+

JP2001527020A - Manufacturing method of apatite ceramics especially for biological use - Google Patents

Manufacturing method of apatite ceramics especially for biological use

Info

Publication number
JP2001527020A
JP2001527020A JP2000526454A JP2000526454A JP2001527020A JP 2001527020 A JP2001527020 A JP 2001527020A JP 2000526454 A JP2000526454 A JP 2000526454A JP 2000526454 A JP2000526454 A JP 2000526454A JP 2001527020 A JP2001527020 A JP 2001527020A
Authority
JP
Japan
Prior art keywords
formula
powder mixture
mixture
hpo
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000526454A
Other languages
Japanese (ja)
Inventor
カルペナ,ジヨエル
ドナゾン,ブノワ
ラク,ジヤン−ルイ
フレシユ,ミシエル
Original Assignee
コミサリヤ・ア・レネルジ・アトミク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミサリヤ・ア・レネルジ・アトミク filed Critical コミサリヤ・ア・レネルジ・アトミク
Publication of JP2001527020A publication Critical patent/JP2001527020A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Transplantation (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Preparations (AREA)

Abstract

(57)【要約】 本発明は、特に生物用途のアパタイトセラミックスの製造方法に関する。方法は、任意に別の添加剤を含有する式Ca10(PO46(OH)2の化学量論的または非化学量論的なヒドロキシアパタイトを形成し得る粉末の均質混合物を調製する段階と、混合物を室温で100−500MPaの圧力下で圧縮する段階と、密閉室で水の存在下に低温(100−500℃)で熱水和処理する段階とから成る。 (57) [Summary] The present invention particularly relates to a method for producing apatite ceramics for biological use. The method comprises the steps of preparing a homogeneous mixture of powders capable of forming stoichiometric or non-stoichiometric hydroxyapatite of the formula Ca 10 (PO 4 ) 6 (OH) 2 , optionally containing further additives. Compressing the mixture at room temperature under a pressure of 100-500 MPa, and subjecting the mixture to thermohydration at a low temperature (100-500 ° C.) in the presence of water in a closed chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 (発明の分野) 本発明は、生物用途のアパタイトの製造に特に有用なアパタイトセラミックス
の製造方法に関する。
[0001] The present invention relates to a method for producing apatite ceramics, which is particularly useful for producing apatite for biological use.

【0002】 アパタイトは多様な分野で有用な材料であり、例えば農業では肥料、整形外科
では生体材料、分析化学ではクロマトグラフ支持体として使用される。
Apatite is a useful material in a variety of fields, for example, fertilizers in agriculture, biomaterials in orthopedic surgery, and chromatographic supports in analytical chemistry.

【0003】 アパタイトは一般式: Me10(XO462 (I) 〔式中、Meは1種または複数のカチオンを表し、XO4はPO4及び/または別
のアニオン基を表し、YはOH、Cl及びFのような1種または複数のアニオン
を表す〕で示される。これらのアパタイトのうちで、リン酸カルシウム系(ph
osphocalcic)のヒドロキシアパタイト: Ca10(PO46(OH)2 (II) が最もよく知られた化合物である。
Apatite has the general formula: Me 10 (XO 4 ) 6 Y 2 (I) wherein Me represents one or more cations, XO 4 represents PO 4 and / or another anionic group, Y represents one or more anions such as OH, Cl and F]. Among these apatites, calcium phosphates (ph
Ospocalcic) hydroxyapatite: Ca 10 (PO 4 ) 6 (OH) 2 (II) is the most well-known compound.

【0004】 式(I)のアパタイトはカチオン部位(Me)及びアニオン部位(XO4及び /またはY2)の双方で種々の置換が可能である。[0004] The apatite of formula (I) can be variously substituted both at the cation site (Me) and at the anion site (XO 4 and / or Y 2 ).

【0005】 予定される種々の用途に応じて、アパタイトの物理的特性及び/または化学的
特性を改良するためにこれらの置換可能特性を利用し得る。
[0005] Depending on the various intended uses, these replaceable properties may be exploited to improve the physical and / or chemical properties of apatite.

【0006】 更に、アパタイト、特に式(II)のアパタイトは非化学量論的であり得る。
即ち、カルシウム/リンの原子比が式(II)の化学量論的アパタイトの1.6
77とは異なる値を有し得る。
[0006] Further, apatites, especially apatites of formula (II), may be non-stoichiometric.
That is, the atomic ratio of calcium / phosphorus is 1.6 of the stoichiometric apatite of the formula (II).
It may have a value different from 77.

【0007】 非化学量論的アパタイトではこの比が概して1.677よりも小さい。このよ
うな非化学量論的量になる原因は特に、カチオン/カルシウム部位にボイドが存
在するため、及び/または、リン酸イオンに置換してHPO4 2-イオンが存在す るためである。アパタイトは一般式: Ca10-xx(PO46-y(HPO4y(OH)2+y-2x (III ) 〔式中、Vはボイドを表し、x及びyは、x<1、y<1及びy≦xである〕で
表される。x=y=0のとき、アパタイトは化学量論的である。
[0007] For non-stoichiometric apatite this ratio is generally less than 1.677. Cause of such a non-stoichiometric amounts in particular, due to the presence of voids in the cationic / calcium sites, and / or a order to present HPO 4 2-ions are replaced with phosphate ions. Apatite has the general formula: Ca 10-x V x (PO 4 ) 6-y (HPO 4 ) y (OH) 2 + y-2x (III) wherein V represents a void, and x and y are x <1, y <1 and y ≦ x]. When x = y = 0, apatite is stoichiometric.

【0008】 アパタイトのうちには、硬質組織の無機質部分や歯及び骨を形成する非化学量
論的な生体アパタイトの存在が知られている。
[0008] Among the apatites, the existence of non-stoichiometric bioapatite that forms the inorganic portion of hard tissue and the teeth and bones is known.

【0009】 生物学、整形外科または歯科の分野でアパタイトが使用される理由は、アパタ
イトが完全に生体親和性であるからである。この生体親和性の原因は、ヒドロキ
シアパタイトの構造及び組成が石灰化組織の無機質部分の構造及び組成に極めて
近いことによる。リン酸三カルシウム、リン酸ジカルシウム及びリン酸オクトカ
ルシウムを含む大抵のオルトリン酸カルシウムも優れた生体親和性を有している
。ヒドロキシアパタイト、より一般的にオルトリン酸カルシウムは骨形成を誘導
し得ると認められている。
Apatite is used in the fields of biology, orthopedics or dentistry because apatite is completely biocompatible. The cause of this biocompatibility is that the structure and composition of hydroxyapatite is very close to the structure and composition of the mineral part of the calcified tissue. Most calcium orthophosphates, including tricalcium phosphate, dicalcium phosphate and octocalcium phosphate, also have excellent biocompatibility. It has been recognized that hydroxyapatite, and more generally calcium orthophosphate, can induce bone formation.

【0010】 溶解度に関しては、ヒドロキシアパタイトは生物媒体に微溶性であると考えら
れるが、種々のリン酸塩の溶解度を示す添付の表から明らかなように他のオルト
リン酸カルシウムはいっそう微溶性である。
With respect to solubility, hydroxyapatite is considered to be sparingly soluble in biological media, while other calcium orthophosphates are even more sparingly, as can be seen from the accompanying table which shows the solubility of various phosphates.

【0011】 アパタイトには多くの生物用途が存在する。アパタイトは、(粉末または顆粒
の形態で)充填材として、(プラズマ溶射で投射される粉末の形態で)被覆材と
して使用され、また、骨切断手術中の楔、ネジ、胃内フレームなどのような抵抗
性充填物または固定物となる充実成形体の形態で使用され得る。後者の用途では
アパタイトを充実成形体の形態に製造する必要がある。
[0011] Apatite has many biological uses. Apatite is used as a filler (in the form of powder or granules), as a dressing (in the form of powder sprayed by plasma spraying), and also as a wedge, screw, intragastric frame, etc. during osteotomy. It can be used in the form of a solid molded body that becomes a highly resistant filling or fixed body. In the latter application, it is necessary to produce apatite in the form of a solid molded body.

