+

JP2001108735A - Instrument for measuring moving speed - Google Patents

Instrument for measuring moving speed

Info

Publication number
JP2001108735A
JP2001108735A JP28665499A JP28665499A JP2001108735A JP 2001108735 A JP2001108735 A JP 2001108735A JP 28665499 A JP28665499 A JP 28665499A JP 28665499 A JP28665499 A JP 28665499A JP 2001108735 A JP2001108735 A JP 2001108735A
Authority
JP
Japan
Prior art keywords
difference
carrier
reference station
mobile station
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28665499A
Other languages
Japanese (ja)
Other versions
JP4216419B2 (en
Inventor
Kenji Itani
健二 井澗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP28665499A priority Critical patent/JP4216419B2/en
Publication of JP2001108735A publication Critical patent/JP2001108735A/en
Application granted granted Critical
Publication of JP4216419B2 publication Critical patent/JP4216419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moving speed measuring instrument and a system therefor capable of eliminating determination for an integer bias, and capable of measuring a relative speed of a moving station with respect to a reference station precisely. SOLUTION: Carrier phase information about each satellite and relatively rough positions of the reference station and the moving station are found respectively in the both stations, a coefficient (speed conversion coefficient) between a relative moving amount with respect to the reference station and a variation of a double phase difference is found based on a positional relation therein, and the relative speed of the moving station is found based on the variation of the double phase difference of a carrier phase and the speed convertion coefficient.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、GPS衛星等の
測位用衛星から送信される電波を受信して、移動体の移
動速度を測定する装置に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to an apparatus for receiving a radio wave transmitted from a positioning satellite such as a GPS satellite and measuring a moving speed of a moving body.

【0002】[0002]

【従来の技術】従来のGPS等の測位用衛星を用いた測
位システムの主たる目的は、受信点の測位を行うことで
あり、要求される測位精度に応じて単独測位または相対
測位が行われていた。
2. Description of the Related Art A main purpose of a conventional positioning system using positioning satellites such as GPS is to perform positioning of a receiving point, and independent positioning or relative positioning is performed according to required positioning accuracy. Was.

【0003】また、受信点の移動速度を測定する場合に
は、単独測位を行うとともに、受信点の移動に伴って、
測位用衛星のキャリア周波数と受信機側で発生したキャ
リア信号の周波数との間に生じるドップラシフト周波数
成分を抽出し、これを基に受信点の移動速度を求めるよ
うにしていた。
[0003] When measuring the moving speed of a receiving point, a single positioning is performed, and the moving speed of the receiving point is increased.
The Doppler shift frequency component generated between the carrier frequency of the positioning satellite and the frequency of the carrier signal generated on the receiver side is extracted, and the moving speed of the receiving point is obtained based on the extracted Doppler shift frequency component.

【0004】[0004]

【発明が解決しようとする課題】ところが、単独測位を
行うとともに、ドップラシフト周波数を抽出して受信点
の移動速度を測定する従来の方法では、たとえば数cm
/秒の精度の高精度で受信点の移動速度を求めることは
不可能であった。また、或る基準とする点に対する移動
速度(相対速度)を測定することはできなかった。
However, in the conventional method of performing single positioning and extracting the Doppler shift frequency to measure the moving speed of the receiving point, for example, several centimeters are used.
It was impossible to determine the moving speed of the receiving point with high accuracy of the accuracy of 1 / sec. Further, the moving speed (relative speed) with respect to a certain reference point cannot be measured.

【0005】そこで、従来実用化されているリアルタイ
ムキネマティックGPS(RTK−GPS)装置で相対
速度を求めようとすれば、或る1つの衛星を基準とし
て2つの衛星を組とし、基準局と移動局とで複数組の衛
星について、それぞれ2つのGPS衛星からの電波を受
信して、キャリア位相の二重位相差を求める。二重位
相差に加算すべき整数値バイアス(整数波長の下駄履き
分)を決定する。複数の二重位相差から、基準局に対
する移動局の相対位置を求める。移動局の相対位置の
単位時間当たりの移動量から、移動局の基準局に対する
相対速度を求める、という手順となる。
In order to determine the relative speed using a conventional real-time kinematic GPS (RTK-GPS) device, two satellites are grouped based on one satellite, and a reference station and a mobile station are used. With respect to a plurality of sets of satellites, radio waves from two GPS satellites are received, and a double phase difference between carrier phases is obtained. The integer value bias (the amount of clogging of the integer wavelength) to be added to the double phase difference is determined. The relative position of the mobile station with respect to the reference station is obtained from the plurality of double phase differences. The procedure is to determine the relative speed of the mobile station with respect to the reference station from the amount of movement per unit time of the relative position of the mobile station.

【0006】上記の方法によれば、数cm/秒の精度の
高精度で受信点の移動速度を求めることが可能である。
しかし、この方法では、上記整数値バイアスが決定され
なければ、相対速度の測定は全く不可能である。受信機
の電源を投入してから整数値バイアスが決定されるまで
には、通常15分を必要とし、それまでは測定できな
い。また、整数値バイアスの決定に要する数以上の衛星
からの電波が受信できないような条件の下では、整数値
バイアスが決定されないため、相対速度の測定は不可能
である。
According to the above method, it is possible to determine the moving speed of the receiving point with high accuracy of several cm / sec.
However, in this method, it is impossible to measure the relative speed at all unless the integer bias is determined. It usually takes 15 minutes from when the power of the receiver is turned on until the integer value bias is determined, and it cannot be measured until then. Further, under such a condition that radio waves from more than the number of satellites required for determining the integer value bias cannot be received, the relative speed cannot be measured because the integer value bias is not determined.

