+

JP2003066004A - Particle separation method, particle separation device, and sensor - Google Patents

Particle separation method, particle separation device, and sensor

Info

Publication number
JP2003066004A
JP2003066004A JP2001260749A JP2001260749A JP2003066004A JP 2003066004 A JP2003066004 A JP 2003066004A JP 2001260749 A JP2001260749 A JP 2001260749A JP 2001260749 A JP2001260749 A JP 2001260749A JP 2003066004 A JP2003066004 A JP 2003066004A
Authority
JP
Japan
Prior art keywords
fine particles
electric field
force
solution
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001260749A
Other languages
Japanese (ja)
Other versions
JP4779261B2 (en
Inventor
Makoto Kato
真 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001260749A priority Critical patent/JP4779261B2/en
Publication of JP2003066004A publication Critical patent/JP2003066004A/en
Application granted granted Critical
Publication of JP4779261B2 publication Critical patent/JP4779261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Centrifugal Separators (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】 【課題】 簡便・高速で、高精度に微粒子を分離する方
法および装置を提供すること、ならびに定量定性分析を
行うセンサを実現することを目的とする。 【解決手段】 電極対4、5間に交流電圧を印加し、溶
液チャンバー8内を流れる溶液9に含まれている微粒子
に誘電泳動力を働かせて、流れの力と誘電泳動力とがつ
りあう位置へ微粒子を集める。微粒子の種類によってつ
りあいの位置が異なるので、分離が可能となる。また、
交流電圧の周波数や電界強度を変化させることにより、
つりあいの位置を制御することができる。
(57) [Problem] To provide a simple and fast method and apparatus for separating fine particles with high accuracy, and to realize a sensor for performing quantitative and qualitative analysis. An AC voltage is applied between electrode pairs (4, 5) to apply dielectrophoretic force to fine particles contained in a solution (9) flowing in a solution chamber (8), so that the flow force and the dielectrophoretic force balance. Collect fine particles. Since the position of the balance differs depending on the type of the fine particles, separation becomes possible. Also,
By changing the frequency of AC voltage and electric field strength,
The position of the balance can be controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子分離方法、
微粒子分離装置、およびセンサに関する。
TECHNICAL FIELD The present invention relates to a method for separating fine particles,
The present invention relates to a particle separation device and a sensor.

【0002】[0002]

【従来の技術】従来、溶液中に含まれる微粒子を分離す
る方法として、遠心力と電気泳動力の力のつりあいを利
用した方法がある。これは、遠心力が働く場の中に微粒
子を含む溶液を置き、遠心力と反対方向に作用する電場
を与えて電気泳動力を発生させ、遠心力と電気泳動力と
がつりあった位置に微粒子を分離する方法である。
2. Description of the Related Art Conventionally, as a method for separating fine particles contained in a solution, there is a method utilizing the balance between the centrifugal force and the electrophoretic force. This is because a solution containing fine particles is placed in a field where centrifugal force acts, an electric field acting in the direction opposite to the centrifugal force is applied to generate an electrophoretic force, and the particles are placed at a position where the centrifugal force and the electrophoretic force are balanced. Is a method of separating.

【0003】例えば、特許第1603224号公報に
は、イオン交換膜を用いて溶液にイオン濃度勾配を発生
させてその大きさが位置に依存する電場を作り出し、溶
液中の任意の位置にある粒子に働く遠心力と電気泳動力
の合成ベクトルがつりあいの位置に向かうような場を作
ることで高分子または粒子等溶液を分離する発明が記載
されている。
For example, in Japanese Patent No. 1603224, an ion exchange membrane is used to generate an ion concentration gradient in a solution to create an electric field whose magnitude depends on the position, and to generate particles in the solution at arbitrary positions. An invention is described in which a solution such as a polymer or a particle is separated by creating a field in which a combined vector of a working centrifugal force and an electrophoretic force is directed to a balanced position.

【0004】具体的に説明すると、荷電Q、質量M、比
容積vの微粒子に働く力fは、遠心力fcと遠心力と反
対方向の大きさEの電場による力(電気泳動力)fe
合力で示され、次の(数1)式のようになる。
More specifically, the force f exerted on fine particles having a charge Q, a mass M, and a specific volume v is a centrifugal force f c and a force (electrophoretic force) f due to an electric field of a magnitude E opposite to the centrifugal force f c. It is shown by the resultant force of e , and becomes like the following (Equation 1).

【0005】[0005]

【数1】 [Equation 1]

【0006】ここで、ρは粒子の数密度、ωは回転の角
速度、rは遠心力の回転半径を示す。回転中心から一定
の点より半径rが増大するに従い、その大きさが増大す
るような分布を持つ電場をイオン濃度勾配を生み出すイ
オン交換膜の設置により実現し、角速度ωを適当に選ぶ
ことにより遠心力fcと電気泳動力feのつりあう位置r
pを決定、すなわち同一の粒子をすべて同じ位置に集合
させる分離方法を実現している。
Here, ρ is the number density of particles, ω is the angular velocity of rotation, and r is the radius of gyration of centrifugal force. An electric field with a distribution that increases as the radius r increases from a certain point from the center of rotation is realized by installing an ion exchange membrane that produces an ion concentration gradient, and centrifugation is performed by appropriately selecting the angular velocity ω. Position r where force f c and electrophoretic force f e balance each other
It realizes a separation method that determines p , that is, collects all the same particles at the same position.

【0007】また、従来、様々な種類の分子や微粒子を
含む溶液を分析する方法として、ゲルを用いて吸着の差
を利用して分析を行うゲルクロマトグラフィー法や、高
周波不平等電界を発生させて分子や粒子に働く誘電泳動
力の差を利用して分析を行う静電クロマトグラフィー法
がある。
[0007] Conventionally, as a method for analyzing a solution containing various kinds of molecules and fine particles, a gel chromatography method in which a gel is used to make use of a difference in adsorption, and a high frequency non-uniform electric field is generated. There is an electrostatic chromatography method in which analysis is performed by utilizing the difference in dielectrophoretic force acting on molecules and particles.

【0008】例えば、特許第3097932号公報に
は、入口から一定速度で流れているキャリアーにサンプ
ルとなる分子や粒子を添加し、これらに誘電泳動力を働
かせ、出口に達する所要時間の差から分子や粒子の分析
を行う静電クロマトグラフィー装置が記載されている。
これは、分子や粒子に働く誘電泳動力が、その分子や粒
子に固有の電気双極子モーメントによって大きさが異な
ることを利用して分子や粒子を分析するクロマトグラフ
ィー装置に関する発明である。
For example, in Japanese Patent No. 3097932, molecules and particles to be sampled are added to a carrier flowing at a constant velocity from an inlet, and a dielectrophoretic force is exerted on these to cause a difference in the time required to reach the outlet. An electrostatic chromatography device for the analysis of particles and particles is described.
This is an invention relating to a chromatography device that analyzes a molecule or particle by utilizing the fact that the dielectrophoretic force acting on the molecule or particle varies in size depending on the electric dipole moment peculiar to the molecule or particle.

【0009】[0009]

【発明が解決しようとする課題】上記従来の技術はいず
れも、分子や粒子等を分離する方法や装置の確立を目的
としている。しかしながら、上記従来の技術において
は、以下に示すような課題を有する。
The above-mentioned conventional techniques are all aimed at establishing a method and apparatus for separating molecules, particles and the like. However, the above conventional technique has the following problems.

【0010】特許第1603224号公報では、遠心力
と電気泳動力とがつりあう位置に粒子を集合させて分離
を行っており、具体的には任意の位置にある粒子に働く
合力が常につりあいの位置に向かうよう、イオン交換膜
を用いて勾配を持つ電場を作り出している。しかし、電
気泳動を利用することにより、様々な課題が発生する。
例えば、通電中に電気泳動槽中のイオンが消耗するた
め、電解質貯蔵溶液を別途設けるなど、非常に複雑な前
処理を必要とする。また、水溶液に直流電圧を印加した
場合、電極近傍において水が電気分解し、安全対策が必
要な場合も起こりうる。
In Japanese Patent No. 1603224, particles are aggregated and separated at a position where centrifugal force and electrophoretic force are in equilibrium. Specifically, the resultant force acting on particles at any position is always in equilibrium position. The ion-exchange membrane is used to create a gradient electric field toward However, various problems occur by using electrophoresis.
For example, since ions in the electrophoresis tank are consumed during energization, a very complicated pretreatment such as separately providing an electrolyte storage solution is required. In addition, when a DC voltage is applied to the aqueous solution, water may be electrolyzed in the vicinity of the electrodes, and safety measures may be required.

【0011】また、特許第3097932号公報では、
一定速度で流れているキャリアーに含まれる分子や粒子
に誘電泳動力を働かせ、一定距離を移動するのに必要な
所要時間の差から様々な分子や粒子の分離を行ってい
る。しかし、所要時間の差に基づく分離方法であるた
め、分離にはある程度の時間がかかってしまうことにな
る。
Further, in Japanese Patent No. 3097932,
By applying dielectrophoretic force to the molecules and particles contained in the carrier flowing at a constant velocity, various molecules and particles are separated from the difference in the time required to move a certain distance. However, since the separation method is based on the difference in required time, it takes some time for separation.

【0012】以上に鑑み、本発明の目的は、簡便・高速
で、高精度に微粒子を分離する方法および装置を提供す
ること、ならびに定量定性分析を行うセンサを提供する
ことである。
[0012] In view of the above, an object of the present invention is to provide a method and apparatus for separating fine particles easily and at high speed with high accuracy, and to provide a sensor for performing quantitative qualitative analysis.

【0013】[0013]

【課題を解決するための手段】この課題を解決するため
に本発明は、微粒子を含む溶液が流れている中で、前記
流れの力と反対方向に微粒子を誘電泳動させ、前記流れ
の力と誘電泳動力とがつりあった位置に前記微粒子を分
離させる微粒子分離方法としたものである。
In order to solve this problem, according to the present invention, while a solution containing fine particles is flowing, the fine particles are dielectrophoresed in the direction opposite to the force of the flow, and the force of the flow is changed. This is a fine particle separation method in which the fine particles are separated at a position balanced with the dielectrophoretic force.

【0014】そして、誘電泳動を発生させる際に印加す
る交流電界の周波数、交流電界の電圧値、交流電界の電
圧印加時間、溶液の流量の少なくともいずれかひとつを
制御することで、微粒子に働く流れの力と誘電泳動力と
がつりあう位置を制御するようにするのがよい。
Then, by controlling at least one of the frequency of the AC electric field applied when dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the flow rate of the solution, the flow acting on the fine particles is controlled. It is preferable to control the position where the force of the electric field and the force of dielectrophoresis balance each other.

【0015】また、本発明は、微粒子を含む溶液に遠心
力を与え、前記遠心力と反対方向に微粒子を誘電泳動さ
せ、前記遠心力と誘電泳動力とがつりあった位置に前記
微粒子を分離させる微粒子分離方法としたものである。
Further, according to the present invention, a centrifugal force is applied to a solution containing fine particles, the fine particles are subjected to dielectrophoresis in a direction opposite to the centrifugal force, and the fine particles are separated at a position where the centrifugal force and the dielectrophoretic force are balanced. This is a method for separating fine particles.

【0016】そして、誘電泳動を発生させる際に印加す
る交流電界の周波数、交流電界の電圧値、交流電界の電
圧印加時間、遠心力を発生させる角速度の少なくともい
ずれかひとつを制御することで、微粒子に働く遠心力と
誘電泳動力とがつりあう位置を制御するのがよい。
Fine particles are controlled by controlling at least one of the frequency of the AC electric field applied when dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the angular velocity for generating the centrifugal force. It is desirable to control the position where the centrifugal force and the dielectrophoretic force that act on each other balance each other.

【0017】また、本発明は、第一の電極と第二の電極
からなる電極対と、これら電極間に不均一な交流電界を
発生せしめる電圧源と、微粒子を含む溶液を流すための
ポンプと流路とを具備し、前記微粒子に働く流れの力と
誘電泳動力とがつりあった位置に前記微粒子を分離させ
る微粒子分離装置としたものである。
Further, according to the present invention, an electrode pair composed of a first electrode and a second electrode, a voltage source for generating a nonuniform AC electric field between these electrodes, and a pump for flowing a solution containing fine particles. A fine particle separation device comprising a flow path and separating the fine particles at a position where the flow force acting on the fine particles and the dielectrophoretic force are balanced.

【0018】そして、誘電泳動を発生させる際に印加す
る交流電界の周波数、交流電界の電圧値、交流電界の電
圧印加時間、溶液の流量の少なくともいずれかひとつを
制御することで、微粒子に働く流れの力と誘電泳動力と
がつりあう位置を制御するのがよい。
Then, by controlling at least one of the frequency of the AC electric field applied when dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the flow rate of the solution, the flow acting on the fine particles is controlled. It is preferable to control the position where the force of the force and the dielectrophoretic force balance with each other.

【0019】また、本発明は、第一の電極と第二の電極
からなる電極対と、これら電極間に不均一な交流電界を
発生せしめる電圧源と、微粒子を含む溶液を収容する容
器とを具備し、前記容器は前記微粒子に遠心力を与える
ための回転体に保持されており、前記微粒子に働く遠心
力と誘電泳動力とがつりあった位置に前記微粒子を分離
させる微粒子分離装置としたものである。
Further, according to the present invention, an electrode pair composed of a first electrode and a second electrode, a voltage source for generating a non-uniform AC electric field between these electrodes, and a container for containing a solution containing fine particles are provided. The container is held by a rotating body for imparting a centrifugal force to the fine particles, and is a fine particle separation device for separating the fine particles at a position where the centrifugal force acting on the fine particles and the dielectrophoretic force are balanced. Is.

