JP2000321393A - Method and device for controlling concentration of nuclear reactor coolant water and concentration measuring system - Google Patents
Method and device for controlling concentration of nuclear reactor coolant water and concentration measuring systemInfo
- Publication number
- JP2000321393A JP2000321393A JP11131079A JP13107999A JP2000321393A JP 2000321393 A JP2000321393 A JP 2000321393A JP 11131079 A JP11131079 A JP 11131079A JP 13107999 A JP13107999 A JP 13107999A JP 2000321393 A JP2000321393 A JP 2000321393A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- pulse laser
- cooling system
- detection target
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000002826 coolant Substances 0.000 title abstract description 4
- 238000001816 cooling Methods 0.000 claims abstract description 74
- 229910052796 boron Inorganic materials 0.000 claims abstract description 70
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 64
- 238000001514 detection method Methods 0.000 claims abstract description 61
- 230000001678 irradiating effect Effects 0.000 claims abstract description 14
- 239000000498 cooling water Substances 0.000 claims description 75
- 238000005259 measurement Methods 0.000 claims description 72
- 230000005284 excitation Effects 0.000 claims description 49
- 238000007789 sealing Methods 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000035515 penetration Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 description 13
- 238000007726 management method Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005070 sampling Methods 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000013626 chemical specie Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000005514 radiochemical analysis Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原子炉の冷却系に
おける検出対象成分の濃度をオンラインで常時計測もし
くは監視する方法及び装置に関し、特に、加圧水型原子
炉の一次冷却系における冷却水中のB,Li成分濃度を
オンラインで計測もしくは算出し、この計測結果に基づ
いてB,Li成分濃度を規定値に制御する方法及び装置
に関するものである。また、本発明は、上述したような
方法及び装置において用いられる検出対象成分の計測シ
ステムに関し、更に、該計測システムにおいて用いられ
る測定セルに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for constantly measuring or monitoring the concentration of a component to be detected in a cooling system of a nuclear reactor, and more particularly to a method and an apparatus for measuring the concentration of B in cooling water in a primary cooling system of a pressurized water reactor. , Li component concentration is measured or calculated on-line and the B and Li component concentration is controlled to a specified value based on the measurement result. Further, the present invention relates to a measurement system of a component to be detected used in the method and the apparatus as described above, and further relates to a measurement cell used in the measurement system.
【0002】[0002]
【従来の技術】周知のように、加圧水型原子炉(PW
R)の反応度制御は、制御棒位置だけでなく、一次冷却
系における冷却水中のホウ素濃度を変更することにより
行っているため、冷却水の水質管理が特に重要である。
即ち、PWRの一次冷却系の水質管理は、インコネル6
00やステンレス鋼のような一次系構成材料の腐食抑制
ひいては放射能低減を達成することであり、このため、
水質基準値を定めて管理を行っている。2. Description of the Related Art As is well known, a pressurized water reactor (PW)
Since the reactivity control of R) is performed by changing not only the control rod position but also the boron concentration in the cooling water in the primary cooling system, water quality control of the cooling water is particularly important.
That is, the water quality management of the PWR primary cooling system is based on Inconel 6
It is to achieve the suppression of corrosion of primary constituent materials such as 00 and stainless steel and, consequently, the reduction of radioactivity.
Water quality standards are set and managed.
【0003】前述したように、PWRでは反応度制御の
ために冷却水にホウ素を添加しているが、ホウ素は水質
を酸性にするので、一次冷却系構成材料の腐食抑制の観
点から、水酸化リチウムを添加することにより、phを
調整している。水酸化リチウムを添加しphを上げた場
合、インコネル600やステンレス鋼の腐食を十分低く
保つことができる。しかし、水酸化リチウム量はジルカ
ロイの腐食や水素脆化の点からある程度以上に高くでき
ない。従って、ホウ素濃度に対応したリチウム濃度管理
が実施されており、その一例が株式会社オーム社発行の
「原子力ハンドブック」第186頁〜第193頁,”原
子炉の水化学”に記載されている。[0003] As described above, in PWR, boron is added to cooling water to control the degree of reactivity. However, since boron makes the water quality acidic, from the viewpoint of suppressing corrosion of the primary cooling system constituent materials, water is added to boron. The ph is adjusted by adding lithium. When lithium hydroxide is added to increase the pH, corrosion of Inconel 600 and stainless steel can be kept sufficiently low. However, the amount of lithium hydroxide cannot be increased to a certain extent from the viewpoint of corrosion of Zircaloy and hydrogen embrittlement. Accordingly, lithium concentration management corresponding to the boron concentration is performed, and one example is described in “Nuclear Handbook”, pages 186 to 193, “Reactor Water Chemistry” issued by Ohm Corporation.
【0004】また、上述した一次冷却系の冷却水と蒸気
発生器において熱交換して蒸気となる二次側の水につい
ては、蒸気発生器伝熱管の健全性保持のために水質管理
が重要であり、この二次水についても、例えばCa,M
g,Cr,Fe,Cu,Ni,Na,Cl(塩素)等の
水質基準値が定められている。[0004] In addition, as for the above-mentioned cooling water of the primary cooling system and the water on the secondary side, which becomes steam by exchanging heat in the steam generator, water quality management is important to maintain the soundness of the heat transfer tube of the steam generator. There are also secondary waters such as Ca, M
Water quality reference values such as g, Cr, Fe, Cu, Ni, Na, and Cl (chlorine) are defined.