【0007】この発明の目的は、上記整数値バイアスの
決定を不要として、且つ基準局に対する移動局の相対速
度を高精度に測定できるようにした移動速度測定装置お
よびそのシステムを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a moving speed measuring apparatus and a system therefor which make it unnecessary to determine the above-mentioned integer value bias and can measure the relative speed of the mobile station with respect to the reference station with high accuracy.

【0008】[0008]

【課題を解決するための手段】この発明は、基準局で、
各測位用衛星のキャリア位相を観測し、それらのキャリ
ア位相情報を電波等で送信し、移動局で、上記基準局で
求められた各測位用衛星のキャリア位相情報を受信し、
また各測位用衛星からの電波を受信して各々のキャリア
位相を観測するとともに、これらのキャリア位相と基準
局で求められたキャリア位相とを基にキャリア位相の二
重位相差の時間経過に伴う変化量を求める。また、移動
局の単位相対移動量に対する二重位相差の変化量の係数
である速度変換係数を求め、この速度変換係数と上記二
重位相差の変化量とから、基準局に対する移動局の相対
移動速度を求める。
SUMMARY OF THE INVENTION The present invention provides a base station,
Observe the carrier phase of each positioning satellite, transmit their carrier phase information by radio waves, etc., and receive, at the mobile station, the carrier phase information of each positioning satellite obtained by the reference station,
In addition to receiving radio waves from each positioning satellite and observing each carrier phase, the change over time of the double phase difference of the carrier phase based on these carrier phases and the carrier phase obtained by the reference station Find the quantity. Further, a speed conversion coefficient which is a coefficient of a change amount of the double phase difference with respect to the unit relative movement amount of the mobile station is obtained, and the relative movement of the mobile station with respect to the reference station is obtained from the speed conversion coefficient and the change amount of the double phase difference. Find the speed.

【0009】すなわち、上記速度変換係数をA〔位相差
変化量/単位相対移動量〕とし、キャリア位相の二重位
相差の1秒間の変化量をrとすれば、相対速度xは、 x=A-1r で求める。但し、xは3次元ベクトルである。
That is, assuming that the speed conversion coefficient is A [phase difference change amount / unit relative movement amount] and the change amount of the carrier phase double phase difference for one second is r, the relative speed x is x = It is determined by A -1 r. Here, x is a three-dimensional vector.

【0010】またこの発明は、基準局で、各測位用衛星
のキャリア周波数と受信機側で発生したキャリア信号の
周波数との差を観測してその情報を送信し、移動局で、
各測位用衛星からの電波を受信して各々のキャリア周波
数と受信機側で発生したキャリア信号の周波数との差
(以下「キャリア周波数差」という。)を観測するとと
もに、これらのキャリア周波数差と、基準局から受信し
た各測位用衛星についてのキャリア周波数差とを基に、
キャリア周波数差の二重差を求める。また移動局の相対
移動速度に対するキャリア周波数差の二重差の係数であ
る速度変換係数を求め、この速度変換係数とキャリア周
波数差の二重差とから、基準局に対する移動局の相対移
動速度を求める。
Further, according to the present invention, the reference station observes the difference between the carrier frequency of each positioning satellite and the frequency of the carrier signal generated on the receiver side and transmits the information, and the mobile station transmits the information.
Radio waves from each positioning satellite are received, and the difference between each carrier frequency and the frequency of the carrier signal generated on the receiver side (hereinafter referred to as “carrier frequency difference”) is observed. , Based on the carrier frequency difference for each positioning satellite received from the reference station,
Find the double difference in carrier frequency difference. Further, a speed conversion coefficient which is a coefficient of a double difference of a carrier frequency difference with respect to a relative movement speed of the mobile station is obtained, and a relative movement speed of the mobile station with respect to the reference station is obtained from the speed conversion coefficient and a double difference of the carrier frequency difference. .

【0011】すなわち、上記速度変換係数をA〔キャリ
ア周波数差/相対移動速度〕とし、キャリア周波数差の
二重差をrとすれば、相対速度xは、 x=A-1r で求める。但し、xは3次元ベクトルである。
That is, assuming that the speed conversion coefficient is A [carrier frequency difference / relative moving speed] and the double difference of the carrier frequency difference is r, the relative speed x is obtained as x = A -1 r. Here, x is a three-dimensional vector.

【0012】[0012]

【発明の実施の形態】第1の実施形態に係る移動速度測
定装置およびそのシステムの構成を図1〜図5を参照し
て説明する。図1は移動速度測定システムの構成を示す
ブロック図である。図1において基準局はたとえば陸地
に固定されていて、移動局は船舶に設けられている。基
準局はGPSアンテナ、DGPS(コードディファレン
シャルGPS)補正データを受信するアンテナおよび移
動局との間で無線データリンクに用いる送信アンテナを
備えている。移動局にはGPSアンテナと上記無線デー
タリンク用の受信アンテナを備えている。この例では2
つの移動局を示しているが、移動局同士は独立してい
て、それぞれ基準局とペアで、基準局に対する移動局の
移動速度(相対速度)を測定する。したがって、システ
ムによっては、移動局は単一であってもよいし、3つ以
上の多数であってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of a moving speed measuring device and a system thereof according to a first embodiment will be described with reference to FIGS. FIG. 1 is a block diagram showing the configuration of the moving speed measuring system. In FIG. 1, a reference station is fixed on land, for example, and a mobile station is provided on a ship. The reference station includes a GPS antenna, an antenna for receiving DGPS (Code Differential GPS) correction data, and a transmission antenna used for a wireless data link with the mobile station. The mobile station has a GPS antenna and a receiving antenna for the wireless data link. In this example, 2
Although two mobile stations are shown, the mobile stations are independent from each other, and each mobile station measures the moving speed (relative speed) of the mobile station with respect to the reference station in pairs. Therefore, depending on the system, the number of mobile stations may be single, or may be as many as three or more.