【0020】そして、誘電泳動を発生させる際に印加す
る交流電界の周波数、交流電界の電圧値、交流電界の電
圧印加時間、回転体の角速度の少なくともいずれかひと
つを制御することで、微粒子に働く遠心力と誘電泳動力
とがつりあう位置を制御するのがよい。
Then, by controlling at least one of the frequency of the AC electric field applied when the dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the angular velocity of the rotating body, the fine particles are worked. It is preferable to control the position where the centrifugal force and the dielectrophoretic force balance each other.

【0021】また、本発明は、第一の電極と第二の電極
からなる電極対と、これら電極間に不均一な交流電界を
発生せしめる電圧源と、微粒子を含む溶液を流すための
ポンプと流路と、前記微粒子の濃度を測定する濃度測定
装置とを具備し、前記微粒子に働く流れの力と誘電泳動
力とがつりあった位置に前記微粒子を分離させ、分離し
た状態の微粒子濃度を前記濃度測定装置により測定する
センサとしたものである。
Further, according to the present invention, an electrode pair composed of a first electrode and a second electrode, a voltage source for generating a non-uniform AC electric field between these electrodes, and a pump for flowing a solution containing fine particles. A flow path and a concentration measuring device for measuring the concentration of the fine particles are provided, the fine particles are separated at a position where the flow force acting on the fine particles and the dielectrophoretic force are balanced, and the fine particle concentration in the separated state is described above. This is a sensor that measures with a concentration measuring device.

【0022】そして、誘電泳動を発生させる際に印加す
る交流電界の周波数、交流電界の電圧値、交流電界の電
圧印加時間、溶液の流量の少なくともいずれかひとつを
制御することで、微粒子が濃度測定部位に位置するよう
制御するのがよい。
By controlling at least one of the frequency of the AC electric field applied when dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the flow rate of the solution, the concentration of the fine particles is measured. It is better to control it so that it is located at the site.

【0023】また、本発明は、第一の電極と第二の電極
からなる電極対と、これら電極間に不均一な交流電界を
発生せしめる電圧源と、微粒子を含む溶液を収容する容
器と、前記微粒子の濃度を測定する濃度測定装置とを具
備し、前記容器は前記微粒子に遠心力を与えるための回
転体に保持されており、前記微粒子に働く遠心力と誘電
泳動力とがつりあった位置に前記微粒子を分離させ、分
離した状態の微粒子の濃度を前記濃度測定装置により測
定するセンサとしたものである。
Further, according to the present invention, an electrode pair composed of a first electrode and a second electrode, a voltage source for generating a nonuniform AC electric field between these electrodes, a container for containing a solution containing fine particles, A concentration measuring device for measuring the concentration of the fine particles, wherein the container is held by a rotating body for imparting a centrifugal force to the fine particles, a position where the centrifugal force acting on the fine particles and the dielectrophoretic force are balanced. The above-mentioned fine particles are separated into, and the concentration of the separated fine particles is measured by the concentration measuring device.

【0024】そして、誘電泳動を発生させる際に印加す
る交流電界の周波数、交流電界の電圧値、交流電界の電
圧印加時間、回転体の角速度の少なくともいずれかひと
つを制御することで、微粒子が濃度測定部位に位置する
よう制御するのがよい。
Then, by controlling at least one of the frequency of the AC electric field applied when the dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the angular velocity of the rotating body, the concentration of the fine particles is increased. It is better to control so that it is located at the measurement site.

【0025】なお、上記濃度測定装置は、表面プラズモ
ン共鳴現象を利用したものとするのが好適である。
It is preferable that the concentration measuring device utilizes the surface plasmon resonance phenomenon.

【0026】あるいは、上記濃度測定装置は光源と光検
出器とを具備し、光源から発せられた光が微粒子を含む
溶液中を透過し、光検出器により計測されることで微粒
子による光の吸光度を求め、この値から微粒子の濃度を
求めるものとしてもよい。
Alternatively, the above-mentioned concentration measuring device is provided with a light source and a photodetector, and the light emitted from the light source is transmitted through a solution containing fine particles and is measured by the photodetector, whereby the light absorption by the fine particles is measured. May be obtained, and the concentration of fine particles may be obtained from this value.

【0027】これら本発明により、簡便・高速で、高精
度に微粒子を分離する方法および装置、ならびに定量定
性分析を行うセンサを得ることができる。
According to the present invention, it is possible to obtain a method and an apparatus for separating fine particles with high precision at a simple and high speed, and a sensor for performing quantitative qualitative analysis.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を図面
と数式を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings and mathematical formulas.

【0029】(実施の形態1)本発明は、微粒子を含む
溶液が流れの方向に流速分布を有している流れの中で、
流れの力と反対方向に微粒子に誘電泳動力を印加し、流
れの力と誘電泳動力とがつりあった位置に留まることを
利用し、溶液中に含まれる様々な種類の微粒子を分離す
る方法やその装置、および分離したものを分析するセン
サに関するものである。特に、様々な種類のタンパク
質、細胞、高分子等の微粒子を含む溶液中から所望の微
粒子を選択的に抽出したり分離分析を行う生化学分析、
創薬、DNA解析、ハイスループットスクリーニング等
に好適に用いられる。
(Embodiment 1) In the present invention, in a flow in which a solution containing fine particles has a flow velocity distribution in the flow direction,
By applying a dielectrophoretic force to the particles in the direction opposite to the flow force and staying at a position where the flow force and the dielectrophoretic force are balanced, a method for separating various types of particles contained in a solution or It relates to the device and a sensor for analyzing the separation. In particular, biochemical analysis that selectively extracts or separates desired fine particles from a solution containing fine particles of various types of proteins, cells, macromolecules, etc.
It is preferably used for drug discovery, DNA analysis, high throughput screening and the like.

【0030】図1は、流れの力と誘電泳動力とを用い
て、ある単一種の微粒子Aを分離する場合の一形態を示
す模式図である。図1(a)において、筐体1には厚さ
が一定で扇形の溶液チャンバー8が形成されており、扇
の幅の狭まった側の端部には溶液流入口2が、扇の幅の
広がった側の端部には溶液流出口3が設けられている。
また、溶液流入口2と溶液流出口3の間には第一の電極
4と第二の電極5がそれぞれ設けられており、これら電
極はそれぞれ図示していない交流電圧源に接続されてい
る。第一の電極4と第二の電極5の間の電界強度は、第
一の電極4に近いほど電気力線が密となるため、図中で
は左へ行くほど電界強度が強くなる。また図1(b)
は、図1(a)のM−M’断面図である。溶液チャンバ
ー8を含む流路6は微粒子Aを含む溶液9で満たされて
おり、溶液9はポンプ7によって流路6内を一定流量で
循環している。
FIG. 1 is a schematic view showing an embodiment in which a single type of fine particles A are separated by using a flow force and a dielectrophoretic force. In FIG. 1A, a housing 1 is provided with a fan-shaped solution chamber 8 having a constant thickness, and a solution inlet 2 is provided at the end of the fan having a narrow width. A solution outlet 3 is provided at the end on the spread side.
Further, a first electrode 4 and a second electrode 5 are provided between the solution inflow port 2 and the solution outflow port 3, and these electrodes are respectively connected to an AC voltage source (not shown). The electric field strength between the first electrode 4 and the second electrode 5 becomes closer to the first electrode 4, and the electric field lines become denser. Therefore, the electric field strength becomes stronger toward the left in the figure. 1 (b)
FIG. 3 is a sectional view taken along the line MM ′ of FIG. The flow path 6 including the solution chamber 8 is filled with the solution 9 including the fine particles A, and the solution 9 is circulated in the flow path 6 at a constant flow rate by the pump 7.

【0031】ここで、図1において、溶液流入口2の位
置がrin、第一の電極4がr1、第二の電極5がr2、溶
液流出口3がroutとなるようなr座標を設定する。こ
のような条件下で、溶液チャンバー8内の溶液9に含ま
れている微粒子Aに働く流れの力Ffは、次の(数2)
式で示される。
Here, in FIG. 1, r is such that the position of the solution inlet 2 is r in , the first electrode 4 is r 1 , the second electrode 5 is r 2 , and the solution outlet 3 is r out. Set the coordinates. Under such conditions, the force F f of the flow acting on the fine particles A contained in the solution 9 in the solution chamber 8 is
It is shown by the formula.

【0032】[0032]

【数2】 [Equation 2]

【0033】ここで、μは溶液9の粘性係数、aは微粒
子Aの半径、V(r)は流れの速さをそれぞれ示す。流
れの速さV(r)は位置rの関数であるが、ここでの場
合は循環流量が一定、溶液チャンバー8の厚さが一定で
あるため、V(r)はrに反比例する関数となる。位置
rと流れの力Ffとの関係を示すグラフを図2に示す。
力の働く方向は、+r方向である。
Here, μ is the viscosity coefficient of the solution 9, a is the radius of the fine particles A, and V (r) is the flow velocity. The flow velocity V (r) is a function of the position r. In this case, since the circulation flow rate is constant and the thickness of the solution chamber 8 is constant, V (r) is a function inversely proportional to r. Become. A graph showing the relationship between the position r and the flow force F f is shown in FIG.
The direction in which the force acts is the + r direction.

【0034】次に、微粒子Aに働く誘電泳動力Fdを説
明する。Fdは次の(数3)式で示される。
Next, the dielectrophoretic force F d acting on the fine particles A will be described. F d is expressed by the following equation (3).

【0035】[0035]

【数3】 [Equation 3]

【0036】ここで、εmは溶液9の誘電率、Eは二つ
の電極4、5により発生する電界強度の実効値、ωは交
流電圧源の角周波数、Re[]は実数部、▽は勾配を求
める微分演算子をそれぞれ示す。また、K*(ω)はク
ラウジウス−モソティ関数であり、次の(数4)式で定
義される。
Here, ε m is the dielectric constant of the solution 9, E is the effective value of the electric field strength generated by the two electrodes 4 and 5, ω is the angular frequency of the AC voltage source, Re [] is the real part, and ▽ is The differential operators for finding the gradient are shown below. Further, K * (ω) is a Clausius-Mossoty function and is defined by the following equation (4).

【0037】[0037]

【数4】 [Equation 4]

【0038】ここで、εp *は微粒子Aの複素誘電率、ε
m *は溶液9の複素誘電率、εpは微粒子Aの誘電率、εm
は溶液9の誘電率、σpは微粒子Aの導電率、σmは溶液
9の導電率、jは虚数単位をそれぞれ示す。電界強度の
実効値E(r)は位置rの関数であり、rが増加するに
従いその大きさは単純減少する。従って、実効値Eの二
乗の勾配も同様にrの増加に伴い単純減少することにな
る。位置rと誘電泳動力Fdとの関係を示すグラフも図
2に示す。力の方向は、Re[K*(ω)]が正の場合
には電界強度の強い方向へと働き、負の場合には弱い方
向へと働く。ここでは正の場合、すなわち−r方向に力
が働く場合を、以下説明する。
Here, ε p * is the complex permittivity of the fine particles A, ε
m * is the complex permittivity of solution 9, ε p is the permittivity of fine particles A, ε m
Represents the dielectric constant of the solution 9, σ p represents the conductivity of the fine particles A, σ m represents the conductivity of the solution 9, and j represents the imaginary unit. The effective value E (r) of the electric field strength is a function of the position r, and its magnitude simply decreases as r increases. Therefore, the slope of the square of the effective value E also simply decreases with an increase in r. A graph showing the relationship between the position r and the dielectrophoretic force F d is also shown in FIG. As for the force direction, when Re [K * (ω)] is positive, the electric field strength is strong, and when it is negative, the electric field strength is weak. Here, a positive case, that is, a case where a force acts in the −r direction will be described below.

【0039】溶液チャンバー8内を流れる溶液9に誘電
泳動を働かせると、溶液9に含まれている微粒子Aには
流れの力Ffと誘電泳動力Fdとが働く。微粒子Aは、こ
れらの合力F=Ff−Fdによって溶液9中を運動するこ
とになる。図3に、位置rと合力Fとの関係を示すグラ
フを示す。r=raで示される位置は、合力F=0とな
る位置であり、ここに位置する微粒子Aはここに留まる
ことを表している。一方、r1<r<raの領域では、微
粒子Aには+r方向に力が働き、ra<r<r2の領域で
は、微粒子Aには−r方向に力が働くので、電極に挟ま
れた領域に存在する微粒子Aはすべて、位置raに集め
られる。また、電極に挟まれていない領域、すなわちr
<r1、r2<rに位置する微粒子Aは、流れによって必
ず電極に挟まれた領域に移動するので、結果的に溶液9
に含まれるすべての微粒子Aを位置raに集めることが
できる。
When the solution 9 flowing in the solution chamber 8 is subjected to dielectrophoresis, a flow force F f and a dielectrophoretic force F d act on the fine particles A contained in the solution 9. The fine particles A move in the solution 9 due to the resultant force F = F f −F d . FIG. 3 shows a graph showing the relationship between the position r and the resultant force F. The position indicated by r = r a is the position at which the resultant force F = 0, and the fine particles A located there are retained here. On the other hand, in the region of r 1 <r <r a , a force acts on the fine particles A in the + r direction, and in the region of r a <r <r 2 , a force acts on the fine particles A in the −r direction. All the fine particles A existing in the sandwiched region are collected at the position r a . In addition, the region not sandwiched by the electrodes, that is, r
The fine particles A located at <r 1 and r 2 <r always move to the region sandwiched by the electrodes due to the flow, resulting in the solution 9
It is possible to collect all the fine particles A contained in the position r a .