【0012】 (従来技術) 現在まで、アパタイトの充実成形体は圧力下または非圧力下で高温(1000
℃を上回る温度)で焼結処理した粉末アパタイトから製造されていた。
(Prior Art) Until now, solid apatite compacts have been subjected to high temperatures (1000
(Temperatures in excess of 0 ° C.).

【0013】 文献Bioceramics,Vol.10,1997,pp.75−78は
、10MPaの圧力下、1165℃の高温で圧縮する多結晶質ヒドロキシアパタ
イトの緻密化を開示している。
The literature Bioceramics, Vol. 10, 1997 pp. 75-78 discloses densification of polycrystalline hydroxyapatite, which is compressed at a high temperature of 1165 ° C. under a pressure of 10 MPa.

【0014】 従って、ヒドロキシアパタイトから成る生体材料の製造に現在使用されている
方法では、アパタイト粉末を予め調製し、顆粒形態に造粒し、自然焼結、圧力下
の焼結及びスリップ使用後の焼結のような種々の方法による高温焼結を行う必要
がある。
[0014] Accordingly, in the method currently used for the production of biomaterials consisting of hydroxyapatite, the apatite powder is prepared beforehand, granulated in the form of granules, spontaneously sintered, sintered under pressure and after slip use. It is necessary to perform high temperature sintering by various methods such as sintering.

【0015】 これらの技術では、優れた機械的特性をもつ充実成形体が得られるが、高温熱
処理が必要であるため、 −アパタイト製造のエネルギーコストが高い、 −ヒドロキシアパタイトの一部がオキシアパタイトに変態する、 −熱処理温度で揮発性または分解性の成分をアパタイト成形体に配合することが
難しい、などの欠点が伴う。
[0015] In these techniques, a solid molded body having excellent mechanical properties can be obtained, but high-temperature heat treatment is required, so that:-the energy cost of producing apatite is high;-a part of hydroxyapatite is converted to oxyapatite. Transformation,-It is difficult to incorporate volatile or decomposable components into the apatite molded product at the heat treatment temperature.

【0016】 (発明の概要) より詳細には本発明の目的は、優れた機械的特性を有しており高温熱処理が不
要な成形体が得られるという利点をもつアパタイトセラミックスの製造方法を提
供することである。
(Summary of the Invention) More specifically, an object of the present invention is to provide a method for producing apatite ceramics, which has an advantage that a molded body having excellent mechanical properties and requiring no high-temperature heat treatment can be obtained. That is.

【0017】 本発明によるアパタイトセラミックスの製造方法は、 (a)Ca(H2PO42、Ca(H2PO42・H2O、Ca(HPO4)、Ca
(HPO4)・2H2O、αまたはβ種のCa3(PO42及びCa4(PO42
から選択された少なくとも2種類のリン酸カルシウムの粉末を、該粉末の混合物
が式: Ca10(PO46(OH)2 (II) の化学量論的ヒドロキシアパタイトに対応するかまたは式: Ca10-xx(PO46-y(HPO4y(OH)2+y-2x (III ) 〔式中、Vはボイドを表し、x及びyは、x<1、y<1及びy≦xであり、原
子比Ca/Pは1.667未満である〕の非化学量論的ヒドロキシアパタイトに
対応する量で含む均質混合物を調製する段階と、 (b)段階(a)で得られた粉末混合物を室温で100−500MPaの圧力
下で圧縮して圧縮成形体を製造する段階と、 (c)水性媒体を収容した密閉室内で圧縮成形体を100−500℃の温度で
少なくとも8時間熱水和処理する段階とから成る。
The method for producing apatite ceramics according to the present invention includes the steps of (a) Ca (H 2 PO 4 ) 2 , Ca (H 2 PO 4 ) 2 .H 2 O, Ca (HPO 4 ), Ca (HPO 4 )
(HPO 4 ) · 2H 2 O, α or β species of Ca 3 (PO 4 ) 2 and Ca 4 (PO 4 ) 2 O
A powder of at least two calcium phosphates selected from the group consisting of a mixture of the powders corresponding to a stoichiometric hydroxyapatite of the formula: Ca 10 (PO 4 ) 6 (OH) 2 (II) or a formula: Ca 10 -x V x (PO 4 ) 6 -y (HPO 4 ) y (OH) 2 + y-2x (III) wherein V represents a void, x and y are x <1, y <1 and y ≦ x and the atomic ratio Ca / P is less than 1.667], and preparing a homogeneous mixture containing the non-stoichiometric hydroxyapatite in an amount corresponding to (b) the step (a). Compressing the obtained powder mixture at room temperature under a pressure of 100-500 MPa to produce a compression-molded product; and (c) compressing the compacted product at a temperature of 100-500 ° C. in a closed chamber containing an aqueous medium at a temperature of at least 8 ° C. Time thermal hydration treatment.

【0018】 上記に記載の方法では、化学量論的及び非化学量論的なヒドロキシアパタイト
が低温で得られる。最終段階で使用される温度が500℃を超過しないので、エ
ネルギーコスト的にも有利であり、また、500℃を上回る温度で揮発性または
不安定な成分をヒドロキシアパタイトに配合できる、などの多くの点で有利であ
る。得られた充実成形体は優れた機械的特性を有しており且つ機械加工も容易で
ある。
In the method described above, stoichiometric and non-stoichiometric hydroxyapatite is obtained at low temperatures. Since the temperature used in the final stage does not exceed 500 ° C., it is also advantageous in terms of energy cost, and it is possible to incorporate volatile or unstable components into hydroxyapatite at temperatures exceeding 500 ° C. This is advantageous. The obtained solid compact has excellent mechanical properties and is easy to machine.

【0019】 本発明方法はまた、式: Ca10(PO46(OH)2 (II) の化学量論的アパタイトセラミックスまたは式: Ca10-xx(PO46-y(HPO4y(OH)2+y-2x (III ) 〔式中、Vはボイドを表し、x及びyは、x<1、y<1及びy≦xであり、C
a、PO4及び/またはOHはそれぞれ別の金属及び/または別のアニオンによ って部分置換され得る〕の非化学量論的アパタイトセラミックスを製造するため
に使用できる。
The process of the present invention may also comprise a stoichiometric apatite ceramic of the formula: Ca 10 (PO 4 ) 6 (OH) 2 (II) or a formula: Ca 10-x V x (PO 4 ) 6-y (HPO 4 ) y (OH) 2 + y−2x (III) wherein V represents a void, x and y are x <1, y <1 and y ≦ x;
a, PO 4 and / or OH may be partially replaced by another metal and / or another anion, respectively).

【0020】 本発明のこの実施態様によれば、段階(a)で、アルカリ金属、アルカリ土類
金属、銀または他の金属の塩、酸化物及び水酸化物から選択された少なくとも1
種類の化合物と酸化ケイ素とから成る粉末混合物を調製し、前記混合物が式: Ca10(PO46(OH)2 (II) の化学量論的アパタイトまたは式: Ca10-xx(PO46-y(HPO4y(OH)2+y-2x (III ) 〔式中、Vはボイドを表し、x及びyは、x<1、y<1及びy≦xであり、C
a、PO4及び/またはOHはそれぞれ別の金属及び/または別のアニオンによ って部分置換され得る〕の非化学量論的アパタイトを形成し得る。
According to this embodiment of the invention, in step (a) at least one selected from salts, oxides and hydroxides of alkali metals, alkaline earth metals, silver or other metals.
A powder mixture consisting of a compound of the type and silicon oxide is prepared, said mixture comprising a stoichiometric apatite of the formula: Ca 10 (PO 4 ) 6 (OH) 2 (II) or a formula: Ca 10-x V x ( PO 4 ) 6-y (HPO 4 ) y (OH) 2 + y-2x (III) wherein V represents a void, x and y are x <1, y <1 and y ≦ x , C
a, PO 4 and / or OH may be partially substituted by another metal and / or another anion, respectively).