【0013】図2の(A)は基準局の構成を示すブロッ
ク図、(B)は1つの移動局の構成を示すブロック図で
ある。基準局において、受信回路11はGPSアンテナ
からの受信信号を増幅して中間周波信号に変換する。A
/Dコンバータ12は、その受信信号をディジタル信号
のデータ列としてディジタル信号処理回路13へ与え
る。このディジタル信号処理回路13は、そのディジタ
ルデータ列に対して演算処理を行って、C/Aコード位
相とキャリア位相を求める。プロセッサ14は、CP
U、ROM、RAM等からなり、上記ディジタル信号処
理回路13で求められた各相関値からキャリア位相およ
びC/Aコードの位相を検出し、キャリア位相とC/A
コード位相の追尾を行う。
FIG. 2A is a block diagram showing a configuration of a reference station, and FIG. 2B is a block diagram showing a configuration of one mobile station. In the reference station, the receiving circuit 11 amplifies a signal received from the GPS antenna and converts the signal into an intermediate frequency signal. A
/ D converter 12 supplies the received signal to digital signal processing circuit 13 as a digital signal data string. The digital signal processing circuit 13 performs arithmetic processing on the digital data sequence to obtain a C / A code phase and a carrier phase. The processor 14 has a CP
U, ROM, RAM, and the like. The carrier phase and the C / A code phase are detected from each correlation value obtained by the digital signal processing circuit 13, and the carrier phase and the C / A code are detected.
Tracks the code phase.

【0014】DGPS補正データ受信機15は、FM放
送等に多重化されているDGPS補正データを受信し、
各衛星についての擬似距離補正データを求める。プロセ
ッサ14は、インタフェース16を介してそのデータを
読み取る。
The DGPS correction data receiver 15 receives the DGPS correction data multiplexed on the FM broadcast or the like,
Pseudorange correction data for each satellite is obtained. Processor 14 reads the data via interface 16.

【0015】データ送信機17は各衛星のキャリア位相
データ、基準局の位置データ、およびDGPS補正デー
タを所定のフォーマットで移動局へ無線送信する。プロ
セッサ14はインタフェース18を介してこれらの送信
データをデータ送信機17へ与える。
The data transmitter 17 wirelessly transmits the carrier phase data of each satellite, the position data of the reference station, and the DGPS correction data to the mobile station in a predetermined format. Processor 14 provides these transmission data to data transmitter 17 via interface 18.

【0016】図2の(B)において受信回路21は、G
PSアンテナからの受信信号を増幅して中間周波信号に
変換する。A/Dコンバータ22は、その受信信号をデ
ィジタル信号のデータ列としてディジタル信号処理回路
23へ与える。このディジタル信号処理回路23は、そ
のディジタルデータ列に対して演算処理を行って、C/
Aコード位相とキャリア位相を求める。プロセッサ24
は、CPU、ROM、RAM等からなり、上記ディジタ
ル信号処理回路23で求められた各相関値からキャリア
位相およびC/Aコードの位相を検出し、キャリア位相
とC/Aコード位相の追尾を行う。
In FIG. 2B, the receiving circuit 21
The signal received from the PS antenna is amplified and converted to an intermediate frequency signal. A / D converter 22 supplies the received signal to digital signal processing circuit 23 as a digital signal data string. The digital signal processing circuit 23 performs arithmetic processing on the digital data sequence, and
Find the A code phase and carrier phase. Processor 24
Comprises a CPU, a ROM, a RAM, and the like, detects a carrier phase and a C / A code phase from each correlation value obtained by the digital signal processing circuit 23, and performs tracking of the carrier phase and the C / A code phase. .

【0017】データ受信機27は基準局から送信され
た、各衛星のキャリア位相データ、基準局の位置デー
タ、およびDGPS補正データを含む信号を受信し、プ
ロセッサ24はインタフェース28を介してそれらのデ
ータを抽出して所定領域に格納する。
Data receiver 27 receives signals transmitted from the reference station, including carrier phase data for each satellite, position data for the reference station, and DGPS correction data, and processor 24 extracts the data via interface 28. And store it in a predetermined area.