【0040】次に、溶液9が複数種類の微粒子を含んで
いる場合にこれらの微粒子を別々に分離する方法を説明
する。溶液9中に含まれているn種類の微粒子は、それ
ぞれに固有の粒子半径、誘電率、導電率を有している。
すなわち、これら固有パラメータの違いによって、それ
ぞれの微粒子に働く流れの力Ffと誘電泳動力Fdとは異
なる値を示す。従って、二つの力がつりあう位置(合力
=0となる位置)も、各微粒子に固有の値を示すことに
なり、分離が可能となる。また、すべての微粒子がr1
<r2の領域につりあいの位置を持つことができない場
合には、電界強度の実効値E、交流電圧源の角周波数
ω、交流電界の電圧印加時間、流路6内を流れる流量の
少なくともいずれかひとつを変化させることによって、
つりあいの位置を持てることを(数2)(数3)は示し
ている。
Next, a method for separating the fine particles separately when the solution 9 contains a plurality of types of fine particles will be described. The n kinds of fine particles contained in the solution 9 each have a unique particle radius, dielectric constant, and conductivity.
That is, the flow force F f acting on each particle and the dielectrophoretic force F d show different values due to the difference in these intrinsic parameters. Therefore, the position where the two forces balance with each other (the position where the resultant force = 0) also shows a value unique to each fine particle, and separation is possible. Also, all fine particles are r 1
When the equilibrium position cannot be provided in the region of <r 2 , at least one of the effective value E of the electric field strength, the angular frequency ω of the AC voltage source, the voltage application time of the AC electric field, and the flow rate flowing in the flow path 6 By changing one
(Equation 2) and (Equation 3) show that the balance position can be provided.

【0041】以上、正の誘電泳動が働く場合について説
明を行ったが、微粒子の種類によっては負の誘電泳動が
働くケースもあり、この場合については、以下のように
説明をすることができる。図4は図1同様、流れの力と
誘電泳動力とを用いてある単一種の微粒子Bを分離する
場合の一形態を示す模式図で、図1に示した模式図と
は、溶液チャンバー8が左右が逆になっていることのみ
が違っている。すなわち、溶液流入口10と溶液流出口
11以外の構成は、図1と同一である。
Although the case where the positive dielectrophoresis works has been described above, there is a case where the negative dielectrophoresis works depending on the type of the fine particles, and in this case, it can be explained as follows. Similar to FIG. 1, FIG. 4 is a schematic diagram showing an embodiment in the case of separating a single type of fine particles B by using the force of flow and the dielectrophoretic force. The schematic diagram shown in FIG. The only difference is that the left and right are reversed. That is, the configuration other than the solution inlet 10 and the solution outlet 11 is the same as in FIG.

【0042】このとき、溶液12に含まれている微粒子
Bに働く流れの力Ffと位置rとの関係は、図5のよう
に示される。力の働く方向は+r方向である。また、溶
液12に含まれている微粒子Bに働く誘電泳動力F
dは、電界強度の弱い方向、すなわち−r方向に働き、
その大きさはrの増加に伴い単純増加することになる。
位置rと誘電泳動力Fdとの関係を示すグラフも図5に
示す。
At this time, the relationship between the flow force F f acting on the fine particles B contained in the solution 12 and the position r is shown in FIG. The direction of the force is + r direction. Further, the dielectrophoretic force F acting on the fine particles B contained in the solution 12
d acts in the direction of weak electric field strength, that is, in the -r direction,
Its size simply increases as r increases.
A graph showing the relationship between the position r and the dielectrophoretic force F d is also shown in FIG.

【0043】図6に、位置rとこれらの合力Fとの関係
を示すグラフを示す。r=rbで示される位置は、合力
F=0となる位置であり、ここに位置する微粒子Bはこ
こに留まることを表している。一方、r1<r<rbの領
域では、微粒子Bには+r方向に力が働き、rb<r<
2の領域では、微粒子Bには−r方向に力が働くの
で、電極に挟まれた領域に存在する微粒子Bはすべて、
位置rbに集められる。また、電極に挟まれていない領
域、すなわちr<r1、r2<rに位置する微粒子Bは、
流れによって必ず電極に挟まれた領域に移動するので、
結果的に溶液12に含まれるすべての微粒子Bを位置r
bに集めることができる。
FIG. 6 is a graph showing the relationship between the position r and the resultant force F. The position represented by r = r b is a position where the resultant force F = 0, and the fine particles B located here are shown to stay there. On the other hand, in the region of r 1 <r <r b , a force acts on the fine particles B in the + r direction, and r b <r <
In the region of r 2 , a force acts on the fine particles B in the −r direction, so all the fine particles B existing in the region sandwiched by the electrodes are
Collected at position r b . Further, the fine particles B located in a region not sandwiched by the electrodes, that is, r <r 1 and r 2 <r,
Because it always moves to the area sandwiched by the electrodes due to the flow,
As a result, all the fine particles B contained in the solution 12 are moved to the position r
can be collected in b .

【0044】また、正の誘電泳動が働く場合での説明と
同じく、溶液12が複数種類の微粒子を含んでいる場合
には、粒子半径、誘電率、導電率といったこれら固有パ
ラメータの違いによって、それぞれの微粒子に働く流れ
の力Ffと誘電泳動力Fdとは異なる値を示し、二つの力
がつりあう位置(合力=0となる位置)も、各微粒子に
固有の値を示すことになり、分離が可能となるし、電界
強度の実効値E、交流電圧源の角周波数ω、交流電界の
電圧印加時間、流路6内を流れる流量の少なくともいず
れかひとつを変化させることによって、つりあいの位置
を制御することができる。
Further, as in the case where the positive dielectrophoresis works, when the solution 12 contains a plurality of kinds of fine particles, each of them is different due to the difference in these peculiar parameters such as particle radius, dielectric constant and conductivity. The force F f of the flow acting on the fine particles of F and the dielectrophoretic force F d show different values, and the position where the two forces balance (the position where the total force becomes 0) also shows a unique value for each fine particle. Separation becomes possible, and the balance position is changed by changing at least one of the effective value E of the electric field strength, the angular frequency ω of the AC voltage source, the voltage application time of the AC electric field, and the flow rate flowing in the flow path 6. Can be controlled.

【0045】なお、本実施の形態では簡略化のために微
粒子を球体として扱ったが、実際には複雑な形状を有す
るタンパク質や高分子の場合でも、数式が複雑になるも
のの原理的には同様な効果が得られることは言うまでも
ない。
In the present embodiment, the fine particles are treated as spheres for simplification, but in practice, even in the case of a protein or polymer having a complicated shape, the formula is complicated but the principle is the same. It goes without saying that such an effect can be obtained.

【0046】(実施の形態2)(実施の形態1)では、
図1を用いて流速が単調減少する流れの力と正の誘電泳
動力とのつりあいを利用した分離手法、および図4を用
いて流速が単調増加する流れの力と負の誘電泳動力との
つりあいを利用した分離方法について説明を行った。図
1、図4では、誘電泳動を作用させる流路の形状が扇形
であり、また二つの電極が流れの上流と下流とに位置す
る場合について説明を行ったが、流れの力と誘電泳動力
とのつりあいを利用した分離手法は、流れや電極配置に
他の様々な形態を用いても、その効果を発揮することが
できる。すなわち、流れの力Ffと誘電泳動力Fdの合力
Fが、溶液チャンバー内にF=0となるつりあいの位置
を持ち、つりあいの位置からはずれた場所では、つりあ
いの位置に向かう合力Fが働くような場を設定すれば、
溶液に含まれる微粒子を分離することが可能となる。本
実施の形態では、(実施の形態1)で示した微粒子分離
手法を具現化するための具体的な形態についていくつか
を説明する。
(Embodiment 2) (Embodiment 1)
A separation method using the equilibrium between the force of the flow whose velocity decreases monotonically and the positive dielectrophoretic force using FIG. 1 and the force of the flow whose velocity monotonically increases and the negative dielectrophoretic force using FIG. The separation method using balancing was explained. In FIG. 1 and FIG. 4, the flow path on which dielectrophoresis is applied has a fan shape, and two electrodes are located upstream and downstream of the flow. The separation method utilizing the equilibrium with and can exert its effect even when various other forms are used for the flow and the electrode arrangement. That is, the resultant force F of the flow force F f and the dielectrophoretic force F d has a balance position where F = 0 in the solution chamber, and at a place deviated from the balance position, the resultant force F toward the balance position is If you set up a working place,
It becomes possible to separate the fine particles contained in the solution. In this embodiment, some specific modes for embodying the method for separating particles described in (Embodiment 1) will be described.

【0047】図7は、流れの力と誘電泳動力とを用いて
微粒子の分離を行う一形態を示す模式図である。筐体2
1には厚さが一定で円形の溶液チャンバー27が形成さ
れており、円の中央に溶液流入口22が、円の外周部に
溶液流出口23が設けられている。また、溶液流入口2
2と溶液流出口23の間には第一の電極24と第二の電
極25がそれぞれ設けられており、これら電極はそれぞ
れ図示していない交流電圧源に接続されている。第一の
電極24と第二の電極25の間の電界強度は、第一の電
極24に近いほど電気力線が密となるため、溶液チャン
バー27の中央へ行くほど電界強度が強くなる。溶液チ
ャンバー27を含む流路26は微粒子Bを含む溶液28
で満たされており、溶液28は図示していないポンプに
よって流路26内を一定流量で循環している。
FIG. 7 is a schematic view showing an embodiment in which the fine particles are separated by using the flow force and the dielectrophoretic force. Case 2
1, a circular solution chamber 27 having a constant thickness is formed, a solution inlet 22 is provided at the center of the circle, and a solution outlet 23 is provided at the outer periphery of the circle. In addition, the solution inlet 2
A first electrode 24 and a second electrode 25 are respectively provided between the 2 and the solution outlet 23, and these electrodes are respectively connected to an AC voltage source (not shown). Regarding the electric field strength between the first electrode 24 and the second electrode 25, the electric field lines become closer to the first electrode 24, so that the electric field strength becomes stronger toward the center of the solution chamber 27. The flow path 26 including the solution chamber 27 includes a solution 28 including the fine particles B.
The solution 28 is circulated in the flow path 26 at a constant flow rate by a pump (not shown).

【0048】このとき溶液チャンバー27内の溶液28
に含まれている微粒子Bに働く流れの力Ffは、(実施
の形態1)と同様、(数2)で示される。また、微粒子
Bに働く誘電泳動力Fdも同様に(数3)で示される。
詳細な説明は(実施の形態1)で行ったため省略する
が、円形の溶液チャンバー27の場合でも不均一電界が
形成されるため、扇形の溶液チャンバーの場合と全く同
様に、+r方向(中心から外へ向かう方向)に働く流れ
の力Ffと−r方向(中心へ向かう方向)に働く正の誘
電泳動力Fdとのつりあいを利用して、微粒子Bをつり
あいの位置rbに集めることができる。
At this time, the solution 28 in the solution chamber 27
The flow force F f acting on the fine particles B contained in is expressed by (Equation 2) as in (Embodiment 1). Further, the dielectrophoretic force F d acting on the fine particles B is also represented by (Equation 3).
A detailed description is omitted because it was performed in (Embodiment 1), but since a non-uniform electric field is formed even in the case of the circular solution chamber 27, the + r direction (from the center is the same as in the case of the fan-shaped solution chamber). Using the balance between the force F f of the flow acting in the outward direction and the positive dielectrophoretic force F d acting in the −r direction (the direction toward the center), the fine particles B are collected at the balance position r b. You can

【0049】図8は、流れの力と誘電泳動力とを用いて
微粒子の分離を行う一形態を示す模式図である。筐体3
1には厚さが一定で扇形の溶液チャンバー37が形成さ
れており、扇の幅の狭まった側の端部には溶液流入口3
2が、扇の幅の広がった側の端部には溶液流出口33が
設けられている。また、溶液流入口32と溶液流出口3
3の間には流れの方向に沿って第一の電極34と第二の
電極35がそれぞれ設けられており、これら電極はそれ
ぞれ図示していない交流電圧源に接続されている。第一
の電極34と第二の電極35の間の電界強度は、溶液流
入口32に近いほど強くなる。溶液チャンバー37を含
む流路36は微粒子Cを含む溶液38で満たされてお
り、溶液38は図示していないポンプによって流路26
内を一定流量で循環している。
FIG. 8 is a schematic view showing an embodiment in which the fine particles are separated by using the flow force and the dielectrophoretic force. Case 3
1, a fan-shaped solution chamber 37 having a constant thickness is formed, and a solution inlet 3 is formed at the end of the fan having a narrow width.
2, a solution outlet 33 is provided at the end of the fan on the side where the width of the fan is widened. Further, the solution inlet 32 and the solution outlet 3
A first electrode 34 and a second electrode 35 are provided along the flow direction between the electrodes 3, and these electrodes are connected to an AC voltage source (not shown). The electric field strength between the first electrode 34 and the second electrode 35 becomes stronger as it gets closer to the solution inlet 32. The flow path 36 including the solution chamber 37 is filled with the solution 38 containing the fine particles C, and the solution 38 is supplied to the flow path 26 by a pump (not shown).
It circulates at a constant flow rate.

【0050】このとき溶液チャンバー37内の溶液38
に含まれている微粒子Cに働く流れの力Ffは、(数
2)で示され、また微粒子Cに働く誘電泳動力Fd
(数3)で示される。詳細な説明は省略するが、流れに
沿って配置された電極を用いても不均一電界が形成され
るため、(実施の形態1)の場合と同様、+r方向に働
く流れの力Ffと−r方向に働く正の誘電泳動力Fdとの
つりあいを利用して、微粒子Cをつりあいの位置rc
集めることができる。
At this time, the solution 38 in the solution chamber 37
The flow force F f acting on the fine particles C contained in is expressed by (Equation 2), and the dielectrophoretic force F d acting on the fine particles C is also expressed by (Equation 3). Although a detailed description is omitted, a non-uniform electric field is formed even if electrodes arranged along the flow are used. Therefore, as in the case of (Embodiment 1), the flow force F f acting in the + r direction and By utilizing the balance with the positive dielectrophoretic force F d acting in the −r direction, the fine particles C can be collected at the balance position r c .