【0021】 この混合物を調製するために使用される塩はリン酸塩、ケイ酸塩、クエン酸塩
、硝酸塩、炭酸塩及びハロゲン化物から選択される。
The salts used to prepare this mixture are selected from phosphates, silicates, citrates, nitrates, carbonates and halides.

【0022】 本発明方法のこの実施態様では、予定の用途に有利なカチオン及びアニオンを
アパタイト構造に導入し得る。
In this embodiment of the method of the invention, cations and anions which are advantageous for the intended use can be introduced into the apatite structure.

【0023】 生物用途のアパタイトセラミックスを製造するために方法を使用する場合には
、式: Ca2Sr(PO42 のストロンチウムカルシウムリン酸塩を含む粉末混合物を調製するか、または、
1種または複数のリン酸カルシウム化合物を使用する代わりに類似のリン酸スト
ロンチウム化合物もしくはカルシウム−ストロンチウム混在化合物を使用するこ
とによってこの構造にストロンチウムを導入するのが有効であろう。式:Sr(
2PO42、Sr(H2PO42・H2O、Sr(HPO4)、Sr(PHO42 ・2H2O、Sr3(PO42及びSr4(PO42Oの化合物を使用し得る。
When using the method to produce apatite ceramics for biological applications
, Formula: CaTwoSr (POFour)Two  Preparing a powder mixture comprising strontium calcium phosphate, or
Instead of using one or more calcium phosphate compounds, a similar phosphate
Use of rontium compounds or calcium-strontium mixed compounds
And it may be effective to introduce strontium into this structure. Formula: Sr (
HTwoPOFour)Two, Sr (HTwoPOFour)Two・ HTwoO, Sr (HPOFour), Sr (PHOFour)Two ・ 2HTwoO, SrThree(POFour)TwoAnd SrFour(POFour)TwoCompounds of O may be used.

【0024】 生物用途のアパタイトセラミックス中のストロンチウムの存在は、骨再生を促
進するという利点を有している。
The presence of strontium in apatite ceramics for biological applications has the advantage of promoting bone regeneration.

【0025】 生物用途ではまた、骨に類似の石灰化アパタイトを得るために粉末混合物に炭
酸カルシウムを添加してもよい。
For biological applications, calcium carbonate may also be added to the powder mixture to obtain calcified apatite similar to bone.

【0026】 ケイ化アパタイトセラミックス、即ちPO4アニオンがSiO4アニオンで置換
されたヒドロキシアパタイトを得るためには、酸化ケイ素SiO2、メタケイ酸 カルシウムCaSiO3及び別の金属のメタケイ酸塩から選択されたケイ素化合 物を粉末混合物に添加し得る。これらのケイ化アパタイトはタンパク質を固定し
得る。
In order to obtain silicified apatite ceramics, ie hydroxyapatite in which the PO 4 anion has been replaced by the SiO 4 anion, it has been selected from silicon oxide SiO 2 , calcium metasilicate CaSiO 3 and metasilicates of other metals. Silicon compounds may be added to the powder mixture. These silicified apatites can immobilize proteins.

【0027】 従って、予定の用途に適応する種々の材料が本発明方法によって得られる。Thus, various materials adapted to the intended use are obtained by the method according to the invention.

【0028】 本発明方法は、予め圧縮した粉末混合物の種々の成分間の熱水和反応に基づく
The process according to the invention is based on a thermohydration reaction between the various components of the pre-compacted powder mixture.

【0029】 本発明方法の段階(a)では、式: Ca10(PO46(OH)2 〔式中のアニオン及び/またはカチオンはそれぞれ別のカチオン及び/または別
のアニオンによって部分置換され得る〕のヒドロキシアパタイトを製造するため
の粉末混合物を調製する。
In step (a) of the method according to the invention, the formula: CaTen(POFour)6(OH)Two  [Anions and / or cations in the formula are different cations and / or different
Which can be partially substituted by an anion of
To prepare a powder mixture.

【0030】 これらの成分を100μm未満の粒度に粉砕することによって混合物を調製し
得る。
A mixture can be prepared by grinding these components to a particle size of less than 100 μm.

【0031】 混合物の成分は所望の組成物に従って選択される。[0031] The components of the mixture are selected according to the desired composition.

【0032】 即ち、リン酸カルシウム系ヒドロキシアパタイト型アパタイトセラミックスを
製造するときは、リン酸一カルシウムCa(H2PO42、水和リン酸一カルシ ウムCa(H2PO42・H2O、無水リン酸ビカルシウムCa(HPO4)、ま たは二水和リン酸ビカルシウムCa(HPO4)・2H2O,αまたはβ種のリン
酸三カルシウムCa3(PO42及びリン酸四カルシウムCa429のような種
々のリン酸カルシウム化合物の混合物を、最終組成が式: Ca10(PO46(OH)2 (II) の組成のヒドロキシアパタイトとなる割合で使用する。
[0032] That is, when producing calcium phosphate hydroxyapatite apatite ceramics, monocalcium phosphate Ca (H 2 PO 4) 2 , hydrated phosphate monobasic calcium Ca (H 2 PO 4) 2 · H 2 O Tricalcium phosphate Ca 3 (PO 4 ) 2 , anhydrous bicalcium phosphate Ca (HPO 4 ), or dihydrated bicalcium phosphate Ca (HPO 4 ) · 2H 2 O, α or β species A mixture of various calcium phosphate compounds, such as tetracalcium acid Ca 4 P 2 O 9 , is used in a proportion such that the final composition is hydroxyapatite of the formula Ca 10 (PO 4 ) 6 (OH) 2 (II) .

【0033】 1種類の塩基性化合物(リン酸四カルシウム)と1種または複数の酸性化合物
(リン酸ジカルシウムまたは一カルシウム)とを含む少なくとも2種類のリン酸
化合物を含有する混合物を使用するのが有利である。
Use of a mixture containing at least two phosphate compounds comprising one basic compound (tetracalcium phosphate) and one or more acidic compounds (dicalcium phosphate or monocalcium) Is advantageous.

【0034】 最終アパタイトセラミックスの配合組成を調節し易くするために各混合物中に
2種以上の成分を使用し得る。
Two or more components may be used in each mixture to help control the composition of the final apatite ceramic.

【0035】 また、得られたヒドロキシアパタイトが予定の用途に有効な特性を獲得するよ
うに粉末混合物に別の添加剤を添加し得る。
[0035] Further additives may be added to the powder mixture such that the resulting hydroxyapatite acquires properties that are effective for the intended use.

【0036】 生物用途のアパタイトセラミックスの場合、予め焼成されたヒドロキシアパタ
イト顆粒、生物的に許容される強化粒子、放射性トレーサー、並びに、医薬化合
物、殺菌剤、抗生物質、抗菌剤、抗有糸分裂剤及び成長因子のような整形外科用
及び歯科用の生物活性添加剤から選択された少なくとも1種類の添加剤を、これ
らの添加剤が100℃以上の温度に耐性であるという条件で粉末混合物に添加す
るのが有効であろう。
In the case of apatite ceramics for biological use, pre-fired hydroxyapatite granules, biologically acceptable reinforcing particles, radioactive tracers, and pharmaceutical compounds, bactericides, antibiotics, antibacterials, antimitotics And at least one additive selected from orthopedic and dental bioactive additives, such as growth factors, to the powder mixture provided that these additives are resistant to temperatures above 100 ° C. Would be effective.