【0005】一方、沸騰水形原子炉(BWR)の冷却水
は、ホウ素注入による反応度制御を一般的には行わない
ため、中性純水が用いられているので、その水質管理
は、冷却系の構成材料であるステンレス鋼,炭素鋼,ス
テライト,インコネルその他の材料に対する中性純水の
関与の度合いに基づいて基準が定められる。従って、B
WRプラントの水質管理は、炉水及び給水に関して例え
ばシリカ等の不純物の基準値を設定し、該基準値を超え
ないように行われる。[0005] On the other hand, the cooling water of a boiling water reactor (BWR) does not generally control the reactivity by boron injection, so that neutral pure water is used. Criteria are determined based on the degree of neutral pure water participation in the stainless steel, carbon steel, stellite, inconel, and other materials that constitute the system. Therefore, B
Water quality management of the WR plant is performed such that a reference value of impurities such as silica is set with respect to the reactor water and the supply water so that the reference value is not exceeded.
【0006】従来の水質管理の仕方について、その管理
対象物質、例えば加圧水型原子炉の冷却水中のB,Li
について図12を参照して代表的に説明すると、B,L
iの濃度計測は、サンプリング室において、PWRプラ
ントのサンプルラインから試料採取用容器に冷却水サン
プルを手作業で汲み取り(サンプリングラインのパージ
のために15分間程度の待ち時間が必要)、放射化学分
析室まで人手で運び込み、化学分析器等の分析装置によ
り、又は滴定法を利用した手分析により分析値を得る方
式をとっていた。便宜上、これを既知分析法と称する。[0006] Regarding conventional water quality management methods, B, Li in cooling water of a pressurized water reactor, such as B, Li
Will be described with reference to FIG.
The concentration measurement of i is performed by manually pumping a cooling water sample from a sample line of a PWR plant to a sampling container in a sampling room (a waiting time of about 15 minutes is required for purging the sampling line), and radiochemical analysis. A method of manually carrying the sample into a room and obtaining analysis values by an analyzer such as a chemical analyzer or by manual analysis using a titration method has been adopted. For convenience, this is referred to as a known assay.
【0007】また、図示しないが、原子炉冷却水中の
B,Li濃度計測に用いられた適用例はないが、応用可
能と考えられるレーザを用いた微量分析法としては、下
記の方法が提案されている。 (1)レーザ光を対象とする固・液・気体サンプルに集
光して成分をプラズマ化させ、そのプラズマ発光を検出
して微量成分濃度を測定するLBS法(レーザブレーク
ダウン法)。 (2)検出すべき成分の電子エネルギ差に対応した波長
を持つレーザ光を入射し、励起された測定対象成分が発
する発光強度を検出して微量成分濃度を測定するLIF
法(レーザ誘起発光法)。[0007] Although not shown, there is no application example used for measuring the B and Li concentrations in the reactor cooling water, but the following method has been proposed as a microanalysis method using a laser considered to be applicable. ing. (1) The LBS method (laser breakdown method) in which a laser beam is focused on a target solid / liquid / gas sample to convert the components into plasma, and the plasma emission is detected to measure the concentration of the trace component. (2) LIF for injecting a laser beam having a wavelength corresponding to the electron energy difference of the component to be detected, detecting the emission intensity of the excited measurement target component, and measuring the concentration of the trace component
Method (laser induced emission method).
【0008】[0008]
【発明が解決しようとする課題】しかし、上述した既知
分析法では、分析結果を得るまでに図12に示す以下の
過程を経る必要がある。 (1)原子炉冷却系統のサンプリングライン(サンプリ
ング室)において一定量の冷却水サンプルを試料採取用
容器に分取する。 (2)採取したサンプル容器を測定設備のある放射化学
分析室まで運搬する。 (3)この分析室にてサンプル中のB,Li定量分析を
実施する。Liについては、固有の波長の光を吸収する
という原子の光吸収現象を利用して元素の定量を行う原
子吸光法により、Bについては、NaOH滴定により手
分析を実施する。However, in the above-mentioned known analysis method, it is necessary to go through the following steps shown in FIG. 12 before obtaining an analysis result. (1) A fixed amount of a cooling water sample is collected in a sampling vessel in a sampling line (sampling room) of a reactor cooling system. (2) The collected sample container is transported to a radiochemical analysis room with measurement equipment. (3) Quantitative analysis of B and Li in the sample is performed in this analysis room. For Li, manual analysis is performed by the atomic absorption method in which elements are quantified by utilizing the light absorption phenomenon of atoms, which absorbs light of a specific wavelength, and for B, manual analysis is performed by NaOH titration.