【0051】また、図示はしないが、図8に示した形態
と似たような構成として、電極機能を有する二枚の長方
形の金属板を対向させ、この金属板間に溶液を流す際
に、流出口断面積が流入口断面積よりも広くなるように
設定することによっても、同様な効果が得られることは
言うまでもない。
Although not shown, two rectangular metal plates having an electrode function are made to face each other in a structure similar to that shown in FIG. 8, and when a solution is flown between the metal plates, Needless to say, the same effect can be obtained by setting the cross-sectional area of the outlet to be larger than the cross-sectional area of the inlet.

【0052】図9は、流れの力と誘電泳動力とを用いて
微粒子の分離を行う一形態を示す模式図である。筐体4
1には厚さと幅が一定の細長い溶液チャンバー47が形
成されており、微粒子Dを含む溶液48は溶液流入口4
2から流入し、溶液流出口43から流出する。溶液48
は図示していないポンプによって流路46内を一定流量
で循環している。また、筐体41内には電極設置空間4
9が設けられており、ここに第一の電極44と第二の電
極45がそれぞれ設けられ、これら電極はそれぞれ図示
していない交流電圧源に接続されている。なお、電極設
置空間49内は誘電体で満たされており、その種類は空
気や窒素等の気体、または水やエチルアルコール等の液
体、またはPMMAやガラス等の固体が好適に用いられ
る。第一の電極44と第二の電極45は、その電極間隔
が下流に行くに従い急激に広がる形状をしており、下流
ほど電界強度が弱くなる。
FIG. 9 is a schematic diagram showing an embodiment in which fine particles are separated by using the force of flow and the force of dielectrophoresis. Case 4
1, an elongated solution chamber 47 having a constant thickness and width is formed, and the solution 48 containing the fine particles D is supplied to the solution inlet 4
2 and flows out from the solution outlet 43. Solution 48
Is circulated in the flow path 46 at a constant flow rate by a pump (not shown). In addition, the electrode installation space 4 is provided in the housing 41.
9 is provided, and a first electrode 44 and a second electrode 45 are provided therein, and these electrodes are respectively connected to an AC voltage source (not shown). Note that the electrode installation space 49 is filled with a dielectric, and the type thereof is preferably gas such as air or nitrogen, liquid such as water or ethyl alcohol, or solid such as PMMA or glass. The first electrode 44 and the second electrode 45 have a shape in which the distance between the electrodes rapidly expands toward the downstream side, and the electric field strength becomes weaker toward the downstream side.

【0053】このとき溶液チャンバー47内を流れる溶
液48に含まれている微粒子Dに働く流れの力Ffと誘
電泳動力Fdとは、図10に示すようなグラフとなる。
流れの断面積と流量が一定なので、流れの力Ffは一定
値を示す。一方誘電泳動力Fdは、電界強度E(r)が
円弧の一部を描くような強度分布を有するよう電極形状
と配置を取っているので、E(r)2の勾配の大きさは
下流ほど大きくなり、従って誘電泳動力Fdは図10に
示すようなグラフとなる。図11に位置rと合力Fとの
関係を示すグラフを示す。r=rdで示される位置は、
合力F=0となる位置であり、ここに位置する微粒子D
はここに留まることを表している。一方、r<rdの領
域では、微粒子Dには+r方向に力が働き、rd<rの
領域では、微粒子Dには−r方向に力が働くので、微粒
子Dをすべて位置rdに集めることができる。
At this time, the flow force F f acting on the fine particles D contained in the solution 48 flowing in the solution chamber 47 and the dielectrophoretic force F d become a graph as shown in FIG.
Since the flow cross-sectional area and the flow rate are constant, the flow force F f has a constant value. On the other hand, the dielectrophoretic force F d has an electrode shape and an arrangement such that the electric field strength E (r) has a strength distribution that draws a part of an arc, so the magnitude of the gradient of E (r) 2 is downstream. Therefore, the dielectrophoretic force F d becomes a graph as shown in FIG. FIG. 11 shows a graph showing the relationship between the position r and the resultant force F. the position indicated by r = r d is
The position where the resultant force F = 0, and the fine particles D located here
Means stay here. On the other hand, in the region of r <r d, the force acts on the + r direction microparticles D, in the area of r d <r, the force acts in the -r direction to the microparticles D, the fine particles D in all positions r d You can collect.

【0054】以上説明したように、流れの力Ffと誘電
泳動力Fdの合力Fが、溶液チャンバー内にF=0とな
るつりあいの位置を持ち、つりあいの位置からはずれた
場所ではつりあいの位置に向かう合力Fが働くように流
れの形状と電極配置を構成すれば、溶液に含まれる微粒
子をつりあいの位置に分離することが可能となる。
As described above, the resultant force F of the flow force F f and the dielectrophoretic force F d has the equilibrium position where F = 0 in the solution chamber, and the equilibrium is present at the position deviated from the equilibrium position. If the flow shape and the electrode arrangement are configured so that the resultant force F toward the position acts, it becomes possible to separate the fine particles contained in the solution into the balanced positions.

【0055】(実施の形態3)本発明は、微粒子を含む
溶液に遠心力が働いている場の中で、遠心力と反対方向
に微粒子に誘電泳動力を印加し、遠心力と誘電泳動力と
がつりあった位置に留まることを利用し、溶液中に含ま
れる様々な種類の微粒子を分離する方法やその装置、お
よび分離したものを分析するセンサに関するものであ
る。本発明も、様々な種類のタンパク質や高分子を含む
溶液中から所望の分子を選択的に抽出したり分離分析を
行う生化学分析、創薬、DNA解析、ハイスループット
スクリーニング等に好適に用いられる。
(Embodiment 3) The present invention applies a dielectrophoretic force to fine particles in the direction opposite to the centrifugal force in a field in which a centrifugal force acts on a solution containing the fine particles, and the centrifugal force and the dielectrophoretic force are applied. The present invention relates to a method and apparatus for separating various types of fine particles contained in a solution by utilizing staying in a balanced position, and a sensor for analyzing the separated particles. The present invention is also suitably used for biochemical analysis, drug discovery, DNA analysis, high-throughput screening, etc., in which desired molecules are selectively extracted or separated and analyzed from a solution containing various types of proteins and macromolecules. .

【0056】図12は、遠心力と誘電泳動力とを用い
て、ある単一種の微粒子Eを分離する場合の一形態を示
す模式図である。図12において、筐体61には厚さと
幅が一定の細長い溶液チャンバー64が形成されてお
り、内部には微粒子Eを含む溶液65が満たされてい
る。また、筐体61内には電極設置空間66が設けられ
ており、ここに第一の電極62と第二の電極63がそれ
ぞれ設けられ、これら電極はそれぞれ図示していない交
流電圧源に接続されている。なお、電極設置空間66内
は誘電体で満たされており、その種類は空気や窒素等の
気体、または水やエチルアルコール等の液体、またはP
MMAやガラス等の固体が好適に用いられる。第一の電
極62と第二の電極63は、その電極間隔が図12中で
右に行くに従い急激に広がる形状をしており、右へ行く
ほど電界強度が弱くなる。さらに筐体61は、回転体6
7に設置されており、角速度ωcで回転するものであ
る。
FIG. 12 is a schematic diagram showing an embodiment in which a single type of fine particles E are separated by using centrifugal force and dielectrophoretic force. In FIG. 12, an elongated solution chamber 64 having a uniform thickness and width is formed in a housing 61, and a solution 65 containing fine particles E is filled in the interior thereof. Further, an electrode installation space 66 is provided in the housing 61, and a first electrode 62 and a second electrode 63 are provided therein, and these electrodes are connected to an AC voltage source (not shown). ing. The electrode installation space 66 is filled with a dielectric substance, and the type thereof is a gas such as air or nitrogen, a liquid such as water or ethyl alcohol, or P.
Solids such as MMA and glass are preferably used. The first electrode 62 and the second electrode 63 have a shape in which the distance between the first electrode 62 and the second electrode 63 rapidly expands toward the right in FIG. 12, and the electric field strength decreases toward the right. Further, the housing 61 is the rotating body 6.
It is installed at No. 7 and rotates at an angular velocity ω c .

【0057】ここで、図12において、回転体67の回
転中心がr=0、溶液チャンバー64の左端部がr3
右端部がr4となるようなr座標を設定する。このよう
な条件下で、溶液チャンバー64内の溶液65に含まれ
ている微粒子Eに働く遠心力F cは、次の(数5)式で
示される。
Here, in FIG. 12, the rotation of the rotating body 67 is
The center of rotation is r = 0, and the left end of the solution chamber 64 is r3,
The right end is rFourThe r coordinate is set so that like this
Solution 65 in the solution chamber 64 under various conditions.
Centrifugal force F acting on the fine particles E cIs the following (Equation 5)
Shown.

【0058】[0058]

【数5】 [Equation 5]

【0059】ここで、M、vはそれぞれ微粒子Eの質
量、比容積、ρは微粒子Eの数密度を示す。式が示すよ
うに、遠心力Fc(r)は位置rに比例する関数とな
る。位置rと遠心力Fcとの関係を示すグラフを図13
に示す。力の働く方向は、+r方向である。
Here, M and v are the mass and specific volume of the fine particles E, and ρ is the number density of the fine particles E. As the equation shows, the centrifugal force F c (r) is a function proportional to the position r. FIG. 13 is a graph showing the relationship between the position r and the centrifugal force F c .
Shown in. The direction in which the force acts is the + r direction.

【0060】次に、微粒子Eに働く誘電泳動力Fdを説
明する。Fdは次の(数6)式で示される。
Next, the dielectrophoretic force F d acting on the fine particles E will be described. F d is expressed by the following equation (6).

【0061】[0061]

【数6】 [Equation 6]

【0062】ここで、εmは溶液65の誘電率、Eは二
つの電極62、63により発生する電界強度の実効値、
ωは交流電圧源の角周波数、Re[]は実数部、▽は勾
配を求める微分演算子をそれぞれ示す。また、K
*(ω)はクラウジウス−モソティ関数であり、次の
(数7)式で定義される。
Here, ε m is the dielectric constant of the solution 65, E is the effective value of the electric field strength generated by the two electrodes 62 and 63,
ω is the angular frequency of the AC voltage source, Re [] is the real part, and ∇ is the differential operator for finding the gradient. Also, K
* (Ω) is the Clausius-Mossoti function, and is defined by the following equation (7).

【0063】[0063]

【数7】 [Equation 7]

【0064】ここで、εp *は微粒子Eの複素誘電率、ε
m *は溶液65の複素誘電率、εpは微粒子Eの誘電率、
εmは溶液65の誘電率、σpは微粒子Eの導電率、σm
は溶液65の導電率、jは虚数単位をそれぞれ示す。電
界強度の実効値E(r)が円弧の一部を描くような強度
分布を有するような電極形状と配置であるので、E
(r)2の勾配の大きさは図中の右へ行くほど大きくな
り、従って誘電泳動力Fdは図13に示すようなグラフ
となる。力の方向は、Re[K*(ω)]が正の場合、
すなわち−r方向に働く場合を設定する。
Here, ε p * is the complex permittivity of the fine particles E, ε
m * is the complex permittivity of the solution 65, ε p is the permittivity of the fine particles E,
ε m is the dielectric constant of the solution 65, σ p is the electrical conductivity of the fine particles E, σ m
Indicates the conductivity of the solution 65, and j indicates the imaginary unit. Since the effective shape E (r) of the electric field strength has such an electrode shape and arrangement that the intensity distribution draws a part of a circular arc,
The magnitude of the gradient of (r) 2 increases toward the right in the figure, so the dielectrophoretic force F d becomes a graph as shown in FIG. 13. The direction of force is as follows when Re [K * (ω)] is positive,
That is, the case of working in the −r direction is set.

【0065】筐体61が角速度ωcで回転している状態
で溶液65に誘電泳動を働かせると、溶液65に含まれ
ている微粒子Eには遠心力Fcと誘電泳動力Fdとが働
く。微粒子Eは、これらの合力F=Fc−Fdによって溶
液65中を運動することになる。図14に、位置rと合
力Fとの関係を示すグラフを示す。r=reで示される
位置は、合力F=0となる位置であり、ここに位置する
微粒子Eはここに留まることを表している。一方、r3
<r<reの領域では、微粒子Eには+r方向に力が働
き、re<r<r4の領域では、微粒子Eには−r方向に
力が働くので、溶液チャンバー64内に存在する微粒子
Eはすべて、位置reに集めることができる。
When dielectrophoresis is applied to the solution 65 while the casing 61 is rotating at the angular velocity ωc, the centrifugal force F c and the dielectrophoretic force F d act on the fine particles E contained in the solution 65. The fine particles E move in the solution 65 by the resultant force F = F c −F d . FIG. 14 shows a graph showing the relationship between the position r and the resultant force F. the position indicated by r = r e is the position where the resultant force F = 0, the fine particles E which is located here represents that stay here. On the other hand, r 3
<R <a region of r e is the particle E + r direction force acts in the area of r e <r <r 4, the force acts in the -r direction to the microparticles E, present in the solution chamber 64 All the fine particles E to be collected can be collected at the position r e .