【0018】図3は、図2に示した基準局および移動局
におけるディジタル信号処理回路の主要部の構成を示す
ブロック図である。図3においてキャリアNCO46
は、基準クロック信号と、図2に示したプロセッサから
与えられる数値制御データに基づいた周波数でキャリア
周波数信号の実部成分(I信号)と虚部成分(Q信号)
を発生し、4つの乗算器34,35,36,37に対し
て上記I信号とQ信号を与える。このコードNCO47
は、基準クロック信号とプロセッサから与えられる制御
データに応じた周波数および位相でコード発生器48を
制御する。コード発生器48はコードNCO47から与
えられる信号を基にC/Aコードを発生し、図に示した
3つの乗算器に対して0.5チップ進んだC/Aコード
“E”、0.5チップ遅れたC/Aコード“L”および
進み遅れのない0チップのC/Aコード“P”とをそれ
ぞれ与える。PI積分器38は、入力データにC/Aコ
ード“P”が乗算され、さらにキャリアのI信号が乗算
された値を所定時間積分して、その値をI相関値として
レジスタ39へ入れる。PQ積分器40は、入力データ
にC/Aコード“P”が乗算され、さらにキャリアのQ
信号が乗算された値を所定時間積分して、その値をQ相
関値としてレジスタ41へ入れる。EI積分器42は、
入力データにC/Aコード“E”が乗算され、さらにキ
ャリアのI信号が乗算された値を所定時間積分する。ま
た、LI積分器43は、入力データにC/Aコード
“L”が乗算され、さらにキャリアのI信号が乗算され
た値を所定時間積分する。加算器44はEI積分器42
の積分結果からLI積分器43の積分結果を減じて、そ
の値をE−L相関値としてレジスタ45へ入れる。
FIG. 3 is a block diagram showing a configuration of a main part of a digital signal processing circuit in the reference station and the mobile station shown in FIG. In FIG. 3, the carrier NCO 46
Is a frequency based on the reference clock signal and the numerical control data given from the processor shown in FIG. 2, and the real part component (I signal) and the imaginary part component (Q signal) of the carrier frequency signal.
And the above I signal and Q signal are given to four multipliers 34, 35, 36 and 37. This code NCO47
Controls the code generator 48 at a frequency and phase according to the reference clock signal and control data provided from the processor. The code generator 48 generates a C / A code based on the signal given from the code NCO 47, and the C / A code "E", 0.5, which is advanced by 0.5 chip for the three multipliers shown in FIG. A chip-delayed C / A code “L” and a zero-chip C / A code “P” with no lead / lag are provided, respectively. The PI integrator 38 integrates a value obtained by multiplying the input data by the C / A code “P” and further multiplied by the I signal of the carrier for a predetermined period of time, and inputs the value to the register 39 as an I correlation value. The PQ integrator 40 multiplies the input data by the C / A code “P”,
The value obtained by multiplying the signal is integrated for a predetermined time, and the integrated value is input to the register 41 as a Q correlation value. The EI integrator 42
The input data is multiplied by the C / A code “E”, and the value obtained by multiplying the multiplied by the I signal of the carrier is integrated for a predetermined time. Further, the LI integrator 43 integrates a value obtained by multiplying the input data by the C / A code “L” and further multiplied by the carrier I signal for a predetermined time. The adder 44 is an EI integrator 42
Is subtracted from the integration result of the LI integrator 43, and the result is entered into the register 45 as the EL correlation value.

【0019】図2に示したプロセッサ14および24
は、図3に示したレジスタ39,41に求められたI相
関値とQ相関値からキャリア位相を検出し、またレジス
タ45に求められたE−L相関値からコード位相を検出
する。
Processors 14 and 24 shown in FIG.
Detects the carrier phase from the I correlation value and the Q correlation value obtained by the registers 39 and 41 shown in FIG. 3, and detects the code phase from the EL correlation value obtained by the register 45.

【0020】図4は基準局におけるプロセッサの処理手
順を示すフローチャートである。基準局における測位処
理では、(A)に示すように、まずDGPS補正データ
を受信し、また各衛星から基準局の受信点までの擬似距
離を観測する。そしてこれらの擬似距離をDGPS補正
データで補正し、基準局の位置をコードディファレンシ
ャル測位する。
FIG. 4 is a flowchart showing a processing procedure of the processor in the reference station. In the positioning processing at the reference station, as shown in FIG. 3A, first, DGPS correction data is received, and a pseudorange from each satellite to the reception point of the reference station is observed. Then, these pseudo distances are corrected with the DGPS correction data, and the position of the reference station is subjected to code differential positioning.

【0021】基準局におけるキャリア位相観測処理で
は、図4の(B)に示すように、各衛星について上記I
相関値とQ相関値とに基づいてキャリア位相を観測し、
各衛星についてのキャリア位相データを求める。
In the carrier phase observation processing at the reference station, as shown in FIG.
Observing the carrier phase based on the correlation value and the Q correlation value,
Find carrier phase data for each satellite.

【0022】基準局におけるデータ送信処理では、図4
の(C)に示すように、各衛星のキャリア位相データ、
基準局の位置データおよびDGPS補正データを所定の
データフォーマットで移動局へ無線送信する。
In the data transmission process at the reference station, FIG.
(C), carrier phase data of each satellite,
The position data of the reference station and the DGPS correction data are wirelessly transmitted to the mobile station in a predetermined data format.

【0023】図5は移動局における処理手順を示すフロ
ーチャートである。移動局におけるデータ受信処理で
は、図5の(A)に示すように、基準局で求められた各
衛星のキャリア位相データ、基準局の位置データおよび
DGPS補正データを基準局から受信する。
FIG. 5 is a flowchart showing a processing procedure in the mobile station. In the data reception processing in the mobile station, as shown in FIG. 5A, the carrier phase data of each satellite, the position data of the reference station, and the DGPS correction data obtained by the reference station are received from the reference station.

【0024】移動局における測位処理では、図5の
(B)に示すように、まず、各衛星について、受信点ま
での擬似距離を観測し、DGPS補正データで補正して
コードディファレンシャル測位を行う。そして基準局と
移動局の位置関係において、基準局に対する移動局の相
対移動量に対するキャリア位相の二重位相差の変化量の
係数である速度変換係数を求める。この値は、各組の2
つの衛星の位置と基準局および移動局の位置関係から逆
算する。
In the positioning processing in the mobile station, first, as shown in FIG. 5B, a pseudo distance to a receiving point is observed for each satellite, corrected with DGPS correction data, and code differential positioning is performed. Then, in the positional relationship between the reference station and the mobile station, a speed conversion coefficient which is a coefficient of a change amount of a double phase difference of a carrier phase with respect to a relative movement amount of the mobile station with respect to the reference station is obtained. This value is 2
Back calculation is performed from the positions of two satellites and the positions of the reference station and the mobile station.