【0009】このように、従来の既知分析法では、測定
場からの試料の採取から分析結果が得られるまで、かな
りの時間(30〜60分)を要するために、原子炉冷却
水中のB,Li成分濃度の迅速な計測及び結果処理の実
現にはほど遠い技術であり、原子力発電プラントの運転
に関わる他の諸工程の進行に遅延等の影響を与える場合
が多い。また、上述した既知分析法について主にサンプ
ル輸送過程の自動化を考えた場合、サンプル試料の輸送
装置、輸送配管、装置設置施設等が必要となり、装置が
高価となる欠点を有している。As described above, according to the conventional known analysis method, it takes a considerable time (30 to 60 minutes) from collection of a sample from a measurement field to obtaining an analysis result. It is a technology far from realizing quick measurement of Li component concentration and realization of result processing, and in many cases, delays or the like are affected on progress of other processes related to the operation of a nuclear power plant. In addition, when the automation of the sample transport process is considered mainly for the above-described known analysis method, a transport device for sample samples, a transport pipe, an installation facility for the device, and the like are required, which has a disadvantage that the device is expensive.
【0010】また、従来のレーザを用いる計測法につい
ては、プラズマ生成用レーザ光のみ用いるLBS法や、
計測対象成分の電子エネルギ差に対応した波長を持つレ
ーザ光を入射するLIF法が存在しているが、それぞれ
単独では下記のような欠点を有している。 (1)プラズマ生成用パルスレーザ光を用いた従来のL
BS法ではppbレベルまでの検出限界濃度が得られな
い。 (2)励起用パルスレーザ光を用いた従来のLIF法の
みでは成分の結合状態の影響が大きいため十分な定量精
度が確保できない。[0010] Conventional measurement methods using a laser include an LBS method using only laser light for plasma generation,
There is an LIF method in which a laser beam having a wavelength corresponding to the electron energy difference of the component to be measured is incident. However, each of them has the following disadvantages. (1) Conventional L using pulsed laser light for plasma generation
In the BS method, a detection limit concentration up to the ppb level cannot be obtained. (2) Sufficient quantification accuracy cannot be ensured only by the conventional LIF method using the excitation pulse laser beam because of the large influence of the component binding state.
【0011】従って、本発明の第1の目的は、原子炉冷
却系の水における検出対象成分の濃度をオンラインで迅
速に精度良く計測可能とする方法及び装置を提供するこ
とである。また、本発明の別の目的は、加圧水型原子炉
の一次冷却系における冷却水中のB,Li成分濃度をオ
ンラインで迅速に精度良く計測し、この計測結果に基づ
いて一次冷却系のB,Li成分濃度を規定値に制御する
方法及び装置を提供することである。更に、本発明は、
上述したような方法及び装置において用いることができ
る検出対象成分の計測システムと、該計測システムにお
いて用いられる測定セルとを提供することを目的とする
ものである。Accordingly, a first object of the present invention is to provide a method and an apparatus capable of quickly and accurately measuring the concentration of a component to be detected in water in a reactor cooling system online. Another object of the present invention is to measure the B and Li component concentrations in the cooling water in the primary cooling system of the pressurized water reactor quickly and accurately on-line, and based on the measurement results, the B and Li components of the primary cooling system. An object of the present invention is to provide a method and an apparatus for controlling the concentration of a component to a specified value. Further, the present invention provides
An object of the present invention is to provide a measurement system of a component to be detected, which can be used in the method and the apparatus as described above, and a measurement cell used in the measurement system.
【0012】[0012]
【課題を解決するための手段】前述した第1の目的を達
成するためには、まず、原子炉冷却系中の検出対象成分
の濃度(単に、「原子炉冷却水濃度」ということもあ
る。)をオンラインで常時監視する必要であり、このた
めに本発明の第1の様相では、冷却系を有する原子炉に
おいて、該冷却系の冷却水中の検出対象成分の濃度を規
定値に制御する方法であって、前記冷却系に前記検出対
象成分の測定場を設定し、該測定場の冷却水に対しプラ
ズマ生成用パルスレーザ光を照射し、前記プラズマ生成
用パルスレーザ光の照射により発生するプラズマ光に基
づいて前記検出対象成分の濃度値を検出し、該濃度値を
表す濃度信号により前記冷却系の冷却水注入制御弁を開
閉制御することを特徴とするものである。In order to achieve the first object described above, first, the concentration of a component to be detected in a reactor cooling system (hereinafter, simply referred to as "reactor cooling water concentration"). In the first aspect of the present invention, in a reactor having a cooling system, a method for controlling the concentration of the detection target component in the cooling water of the cooling system to a specified value is required. Setting a measurement field of the detection target component in the cooling system, irradiating the cooling water of the measurement field with a pulse laser beam for plasma generation, and generating plasma by irradiation with the pulse laser beam for plasma generation A concentration value of the detection target component is detected based on light, and a cooling water injection control valve of the cooling system is opened and closed by a concentration signal representing the concentration value.