【0066】次に、溶液65が複数種類の微粒子を含ん
でいる場合にこれらの微粒子を別々に分離する方法を説
明する。溶液65中に含まれているn種類の微粒子は、
それぞれに固有の粒子半径、質量、比容積、誘電率、導
電率を有している。すなわち、これら固有パラメータの
違いによって、それぞれの微粒子に働く遠心力Fcと誘
電泳動力Fdとは異なる値を示す。従って、二つの力が
つりあう位置(合力=0となる位置)も、各微粒子に固
有の値を示すことになり、分離が可能となる。また、す
べての微粒子がr3<r4の領域につりあいの位置を持つ
ことができない場合には、電界強度の実効値E、交流電
圧源の角周波数ω、交流電界の電圧印加時間、回転体6
7の角速度ωcの少なくともいずれかひとつを変化させ
ることによって、つりあいの位置を持てることを(数
5)(数6)は示している。
Next, a method of separating the fine particles separately when the solution 65 contains plural kinds of fine particles will be described. The n kinds of fine particles contained in the solution 65 are
Each has its own particle radius, mass, specific volume, dielectric constant, and conductivity. That is, the centrifugal force F c and the dielectrophoretic force F d acting on the respective particles show different values due to the difference in these intrinsic parameters. Therefore, the position where the two forces balance with each other (the position where the resultant force = 0) also shows a value unique to each fine particle, and separation is possible. Further, when all the fine particles cannot have a balanced position in the region of r 3 <r 4 , the effective value E of the electric field strength, the angular frequency ω of the AC voltage source, the voltage application time of the AC electric field, the rotating body 6
(Equation 5) and (Equation 6) show that the equilibrium position can be obtained by changing at least one of the angular velocities ω c of 7.

【0067】以上、正の誘電泳動が働く場合について説
明を行ったが、微粒子の種類によっては負の誘電泳動が
働くケースもあり、この場合について図を用いて以下説
明する。
Although the case where the positive dielectrophoresis works has been described above, there is a case where the negative dielectrophoresis works depending on the type of the fine particles. This case will be described below with reference to the drawings.

【0068】図15は、遠心力と誘電泳動力とを用いて
微粒子の分離を行う一形態を示す模式図である。筐体7
1には、扇形の溶液チャンバー74が形成されており、
内部には微粒子Gを含む溶液75が満たされている。溶
液チャンバー74の扇の幅の広がった側の端部には第一
の電極72が、狭まった側の端部には第二の電極73が
設けられており、これら電極はそれぞれ図示していない
交流電圧源に接続されている。第一の電極72と第二の
電極73の間の電界強度は、第一の電極72に近いほど
弱くなる。さらに筐体71は、回転体76に設置されて
おり、角速度ω cで回転するものである。
FIG. 15 shows that the centrifugal force and the dielectrophoretic force are used.
It is a schematic diagram which shows one form which isolate | separates a fine particle. Case 7
1, a fan-shaped solution chamber 74 is formed,
A solution 75 containing the fine particles G is filled inside. Melting
At the end of the liquid chamber 74 on the side where the width of the fan widens,
Electrode 72 has a second electrode 73 at the narrowed end.
Are provided and these electrodes are not shown
It is connected to an AC voltage source. The first electrode 72 and the second
The electric field strength between the electrodes 73 becomes closer to the first electrode 72.
become weak. Further, the housing 71 is installed on the rotating body 76.
Cage, angular velocity ω cIt rotates with.

【0069】このとき溶液75に含まれている微粒子G
に働く遠心力Fcと位置rとの関係は、図16のように
示される。力の方向は+r方向である。また、微粒子G
に働く誘電泳動力Fdは、電界強度の弱い方向、すなわ
ち−r方向に働き、その大きさはrの増加に伴い単純増
加することになる。位置rと誘電泳動力Fdとの関係
も、図16に示す。
At this time, the fine particles G contained in the solution 75
The relationship between the centrifugal force F c acting on the and the position r is shown in FIG. The direction of force is the + r direction. Also, the fine particles G
The dielectrophoretic force F d that acts on the element acts in the direction in which the electric field strength is weak, that is, in the −r direction, and its magnitude simply increases as r increases. The relationship between the position r and the dielectrophoretic force F d is also shown in FIG.

【0070】図17に、位置rとこれらの合力Fとの関
係を示すグラフを示す。r=rgで示される位置は、合
力F=0となる位置であり、ここに位置する微粒子Gは
ここに留まることを表している。一方、r<rgの領域
では、微粒子Gには+r方向に力が働き、rg<rの領
域では、微粒子Gには−r方向に力が働くので、電極に
挟まれた領域に存在する微粒子Gはすべて、位置rg
集めることができる。
FIG. 17 shows a graph showing the relationship between the position r and the resultant force F thereof. The position indicated by r = r g is a position where the resultant force F = 0, and the fine particles G located here are shown to stay here. On the other hand, in the region of r <r g , the force acts on the fine particles G in the + r direction, and in the region of r g <r, the force acts in the −r direction on the fine particles G, and therefore exists in the region sandwiched by the electrodes. All the fine particles G to be collected can be collected at the position r g .

【0071】なお、遠心力Fcと誘電泳動力Fdの合力F
が、溶液チャンバー内にF=0となるつりあいの位置を
持ち、つりあいの位置からはずれた場所ではつりあいの
位置に向かう合力Fが働くように電極形状や電極配置を
構成すれば、溶液に含まれる微粒子をつりあいの位置に
分離することが可能となるのは言うまでもない。
The total force F of the centrifugal force F c and the dielectrophoretic force F d
However, if the electrode shape and the electrode arrangement are configured so that the equilibrium position where F = 0 is set in the solution chamber and the resultant force F toward the equilibrium position works at a position deviated from the equilibrium position, it is included in the solution. It goes without saying that it becomes possible to separate the fine particles into a balanced position.

【0072】さらに、本実施の形態では簡略化のために
微粒子を球体として扱ったが、実際には複雑な形状を有
するタンパク質や高分子の場合でも、数式が複雑になる
ものの原理的には同様な効果が得られることは言うまで
もない。
Further, in the present embodiment, the fine particles are treated as spheres for simplification, but in practice, even in the case of proteins and polymers having complicated shapes, the formula is complicated but the principle is the same. It goes without saying that such an effect can be obtained.

【0073】(実施の形態4)本実施の形態では、これ
までに説明した微粒子分離方式を用いて微粒子を定量定
性分析するためのセンサに関して具体的に述べる。
(Embodiment 4) In this embodiment, a sensor for quantitatively and qualitatively analyzing fine particles by using the fine particle separation method described above will be specifically described.

【0074】図18は、流れの力と誘電泳動力とを利用
する微粒子分離方式と、表面プラズモン共鳴現象とを用
いて微粒子の定性定量分析を行うセンサの一形態を示す
模式図であり、微粒子の分離に関しては図1に示した方
式を用いているものである。筐体101には厚さが一定
で、上から見ると図1に示したような扇形の溶液チャン
バー107が形成されており、流路106の一部を構成
している。扇の幅の狭まった側の端部には溶液流入口1
02が、扇の幅の広がった側の端部には溶液流出口10
3が設けられている。また、溶液流入口102と溶液流
出口103の間には第一の電極104と第二の電極10
5がそれぞれ設けられており、これら電極はそれぞれ図
示していない交流電圧源に接続されている。第一の電極
104と第二の電極105の間の電界強度は、第一の電
極104に近いほど電気力線が密となるため、図中では
左へ行くほど電界強度が強くなる。溶液チャンバー10
7を含む流路106は微粒子を含む溶液108で満たさ
れており、溶液108は図示していないポンプによって
流路106内を一定流量で循環している。このとき、微
粒子に働く流れの力Ffと誘電泳動力Fdとは図2のよう
に示され、これらの合力は図3のように示される。すな
わち、溶液108に含まれる微粒子はすべて、合力F=
0となるつりあいの位置に集められる。
FIG. 18 is a schematic diagram showing an embodiment of a sensor for performing qualitative and quantitative analysis of fine particles by using a fine particle separation method utilizing flow force and dielectrophoretic force and the surface plasmon resonance phenomenon. The method shown in FIG. 1 is used for the separation. The housing 101 has a constant thickness, and when viewed from above, a fan-shaped solution chamber 107 as shown in FIG. 1 is formed, and constitutes a part of the flow path 106. The solution inlet 1 is located at the end of the fan with the narrower width.
02 has a solution outlet 10 at the end of the fan on the side where the width of the fan is widened.
3 is provided. Further, the first electrode 104 and the second electrode 10 are provided between the solution inlet 102 and the solution outlet 103.
5 are provided, and these electrodes are connected to an AC voltage source (not shown). The electric field strength between the first electrode 104 and the second electrode 105 becomes closer to the first electrode 104, and the electric force line becomes denser. Therefore, the electric field strength becomes stronger toward the left in the figure. Solution chamber 10
The flow path 106 containing 7 is filled with a solution 108 containing fine particles, and the solution 108 is circulated in the flow path 106 at a constant flow rate by a pump (not shown). At this time, the flow force F f and the dielectrophoretic force F d acting on the particles are shown in FIG. 2, and the resultant force is shown in FIG. That is, all the fine particles contained in the solution 108 have a resultant force F =
Collected in a balanced position of 0.

【0075】一方、光源109から発せられた入射光1
12は、第一のレンズ110、第二のレンズ111、プ
リズム113、筐体101の底面を構成するガラス11
5を経由して金属薄膜114に照射される。光源は単一
波長を発振するレーザダイオードであり、第一のレンズ
110、第二のレンズ111は、入射光112の焦点が
金属薄膜114に結ぶよう調整されている。すなわち入
射光112は、レンズの大きさ、焦点距離、プリズムの
屈折率等で規定される入射角範囲を有することになる。
また、金属薄膜114は、Au薄膜が好適に用いられる
が、Ag、Cu、Al、Pt等、他の金属であっても表
面プラズモン共鳴現象を起こすものであれば差し支えは
ない。さらに、金属薄膜114表面には厚さ100nm
以下の非金属物質により被覆されていることが好適であ
るが、被覆されていなくてもかまわない。
On the other hand, the incident light 1 emitted from the light source 109
Reference numeral 12 denotes the first lens 110, the second lens 111, the prism 113, and the glass 11 forming the bottom surface of the housing 101.
Then, the metal thin film 114 is irradiated with the light through the line 5. The light source is a laser diode that oscillates a single wavelength, and the first lens 110 and the second lens 111 are adjusted so that the incident light 112 is focused on the metal thin film 114. That is, the incident light 112 has an incident angle range defined by the size of the lens, the focal length, the refractive index of the prism, and the like.
The metal thin film 114 is preferably an Au thin film, but other metals such as Ag, Cu, Al, and Pt may be used as long as they cause the surface plasmon resonance phenomenon. Further, the surface of the metal thin film 114 has a thickness of 100 nm.
It is preferably coated with the following non-metal substances, but it does not have to be coated.

【0076】金属薄膜114で反射された反射光116
は、再度ガラス115、プリズム113を透過し光検出
器117へと照射され、ここで入射角毎の光量検出が行
われる。光検出器117は、CCDやアレイセンサによ
り構成されると好適である。なお、プリズム113とガ
ラス115とは図示していないマッチングオイルにて密
着している。図18では、筐体101の底面全体がガラ
ス製であるが、筐体101全体がガラス製であっても、
入射光112と反射光116を透過させる部分のみがガ
ラス製であってもかまわない。
Reflected light 116 reflected by the metal thin film 114
Is again transmitted through the glass 115 and the prism 113, and is irradiated on the photodetector 117, where the light amount is detected for each incident angle. The photodetector 117 is preferably composed of a CCD or array sensor. The prism 113 and the glass 115 are in close contact with each other with a matching oil (not shown). In FIG. 18, the entire bottom surface of the housing 101 is made of glass, but even if the entire housing 101 is made of glass,
Only the portion that transmits the incident light 112 and the reflected light 116 may be made of glass.

【0077】以上のような構成を用いて微粒子の定性定
量分析を行う手法について説明する。溶液108中の任
意の種類の微粒子が金属薄膜114上に集まるよう、電
界強度の実効値E、交流電圧源の角周波数ω、交流電界
の電圧印加時間、流路106内を流れる流量の少なくと
もいずれかひとつを制御する。微粒子はその物質固有の
パラメータを有しているので、微粒子が金属薄膜114
上に集まったときの電界強度の実効値Eや交流電圧源の
角周波数ωから、その微粒子の種類を同定することがで
きる。
A method for performing qualitative and quantitative analysis of fine particles using the above-mentioned structure will be described. At least one of the effective value E of the electric field strength, the angular frequency ω of the AC voltage source, the voltage application time of the AC electric field, and the flow rate flowing in the flow path 106 so that any kind of fine particles in the solution 108 gather on the metal thin film 114. Control one or the other. Since the fine particles have a parameter peculiar to the substance, the fine particles are the metal thin film 114.
The type of the fine particles can be identified from the effective value E of the electric field strength when gathered above and the angular frequency ω of the AC voltage source.

【0078】さらに、金属薄膜114上に微粒子が集め
られた状態で表面プラズモン共鳴現象を利用して微粒子
の屈折率、すなわち濃度を定量的に求めることができ
る。金属薄膜114からの反射光116の光量が最も減
少する角度、すなわち表面プラズモン共鳴が発生する条
件を満たす入射光112の角度を測定する。この角度測
定を微粒子が分離されていない状態でも行い、未分離状
態と分離状態の角度差から微粒子の濃度を求める。
Further, the refractive index of the fine particles, that is, the concentration can be quantitatively obtained by utilizing the surface plasmon resonance phenomenon in a state where the fine particles are collected on the metal thin film 114. The angle at which the light amount of the reflected light 116 from the metal thin film 114 is most reduced, that is, the angle of the incident light 112 that satisfies the condition that the surface plasmon resonance occurs is measured. This angle measurement is performed even in the state where the fine particles are not separated, and the concentration of the fine particles is obtained from the angle difference between the unseparated state and the separated state.