【0037】 非生物用途の場合には、別の添加剤、例えば発光特性をもつ微量のネオジム、
微量のユーロピウムIIまたはIIIのような添加剤を使用し得る。
In the case of non-living applications, other additives, such as trace amounts of neodymium with luminescent properties,
Minor amounts of additives such as europium II or III may be used.

【0038】 ヒドロキシアパタイト顆粒及び強化粒子は材料の機械的特性を改善し得る。強
化粒子の例としてはアルミナ及びナイロン粒子が挙げられる。
[0038] Hydroxyapatite granules and reinforcing particles can improve the mechanical properties of the material. Examples of reinforcing particles include alumina and nylon particles.

【0039】 また、インプラントの挿入をシンチグラフィーによってモニターするために放
射性トレーサーの添加が有効であろう。この放射性トレーサーは例えばテクネチ
ウム−99mのリン酸塩の形態のTcトレーサーでもよい。
The addition of a radioactive tracer may also be effective to monitor implant insertion by scintigraphy. The radiotracer may be, for example, a Tc tracer in the form of technetium-99m phosphate.

【0040】 100℃以上の温度に耐性の抗生物質及び殺菌剤、例えば銀などの医薬化合物
も生体材料に添加し得る。
Antibiotics and bactericides resistant to temperatures above 100 ° C., for example pharmaceutical compounds such as silver, can also be added to the biomaterial.

【0041】 別の用途の場合には、機械抵抗を改善するためにナイロンまたはKevlar
のような添加剤を添加し得る。
In another application, nylon or Kevlar may be used to improve mechanical resistance.
Additives such as

【0042】 このような添加剤を任意に含有する粉末混合物の調製後に、混合物を圧縮段階
(b)で処理する。
After preparation of the powder mixture, optionally containing such additives, the mixture is treated in a compaction step (b).

【0043】 圧縮は、室温、例えば15−30℃で、モールドに導入した混合物に、例えば
油圧プレスによって100−500MPa、好ましくは200MPaの圧力を作
用させることによって行う。
The compression is carried out at room temperature, for example 15-30 ° C., by applying a pressure of 100-500 MPa, preferably 200 MPa, to the mixture introduced into the mold, for example by means of a hydraulic press.

【0044】 その後の段階(c)では、密閉室内で100−500℃の温度の水性媒体の存
在下に選択温度の水蒸気圧に対応する圧力下で圧縮成形体を熱水和処理する。
In the subsequent step (c), the compression-molded body is subjected to a thermal hydration treatment in a closed chamber in the presence of an aqueous medium at a temperature of 100 to 500 ° C. under a pressure corresponding to a steam pressure at a selected temperature.

【0045】 この処理に使用される密閉室内の水蒸気圧は好ましくは0.5−17MPaで
ある。
The water vapor pressure in the closed chamber used for this treatment is preferably 0.5 to 17 MPa.

【0046】 この処理で、混合物の圧縮成分間の熱水和反応によってセラミックス形態が得
られる。充実材料の内部でこの材料の凝集を調整(コンディショニング)するア
パタイトの針状結晶が発達するので、極めて優れた硬度をもつ成形体が得られる
In this treatment, a ceramic form is obtained by a thermohydration reaction between the compressed components of the mixture. Since apatite needle-like crystals for adjusting (conditioning) aggregation of this material develop inside the solid material, a molded article having extremely excellent hardness can be obtained.

【0047】 熱水和処理には2つの方法がある。There are two methods for the thermal hydration treatment.

【0048】 処理の第一の実施態様によれば、圧縮成形体が液体状態の水と接触するように
圧縮成形体を水性媒体に完全に浸漬させる。
According to a first embodiment of the treatment, the compact is completely immersed in the aqueous medium such that the compact comes into contact with the water in the liquid state.

【0049】 水性媒体に可溶性の化合物を含む圧縮成形体に好ましく使用される熱水和処理
の第二の実施態様によれば、圧縮成形体が処理温度の作用下で密閉室内で発生す
る水蒸気だけに接触するように圧縮成形体を水性媒体の上方に配置する。
According to a second embodiment of the hot hydration treatment, which is preferably used for compacts containing compounds soluble in aqueous media, the compacts only contain water vapor generated in a closed chamber under the effect of the treatment temperature. The compression molded body is placed above the aqueous medium so as to contact with.

【0050】 熱水和処理の温度は100−500℃の範囲であり、この熱水和処理の持続時
間は特に使用温度に依存し、温度が低いほど持続時間を延長する。持続時間は一
般に少なくとも8時間であり、60時間に及ぶこともある。
The temperature of the thermal hydration treatment is in the range of 100-500 ° C., and the duration of this thermal hydration treatment depends in particular on the use temperature, the lower the temperature the longer the duration. The duration is generally at least 8 hours and can be up to 60 hours.

【0051】 熱水和処理の温度は好ましくは150−250℃であり、持続時間は約48時
間である。
The temperature of the thermal hydration treatment is preferably 150-250 ° C., and the duration is about 48 hours.

【0052】 使用される水性媒体は通常は脱イオン水であるが、適当な添加剤を含有する水
溶液も使用し得る。
[0052] The aqueous medium used is usually deionized water, but aqueous solutions containing suitable additives may also be used.

【0053】 ヒドロキシアパタイトの溶解度を低下させるためには、ヒドロキシアパタイト
の構造にフッ素イオンを導入するフッ化ナトリウムの水溶液を水性媒体として使
用してもよい。水性媒体へのフッ化ナトリウムの添加は生物用途のアパタイトセ
ラミックスの製造に特に好適である。
In order to reduce the solubility of hydroxyapatite, an aqueous solution of sodium fluoride for introducing fluorine ions into the structure of hydroxyapatite may be used as the aqueous medium. The addition of sodium fluoride to the aqueous medium is particularly suitable for the production of apatite ceramics for biological applications.

【0054】 本発明方法の変形実施態様によれば、方法は、熱水和処理で得られた圧縮成形
体を焼結する追加段階(d)を含む。焼結は少なくとも1,000℃、好ましく
は1,000−1,300℃の温度で行われる。
According to a variant embodiment of the method according to the invention, the method comprises the additional step (d) of sintering the compact obtained from the hot hydration process. The sintering is performed at a temperature of at least 1,000C, preferably 1,000-1,300C.

【0055】 このようにして、優れた機械的特性を有する極めて高度に圧縮された材料が得
られる。
In this way, a very highly compacted material with excellent mechanical properties is obtained.

【0056】 上記のごとく本発明方法は出発混合物中で使用する化合物次第で種々の組成の
アパタイトセラミックスを製造し得るので極めて有利である。更に、Ca/Pの
総原子比が1.667未満となる量で混合物成分を使用することによって、特に
1.667未満のCa/P原子比を有する非化学量論的アパタイトを本発明方法
で製造し得る。
As described above, the method of the present invention is very advantageous because it can produce apatite ceramics of various compositions depending on the compound used in the starting mixture. Further, by using the mixture components in an amount such that the total atomic ratio of Ca / P is less than 1.667, non-stoichiometric apatite having a Ca / P atomic ratio of less than 1.667 can be obtained by the method of the present invention. Can be manufactured.

【0057】 非化学量論的アパタイトを製造することによって、化学量論的ヒドロキシアパ
タイトよりも溶解し易く従って極めて有利な生体親和性化合物が得られる。この
特性は、吸収され次いで生物によって新しく形成された骨組織によって置換され
得る成形体を製造するために特に有効である。
The production of non-stoichiometric apatite results in a biocompatible compound that is more soluble than stoichiometric hydroxyapatite and therefore very advantageous. This property is particularly useful for producing shaped bodies that can be resorbed and then replaced by newly formed bone tissue by the organism.