【0013】本発明の別の様相によると、レーザを用い
たLBS法及びLIF法を組み合わせている。これによ
り、原子炉冷却水中に含まれる検出対象成分をppbオ
ーダーのレベルまで高精度で定量可能な方法及び装置を
提供する。上記目的を達成するため、本発明は、冷却系
を有する原子炉において、該冷却系の冷却水中の検出対
象成分の濃度を規定値に制御する方法であって、前記冷
却系に前記検出対象成分の測定場を設定し、該測定場の
冷却水に対しプラズマ生成用パルスレーザ光と検出対象
成分の励起用パルスレーザ光とを同期して照射し、前記
プラズマ生成用パルスレーザ光の照射及び前記励起用パ
ルスレーザ光の照射により前記検出対象成分から発する
発光強度に基づいて前記検出対象成分の濃度値を検出
し、該濃度値を表す濃度信号により前記冷却系の冷却水
注入制御弁を開閉制御することを特徴とする検出対象成
分の濃度制御方法を提供する。According to another aspect of the invention, a laser-based LBS method and a LIF method are combined. This provides a method and an apparatus capable of quantifying the detection target component contained in the reactor cooling water with high accuracy up to the ppb order level. In order to achieve the above object, the present invention provides a method for controlling the concentration of a detection target component in cooling water of a cooling system to a specified value in a reactor having a cooling system, wherein the detection target component is contained in the cooling system. The measurement field is set, and the cooling water of the measurement field is irradiated with the pulsed laser light for plasma generation and the pulsed laser light for excitation of the component to be detected in synchronization with the irradiation of the pulsed laser light for plasma generation. A concentration value of the detection target component is detected based on an emission intensity emitted from the detection target component by irradiation of the excitation pulse laser beam, and a cooling water injection control valve of the cooling system is opened / closed by a concentration signal representing the concentration value. And a method for controlling the concentration of the component to be detected.
【0014】また、上記目的を達成するため、本発明
は、冷却系を有する原子炉において、該冷却系の冷却水
中の検出対象成分の濃度を規定値に制御する装置であっ
て、前記冷却系に設定された前記検出対象成分の測定場
に配置される測定セルと、該測定セルの冷却水に対しプ
ラズマ生成用パルスレーザ光及び検出対象成分の励起用
パルスレーザ光をそれぞれ同期して照射するプラズマ生
成用パルスレーザ及び励起用パルスレーザと、前記プラ
ズマ生成用パルスレーザ光の照射及び前記励起用パルス
レーザ光の照射により前記検出対象成分から発する発光
強度に基づいて前記検出対象成分の濃度の実際値を連続
的に算出する算出手段と、前記検出対象成分の濃度の前
記実際値が前記規定値に対して許容しうか否かを判断す
る判断手段と、前記冷却系に接続された検出対象成分調
整ラインの制御弁と、前記検出対象成分の濃度の前記実
際値が異常値と判断された場合に、前記実際値が前記規
定値に復帰するように前記制御弁を開閉制御する制御手
段とを備える、検出対象成分の濃度制御装置を提供す
る。Further, in order to achieve the above object, the present invention relates to an apparatus for controlling a concentration of a component to be detected in cooling water of a cooling system to a specified value in a reactor having a cooling system, A measurement cell disposed in the measurement field of the detection target component set in the above, and the cooling water of the measurement cell are irradiated synchronously with the pulse laser light for plasma generation and the pulse laser light for excitation of the detection target component, respectively. A pulse laser for plasma generation and a pulse laser for excitation, and the actual concentration of the component to be detected based on the emission intensity emitted from the component to be detected by irradiation of the pulse laser beam for plasma generation and irradiation of the pulse laser beam for excitation Calculating means for continuously calculating a value; determining means for determining whether the actual value of the concentration of the detection target component is acceptable with respect to the specified value; A control valve for a detection target component adjustment line connected to the cooling system, and the control so that the actual value returns to the specified value when the actual value of the concentration of the detection target component is determined to be an abnormal value. A control device for controlling the opening and closing of a valve is provided.
【0015】別の様相に係る本発明は、蒸気発生器に高
温側配管及び低温側配管からなる一次冷却系により連絡
する加圧水型原子炉に関し、該原子炉において、前記一
次冷却系の冷却水中におけるB,Li成分の濃度を規定
値に制御するための装置であって、前記一次冷却系の高
温側に設定された前記B,Li成分の測定場に配置され
る測定セルと、該測定セルの冷却水に対しプラズマ生成
用パルスレーザ光及び前記B,Li成分の励起用パルス
レーザ光をそれぞれ同期して照射するプラズマ生成用パ
ルスレーザ及び励起用パルスレーザと、前記プラズマ生
成用パルスレーザ光の照射及び前記励起用パルスレーザ
光の照射により前記B,Li成分から発する発光強度に
基づいて前記B,Li成分の濃度の実際値を算出する算
出手段と、前記一次冷却系の前記低温側配管に接続され
たB,Li成分調整ラインの制御弁と、前記B,Li成
分の濃度の前記実際値が異常値と判断された場合に、前
記実際値が前記規定値に復帰するように前記制御弁を開
閉制御する制御手段とを備える、検出対象成分の濃度制
御装置を提供する。The present invention according to another aspect relates to a pressurized water reactor in which a steam generator is connected to a steam generator by a primary cooling system including a high-temperature side pipe and a low-temperature side pipe. An apparatus for controlling the concentrations of B and Li components to a specified value, comprising: a measurement cell disposed in a measurement field of the B and Li components set on a high temperature side of the primary cooling system; A pulse laser for plasma generation and a pulse laser for excitation, which irradiate the cooling water with a pulse laser beam for plasma generation and a pulse laser beam for excitation of the B and Li components, respectively, and irradiation of the pulse laser beam for plasma generation Calculating means for calculating the actual value of the concentration of the B and Li components based on the emission intensity emitted from the B and Li components by the irradiation of the excitation pulse laser beam; A control valve for a B, Li component adjustment line connected to the low temperature side pipe of the cooling system; and when the actual value of the concentration of the B, Li component is determined to be an abnormal value, the actual value is set to the specified value. And control means for controlling the opening and closing of the control valve so as to return to the normal state.