【0025】移動局における移動速度測定の処理では、
図5の(C)に示すように、まず各衛星についてキャリ
ア位相を観測し、このキャリア位相と、基準局で求めら
れた各衛星のキャリア位相とから、或る衛星を基準とし
て2つの衛星を組とし、基準局と移動局におけるキャリ
ア位相の二重位相差を求める。すなわち、基準とする衛
星について基準局で観測したキャリア位相と、移動局で
観測したキャリア位相との差(一重位相差)を求め、ま
た他の1つの衛星について同様に一重位相差を求め、上
記一重位相差の差を二重位相差として求める。これを上
記基準とする衛星と他の複数の衛星を組としてそれぞれ
求める。そして、前回求めたキャリア位相二重位相差に
対する、今回求めたキャリア位相二重位相差の変化量を
求める。この図5の(C)に示す処理を毎秒行う場合に
は、この変化量は1秒当たりのキャリア位相二重位相差
の変化量である。その後、上記二重位相差の変化量とす
でに求めた速度変換係数とから相対速度を算出する。す
なわち、上記速度変換係数をA〔位相差変化量/単位相
対移動量〕とし、キャリア位相の二重位相差の1秒間の
変化量をrとすれば、相対速度xを、 x=A-1r で求める。但し、xは3次元ベクトルである。
In the processing of the moving speed measurement in the mobile station,
As shown in FIG. 5C, first, a carrier phase is observed for each satellite, and two satellites are grouped based on a certain satellite based on the carrier phase and the carrier phase of each satellite obtained by the reference station. Then, a double phase difference between carrier phases at the reference station and the mobile station is obtained. That is, the difference (single phase difference) between the carrier phase observed at the reference station and the carrier phase observed at the mobile station for the reference satellite is obtained, and the single phase difference is similarly obtained for the other satellite. The difference between the phase differences is determined as a double phase difference. A satellite with this as a reference and a plurality of other satellites are obtained as a set. Then, a change amount of the carrier phase double phase difference obtained this time with respect to the carrier phase double phase difference obtained last time is obtained. When the process shown in FIG. 5C is performed every second, this change amount is the change amount of the carrier phase double phase difference per second. Thereafter, a relative speed is calculated from the change amount of the double phase difference and the speed conversion coefficient already obtained. That is, the speed conversion coefficient is A [retardation variation / unit relative movement], if the amount of change per second of the double phase difference of the carrier phase is r, the relative velocity x, x = A -1 r. Here, x is a three-dimensional vector.

【0026】次に、第2の実施形態に係る移動速度測定
装置およびそのシステムの構成を図6および図7を参照
して説明する。
Next, the configuration of a moving speed measuring device and a system thereof according to a second embodiment will be described with reference to FIGS.

【0027】第1の実施形態では、キャリア位相の二重
位相差を基にして移動速度を求めるようにしたが、この
第2の実施形態では受信機側で発生したキャリア周波数
に対する各衛星のキャリア周波数の差を基にして移動速
度を求めるものである。
In the first embodiment, the moving speed is obtained based on the double phase difference of the carrier phase. In the second embodiment, however, the carrier frequency of each satellite with respect to the carrier frequency generated on the receiver side is determined. The moving speed is obtained based on the frequency difference.

【0028】図6は基準局における処理手順を示すフロ
ーチャートである。基準局における測位処理は図6の
(A)に示すとおりであり、第1の実施形態の場合と同
様である。基準局におけるキャリア周波数差観測処理で
は、図6の(B)に示すように、受信機側でキャリア周
波数と仮定して発振させた発振周波数に対する各衛星の
キャリア周波数の差すなわちドップラーシフト周波数を
観測する。これは、図3に示した信号処理の構成におい
て、キャリア位相の追尾状態でキャリアNCO46から
出力されるキャリアのI信号およびQ信号の繰り返し周
波数と基準クロック信号との周波数差に相当する。結
局、プロセッサがキャリア位相追尾のためにキャリアN
CO46に所定周期で与えられる制御データが上記キャ
リア周波数の差のデータに対応する。このように、各衛
星についてキャリア周波数差を観測してそのデータを求
める。
FIG. 6 is a flowchart showing a processing procedure in the reference station. The positioning process in the reference station is as shown in FIG. 6A, and is the same as in the first embodiment. In the carrier frequency difference observation processing in the reference station, as shown in FIG. 6B, the difference between the carrier frequency of each satellite and the Doppler shift frequency with respect to the oscillation frequency oscillated on the receiver side assuming the carrier frequency is observed. . This corresponds to the frequency difference between the reference clock signal and the repetition frequency of the I and Q signals of the carrier output from the carrier NCO 46 in the carrier phase tracking state in the signal processing configuration shown in FIG. Eventually, the processor determines the carrier N for carrier phase tracking.
The control data given to the CO 46 at a predetermined cycle corresponds to the data of the difference between the carrier frequencies. In this way, the carrier frequency difference is observed for each satellite to obtain the data.

【0029】基準局におけるデータ送信処理では、図6
の(C)に示すように、各衛星ついてのキャリア周波数
差のデータ、基準局の位置データ、およびDGPS補正
データを移動局に対して無線送信する。
In the data transmission processing at the reference station, FIG.
As shown in (C), data of the carrier frequency difference for each satellite, position data of the reference station, and DGPS correction data are wirelessly transmitted to the mobile station.

【0030】図7は移動局における処理手順を示すフロ
ーチャートである。移動局におけるデータ受信処理で
は、図7の(A)に示すように、基準局で求められた各
衛星のキャリア周波数差のデータ、基準局の位置デー
タ、およびDGPS補正データを含む所定フォーマット
の信号を基準局から受信して、これらのデータを抽出す
る。
FIG. 7 is a flowchart showing a processing procedure in the mobile station. In the data receiving process in the mobile station, as shown in FIG. 7A, a signal in a predetermined format including carrier frequency difference data of each satellite obtained by the reference station, position data of the reference station, and DGPS correction data is transmitted to the reference station. And extract these data.