【0058】 非化学量論的アパタイトはまた、リン酸三カルシウムのような出発リン酸カル
シウムの1つと混合したアパタイトが得られるように熱水和処理段階の持続時間
を調節することによって得られる。反応が完了しないような持続時間で反応させ
るとき、熱水和反応によってヒドロキシアパタイトに変態しないリン酸三カルシ
ウムが成形体内にある程度残存するであろう。
Non-stoichiometric apatite is also obtained by adjusting the duration of the hot hydration treatment step so as to obtain an apatite mixed with one of the starting calcium phosphates, such as tricalcium phosphate. When reacted for such a duration that the reaction is not completed, tricalcium phosphate that does not transform into hydroxyapatite by the thermohydration reaction will remain to some extent in the molded body.

【0059】 本発明の別の特徴及び利点は、添付図面に基づく非限定的な実施例に関する以
下の記載からより明らかに理解されよう。
Other features and advantages of the present invention will become more clearly apparent from the following description of non-limiting embodiments based on the accompanying drawings.

【0060】 (実施例) 実施例1:リン酸カルシウム系ヒドロキシアパタイトの製造 この実施例では、最初に3種類のリン酸カルシウム、即ち、 −水和リン酸一カルシウムCa(H2PO42・H2O −リン酸三カルシウムCa3(PO42及び −リン酸四カルシウムCa4(PO42O から成る粉末混合物を調製する。EXAMPLES Example 1 Production of Calcium Phosphate-Based Hydroxyapatite In this example, three types of calcium phosphate were first used: hydrated monocalcium phosphate Ca (H 2 PO 4 ) 2 .H 2 O - tricalcium phosphate Ca 3 (PO 4) 2 and - tetracalcium phosphate Ca 4 (PO 4) to prepare a powder mixture consisting of 2 O.

【0061】 各成分の割合を以下の反応から計算する: a Ca(H2PO42・H2O+b Ca3(PO42+c Ca4(PO42
→Ca10(PO46(OH)2(水の存在下) 〔式中、係数a、b及びcの関係は以下の式で示される: b=2−3a、c=1+2a 但し、0≦a≦0.67;0≦b≦2及び1≦c≦2.33〕。
The proportion of each component is calculated from the following reaction: a Ca (H 2 PO 4 ) 2 .H 2 O + b Ca 3 (PO 4 ) 2 + c Ca 4 (PO 4 ) 2 O
→ Ca 10 (PO 4 ) 6 (OH) 2 (in the presence of water) [where the relationship between the coefficients a, b and c is represented by the following formula: b = 2-3a, c = 1 + 2a, where 0 ≦ a ≦ 0.67; 0 ≦ b ≦ 2 and 1 ≦ c ≦ 2.33].

【0062】 この実施例では、以下の値を使用する: a=0.225 b=1.325及び c=1.45。In this example, the following values are used: a = 0.225 b = 1.325 and c = 1.45.

【0063】 100μm未満の粒度まで粉砕することによって均質混合物を形成した後、粉
末混合物をモールドに導入し、次いでモールドに油圧プレスによって200MP
aの圧力を作用させて圧縮処理する。
After forming a homogenous mixture by grinding to a particle size of less than 100 μm, the powder mixture is introduced into a mold, which is then pressed into a mold by a hydraulic press at 200 MPa.
The compression process is performed by applying the pressure of a.

【0064】 モールドから圧縮成形体を取り出し、脱イオン水を収容したオートクレーブに
導入し、圧縮成形体を脱イオン水に完全に浸漬させる。オートクレーブを閉鎖し
た後、加熱室に導入し、200℃で48時間加熱する。
The compact is removed from the mold, introduced into an autoclave containing deionized water, and completely immersed in the deionized water. After closing the autoclave, it is introduced into a heating chamber and heated at 200 ° C. for 48 hours.

【0065】 この結果、十分に結晶化したカルシウム系ヒドロキシアパタイトの成形体が得
られる。
As a result, a sufficiently crystallized calcium-based hydroxyapatite molded product is obtained.

【0066】 図1は、このようにして得られた材料のX線回折図を示す。図は、少量のリン
酸三カルシウムが残存していることを示す。
FIG. 1 shows an X-ray diffraction diagram of the material thus obtained. The figure shows that a small amount of tricalcium phosphate remains.

【0067】 混合物をオートクレーブに維持する時間を延長すると、水性媒体中でこの残留
リン酸三カルシウムがヒドロキシアパタイトに変態する。
Prolonging the time that the mixture is maintained in the autoclave converts the residual tricalcium phosphate to hydroxyapatite in the aqueous medium.

【0068】 走査型電子顕微鏡で観察すると、カルシウム系ヒドロキシアパタイトの大きい
針状結晶の存在が判明する。即ち、生成物の十分な結晶化度が確認される。
Observation with a scanning electron microscope reveals the presence of large needle crystals of calcium-based hydroxyapatite. That is, a sufficient crystallinity of the product is confirmed.

【0069】 この材料の圧縮に対する機械抵抗は100MPaに近い値である。The mechanical resistance of this material to compression is close to 100 MPa.

【0070】 この材料は容易に機械加工でき、人工骨材として特に好適である。This material can be easily machined and is particularly suitable as an artificial aggregate.

【0071】 実施例2:リン酸カルシウム系ヒドロキシアパタイトの製造 この実施例では、実施例1と同様のリン酸塩混合物を調製し、次いで実施例1
と同じ条件下で圧縮処理する。
Example 2 Preparation of Calcium Phosphate-Based Hydroxyapatite In this example, a phosphate mixture similar to that of Example 1 was prepared.
Compress under the same conditions.

【0072】 モールドから圧縮成形体を取り出し、脱イオン水を収容したオートクレーブに
導入するが、反応が蒸気媒体中で行われるように水位よりも上方に配置する。
The compact is removed from the mold and introduced into an autoclave containing deionized water, but placed above the water level so that the reaction takes place in a steam medium.

【0073】 オートクレーブを閉鎖して加熱室に導入し、200℃で48時間加熱する。The autoclave is closed, introduced into a heating chamber and heated at 200 ° C. for 48 hours.

【0074】 処理の終了後、実施例1の材料の特性に類似の特性をもつ材料が得られる。After the end of the treatment, a material having properties similar to those of the material of Example 1 is obtained.

【0075】 実施例3:ストロンチウム含有アパタイトセラミックスの製造 この実施例は、水和リン酸一カルシウム、リン酸三カルシウム及びストロンチ
ウムとカルシウムとのリン酸塩Ca2Sr(HPO42の粉末混合物を出発材料 とする。各成分の割合は以下の反応から計算する: a Ca(HPO42・H2O+b Ca4Sr(PO42+c Ca4(PO4 2 O→Ca9Sr(PO46(OH)2 但し: a=0.34 b=1 c=1.66。
Example 3 Preparation of Strontium-Containing Apatite Ceramics This example demonstrates hydrated monocalcium phosphate, tricalcium phosphate and
Phosphate of calcium and calciumTwoSr (HPOFour)TwoThe starting material is a powder mixture of The proportion of each component is calculated from the following reaction: a Ca (HPOFour)Two・ HTwoO + b CaFourSr (POFour)Two+ C CaFour(POFour) Two O → Ca9Sr (POFour)6(OH)Two  Where: a = 0.34 b = 1 c = 1.66.

【0076】 これらの成分を粉砕によって混合し、次いで粉末混合物をモールドに導入し、
油圧プレスで190MPaの圧力を作用させて圧縮処理する。得られた圧縮成形
体をオートクレーブに導入し、脱イオン水で被覆する。次にオートクレーブを閉
鎖し、温度を200℃にする。これは1.6MPaの水蒸気圧に対応する。72
時間維持する。
The components are mixed by milling, and the powder mixture is then introduced into a mold,
A compression process is performed by applying a pressure of 190 MPa with a hydraulic press. The obtained compression molded body is introduced into an autoclave and covered with deionized water. Then close the autoclave and bring the temperature to 200 ° C. This corresponds to a steam pressure of 1.6 MPa. 72
Maintain time.