【0016】具体的には、B,Li成分に対する分析精
度を向上させるためにレーザ光を2段階(LBS法)で
照射する。プラズマ生成用パルスレーザ光を原子炉冷却
水に集光/入射し、原子炉冷却水中の成分をプラズマ化
させ、プラズマを生成させてから一定時間後に、先のレ
ーザ光で誘起されたプラズマ中に更に、励起用のパルス
レーザ光を入射し、プラズマ中に存在するB,Li成分
をレーザ励起する。プラズマ生成用パルスレーザ光及び
励起用パルスレーザ光の照射により励起されたB,Li
成分が発する発光強度を光検出器を用いて検出し、B,
Li成分が発する発光強度をプラズマ部に存在する成分
組成で補正することにより、サンプルとしての原子炉冷
却水中に含まれるB,Li成分をppbオーダーの微量
レベルまで即座に直接定量する。Specifically, laser light is applied in two stages (LBS method) to improve the analysis accuracy for the B and Li components. Pulsed laser light for plasma generation is condensed / injected into the reactor cooling water, the components in the reactor cooling water are turned into plasma, and after a certain period of time after the plasma is generated, the plasma is introduced into the plasma induced by the laser light. Further, a pulse laser beam for excitation is incident, and the B and Li components existing in the plasma are laser-excited. B, Li excited by irradiation of pulsed laser light for plasma generation and pulsed laser light for excitation
The emission intensity of the component is detected using a photodetector, and B,
By correcting the emission intensity of the Li component by the component composition present in the plasma part, the B and Li components contained in the reactor cooling water as a sample can be immediately and directly quantified to a trace level on the order of ppb.
【0017】また、本発明は、水の通流及びレーザ光の
貫入を許容するように測定場に配置された測定セルと、
該測定セル内の水に対しパルスエネルギ10〜40mJ
のプラズマ生成用パルスレーザ光を発射するプラズマ生
成用レーザと、前記水に含まれる検出対象成分の励起用
パルスレーザ光を前記プラズマ生成用パルスレーザ光と
同期して発射する励起用レーザと、前記プラズマ生成用
パルスレーザ光の照射及び前記励起用パルスレーザ光の
照射により前記検出対象成分から発する発光の強度に基
づいて前記検出対象成分の濃度の実際値を算出する算出
手段とを備える検出対象成分の濃度計測システムを提供
する。ここで、請求項7に記載まように、前記プラズマ
生成用パルスレーザ光及び前記励起用パルスレーザ光の
発射間隔は1μs〜13μsの範囲にあることが好まし
い。また、請求項8に記載のように、前記プラズマ生成
用パルスレーザ光又は前記励起用パルスレーザ光の照射
の0.1〜1μs後に、波長幅が0.1hm以下で前記
検出対象成分を再励起する波長に調整したレーザ光を照
射する波長可変レーザを更に備えることが好適である
(LIF法)。Further, the present invention provides a measuring cell arranged in a measuring field so as to allow the flow of water and the penetration of laser light,
Pulse energy of 10 to 40 mJ for water in the measurement cell
A plasma generation laser that emits a plasma generation pulse laser light, an excitation laser that emits the excitation pulse laser light of the detection target component contained in the water in synchronization with the plasma generation pulse laser light, Calculating means for calculating an actual value of the concentration of the detection target component based on the intensity of light emission emitted from the detection target component by the irradiation of the plasma generation pulse laser light and the irradiation of the excitation pulse laser light. To provide a concentration measurement system. Here, as described in claim 7, it is preferable that the emission interval between the pulse laser beam for plasma generation and the pulse laser beam for excitation is in the range of 1 μs to 13 μs. Further, as described in claim 8, 0.1 to 1 μs after irradiation of the pulse laser light for plasma generation or the pulse laser light for excitation, the component to be detected is re-excited with a wavelength width of 0.1 hm or less. It is preferable to further include a wavelength tunable laser that emits a laser beam adjusted to a desired wavelength (LIF method).
【0018】更に、前記算出手段はコンピュータであ
り、前記励起用パルスレーザ光の照射により前記検出対
象成分から発する発光強度を酸素原子から発する発光線
に基づいて補正することが好適である。Further, it is preferable that the calculation means is a computer, and the emission intensity emitted from the detection target component by the irradiation of the excitation pulse laser beam is corrected based on an emission line emitted from oxygen atoms.