【0079】なお、当然のことではあるが、濃度が未知
の溶液の濃度を決定するにあたっては、既知の濃度を持
つ参照溶液を測定し、それとの比較によって行うものと
する。
As a matter of course, in determining the concentration of a solution having an unknown concentration, a reference solution having a known concentration is measured and compared with it.

【0080】また、光源109、光検出器117、交流
電圧源、ポンプはそれぞれ、図示していない制御演算装
置と接続されており、予めプログラムされた手順で、も
しくは作業者が状況に応じて、機器制御、計測、検出、
演算、記録等を行うことができる。
Further, the light source 109, the photodetector 117, the AC voltage source, and the pump are each connected to a control arithmetic unit (not shown), and the procedure is programmed in advance or the operator can change the situation. Equipment control, measurement, detection,
Calculations, recordings, etc. can be performed.

【0081】さらに、本実施の形態では微粒子を分離す
るために、流れの力と誘電泳動力とを用いたが、流れの
力の替わりに遠心力を用いても一向にかまわず、遠心力
を用いる場合には微粒子を金属薄膜114上に集めるた
めに制御するパラメータが、流路内を流れる流量ではな
く回転体の角速度に替わるだけであって、遠心力と誘電
泳動力を用いる手法でも同様の効果が得られることは言
うまでもない。
Further, in this embodiment, the flow force and the dielectrophoretic force are used to separate the fine particles, but the centrifugal force may be used instead of the flow force, and the centrifugal force may be used. In this case, the parameter controlled to collect the fine particles on the metal thin film 114 is not the flow rate flowing in the flow path but the angular velocity of the rotating body, and the same effect can be obtained by the method using centrifugal force and dielectrophoretic force. It goes without saying that you can get

【0082】(実施の形態5)本実施の形態では(実施
の形態4)同様、これまでに説明した微粒子分離方式を
用いて微粒子を定量定性分析するためのセンサに関して
具体的に述べる。
(Fifth Embodiment) In the present embodiment, similarly to (Fourth Embodiment), a sensor for quantitatively and qualitatively analyzing fine particles using the fine particle separation method described above will be specifically described.

【0083】図19は、流れの力と誘電泳動力とを利用
する微粒子分離方式と、光吸収現象とを用いて微粒子の
定性定量分析を行うセンサの一形態を示す模式図であ
り、微粒子の分離に関しては図1に示した方式を用いて
いるものである。筐体121には厚さが一定で、上から
見ると図1に示したような扇形の溶液チャンバー127
が形成されており、流路126の一部を構成している。
扇の幅の狭まった側の端部には溶液流入口122が、扇
の幅の広がった側の端部には溶液流出口123が設けら
れている。また、溶液流入口122と溶液流出口123
の間には第一の電極124と第二の電極125がそれぞ
れ設けられており、これら電極はそれぞれ図示していな
い交流電圧源に接続されている。第一の電極124と第
二の電極125の間の電界強度は、第一の電極124に
近いほど電気力線が密となるため、図中では左へ行くほ
ど電界強度が強くなる。溶液チャンバー127を含む流
路126は微粒子を含む溶液128で満たされており、
溶液128は図示していないポンプによって流路126
内を一定流量で循環している。このとき、微粒子に働く
流れの力Ffと誘電泳動力Fdとは図2のように示され、
これらの合力は図3のように示される。すなわち、溶液
128に含まれる微粒子はすべて、合力F=0となるつ
りあいの位置に集められる。
FIG. 19 is a schematic view showing an embodiment of a sensor for performing a qualitative and quantitative analysis of fine particles by using a fine particle separation method utilizing flow force and dielectrophoretic force and a light absorption phenomenon. Regarding the separation, the method shown in FIG. 1 is used. The housing 121 has a constant thickness, and when viewed from above, the fan-shaped solution chamber 127 as shown in FIG.
Is formed and constitutes a part of the flow path 126.
A solution inlet 122 is provided at the end on the side where the width of the fan is narrowed, and a solution outlet 123 is provided at the end on the side where the width of the fan is widened. Further, the solution inlet 122 and the solution outlet 123
A first electrode 124 and a second electrode 125 are provided between the electrodes, and these electrodes are connected to an AC voltage source (not shown). Regarding the electric field strength between the first electrode 124 and the second electrode 125, the electric field lines become closer to the first electrode 124, so that the electric field strength becomes stronger toward the left in the figure. The flow channel 126 including the solution chamber 127 is filled with the solution 128 including fine particles,
The solution 128 is supplied to a channel 126 by a pump (not shown).
It circulates at a constant flow rate. At this time, the flow force F f acting on the particles and the dielectrophoretic force F d are shown in FIG.
These resultant forces are shown in FIG. That is, all the fine particles contained in the solution 128 are collected at the equilibrium position where the resultant force F = 0.

【0084】一方、光源129から発せられた検査光1
33は、第一のレンズ130、第二のレンズ131、第
三のレンズ132、筐体121の底面を構成するガラス
135を経由して溶液128中に照射される。光源12
9は単一波長を発振するレーザダイオードが好適であ
り、第一のレンズ130、第二のレンズ131、第三の
レンズ132は、検査光133のビーム幅が溶液128
中で一定であるよう調整されている。
On the other hand, the inspection light 1 emitted from the light source 129
33 is irradiated into the solution 128 via the first lens 130, the second lens 131, the third lens 132, and the glass 135 forming the bottom surface of the housing 121. Light source 12
9 is preferably a laser diode that oscillates a single wavelength, and the first lens 130, the second lens 131, and the third lens 132 have a beam width of the inspection light 133 of the solution 128.
It is adjusted to be constant in.

【0085】溶液128中を透過した検査光133は、
ガラス136を透過し光検出器134へと照射され、こ
こで透過光量検出が行われる。光検出器134は、フォ
トダイオードやCCDにより構成されると好適である。
図19では、筐体121の底面と上面全体がガラス製で
あるが、筐体121全体がガラス製であっても、検査光
133を透過させる部分のみがガラス製であってもかま
わない。
The inspection light 133 transmitted through the solution 128 is
The light is transmitted through the glass 136 and irradiated onto the photodetector 134, where the amount of transmitted light is detected. The photodetector 134 is preferably composed of a photodiode or CCD.
In FIG. 19, the bottom surface and the entire top surface of the housing 121 are made of glass, but the entire housing 121 may be made of glass, or only the portion that transmits the inspection light 133 may be made of glass.

【0086】以上のような構成を用いて微粒子の定性定
量分析を行う手法について説明する。溶液128中の任
意の種類の微粒子が検査光133の光路上に集まるよ
う、電界強度の実効値E、交流電圧源の角周波数ω、交
流電界の電圧印加時間、流路126内を流れる流量の少
なくともいずれかひとつを制御する。微粒子はその物質
固有のパラメータを有しているので、微粒子が検査光1
33の光路上に集まったときの電界強度の実効値Eや交
流電圧源の角周波数ωから、その微粒子の種類を同定す
ることができる。
A method for performing qualitative and quantitative analysis of fine particles using the above-mentioned structure will be described. The effective value E of the electric field strength, the angular frequency ω of the AC voltage source, the voltage application time of the AC electric field, and the flow rate flowing in the flow path 126 are set so that any kind of fine particles in the solution 128 may be collected on the optical path of the inspection light 133. Control at least one. Since the fine particles have parameters specific to the substance, the fine particles have the inspection light 1
The type of the fine particles can be identified from the effective value E of the electric field strength when gathered on the optical path 33 and the angular frequency ω of the AC voltage source.

【0087】さらに、検査光133の光路上に微粒子が
集められた状態で光吸収現象を利用して微粒子の濃度を
定量的に求めることができる。この濃度測定を微粒子が
分離されていない状態でも行い、未分離状態と分離状態
の光吸収の差から微粒子の濃度を求める。
Further, the concentration of the fine particles can be quantitatively obtained by utilizing the light absorption phenomenon while the fine particles are collected on the optical path of the inspection light 133. This concentration measurement is performed even when the fine particles are not separated, and the concentration of the fine particles is obtained from the difference in light absorption between the unseparated state and the separated state.

【0088】また、光源129、光検出器134、交流
電圧源、ポンプはそれぞれ、図示していない制御演算装
置と接続されており、予めプログラムされた手順で、も
しくは作業者が状況に応じて、機器制御、計測、検出、
演算、記録等を行うことができる。
Further, the light source 129, the photodetector 134, the AC voltage source, and the pump are each connected to a control arithmetic unit (not shown), and the procedure may be programmed in advance or the operator may change the situation. Equipment control, measurement, detection,
Calculations, recordings, etc. can be performed.

【0089】さらに、本実施の形態では微粒子を分離す
るために、流れの力と誘電泳動力とを用いたが、流れの
力の替わりに遠心力を用いても一向にかまわず、遠心力
を用いる場合には微粒子を検査光133の光路上に集め
るために制御するパラメータが、流路内を流れる流量で
はなく回転体の角速度に替わるだけであって、遠心力と
誘電泳動力を用いる手法でも同様の効果が得られること
は言うまでもない。
Further, in the present embodiment, the flow force and the dielectrophoretic force are used to separate the fine particles, but the centrifugal force may be used instead of the flow force, and the centrifugal force may be used. In this case, the parameter to be controlled in order to collect the fine particles on the optical path of the inspection light 133 is only the angular velocity of the rotating body instead of the flow rate flowing in the flow path, and the method using centrifugal force and dielectrophoretic force is the same. It goes without saying that the effect of can be obtained.

【0090】[0090]

【発明の効果】以上のように、本発明によれば、簡便・
高速で、高精度に微粒子を分離する方法および装置、な
らびに定量定性分析を行うセンサを実現することができ
る。
As described above, according to the present invention,
It is possible to realize a method and an apparatus for separating fine particles at high speed with high accuracy, and a sensor for performing quantitative qualitative analysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による微粒子分離手法を
表す模式図
FIG. 1 is a schematic diagram showing a particle separation method according to an embodiment of the present invention.

【図2】本発明の一実施の形態による流れの力及び誘電
泳動力の位置依存性を示す特性図
FIG. 2 is a characteristic diagram showing position dependence of flow force and dielectrophoretic force according to one embodiment of the present invention.

【図3】本発明の一実施の形態による合力の位置依存性
を示す特性図
FIG. 3 is a characteristic diagram showing position dependency of resultant force according to an embodiment of the present invention.

【図4】本発明の一実施の形態による微粒子分離手法を
表す模式図
FIG. 4 is a schematic diagram showing a particle separation method according to an embodiment of the present invention.

【図5】本発明の一実施の形態による流れの力及び誘電
泳動力の位置依存性を示す特性図
FIG. 5 is a characteristic diagram showing position dependence of flow force and dielectrophoretic force according to one embodiment of the present invention.

【図6】本発明の一実施の形態による合力の位置依存性
を示す特性図
FIG. 6 is a characteristic diagram showing position dependency of resultant force according to an embodiment of the present invention.

【図7】本発明の一実施の形態による微粒子分離手法を
表す模式図
FIG. 7 is a schematic diagram showing a particle separation method according to an embodiment of the present invention.

【図8】本発明の一実施の形態による微粒子分離手法を
表す模式図
FIG. 8 is a schematic diagram showing a particle separation method according to an embodiment of the present invention.

【図9】本発明の一実施の形態による微粒子分離手法を
表す模式図
FIG. 9 is a schematic diagram showing a particle separation method according to an embodiment of the present invention.

【図10】本発明の一実施の形態による流れの力及び誘
電泳動力の位置依存性を示す特性図
FIG. 10 is a characteristic diagram showing position dependence of flow force and dielectrophoretic force according to an embodiment of the present invention.

【図11】本発明の一実施の形態による合力の位置依存
性を示す特性図
FIG. 11 is a characteristic diagram showing position dependency of resultant force according to an embodiment of the present invention.

【図12】本発明の一実施の形態による微粒子分離手法
を表す模式図
FIG. 12 is a schematic diagram showing a particle separation method according to an embodiment of the present invention.

【図13】本発明の一実施の形態による遠心力及び誘電
泳動力の位置依存性を示す特性図
FIG. 13 is a characteristic diagram showing position dependence of centrifugal force and dielectrophoretic force according to an embodiment of the present invention.

【図14】本発明の一実施の形態による合力の位置依存
性を示す特性図
FIG. 14 is a characteristic diagram showing position dependency of resultant force according to an embodiment of the present invention.

【図15】本発明の一実施の形態による微粒子分離手法
を表す模式図
FIG. 15 is a schematic diagram showing a particle separation method according to an embodiment of the present invention.

【図16】本発明の一実施の形態による遠心力及び誘電
泳動力の位置依存性を示す特性図
FIG. 16 is a characteristic diagram showing position dependence of centrifugal force and dielectrophoretic force according to an embodiment of the present invention.

【図17】本発明の一実施の形態による合力の位置依存
性を示す特性図
FIG. 17 is a characteristic diagram showing the position dependence of the resultant force according to the embodiment of the present invention.

【図18】本発明の一実施の形態による定性定量分析を
行うセンサを表す模式図
FIG. 18 is a schematic diagram showing a sensor for performing qualitative and quantitative analysis according to an embodiment of the present invention.