【0031】移動局における測位処理では、図7の
(B)に示すように、まず、各衛星について、受信点ま
での擬似距離を観測し、DGPS補正データで補正して
コードディファレンシャル測位を行う。そして基準局と
移動局の位置関係において、基準局に対する移動局の相
対移動速度とキャリア周波数差の二重差の係数である速
度変換係数を求める。この値は、各組の2つの衛星の位
置と基準局および移動局の位置関係から逆算する。
In the positioning process in the mobile station, as shown in FIG. 7B, first, for each satellite, a pseudo distance to a receiving point is observed, corrected with DGPS correction data, and code differential positioning is performed. Then, in the positional relationship between the reference station and the mobile station, a speed conversion coefficient which is a coefficient of a double difference between a relative movement speed of the mobile station with respect to the reference station and a carrier frequency difference is obtained. This value is calculated backward from the positions of the two satellites in each set and the positions of the reference station and the mobile station.

【0032】移動局における移動速度測定処理では、図
7の(C)に示すように、まず受信機側で発生したキャ
リア周波数に対する各衛星のキャリア周波数の差を観測
する。そして2つの衛星を組とするキャリア周波数差の
二重差を求める。すなわち或る基準とする衛星について
基準局で観測したキャリア周波数差と移動局で観測した
キャリア周波数差との差(一重差)を求め、他の衛星に
ついて同様にキャリア周波数差の一重差を求め、この2
つの一重差同士の差をキャリア周波数差の二重差として
求める。そして、このキャリア周波数差の二重差と上記
速度変換係数とから相対速度を算出する。すなわち、上
記速度変換係数をA〔キャリア周波数差/相対移動速
度〕とし、キャリア周波数差の二重差をrとすれば、相
対速度xを、 x=A-1r で求める。但し、xは3次元ベクトルである。
In the moving speed measuring process in the mobile station, first, as shown in FIG. 7C, the difference between the carrier frequency of each satellite and the carrier frequency generated on the receiver side is observed. Then, a double difference of the carrier frequency difference between the two satellites is determined. That is, the difference (single difference) between the carrier frequency difference observed by the reference station and the carrier frequency difference observed by the mobile station for a certain reference satellite is determined, and the single difference of the carrier frequency difference is similarly calculated for the other satellites. 2
The difference between the single differences is determined as the double difference of the carrier frequency difference. Then, a relative speed is calculated from the double difference of the carrier frequency difference and the speed conversion coefficient. That is, assuming that the speed conversion coefficient is A [carrier frequency difference / relative moving speed] and the double difference of the carrier frequency difference is r, the relative speed x is obtained by x = A −1 r. Here, x is a three-dimensional vector.

【0033】以上に示したいずれの実施形態でも、基準
局と移動局の位置をたとえば±10m程度の測位精度で
測位すれば、基準局を中心として半径10km程度の範
囲で2cm/秒程度の相対速度の測定精度が得られる。
In any of the embodiments described above, if the positions of the reference station and the mobile station are measured with a positioning accuracy of, for example, about ± 10 m, a relative speed of about 2 cm / sec within a radius of about 10 km with respect to the reference station. Measurement accuracy is obtained.

【0034】また、このような相対速度測定システムを
用いれば、たとえばタンカー等大型船の接岸速度計とし
て用いることができる。すなわち、基準局を陸地に固定
しておき、移動局を船に設けておくことにより、各船は
岸壁に対する接近速度を測定することができる。
If such a relative speed measuring system is used, it can be used as a berthing speed meter for a large ship such as a tanker, for example. That is, by fixing the reference station to the land and providing the mobile station to the ship, each ship can measure the approach speed to the quay.

【0035】なお、実施形態では基準局を陸地の固定位
置に設け、移動局を船舶に設けたため、実質上船舶の絶
対速度を測定するようにしたが、基準局も移動局と同様
に移動体に設ければ、両者の相対速度を求めることがで
きる。
In the embodiment, the reference station is provided at a fixed position on land and the mobile station is provided on the ship. Therefore, the absolute speed of the ship is substantially measured. However, the reference station is provided on the mobile body similarly to the mobile station. Then, the relative speed between the two can be obtained.

【0036】また実施形態では、基準局の位置をDGP
Sによりコードディファレンシャル測位を行ったが、基
準局が常に固定であって、その位置が既知であれば、基
準局の測位は不要である。
In the embodiment, the position of the reference station is determined by the DGP.
The code differential positioning was performed by S. However, if the reference station is always fixed and its position is known, the positioning of the reference station is unnecessary.

【0037】また、実施形態では基準局と移動局の位置
をコードディファレンシャル測位を行って測位するよう
にしたが、これらを単独測位で求めるようにしてもよ
い。この場合、2cm/秒程度の相対速度の測定精度が
得られる範囲が基準局を中心として半径1km程度に狭
くなる。
Further, in the embodiment, the positions of the reference station and the mobile station are determined by performing code differential positioning, but they may be determined by independent positioning. In this case, the range in which the relative velocity measurement accuracy of about 2 cm / sec is obtained is narrowed to a radius of about 1 km around the reference station.

【0038】[0038]

【発明の効果】この発明によれば、整数値バイアスの決
定が不要であるため、受信を開始した直後から移動速度
の測定が可能となる。また、受信可能な衛星数がキャリ
アの整数値バイアスを決定可能な数に満たない場合でも
高精度な移動速度の測定が可能となる。
According to the present invention, since it is not necessary to determine the integer value bias, it is possible to measure the moving speed immediately after starting the reception. Further, even when the number of receivable satellites is less than the number that can determine the integer bias of the carrier, it is possible to measure the moving speed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係る移動速度測定システムの
構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a moving speed measuring system according to a first embodiment.