【0019】また、本発明によると、測定セルは、ほぼ
六面体であって、前記プラズマ生成用パルスレーザ光及
び前記励起用パルスレーザ光が入射する第1面には封止
手段を介して光透過ガラスが設けられ、該第1面と対峙
する第2面には封止手段を介してレーザトラップ板が設
けられ、前記第1面及び前記第2面を除いて対峙する2
面には前記水の通流を許容する入口及び出口が設けら
れ、対峙する残りの2面に前記プラズマ光及び前記発光
を透過する光透過ガラスが封止手段を介して設けられて
いる。According to the present invention, the measuring cell is substantially hexahedral, and the first surface on which the plasma generating pulse laser beam and the excitation pulse laser beam are incident has a light transmitting surface through sealing means. A glass is provided, and a laser trap plate is provided on a second surface facing the first surface via a sealing means, and the laser trap plate is opposed to the second surface except for the first surface and the second surface.
The surface is provided with an inlet and an outlet that allow the flow of the water, and the other two opposing surfaces are provided with a light transmitting glass that transmits the plasma light and the light emission via a sealing unit.
【0020】[0020]
【発明の実施の形態】次に、添付図面を参照して、本発
明の好適な実施の形態について説明するが、図中、同一
符号は同一又は対応部分を示すものとする。また、本発
明は、以下の説明から分かるように、この実施形態に限
定されるものではなく、種々の改変が可能である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts. Further, as will be understood from the following description, the present invention is not limited to this embodiment, and various modifications are possible.
【0021】図1は、本発明による方法及び装置が適用
される加圧水型原子炉プラントの制御系を概略的に示す
もので、堅固な格納容器1内には、蒸気発生器2及び原
子炉3が配置されている。配管8に設けられた冷却水ポ
ンプ5により原子炉3内に送り込まれた一次冷却水は加
熱されて高温高圧となり、配管6を経由して蒸気発生器
2の水室の入口側2aに入り、多数の伝熱管2bを通流
する間に、配管7から供給される給水を加熱して冷却さ
れ、水室の出口側2cから蒸気発生器2を出る。そし
て、冷却水ポンプ5により再び原子炉3に循環される。FIG. 1 schematically shows a control system of a pressurized water reactor plant to which the method and the apparatus according to the present invention are applied. In a solid containment vessel 1, a steam generator 2 and a reactor 3 are provided. Is arranged. The primary cooling water sent into the reactor 3 by the cooling water pump 5 provided in the pipe 8 is heated to a high temperature and a high pressure, enters the inlet side 2a of the water chamber of the steam generator 2 via the pipe 6, and While flowing through the many heat transfer tubes 2b, the water supplied from the pipe 7 is heated and cooled, and exits the steam generator 2 from the outlet side 2c of the water chamber. Then, the coolant is circulated again to the nuclear reactor 3 by the cooling water pump 5.
【0022】蒸気発生器において加熱された給水は蒸気
となって、配管9を介して蒸気タービン(図示せず)に
供給される。また、原子炉3の高温側から蒸気発生器2
に延びる一次冷却系の配管6には、炉心における冷却水
の沸騰を抑えるために、飽和圧力を超える加圧状態に冷
却水を維持する加圧器4が設けられている。The feed water heated in the steam generator is turned into steam and supplied to a steam turbine (not shown) via a pipe 9. Also, the steam generator 2
Is provided with a pressurizer 4 for maintaining the cooling water in a pressurized state exceeding the saturation pressure in order to suppress the boiling of the cooling water in the reactor core.
【0023】また、一次冷却系を構成する低温側の配管
8には、冷却水ポンプ5の上流側で冷却水の一部を抽出
する抽出ライン10aと、該冷却水の一部を冷却水ポン
プ5の下流側で上記配管8に戻す充填ライン10bとを
含む化学体積制御系10が接続されている。この化学体
積制御系10の抽出ライン10aには、脱塩塔11及び
体積制御タンク12が設けられ、充填ライン10bに
は、充填ポンプ13に加え、ほう酸タンク14、1次系
薬品タンク15等が設けられており、化学体積制御系1
0の機能は、一次冷却系への冷却水の充填補給、冷却水
中の腐食生成物及び核分裂生成物の除去、ほう酸濃度の
調整等である。なお、抽出ライン10aには制御弁37
も設けられているが、これの動作については後述する。An extraction line 10a for extracting a part of the cooling water upstream of the cooling water pump 5 is connected to the low-temperature side piping 8 constituting the primary cooling system, and a part of the cooling water pump A chemical volume control system 10 including a filling line 10b returning to the pipe 8 on the downstream side of the pipe 5 is connected. A desalting tower 11 and a volume control tank 12 are provided on an extraction line 10a of the chemical volume control system 10, and a boric acid tank 14, a primary chemical tank 15 and the like are provided on a filling line 10b in addition to a filling pump 13. Provided, chemical volume control system 1
The functions of No. 0 are refilling of the cooling water into the primary cooling system, removal of corrosion products and fission products in the cooling water, adjustment of boric acid concentration, and the like. The control valve 37 is connected to the extraction line 10a.