【図19】本発明の一実施の形態による定性定量分析を
行うセンサを表す模式図
FIG. 19 is a schematic diagram showing a sensor for performing qualitative quantitative analysis according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、21、31、41、61、71、101、121
筐体 2、10、22、32、42、102、122 溶液流
入口 3、11、23、33、43、103、123 溶液流
出口 4、24、34、44、62、72、104、124
第一の電極 5、25、35、45、63、73、105、125
第二の電極 6、26、36、46、106、126 流路 7 ポンプ 8、27、37、47、64、74、107、127
溶液チャンバー 9、12、28、38、48、65、75、108、1
28 溶液 49、66 電極設置空間 67、76 回転体 109、129 光源 110、130 第一のレンズ 111、131 第二のレンズ 112 入射光 113 プリズム 114 金属薄膜 115、135、136 ガラス 116 反射光 117、134 光検出器 132 第三のレンズ 133 検査光
1, 21, 31, 41, 61, 71, 101, 121
Cases 2, 10, 22, 32, 42, 102, 122 Solution inlets 3, 11, 23, 33, 43, 103, 123 Solution outlets 4, 24, 34, 44, 62, 72, 104, 124
First electrodes 5, 25, 35, 45, 63, 73, 105, 125
Second electrode 6, 26, 36, 46, 106, 126 Channel 7 Pump 8, 27, 37, 47, 64, 74, 107, 127
Solution chambers 9, 12, 28, 38, 48, 65, 75, 108, 1
28 solution 49, 66 electrode installation space 67, 76 rotor 109, 129 light source 110, 130 first lens 111, 131 second lens 112 incident light 113 prism 114 metal thin film 115, 135, 136 glass 116 reflected light 117, 134 Photodetector 132 Third Lens 133 Inspection Light

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 21/27 G01N 21/59 Z 21/59 27/26 301C 331K 331Z Fターム(参考) 2G059 AA01 AA02 BB04 BB06 BB09 CC19 EE01 EE02 GG01 JJ11 JJ12 KK01 KK04 MM01 MM10 4D054 FB01 FB20 4D057 AA00 AB01 AC06 AD05 AE02 BC05 BC11 CA01 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 21/27 G01N 21/59 Z 21/59 27/26 301C 331K 331Z F term (reference) 2G059 AA01 AA02 BB04 BB06 BB09 CC19 EE01 EE02 GG01 JJ11 JJ12 KK01 KK04 MM01 MM10 4D054 FB01 FB20 4D057 AA00 AB01 AC06 AD05 AE02 BC05 BC11 CA01

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 微粒子を含む溶液が流れている中で、前
記流れの力と反対方向に微粒子を誘電泳動させ、前記流
れの力と誘電泳動力とがつりあった位置に前記微粒子を
分離させる微粒子分離方法。
1. A fine particle that dielectrophores in the direction opposite to the force of the flow in a solution containing the fine particle and separates the fine particle at a position where the force of the flow and the dielectrophoretic force are balanced. Separation method.
【請求項2】 誘電泳動を発生させる際に印加する交流
電界の周波数、交流電界の電圧値、交流電界の電圧印加
時間、溶液の流量の少なくともいずれかひとつを制御す
ることで、微粒子に働く流れの力と誘電泳動力とがつり
あう位置を制御する請求項1記載の微粒子分離方法。
2. The flow acting on the fine particles by controlling at least one of the frequency of the AC electric field applied when dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the flow rate of the solution. The method for separating fine particles according to claim 1, wherein a position where the force of the magnetic field and the dielectrophoretic force balance each other is controlled.
【請求項3】 微粒子を含む溶液に遠心力を与え、前記
遠心力と反対方向に微粒子を誘電泳動させ、前記遠心力
と誘電泳動力とがつりあった位置に前記微粒子を分離さ
せる微粒子分離方法。
3. A fine particle separation method in which a centrifugal force is applied to a solution containing fine particles, the fine particles are subjected to dielectrophoresis in the direction opposite to the centrifugal force, and the fine particles are separated at a position where the centrifugal force and the dielectrophoretic force are balanced.
【請求項4】 誘電泳動を発生させる際に印加する交流
電界の周波数、交流電界の電圧値、交流電界の電圧印加
時間、遠心力を発生させる角速度の少なくともいずれか
ひとつを制御することで、微粒子に働く遠心力と誘電泳
動力とがつりあう位置を制御する請求項3記載の微粒子
分離方法。
4. The fine particles are controlled by controlling at least one of a frequency of an AC electric field applied when dielectrophoresis is generated, a voltage value of the AC electric field, a voltage application time of the AC electric field, and an angular velocity for generating a centrifugal force. The method for separating fine particles according to claim 3, wherein a position where the centrifugal force and the dielectrophoretic force acting on each other are balanced is controlled.
【請求項5】 誘電泳動力が、電界強度の強い方向に働
く正の誘電泳動力である請求項1から請求項4のいずれ
か記載の微粒子分離方法。
5. The fine particle separation method according to claim 1, wherein the dielectrophoretic force is a positive dielectrophoretic force that acts in a direction in which the electric field strength is high.
【請求項6】 誘電泳動力が、電界強度の弱い方向に働
く負の誘電泳動力である請求項1から請求項4のいずれ
か記載の微粒子分離方法。
6. The method for separating fine particles according to claim 1, wherein the dielectrophoretic force is a negative dielectrophoretic force acting in a direction in which the electric field strength is weak.
【請求項7】 第一の電極と第二の電極からなる電極対
と、これら電極間に不均一な交流電界を発生せしめる電
圧源と、微粒子を含む溶液を流すためのポンプと流路と
を具備し、前記微粒子に働く流れの力と誘電泳動力とが
つりあった位置に前記微粒子を分離させる微粒子分離装
置。
7. An electrode pair consisting of a first electrode and a second electrode, a voltage source for generating a non-uniform AC electric field between these electrodes, a pump and a channel for flowing a solution containing fine particles. A fine particle separation device comprising the fine particles and separating the fine particles at a position where the flow force acting on the fine particles and the dielectrophoretic force are balanced.
【請求項8】 誘電泳動を発生させる際に印加する交流
電界の周波数、交流電界の電圧値、交流電界の電圧印加
時間、溶液の流量の少なくともいずれかひとつを制御す
ることで、微粒子に働く流れの力と誘電泳動力とがつり
あう位置を制御する請求項7記載の微粒子分離装置。
8. The flow acting on the fine particles by controlling at least one of the frequency of the AC electric field applied when dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the flow rate of the solution. 8. The particle separation device according to claim 7, which controls the position where the force of the magnetic field and the force of dielectrophoresis balance each other.
【請求項9】 第一の電極と第二の電極からなる電極対
と、これら電極間に不均一な交流電界を発生せしめる電
圧源と、微粒子を含む溶液を収容する容器とを具備し、
前記容器は前記微粒子に遠心力を与えるための回転体に
保持されており、前記微粒子に働く遠心力と誘電泳動力
とがつりあった位置に前記微粒子を分離させる微粒子分
離装置。
9. An electrode pair comprising a first electrode and a second electrode, a voltage source for generating a non-uniform AC electric field between these electrodes, and a container for containing a solution containing fine particles,
A fine particle separation device in which the container is held by a rotating body for applying a centrifugal force to the fine particles, and separates the fine particles at a position where the centrifugal force acting on the fine particles and the dielectrophoretic force are balanced.
【請求項10】 誘電泳動を発生させる際に印加する交
流電界の周波数、交流電界の電圧値、交流電界の電圧印
加時間、回転体の角速度の少なくともいずれかひとつを
制御することで、微粒子に働く遠心力と誘電泳動力とが
つりあう位置を制御する請求項9記載の微粒子分離装
置。
10. Fine particles are controlled by controlling at least one of the frequency of an AC electric field applied when dielectrophoresis is generated, the voltage value of the AC electric field, the voltage application time of the AC electric field, and the angular velocity of a rotating body. The fine particle separation device according to claim 9, which controls a position where the centrifugal force and the dielectrophoretic force balance each other.
【請求項11】 誘電泳動力が、電界強度の強い方向に
働く正の誘電泳動力である請求項7から請求項11のい
ずれか記載の微粒子分離装置。
11. The fine particle separation device according to claim 7, wherein the dielectrophoretic force is a positive dielectrophoretic force that acts in a direction in which the electric field strength is high.
【請求項12】 誘電泳動力が、電界強度の弱い方向に
働く負の誘電泳動力である請求項7から請求項11のい
ずれか記載の微粒子分離装置。
12. The fine particle separation device according to claim 7, wherein the dielectrophoretic force is a negative dielectrophoretic force acting in a direction in which the electric field strength is weak.
【請求項13】 第一の電極と第二の電極からなる電極
対と、これら電極間に不均一な交流電界を発生せしめる
電圧源と、微粒子を含む溶液を流すためのポンプと流路
と、前記微粒子の濃度を測定する濃度測定装置とを具備
し、前記微粒子に働く流れの力と誘電泳動力とがつりあ
った位置に前記微粒子を分離させ、分離した状態の微粒
子濃度を前記濃度測定装置により測定するセンサ。
13. An electrode pair consisting of a first electrode and a second electrode, a voltage source for generating a non-uniform AC electric field between these electrodes, a pump and a channel for flowing a solution containing fine particles, A concentration measuring device for measuring the concentration of the fine particles is provided, the fine particles are separated at a position where the flow force acting on the fine particles and the dielectrophoretic force are balanced, and the fine particle concentration in the separated state is measured by the concentration measuring device. The sensor to measure.
【請求項14】 誘電泳動を発生させる際に印加する交
流電界の周波数、交流電界の電圧値、交流電界の電圧印
加時間、溶液の流量の少なくともいずれかひとつを制御
することで、微粒子が濃度測定部位に位置するよう制御
する請求項13記載のセンサ。
14. The concentration of fine particles is measured by controlling at least one of a frequency of an AC electric field applied when dielectrophoresis is generated, a voltage value of the AC electric field, a voltage application time of the AC electric field, and a flow rate of a solution. The sensor according to claim 13, which is controlled so as to be located at the site.
【請求項15】 第一の電極と第二の電極からなる電極
対と、これら電極間に不均一な交流電界を発生せしめる
電圧源と、微粒子を含む溶液を収容する容器と、前記微
粒子の濃度を測定する濃度測定装置とを具備し、前記容
器は前記微粒子に遠心力を与えるための回転体に保持さ
れており、前記微粒子に働く遠心力と誘電泳動力とがつ
りあった位置に前記微粒子を分離させ、分離した状態の
微粒子の濃度を前記濃度測定装置により測定するセン
サ。
15. An electrode pair consisting of a first electrode and a second electrode, a voltage source for generating a non-uniform AC electric field between these electrodes, a container containing a solution containing fine particles, and a concentration of the fine particles. And a concentration measuring device for measuring, the container is held by a rotating body for imparting a centrifugal force to the fine particles, the centrifugal force acting on the fine particles and the dielectrophoretic force to balance the fine particles at a position. A sensor for separating and measuring the concentration of fine particles in the separated state by the concentration measuring device.
【請求項16】 誘電泳動を発生させる際に印加する交
流電界の周波数、交流電界の電圧値、交流電界の電圧印
加時間、回転体の角速度の少なくともいずれかひとつを
制御することで、微粒子が濃度測定部位に位置するよう
制御する請求項15記載のセンサ。
16. The concentration of fine particles is controlled by controlling at least one of a frequency of an AC electric field applied when dielectrophoresis is generated, a voltage value of the AC electric field, a voltage application time of the AC electric field, and an angular velocity of a rotating body. The sensor according to claim 15, which is controlled so as to be located at a measurement site.
【請求項17】 誘電泳動力が、電界強度の強い方向に
働く正の誘電泳動力である請求項13から請求項16の
いずれか記載のセンサ。
17. The sensor according to claim 13, wherein the dielectrophoretic force is a positive dielectrophoretic force that acts in a direction in which the electric field strength is high.
【請求項18】 誘電泳動力が、電界強度の弱い方向に
働く負の誘電泳動力である請求項13から請求項16の
いずれか記載のセンサ。
18. The sensor according to claim 13, wherein the dielectrophoretic force is a negative dielectrophoretic force acting in a direction in which the electric field strength is weak.
【請求項19】 濃度測定装置が表面プラズモン共鳴現
象を利用したものである請求項13から請求項16のい
ずれか記載のセンサ。
19. The sensor according to claim 13, wherein the concentration measuring device uses a surface plasmon resonance phenomenon.
【請求項20】 濃度測定装置が光源と光検出器とを具
備し、光源から発せられた光が微粒子を含む溶液中を透
過し、光検出器により計測されることで微粒子による光
の吸光度を求め、この値から微粒子の濃度を求めるもの
である請求項13から請求項16のいずれか記載のセン
サ。
20. The concentration measuring device comprises a light source and a photodetector, wherein the light emitted from the light source is transmitted through a solution containing fine particles and is measured by the photodetector to measure the absorbance of light by the fine particles. The sensor according to any one of claims 13 to 16, wherein the sensor determines the concentration of fine particles from this value.
【請求項21】 光源から発せされる光が、レーザ光で
ある請求項20記載のセンサ。
21. The sensor according to claim 20, wherein the light emitted from the light source is laser light.
JP2001260749A 2001-08-30 2001-08-30 Fine particle separation method, fine particle separation device, and sensor Expired - Fee Related JP4779261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260749A JP4779261B2 (en) 2001-08-30 2001-08-30 Fine particle separation method, fine particle separation device, and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260749A JP4779261B2 (en) 2001-08-30 2001-08-30 Fine particle separation method, fine particle separation device, and sensor

Publications (2)

Publication Number Publication Date
JP2003066004A true JP2003066004A (en) 2003-03-05
JP4779261B2 JP4779261B2 (en) 2011-09-28

Family

ID=19087908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260749A Expired - Fee Related JP4779261B2 (en) 2001-08-30 2001-08-30 Fine particle separation method, fine particle separation device, and sensor

