| KR20000047481A (ko) | 디바이스 제조용 리소그래피 공정 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061107 |