【0077】 この結果、骨再生の促進に特に好適な生物材料として有効なカルシウム−スト
ロンチウム系ヒドロキシアパタイトが得られる。
As a result, a calcium-strontium-based hydroxyapatite which is effective as a biological material particularly suitable for promoting bone regeneration can be obtained.

【0078】 得られた材料は100MPaを上回る耐圧縮性を有している。The obtained material has a compression resistance of more than 100 MPa.

【0079】 本発明方法は、特に生物用途に好適な優れた機械的特性をもつアパタイトセラ
ミックスを製造できまたこれらのセラミックスに改良された機械的特性または他
の特性を与える種々の添加剤を導入できるので、極めて有益な方法である。
The process of the present invention can produce apatite ceramics with excellent mechanical properties, particularly suitable for biological applications, and can incorporate various additives that impart improved mechanical or other properties to these ceramics. So it is a very useful method.

【0080】[0080]

【表1】 [Table 1]

【0081】 (参考文献) Bioceramics,Vol.10,1997,pp.75−78(Reference) Bioceramics, Vol. 10, 1997 pp. 75-78

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得られたアパタイトセラミックスの構造を示すX線回折図である。FIG. 1 is an X-ray diffraction diagram showing a structure of an apatite ceramic obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ラク,ジヤン−ルイ フランス国、エフ−31000・トウルーズ、 リユ・ドウ・ラ・コロンベツト、36 (72)発明者 フレシユ,ミシエル フランス国、エフ−31130・フオンスグリ ブ、リユ・ドウ・セルダーニユ、3 Fターム(参考) 4C081 AB03 BA12 CE01 CE02 CF031 CF24 CF25 CG07 4C089 AA01 BA03 BA08 BA09 BA10 BA14 BA16 BB04 BC05 CA02 CA07 4G030 AA08 AA37 AA41 BA35 CA01 GA04 GA19 GA27 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Lac, Jean-Louis, France, F-31000-Touruz, Rille-de-la-Colombet, 36 (72) Inventor Freixille, Michel France, F-31130 Huongs Grib, Liu Dou Cerdanuille, 3F term (reference) 4C081 AB03 BA12 CE01 CE02 CF031 CF24 CF25 CG07 4C089 AA01 BA03 BA08 BA09 BA10 BA14 BA16 BB04 BC05 CA02 CA07 4G030 AA08 AA37 AA41 BA35 CA01 GA04 GA19 GA27

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 (a)Ca(H2PO42、Ca(H2PO42・H2O、C a(HPO4)、Ca(HPO4)・2H2O、αまたはβ種のCa3(PO42
びCa4(PO42Oから選択された少なくとも2種類のリン酸カルシウムの粉 末を、該粉末の混合物が式: Ca10(PO46(OH)2 (II) の化学量論的ヒドロキシアパタイトに対応するかまたは式: Ca10-xx(PO46-y(HPO4y(OH)2+y-2x (III ) 〔式中、Vはボイドを表し、x及びyは、x<1、y<1及びy≦xであり、原
子比Ca/Pは1.667未満である〕の非化学量論的ヒドロキシアパタイトに
対応する量で含む均質混合物を調製する段階と、 (b)段階(a)で得られた粉末混合物を室温で100−500MPaの圧力
下で圧縮して圧縮成形体を製造する段階と、 (c)水性媒体を収容した密閉室内で圧縮成形体を100−500℃の温度で
少なくとも8時間熱水和処理する段階とから成るアパタイトセラミックスの製造
方法。
1. A (a) Ca (H 2 PO 4) 2, Ca (H 2 PO 4) 2 · H 2 O, C a (HPO 4), Ca (HPO 4) · 2H 2 O, α or β At least two calcium phosphate powders selected from the species Ca 3 (PO 4 ) 2 and Ca 4 (PO 4 ) 2 O, the mixture of which has the formula: Ca 10 (PO 4 ) 6 (OH) 2 Or a formula corresponding to the stoichiometric hydroxyapatite of formula (II): Ca 10-x V x (PO 4 ) 6-y (HPO 4 ) y (OH) 2 + y-2x (III) V represents a void, x and y are x <1, y <1 and y ≦ x, and the atomic ratio Ca / P is less than 1.667]. Preparing a homogeneous mixture comprising: (b) subjecting the powder mixture obtained in step (a) to room temperature under a pressure of 100-500 MPa. And (c) subjecting the compression molded body to a thermohydration treatment at a temperature of 100-500 ° C. for at least 8 hours in a closed chamber containing an aqueous medium. Production method.
【請求項2】 段階(a)で、アルカリ金属、アルカリ土類金属、銀または
他の金属の塩、酸化物及び水酸化物から選択された少なくとも1種類の化合物と
酸化ケイ素とを含む粉末混合物を調製し、前記混合物が式: Ca10(PO46(OH)2 の化学量論的ヒドロキシアパタイトまたは式: Ca10-xx(PO46-y(HPO4y(OH)2+y-2x (III ) 〔式中、Vはボイドを表し、x及びyは、x<1、y<1及びy≦xであり、C
a、PO4及び/またはOHはそれぞれ別の金属及び/または別のアニオンによ って部分置換され得る〕の非化学量論的ヒドロキシアパタイトを形成し得ること
を特徴とする請求項1に記載の方法。
2. In step (a), an alkali metal, an alkaline earth metal, silver or
At least one compound selected from salts, oxides and hydroxides of other metals
Preparing a powder mixture comprising silicon oxide, said mixture having the formula: CaTen(POFour)6(OH)Two  Of the stoichiometric hydroxyapatite or of the formula:10-xVx(POFour)6-y(HPOFour)y(OH)2 + y-2x (III) wherein V represents a void, x and y are x <1, y <1 and y ≦ x, and C
a, POFourAnd / or OH may be partially replaced by another metal and / or another anion, respectively).
The method of claim 1, wherein:
【請求項3】 塩が、リン酸塩、ケイ酸塩、クエン酸塩、硝酸塩、炭酸塩及
びハロゲン化物から選択されることを特徴とする請求項2に記載の方法。
3. The method according to claim 2, wherein the salt is selected from phosphate, silicate, citrate, nitrate, carbonate and halide.
【請求項4】 粉末混合物が式: Ca2Sr(PO42 のストロンチウムカルシウムリン酸塩を含むかまたは式:Sr(H2PO42、 Sr(H2PO42・H2O、Sr(HPO4)、Sr(PHO42・2H2O、S
3(PO42及びSr4(PO42Oのストロンチウム化合物を含むことを特徴
とする生物用途のアパタイトセラミックスを製造するための請求項3に記載の方
法。
4. The powder mixture of the formula: CaTwoSr (POFour)Two  Or strontium calcium phosphate of the formula or Sr (HTwoPOFour)Two, Sr (HTwoPOFour)Two・ HTwoO, Sr (HPOFour), Sr (PHOFour)Two・ 2HTwoO, S
rThree(POFour)TwoAnd SrFour(POFour)TwoCharacterized by containing a strontium compound of O
The method according to claim 3 for producing apatite ceramics for biological use.
Law.
【請求項5】 粉末混合物が炭酸カルシウムを含むことを特徴とする生物用
途のアパタイトセラミックスを製造するための請求項3または4に記載の方法。
5. The method according to claim 3, wherein the powder mixture comprises calcium carbonate, for producing apatite ceramics for biological use.
【請求項6】 粉末混合物が酸化ケイ素SiO2、メタケイ酸カルシウムC aSiO3及び別の金属のメタケイ酸塩から選択されたケイ素化合物を含むこと を特徴とする生物用途のアパタイトセラミックスを製造するための請求項3から
5のいずれか一項に記載の方法。
6. A process for producing apatite ceramics for biological use, characterized in that the powder mixture comprises a silicon compound selected from silicon oxide SiO 2 , calcium metasilicate CaSiO 3 and metasilicate of another metal. A method according to any one of claims 3 to 5.
【請求項7】 更に追加段階として、 (d)段階(c)の熱水和処理で得られた圧縮成形体を少なくとも1,000
℃の温度で焼結する段階を含むことを特徴とする請求項1から6のいずれか一項
に記載の方法。
7. As an additional step, (d) the compression-molded body obtained by the thermal hydration treatment in step (c) is at least 1,000.
The method according to any of the preceding claims, comprising sintering at a temperature of ° C.
【請求項8】 段階(a)で、成分の粉砕によって粉末混合物を調製するこ
とを特徴とする請求項1または2に記載の方法。
8. The process according to claim 1, wherein in step (a) a powder mixture is prepared by grinding the components.
【請求項9】 段階(c)で、圧縮成形体を水性媒体に完全に浸漬させるこ
とを特徴とする請求項1または2に記載の方法。
9. The method according to claim 1, wherein in step (c), the compact is completely immersed in an aqueous medium.
【請求項10】 段階(c)で、圧縮成形体を水性媒体の上方に配置するこ
とを特徴とする請求項1または2に記載の方法。
10. The method according to claim 1, wherein in step (c), the compact is placed above the aqueous medium.
【請求項11】 段階(c)で使用される密閉室内の水蒸気圧が0.5−1
7MPaであることを特徴とする請求項9または10に記載の方法。
11. The steam pressure in the closed chamber used in step (c) is 0.5-1.
The method according to claim 9, wherein the pressure is 7 MPa.
【請求項12】 熱水和処理の持続時間が8−60時間であることを特徴と
する請求項1及び9から11のいずれか一項に記載の方法。
12. The method as claimed in claim 1, wherein the duration of the thermal hydration treatment is between 8 and 60 hours.
【請求項13】 水性媒体が脱イオン水であることを特徴とする請求項1及
び9から12のいずれか一項に記載の方法。
13. The method according to claim 1, wherein the aqueous medium is deionized water.
【請求項14】 予め焼成されたヒドロキシアパタイト顆粒、生物的に許容
される強化粒子、放射性トレーサー、並びに、医薬化合物、殺菌剤、抗生物質、
抗菌剤、抗有糸分裂剤及び成長因子から選択される生物活性物質から選択された
少なくとも1種類の添加剤を粉末混合物に添加することを特徴とする生物用途の
アパタイトセラミックスを製造するための請求項1から13のいずれか一項に記
載の方法。
14. Pre-baked hydroxyapatite granules, biologically acceptable reinforcing particles, radiotracers, and pharmaceutical compounds, fungicides, antibiotics,
Claims for producing apatite ceramics for biological use, characterized in that at least one additive selected from a bioactive substance selected from an antimicrobial agent, an antimitotic agent and a growth factor is added to the powder mixture. Item 14. The method according to any one of Items 1 to 13.
【請求項15】 放射性トレーサーがテクネチウム−99mのリン酸塩であ
ることを特徴とする請求項14に記載の方法。
15. The method according to claim 14, wherein the radioactive tracer is technetium-99m phosphate.
【請求項16】 殺菌剤が銀であることを特徴とする請求項14に記載の方
法。
16. The method according to claim 14, wherein the germicide is silver.
【請求項17】 段階(c)で使用される水性媒体がフッ化ナトリウムを含
むことを特徴とする生物用途のアパタイトセラミックスを製造するための請求項
1から16のいずれか一項に記載の方法。
17. The method according to claim 1, wherein the aqueous medium used in step (c) comprises sodium fluoride, for producing apatite ceramics for biological use. .
【請求項18】 粉末混合物が発光性添加剤及び/または機械抵抗を改善す
る添加剤を更に含むことを特徴とする請求項1から3のいずれか一項に記載の方
法。
18. The method according to claim 1, wherein the powder mixture further comprises a luminescent additive and / or a mechanical resistance improving additive.
JP2000526454A 1997-12-23 1998-12-22 Manufacturing method of apatite ceramics especially for biological use Pending JP2001527020A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9716357A FR2772746B1 (en) 1997-12-23 1997-12-23 PROCESS FOR THE MANUFACTURE OF AN APATITIC CERAMIC, PARTICULARLY FOR BIOLOGICAL USE
FR97/16357 1997-12-23
PCT/FR1998/002827 WO1999033766A1 (en) 1997-12-23 1998-12-22 Method for making apatite ceramics, in particular for biological use