【図2】基準局および移動局の構成を示すブロック図FIG. 2 is a block diagram showing a configuration of a reference station and a mobile station.

【図3】基準局および移動局におけるディジタル信号処
理回路の構成を示すブロック図
FIG. 3 is a block diagram showing a configuration of a digital signal processing circuit in a reference station and a mobile station.

【図4】基準局における処理手順を示すフローチャートFIG. 4 is a flowchart showing a processing procedure in a reference station.

【図5】移動局における処理手順を示すフローチャートFIG. 5 is a flowchart showing a processing procedure in a mobile station.

【図6】第2の実施形態に係る移動速度測定システムに
おける基準局の処理手順を示すフローチャート
FIG. 6 is a flowchart illustrating a processing procedure of a reference station in the moving speed measurement system according to the second embodiment.

【図7】同システムにおける移動局の処理手順を示すフ
ローチャート
FIG. 7 is a flowchart showing a processing procedure of a mobile station in the system.

【符号の説明】[Explanation of symbols]

31〜37−乗算器 44−加算器 31-37-Multiplier 44-Adder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 移動局に設けられる移動速度測定装置で
あって、 基準局で求められた各測位用衛星のキャリア位相情報を
受信する手段と、各測位用衛星からの電波を受信して各
々のキャリア位相を観測するとともに、当該キャリア位
相と前記基準局から受信した各測位用衛星のキャリア位
相とを基に、キャリア位相の二重位相差の時間経過にと
もなう変化量を求める手段と、移動局の単位相対移動量
に対する二重位相差の変化量の係数である速度変換係数
を求め、該速度変換係数と前記二重位相差の変化量とか
ら、基準局に対する移動局の相対移動速度を求める手段
とを備えてなる移動速度測定装置。
1. A moving speed measuring device provided in a mobile station, comprising: means for receiving carrier phase information of each positioning satellite obtained by a reference station; Means for observing the carrier phase, obtaining a change amount of the double phase difference of the carrier phase over time based on the carrier phase and the carrier phase of each positioning satellite received from the reference station; and Means for obtaining a speed conversion coefficient which is a coefficient of a change amount of the double phase difference with respect to the unit relative movement amount, and for obtaining a relative movement speed of the mobile station with respect to the reference station from the speed conversion coefficient and the change amount of the double phase difference; A moving speed measuring device comprising:
【請求項2】 移動局に設けられる移動速度測定装置で
あって、 基準局で求められた、各測位用衛星のキャリア周波数と
基準局の受信機側で発生したキャリア信号の周波数との
差を表すキャリア周波数差情報を受信する手段と、各測
位用衛星からの電波を受信して各々のキャリア周波数と
移動局の受信機側で発生したキャリア信号の周波数との
差を観測するとともに、当該キャリア周波数の差と前記
基準局から受信した各測位用衛星についてのキャリア周
波数差情報とを基に、キャリア周波数差の二重差を求め
る手段と、前記移動局の相対移動速度に対するキャリア
周波数差の二重差の係数である速度変換係数を求め、該
速度変換係数と前記キャリア周波数差の二重差とから、
基準局に対する移動局の相対移動速度を求める手段とを
備えてなる移動速度測定装置。
2. A moving speed measuring device provided in a mobile station, comprising: a carrier representing a difference between a carrier frequency of each positioning satellite and a frequency of a carrier signal generated on a receiver side of the reference station, obtained by the reference station. Means for receiving frequency difference information, while receiving radio waves from each positioning satellite and observing the difference between each carrier frequency and the frequency of a carrier signal generated on the receiver side of the mobile station, Means for calculating a double difference of the carrier frequency difference based on the difference and the carrier frequency difference information about each positioning satellite received from the reference station, and a double difference of the carrier frequency difference with respect to the relative moving speed of the mobile station. Determine a speed conversion coefficient that is a coefficient, from the speed conversion coefficient and the double difference of the carrier frequency difference,
Means for calculating a relative moving speed of the mobile station with respect to the reference station.
【請求項3】 基準局に対する移動局の相対移動速度を
測定する移動速度測定システムであって、 各測位用衛星のキャリア位相を観測して、該キャリア位
相情報を送信する手段を基準局に設け、 前記基準局から各衛星のキャリア位相情報を受信する手
段と、各測位用衛星からの電波を受信して各々のキャリ
ア位相を観測するとともに、当該キャリア位相と前記基
準局から受信した各測位用衛星のキャリア位相とを基
に、キャリア位相の二重位相差の時間経過にともなう変
化量を求める手段と、移動局の単位相対移動量に対する
二重位相差の変化量の係数である速度変換係数を求め、
該速度変換係数と前記二重位相差の変化量とから、基準
局に対する移動局の相対移動速度を求める手段とを移動
局に設けてなる移動速度測定システム。
3. A moving speed measuring system for measuring a moving speed of a mobile station relative to a reference station, wherein a means for observing a carrier phase of each positioning satellite and transmitting the carrier phase information is provided in the reference station, Means for receiving the carrier phase information of each satellite from the reference station, and receiving radio waves from each positioning satellite and observing each carrier phase, as well as the carrier phase and the carrier phase of each positioning satellite received from the reference station. Based on the means for determining the amount of change in the double phase difference of the carrier phase over time, and a speed conversion coefficient that is a coefficient of the amount of change of the double phase difference with respect to the unit relative movement amount of the mobile station,
A moving speed measuring system comprising: a means for calculating a relative moving speed of the mobile station with respect to a reference station from the speed conversion coefficient and the change amount of the double phase difference.
【請求項4】 基準局に対する移動局の相対移動速度を
測定する移動速度測定システムであって、 各測位用衛星のキャリア周波数と受信機側で発生したキ
ャリア信号の周波数との差を求め、キャリア周波数差情
報として送信する手段を基準局に設け、 前記基準局で求められた各衛星についてキャリア周波数
差情報を受信する手段と、各測位用衛星からの電波を受
信して各々のキャリア周波数と移動局の受信機側で発生
したキャリア信号の周波数との差を観測するとともに、
当該キャリア周波数の差と前記基準局から受信した各測
位用衛星についてのキャリア周波数差情報とを基に、キ
ャリア周波数差の二重差を求める手段と、移動局の相対
移動速度に対するキャリア周波数差の二重差の係数であ
る速度変換係数を求め、該速度変換係数と前記キャリア
周波数差の二重差とから、基準局に対する移動局の相対
移動速度を求める手段とを移動局に設けてなる移動速度
測定システム。
4. A moving speed measuring system for measuring a moving speed of a mobile station relative to a reference station, wherein a difference between a carrier frequency of each positioning satellite and a frequency of a carrier signal generated at a receiver side is obtained. Means for transmitting the difference information at the reference station, means for receiving carrier frequency difference information for each satellite determined by the reference station, and reception of radio waves from each positioning satellite and reception of each carrier frequency and mobile station While observing the difference from the frequency of the carrier signal generated on the machine side,
Means for obtaining a double difference in carrier frequency difference based on the carrier frequency difference and carrier frequency difference information for each positioning satellite received from the reference station; A speed conversion coefficient which is a coefficient of a weight difference, and means for obtaining a relative movement speed of the mobile station with respect to a reference station from the speed conversion coefficient and a double difference of the carrier frequency difference. system.
JP28665499A 1999-10-07 1999-10-07 Moving speed measuring device Expired - Fee Related JP4216419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28665499A JP4216419B2 (en) 1999-10-07 1999-10-07 Moving speed measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28665499A JP4216419B2 (en) 1999-10-07 1999-10-07 Moving speed measuring device