Country Status (1)

Country Link
JP (1) JP4779261B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064317A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Method of analyzing ligand in sample and apparatus for analyzing ligand in sample
JP2007526823A (en) * 2004-02-02 2007-09-20 ザ ユニバーシティ オブ ブリティッシュ コロンビア Skodaphoresis and method and apparatus for moving and concentrating particles
JP2008516215A (en) * 2004-10-04 2008-05-15 コミツサリア タ レネルジー アトミーク Device for electrophoretic separation of particles contained in a fluid
WO2009044902A1 (en) * 2007-10-05 2009-04-09 Kyushu Institute Of Technology Dielectrophoresis device and method
KR100895395B1 (en) 2007-12-28 2009-04-30 광주과학기술원 Cell Separator Using Centrifugal Force and Genetics
US8182666B2 (en) 2005-02-07 2012-05-22 The University Of British Columbia Apparatus and methods for concentrating and separating particles such as molecules
US8475641B2 (en) 2008-02-01 2013-07-02 The University Of British Columbia Methods and apparatus for particle introduction and recovery
US8518228B2 (en) 2011-05-20 2013-08-27 The University Of British Columbia Systems and methods for enhanced SCODA
US8529744B2 (en) 2004-02-02 2013-09-10 Boreal Genomics Corp. Enrichment of nucleic acid targets
US8877028B2 (en) 2009-04-21 2014-11-04 The University Of British Columbia System and methods for detection of particles
US9186685B2 (en) 2012-01-13 2015-11-17 The University Of British Columbia Multiple arm apparatus and methods for separation of particles
US9340835B2 (en) 2013-03-15 2016-05-17 Boreal Genomics Corp. Method for separating homoduplexed and heteroduplexed nucleic acids
US9512477B2 (en) 2012-05-04 2016-12-06 Boreal Genomics Inc. Biomarker anaylsis using scodaphoresis
US10337054B2 (en) 2004-02-02 2019-07-02 Quantum-Si Incorporated Enrichment of nucleic acid targets
CN110918139A (en) * 2018-09-20 2020-03-27 北京怡天佳瑞科技有限公司 Microfluidic chip, device containing the same, and method for concentrating samples
CN115825015A (en) * 2022-12-16 2023-03-21 浙江大学 A portable micro-nano oscillation imaging detection device and method based on SPR
US11898196B2 (en) 2015-05-20 2024-02-13 Quantum-Si Incorporated Method for isolating target nucleic acid using heteroduplex binding proteins
US12011716B2 (en) 2019-10-29 2024-06-18 Quantum-Si Incorporated Peristaltic pumping of fluids and associated methods, systems, and devices

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441972A (en) * 1983-04-08 1984-04-10 D.E.P. Systems, Inc. Apparatus for electrofusion of biological particles
US4726904A (en) * 1984-12-17 1988-02-23 Senetek P L C Apparatus and method for the analysis and separation of macroions
JPH07505717A (en) * 1992-04-16 1995-06-22 ビーティージー・インターナショナル・リミテッド Device for separating mixtures
JPH07318476A (en) * 1994-05-27 1995-12-08 Hitachi Ltd Particle analyzer
WO1997027933A1 (en) * 1996-01-31 1997-08-07 Board Of Regents, The University Of Texas System Fractionation using dielectrophoresis and field flow fractionation
JPH11299477A (en) * 1998-04-24 1999-11-02 Matsushita Electric Ind Co Ltd Microorganism counting device
WO2000000816A1 (en) * 1998-06-29 2000-01-06 Evotec Biosystems Ag Method and device for manipulating particles in microsystems
WO2000000293A1 (en) * 1998-06-26 2000-01-06 Evotec Biosystems Ag Electrode arrangement for generating functional field barriers in microsystems
JP3097932B2 (en) * 1991-11-05 2000-10-10 株式会社アドバンス Electrostatic chromatography equipment
WO2000069565A1 (en) * 1999-05-18 2000-11-23 Silicon Biosystems S.R.L. Method and apparatus for the manipulation of particles by means of dielectrophoresis
WO2001005514A1 (en) * 1999-07-20 2001-01-25 University Of Wales, Bangor Travelling wave dielectrophoretic apparatus and method
WO2001014870A1 (en) * 1999-08-23 2001-03-01 The Board Of Regents, The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
JP2001165906A (en) * 1999-09-30 2001-06-22 Wako Pure Chem Ind Ltd Method of separating substance using dielectric migration force

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441972A (en) * 1983-04-08 1984-04-10 D.E.P. Systems, Inc. Apparatus for electrofusion of biological particles
US4726904A (en) * 1984-12-17 1988-02-23 Senetek P L C Apparatus and method for the analysis and separation of macroions
JP3097932B2 (en) * 1991-11-05 2000-10-10 株式会社アドバンス Electrostatic chromatography equipment
JPH07505717A (en) * 1992-04-16 1995-06-22 ビーティージー・インターナショナル・リミテッド Device for separating mixtures
JPH07318476A (en) * 1994-05-27 1995-12-08 Hitachi Ltd Particle analyzer
WO1997027933A1 (en) * 1996-01-31 1997-08-07 Board Of Regents, The University Of Texas System Fractionation using dielectrophoresis and field flow fractionation
JPH11299477A (en) * 1998-04-24 1999-11-02 Matsushita Electric Ind Co Ltd Microorganism counting device
WO2000000293A1 (en) * 1998-06-26 2000-01-06 Evotec Biosystems Ag Electrode arrangement for generating functional field barriers in microsystems
WO2000000816A1 (en) * 1998-06-29 2000-01-06 Evotec Biosystems Ag Method and device for manipulating particles in microsystems
WO2000069565A1 (en) * 1999-05-18 2000-11-23 Silicon Biosystems S.R.L. Method and apparatus for the manipulation of particles by means of dielectrophoresis
WO2001005514A1 (en) * 1999-07-20 2001-01-25 University Of Wales, Bangor Travelling wave dielectrophoretic apparatus and method
WO2001014870A1 (en) * 1999-08-23 2001-03-01 The Board Of Regents, The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
JP2001165906A (en) * 1999-09-30 2001-06-22 Wako Pure Chem Ind Ltd Method of separating substance using dielectric migration force

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312069B2 (en) 2003-12-26 2007-12-25 Matsushita Electric Industrial Co., Ltd. Method of analyzing ligand in sample and apparatus for analyzing ligand in sample
WO2005064317A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Method of analyzing ligand in sample and apparatus for analyzing ligand in sample
US9011661B2 (en) 2004-02-02 2015-04-21 Boreal Genomics, Inc. Enrichment of nucleic acid targets
US10337054B2 (en) 2004-02-02 2019-07-02 Quantum-Si Incorporated Enrichment of nucleic acid targets
US10738351B2 (en) 2004-02-02 2020-08-11 Quantum-Si Incorporated Enrichment of nucleic acid targets
US10975421B2 (en) 2004-02-02 2021-04-13 Quantum-Si Incorporated Enrichment of nucleic acid targets
US8133371B2 (en) 2004-02-02 2012-03-13 The University Of British Columbia Scodaphoresis and methods and apparatus for moving and concentrating particles
US9534304B2 (en) 2004-02-02 2017-01-03 The University Of British Columbia Scodaphoresis and methods and apparatus for moving and concentrating particles
JP2007526823A (en) * 2004-02-02 2007-09-20 ザ ユニバーシティ オブ ブリティッシュ コロンビア Skodaphoresis and method and apparatus for moving and concentrating particles
US8480871B2 (en) 2004-02-02 2013-07-09 The University Of British Columbia Scodaphoresis and methods and apparatus for moving and concentrating particles
US11795497B2 (en) 2004-02-02 2023-10-24 Quantum-Si Incorporated Enrichment of nucleic acid targets
US8529744B2 (en) 2004-02-02 2013-09-10 Boreal Genomics Corp. Enrichment of nucleic acid targets
JP2008516215A (en) * 2004-10-04 2008-05-15 コミツサリア タ レネルジー アトミーク Device for electrophoretic separation of particles contained in a fluid
US8182666B2 (en) 2005-02-07 2012-05-22 The University Of British Columbia Apparatus and methods for concentrating and separating particles such as molecules
US8608929B2 (en) 2005-02-07 2013-12-17 The University Of British Columbia Apparatus and methods for concentrating and separating particles such as molecules
JP5120968B2 (en) * 2007-10-05 2013-01-16 国立大学法人九州工業大学 Dielectrophoresis apparatus and method
US8864972B2 (en) 2007-10-05 2014-10-21 Kyushu Institute Of Technology Dielectrophoresis apparatus and method
WO2009044902A1 (en) * 2007-10-05 2009-04-09 Kyushu Institute Of Technology Dielectrophoresis device and method
US8187443B2 (en) 2007-12-28 2012-05-29 Gwangju Institute Of Science And Technology Apparatus for separating cell using centrifugal force and dielectrophoresis
WO2009084858A3 (en) * 2007-12-28 2009-10-15 Gwangju Institute Of Science And Technology Apparatus for separating cell using centrifugal force and dielectrophoresis
KR100895395B1 (en) 2007-12-28 2009-04-30 광주과학기술원 Cell Separator Using Centrifugal Force and Genetics
US8852416B2 (en) 2008-02-01 2014-10-07 The University Of British Columbia Methods and apparatus for particle introduction and recovery
US8475641B2 (en) 2008-02-01 2013-07-02 The University Of British Columbia Methods and apparatus for particle introduction and recovery
US8877028B2 (en) 2009-04-21 2014-11-04 The University Of British Columbia System and methods for detection of particles
US10829800B2 (en) 2011-05-20 2020-11-10 The University Of British Columbia Systems and methods for enhanced SCODA
US9434938B2 (en) 2011-05-20 2016-09-06 The University Of British Columbia Systems and methods for enhanced SCODA
US10400266B2 (en) 2011-05-20 2019-09-03 The University Of British Columbia Systems and methods for enhanced SCODA
US8518228B2 (en) 2011-05-20 2013-08-27 The University Of British Columbia Systems and methods for enhanced SCODA
US9555354B2 (en) 2012-01-13 2017-01-31 The University Of British Columbia Multiple arm apparatus and methods for separation of particles
US9186685B2 (en) 2012-01-13 2015-11-17 The University Of British Columbia Multiple arm apparatus and methods for separation of particles
US9512477B2 (en) 2012-05-04 2016-12-06 Boreal Genomics Inc. Biomarker anaylsis using scodaphoresis
US9340835B2 (en) 2013-03-15 2016-05-17 Boreal Genomics Corp. Method for separating homoduplexed and heteroduplexed nucleic acids
US11898196B2 (en) 2015-05-20 2024-02-13 Quantum-Si Incorporated Method for isolating target nucleic acid using heteroduplex binding proteins
CN110918139A (en) * 2018-09-20 2020-03-27 北京怡天佳瑞科技有限公司 Microfluidic chip, device containing the same, and method for concentrating samples
CN110918139B (en) * 2018-09-20 2023-09-29 上海欣戈赛生物科技有限公司 Microfluidic chip, device containing microfluidic chip and sample concentration method
US12011716B2 (en) 2019-10-29 2024-06-18 Quantum-Si Incorporated Peristaltic pumping of fluids and associated methods, systems, and devices
CN115825015A (en) * 2022-12-16 2023-03-21 浙江大学 A portable micro-nano oscillation imaging detection device and method based on SPR

Also Published As

Publication number Publication date
JP4779261B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4779261B2 (en) Fine particle separation method, fine particle separation device, and sensor
US20220341872A1 (en) Method and apparatus for detecting particles, like biological macromolecules or nanoparticles
RU2055884C1 (en) Process of determination of rates of dielectrophoresis of collection of particles polarized dielectrically in liquid suspension and device for its realization
JP3885147B2 (en) Multiple electrokinetic focusing of microfabricated devices and fluid streams and transported cell measurement using the same
JP6661198B2 (en) Particle analyzer
US5395502A (en) Apparatus for performing and universally detecting capillary isoelectric focusing without mobilization using concentration gradient imaging systems
Wiklund et al. Ultrasonic trapping in capillaries for trace-amount biomedical analysis
US20070155017A1 (en) Method and apparatus for characterizing solutions of small particles
US20040112748A1 (en) Dielectrophoretic particle profiling system and method
US7029562B2 (en) Capillary array electrophoresis apparatus
WO2004046695A2 (en) Method and system for processing and measuring microparticles
US20100072078A1 (en) Micro-device for analysing liquid samples
Frankowski et al. Simultaneous optical and impedance analysis of single cells: A comparison of two microfluidic sensors with sheath flow focusing
Wang et al. Dielectrophoresis microsystem with integrated flow cytometers for on‐line monitoring of sorting efficiency
US20070163884A1 (en) Method and apparatus determining the isoelectric point of charged analyte
Lim et al. Measurement of diffusion coefficient and electrophoretic mobility with a quasielastic light‐scattering–band‐electrophoresis apparatus
KR20060085299A (en) Dielectrophoresis device equipped with concentration gradient generator, method for separating material using same and method for searching for optimal conditions for material separation
Catsimpoolas et al. Electrophoresis with continuous scanning densitometry: Separation of cells in a density gradient
Corbett et al. Electrophoretic light scattering
Malher et al. New device for determination of cell electrophoretic mobility using Doppler velocimetry
JP2006510020A (en) Electrophoretic particle profiling system and method
JP4574962B2 (en) Method and apparatus for characterizing small particle solutions
Ware Electrophoretic Light Scattering: Modern Methods and Recent Applications to Biological Membranes and Polyelectrolytes
Guo et al. Capillary electrophoresis
Kazoe et al. Measurements of electric double layer between electrolyte-glass interface by evanescent wave light illumination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载