Publications (1)

Publication Number Publication Date
JP2001527020A true JP2001527020A (en) 2001-12-25

Family

ID=9514999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000526454A Pending JP2001527020A (en) 1997-12-23 1998-12-22 Manufacturing method of apatite ceramics especially for biological use

Country Status (8)

Country Link
US (1) US6338810B1 (en)
EP (1) EP1042252B1 (en)
JP (1) JP2001527020A (en)
KR (1) KR100573293B1 (en)
DE (1) DE69812709T2 (en)
ES (1) ES2194382T3 (en)
FR (1) FR2772746B1 (en)
WO (1) WO1999033766A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531341A (en) * 2002-06-07 2005-10-20 カイフォン インコーポレイテッド Strontium-apatite-cement formulation and use thereof
JP2009511420A (en) * 2005-10-18 2009-03-19 フィン−セラミカ ファエンツァ エス.ピー.エー. Complexes of polysubstituted hydroxyapatite with natural and / or synthetic polymers and their production and use
JP2010525070A (en) * 2007-04-23 2010-07-22 バクスター・インターナショナル・インコーポレイテッド Fibrin composition comprising a strontium compound
JP2012157629A (en) * 2011-02-02 2012-08-23 Nihon Univ Porous three-dimensional structure and use thereof
JP2015136469A (en) * 2014-01-22 2015-07-30 国立大学法人茨城大学 Phosphate type ceramic thin film containing bone formation accelerator, bone tissue implant having the thin film as surface layer, and method for producing the same