Publications (2)

Publication Number Publication Date
JP2001108735A true JP2001108735A (en) 2001-04-20
JP4216419B2 JP4216419B2 (en) 2009-01-28

Family

ID=17707236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28665499A Expired - Fee Related JP4216419B2 (en) 1999-10-07 1999-10-07 Moving speed measuring device

Country Status (1)

Country Link
JP (1) JP4216419B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101843A1 (en) * 2008-02-13 2009-08-20 Furuno Electric Co., Ltd. Satellite navigation/dead-reckoning navigation integrated positioning device
JP2014145614A (en) * 2013-01-28 2014-08-14 Furuno Electric Co Ltd Turning round angular speed detection device, moving body, turning round angular speed detecting method, and turning round angular speed detection program
WO2014129302A1 (en) * 2013-02-21 2014-08-28 古野電気株式会社 Positioning method, positioning program, positioning device, mobile terminal, and moving body
JP2016014582A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Positioning method by self-contained navigation and positioning system by self-contained navigation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101843A1 (en) * 2008-02-13 2009-08-20 Furuno Electric Co., Ltd. Satellite navigation/dead-reckoning navigation integrated positioning device
JP2009192325A (en) * 2008-02-13 2009-08-27 Furuno Electric Co Ltd Satellite navigation / dead reckoning integrated positioning system
US9714841B2 (en) 2008-02-13 2017-07-25 Furuno Electric Company Limited Satellite navigation/dead-reckoning navigation integrated positioning device
JP2014145614A (en) * 2013-01-28 2014-08-14 Furuno Electric Co Ltd Turning round angular speed detection device, moving body, turning round angular speed detecting method, and turning round angular speed detection program
WO2014129302A1 (en) * 2013-02-21 2014-08-28 古野電気株式会社 Positioning method, positioning program, positioning device, mobile terminal, and moving body
JP2016014582A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Positioning method by self-contained navigation and positioning system by self-contained navigation

Also Published As

Publication number Publication date
JP4216419B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP5957025B2 (en) User receiver positioning method
US8255160B2 (en) Integrated mobile terminal navigation
US7656349B2 (en) Enhancement of GNSS position determination in poor signal propagation environments
FI108171B (en) Method for performing position determination and electronic device
US6476762B2 (en) Method for performing positioning and an electronic device
JP2004510138A (en) Method for determining the position of a mobile device
US20210215829A1 (en) Spoofing detection in real time kinematic positioning
US6417800B1 (en) Method for determining reference time error and an electronic device
JP3532267B2 (en) Positioning system
EP0766097B1 (en) GPS overlay system for a geostationary satellite
KR100713456B1 (en) Assist time-keeping device and method in worldwide positioning system receiver
JP2013127470A (en) Method of positioning receiver, positioning system, and electronic apparatus
JP4289767B2 (en) Deviation measuring device, deviation velocity measuring device, deviation measuring method, and deviation velocity measuring method
JPH08101265A (en) Failure detection method of satellite for measuring position and position-measurement system
JP4216419B2 (en) Moving speed measuring device
JPH06265624A (en) Position measuring apparatus
JP3557024B2 (en) Positioning device
JP2010060421A (en) Positioning system for moving body and gnss receiving apparatus
JP2007017184A (en) Device for transmitting positioning signal, positioning system equipped with such device, and system for transmitting positioning signal
JP3187222B2 (en) Pseudo GPS signal transmission system for reference station
JP2537643B2 (en) GPS navigation device
JP2003121528A (en) Gps-positioning apparatus and method
JP3571807B2 (en) GPS receiver
JP2001208821A (en) Positioning receiving apparatus and positioning information processing method applied to this apparatus
US20220381924A1 (en) Positioning apparatus and augmentation information generation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载