Although the operation is also provided, its operation will be described later.
【0024】かかる加圧水型原子炉プラントにおいて、
本発明に従って例えば一次冷却水のB,Li成分濃度を
管理もしくは制御する装置は、パルスレーザ光を生成し
て一次冷却系の冷却水に照射するための装置と、この照
射により得られた情報から最終的にB,Li成分濃度を
算出するための装置と、算出されたB,Li成分濃度に
基づいて一次冷却系のB,Li量を調整するための装置
とを備える。冷却水にレーザ光を照射するための装置の
測定場は、図1において、例えば、一次冷却系の高温側
配管6の途中に、或いは加圧器4の液相部外周面に、符
号、で示す位置に設定することができる。In such a pressurized water reactor plant,
According to the present invention, for example, a device for managing or controlling the concentration of the B and Li components in the primary cooling water includes a device for generating a pulse laser beam and irradiating the cooling water of the primary cooling system with information obtained by the irradiation. Finally, there are provided an apparatus for calculating the B and Li component concentrations, and an apparatus for adjusting the B and Li amounts of the primary cooling system based on the calculated B and Li component concentrations. In FIG. 1, the measurement site of the device for irradiating the cooling water with the laser beam is indicated by a symbol, for example, in the middle of the high-temperature side pipe 6 of the primary cooling system or on the outer peripheral surface of the liquid phase portion of the pressurizer 4. Can be set to position.
【0025】次に、図2は、本発明に従って例えば一次
冷却水のB,Li成分濃度を管理もしくは制御する装置
20の概要を示している。図2において、同装置20
は、プラズマ生成用パルスレーザ21により発射された
パルスレーザ光を、ミラー22,23、レンズ28等を
用いて測定場25に設けられた測定セル内の原子炉冷却
水に集光し、該測定セル内に存在する化学種を図7の
(a)に図解したようにプラズマ化させる。プラズマ生
成用パルスレーザ21のレーザ出力は、本発明の実施形
態では10〜40mJとする。図10は、Liの場合に
おけるレーザ出力と信号強度との実験結果を表してお
り、この結果から、レーザ出力は、液体中でのプラズマ
化に適合するように10〜40mJとすることが好適で
あることが分かる。また、このプラズマ生成用パルスレ
ーザ21からのレーザ光発射と同期させて、一定時間後
に、冷却水中のB,Li成分の発光強度を増すための
B,Li選択励起用パルスレーザ26の出力を、前述し
たようにミラー22,23及びレンズ28を介してレー
ザ誘起されたプラズマ中に、新たにミラー27等を介し
て図7の(b)に示すように入射する。図11は、プラ
ズマ生成用パルスレーザ光及び励起用パルスレーザ光の
発射間隔と信号強度との関係をLiの場合について示す
本発明の実験結果であり、発射間隔もしくはパルス間隔
は1μs〜13μsとすることができ、好適には1.2
μs〜8.2μs、更に好適には1.8μs〜6.0μ
sである。なお、図10及び図11の縦軸の信号強度に
は単位が省略されているが、これは信号強度比と考えて
もよいためである。Next, FIG. 2 shows an outline of an apparatus 20 for managing or controlling the B and Li component concentrations of, for example, primary cooling water according to the present invention. In FIG.
Is used to focus the pulsed laser light emitted by the pulse laser 21 for plasma generation on the reactor cooling water in a measurement cell provided in the measurement place 25 using mirrors 22, 23, a lens 28, and the like. The chemical species present in the cell is turned into plasma as illustrated in FIG. The laser output of the pulse laser 21 for plasma generation is set to 10 to 40 mJ in the embodiment of the present invention. FIG. 10 shows the experimental results of the laser output and the signal intensity in the case of Li. From these results, it is preferable that the laser output be set to 10 to 40 mJ so as to be suitable for plasma in a liquid. You can see that there is. Further, in synchronization with the emission of the laser light from the pulse laser 21 for plasma generation, the output of the pulse laser 26 for selective excitation of B and Li for increasing the emission intensity of the B and Li components in the cooling water after a certain period of time, As described above, the laser-induced plasma via the mirrors 22 and 23 and the lens 28 is newly incident via the mirror 27 and the like as shown in FIG. FIG. 11 shows the experimental results of the present invention showing the relationship between the emission interval and the signal intensity of the plasma generation pulse laser beam and the excitation pulse laser beam for the case of Li, where the emission interval or the pulse interval is 1 μs to 13 μs. And preferably 1.2
μs to 8.2 μs, more preferably 1.8 μs to 6.0 μs
s. Note that the units are omitted from the signal strengths on the vertical axes in FIGS. 10 and 11 because this may be considered as a signal strength ratio.