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1064800A (en) * 1998-11-12 2000-06-05 Nycomed Amersham Plc Products and methods
DE19938704C1 (en) * 1999-08-14 2001-10-31 Ivoclar Vivadent Ag Process for the production of reaction systems for implantation in the human and animal body as a bone substitute, which i.a. Contain calcium and phosphorus
DE10032220A1 (en) 2000-07-03 2002-01-24 Sanatis Gmbh Magnesium ammonium phosphate cements, their manufacture and use
JP2003052804A (en) * 2001-08-09 2003-02-25 Ichiro Ono Method of manufacturing implant and implant
US7273523B2 (en) * 2002-06-07 2007-09-25 Kyphon Inc. Strontium-apatite-cement-preparations, cements formed therefrom, and uses thereof
KR100465985B1 (en) * 2002-07-30 2005-01-15 재단법인서울대학교산학협력재단 Bioactive Biphasic Ceramic Compositions for Artificial Bone and Method for Making the Same
US6905723B2 (en) * 2003-05-30 2005-06-14 Depuy Products, Inc. Strontium-substituted apatite coating
US7067169B2 (en) 2003-06-04 2006-06-27 Chemat Technology Inc. Coated implants and methods of coating
US20040250729A1 (en) * 2003-06-16 2004-12-16 Jang Bor Z. Fast-setting carbonated hydroxyapatite compositions and uses
WO2005105170A1 (en) 2004-04-27 2005-11-10 Kyphon Inc. Bone substitute compositions and method of use
KR100759718B1 (en) 2004-12-21 2007-10-04 요업기술원 Calcium phosphate porous body using hydrothermal hot press method and its manufacturing method
US7651701B2 (en) 2005-08-29 2010-01-26 Sanatis Gmbh Bone cement composition and method of making the same
JP5523709B2 (en) * 2005-11-14 2014-06-18 バイオメット・3アイ・エルエルシー Method of depositing discrete nanoparticles on an implant surface
KR100788494B1 (en) 2006-02-09 2007-12-24 세종대학교산학협력단 Manufacturing method of hydroxide apatite sintered body
US7754005B2 (en) * 2006-05-02 2010-07-13 Kyphon Sarl Bone cement compositions comprising an indicator agent and related methods thereof
US7507286B2 (en) * 2006-06-08 2009-03-24 Sanatis Gmbh Self-foaming cement for void filling and/or delivery systems
EP2068950B1 (en) * 2006-09-21 2012-06-20 Kyphon SÀRL Diammonium phosphate and other ammonium salts and their use in preventing clotting
WO2008073190A2 (en) * 2006-11-03 2008-06-19 Kyphon Sarl Materials and methods and systems for delivering localized medical treatments
US20080317807A1 (en) * 2007-06-22 2008-12-25 The University Of Hong Kong Strontium fortified calcium nano-and microparticle compositions and methods of making and using thereof
WO2009097218A1 (en) 2008-01-28 2009-08-06 Biomet 3I, Llc Implant surface with increased hydrophilicity
US7968616B2 (en) * 2008-04-22 2011-06-28 Kyphon Sarl Bone cement composition and method
EP2358651A2 (en) 2008-11-12 2011-08-24 Engqvist, Håkan Hydraulic cements, methods and products
BR112012022686B1 (en) 2010-03-10 2021-04-20 Oss-Q Ab mosaic implant, method for preparing an implant and using an implant
US8641418B2 (en) 2010-03-29 2014-02-04 Biomet 3I, Llc Titanium nano-scale etching on an implant surface
SA111320355B1 (en) 2010-04-07 2015-01-08 Baxter Heathcare S A Hemostatic sponge
KR101311979B1 (en) * 2010-06-30 2013-09-26 김대수 Method for preparing bio materials using coating of hydroxyapatite/zirconia composites and bio materials prepared therefrom
US9463046B2 (en) 2011-08-22 2016-10-11 Ossdsign Ab Implants and methods for using such implants to fill holes in bone tissue
US20130066327A1 (en) 2011-09-09 2013-03-14 Håkan Engqvist Hydraulic cement compositions with low ph methods, articles and kits
US8591645B2 (en) 2011-09-09 2013-11-26 Ossdsign Ab Hydraulic cements with optimized grain size distribution, methods, articles and kits
US9775862B2 (en) * 2012-01-30 2017-10-03 Warsaw Orthopedic, Inc. Modification of reactivity of bone constructs
EP2828100B1 (en) 2012-03-20 2018-05-16 Biomet 3i, LLC Surface treatment for an implant surface
CN104853783B (en) 2012-12-14 2018-03-02 奥斯设计公司 Form composition, monetite cement, implant and the method for correcting Cranial defect of cement
US10076416B2 (en) 2013-02-12 2018-09-18 Ossdsign Ab Mosaic implants, kits and methods for correcting bone defects
NL2011195C2 (en) 2013-07-18 2015-01-21 Xpand Biotechnology B V Method for producing an osteoinductive calcium phosphate and products thus obtained.
CZ305232B6 (en) * 2013-08-28 2015-06-24 Vysoké Učení Technické V Brně Process for preparing strontium-samarium cement and use thereof
ES2855009T3 (en) 2014-08-14 2021-09-23 Ossdsign Ab Bone implants to correct bone defects
KR101997974B1 (en) * 2017-08-24 2019-07-08 한국과학기술원 Hydroxyapatite sintered body and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189815B (en) * 1986-03-24 1990-10-10 Permelec Electrode Ltd Titanium composite materials coated with calcium phosphate compound and process for production thereof
DE3711426A1 (en) * 1987-04-04 1988-10-13 Mtu Muenchen Gmbh IMPLANT WITH BIOACTIVE COATING
JP3198125B2 (en) * 1991-06-18 2001-08-13 株式会社アドバンス Manufacturing method of implant
US5763092A (en) * 1993-09-15 1998-06-09 Etex Corporation Hydroxyapatite coatings and a method of their manufacture
DE19816858A1 (en) * 1998-04-16 1999-10-21 Merck Patent Gmbh Tricalcium phosphate-containing bio-cement pastes with cohesion promoters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531341A (en) * 2002-06-07 2005-10-20 カイフォン インコーポレイテッド Strontium-apatite-cement formulation and use thereof
JP4914005B2 (en) * 2002-06-07 2012-04-11 カイフォン・ソシエテ・ア・レスポンサビリテ・リミテ Strontium-apatite-cement formulation and use thereof
JP2009511420A (en) * 2005-10-18 2009-03-19 フィン−セラミカ ファエンツァ エス.ピー.エー. Complexes of polysubstituted hydroxyapatite with natural and / or synthetic polymers and their production and use
JP2010525070A (en) * 2007-04-23 2010-07-22 バクスター・インターナショナル・インコーポレイテッド Fibrin composition comprising a strontium compound
JP2013216678A (en) * 2007-04-23 2013-10-24 Baxter Internatl Inc Fibrin composition containing strontium compound
JP2012157629A (en) * 2011-02-02 2012-08-23 Nihon Univ Porous three-dimensional structure and use thereof
JP2015136469A (en) * 2014-01-22 2015-07-30 国立大学法人茨城大学 Phosphate type ceramic thin film containing bone formation accelerator, bone tissue implant having the thin film as surface layer, and method for producing the same

Also Published As

Publication number Publication date
EP1042252B1 (en) 2003-03-26
ES2194382T3 (en) 2003-11-16
FR2772746A1 (en) 1999-06-25
DE69812709T2 (en) 2004-03-25
KR20010033495A (en) 2001-04-25
FR2772746B1 (en) 2000-01-28
WO1999033766A1 (en) 1999-07-08
DE69812709D1 (en) 2003-04-30
EP1042252A1 (en) 2000-10-11
US6338810B1 (en) 2002-01-15
KR100573293B1 (en) 2006-04-24

Similar Documents

Publication Publication Date Title
JP2001527020A (en) Manufacturing method of apatite ceramics especially for biological use
JP2567888B2 (en) Solid calcium phosphate material
Safronova Inorganic materials for regenerative medicine
Famery et al. Preparation of α-and β-tricalcium phosphate ceramics, with and without magnesium addition
Kannan et al. Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study
DE69326082T2 (en) CALCIUM PHOSPHATE AS A HYDROXYAPATITE PRECURSOR AND METHOD FOR THE PRODUCTION AND USE THEREOF
EP2403544B1 (en) Galliated calcium phosphate biomaterials
EP0416761B1 (en) Formulations for in situ prepared calcium phosphate minerals
CA1332495C (en) In situ calcium phosphate minerals -- method and composition
US5281404A (en) Composition for forming calcium phosphate type setting material and process for producing setting material
EP0705802A1 (en) TYPE $g(a) TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
JP2002535225A (en) Inorganic green body and method for its production and use
EP0323632B1 (en) Composition for forming calcium phosphate type setting material and process for producing setting material
EP2228079A1 (en) Gallium-doped phosphocalcic compounds
US8894958B2 (en) Galliated calcium phosphate biomaterials
RU2395303C1 (en) Method for making biodegradable ceramic composite of double potassium calcium phosphate
JP3933716B2 (en) Method for producing α-tricalcium phosphate ceramic
Hashimoto Tricalcium Phosphate-based Nanoceramics
JPH0244054A (en) Self-curing composite bio-material having high strength and its preparation
JP2662984B2 (en) Composite composition for producing calcium phosphate-based cured product and method for producing cured product
JP3558680B2 (en) Method for producing tetracalcium phosphate, tetracalcium phosphate obtained by this method, and cement composition containing this tetracalcium phosphate
Nemoto et al. The Effects of Hydrothermal Conditions on Material Properties of Β-TCP/HA Composites Treated with Hydrothermal Method
JPH08239250A (en) Bioabsorbable cured material and its production
JPH0536064B2 (en)
JPH07187623A (en) Production of apatite fibrous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载