【0026】プラズマ生成用レーザ光により発生するプ
ラズマ光を検出し、プラズマ部の成分組成を同定した上
で、B,Li励起用パルスレーザ光の照射により励起さ
れたB,Li成分が発する発光強度を分光器及び検出器
を用いて検出する。即ち、図2及び図3において、上述
のプラズマ発光及び成分励起用レーザ光により励起され
たB,Liが発する発光は、レンズ29a,29bで集
光され、それぞれの光は、光ファイバ30a,30bを
介して分光器31a,31bに入射される。また、ミラ
ー23により反射された光の一部はパワーメータ33に
よりレーザ出力に換算され、パーソナルコンピュータ3
4bに送られる。このパーソナルコンピュータ34bは
検出器32bに接続されると共に、別のパーソナルコン
ピュータ34aにも接続されており、図示しないモニタ
ーにデータを出力してLi,Bの濃度をデジタル値で例
えば10分おきに表示することができる。B,Li成分
が発する発光スペクトルは、分光器31b及び検出器3
2bで測定され、パーソナルコンピュータ34bに送ら
れ、Li及びBのピーク強度IB,ILiが読み取られ
る。一方、酸素(O)の発光スペクトルの測定は、分光
器31a及び検出器32aからの入力に基づいてパーソ
ナルコンピュータ34aで行われ、Oピーク強度IOの
読み取りが行われ、読み取られたOピーク強度IOはパ
ーソナルコンピュータ34bに送られる。このようにし
て各信号はコンピュータ34bに転送され、そこで、O
ピーク強度IOに対するピーク強度IB,ILiの比をとっ
て補正した補正ピーク強度ILi*,IB*を求め、その値
に、Li検量線の傾きであるfLi、B検量線の傾きで
あるfBをそれぞれ乗算すれば、Li濃度(CLi)及
びB濃度(CB)を得られる。一例として、図8には、
Li水溶液の発光スペクトルが例示されている。After detecting the plasma light generated by the laser light for plasma generation and identifying the component composition of the plasma part, the emission intensity of the B and Li components excited by the irradiation of the B and Li excitation pulse laser light is obtained. Is detected using a spectrometer and a detector. That is, in FIG. 2 and FIG. 3, the light emitted by B and Li excited by the above-described plasma light emission and the component excitation laser light is condensed by the lenses 29a and 29b, and the respective lights are converted into the optical fibers 30a and 30b. And enters the spectroscopes 31a and 31b. A part of the light reflected by the mirror 23 is converted into a laser output by the power meter 33,
4b. The personal computer 34b is connected to the detector 32b and also to another personal computer 34a. The personal computer 34b outputs data to a monitor (not shown) and displays the Li and B concentrations as digital values, for example, every 10 minutes. can do. The emission spectra emitted from the B and Li components are measured by the spectrometer 31b and the detector 3b.
2b, and sent to the personal computer 34b, where the peak intensities I B and I Li of Li and B are read. On the other hand, the measurement of the emission spectrum of oxygen (O) is performed by the personal computer 34a based on the input from the spectroscope 31a and the detector 32a, the O peak intensity IO is read, and the read O peak intensity is read. IO is sent to the personal computer 34b. Each signal is thus transferred to computer 34b, where O
The corrected peak intensities I Li * and I B * obtained by taking the ratio of the peak intensities I B and I Li to the peak intensities I O are obtained, and the slopes of the Li calibration curves fLi and B calibration curves are calculated. By multiplying by fB, respectively, Li concentration (CLi) and B concentration (CB) can be obtained. As an example, FIG.
The emission spectrum of a Li aqueous solution is illustrated.
【0027】このようにして、プラズマ発光の信号によ
り、測定場25の成分組成を求め、その情報により発光
強度の補正を行い、測定場25に存在するB,Li成分
の濃度を算出する。このように、B,Li成分が発する
発光強度を、プラズマ部の成分組成である酸素の発光線
で補正することにより、原子炉冷却水中のB,Li濃度
をppbオーダーまで高精度に測定する。35は、プラ
ズマ生成用パルスレーザ21及びB,Li選択励起用パ
ルスレーザ26の発振と検出器32a,32bの作動と
を同期させる周知の同期装置である。In this way, the component composition of the measurement field 25 is obtained from the signal of the plasma emission, the emission intensity is corrected based on the information, and the concentrations of the B and Li components existing in the measurement field 25 are calculated. As described above, by correcting the emission intensity of the B and Li components with the emission line of oxygen, which is the component composition of the plasma portion, the B and Li concentrations in the reactor cooling water can be measured with high accuracy down to the ppb order. 35 is a well-known synchronizer for synchronizing the oscillation of the pulse laser 21 for plasma generation and the pulse laser 26 for B and Li selective excitation with the operation of the detectors 32a and 32b.
【0028】本発明で使用するプラズマ生成用パルスレ
ーザ光と成分励起用パルスレーザ光の波長の例を下記に
示すが、これはYAGレーザが安価に容易に入手しうる
ために使用されているだけであり、他のレーザ光でもよ
いことは勿論である。 プラズマ用及び成分励起用レーザ波長… 1064nm(YAGレーザの基本波) 532nm(YAGレーザの第2高調波)又は 355nm(YAGレーザの第3高調波)Examples of the wavelengths of the pulse laser light for plasma generation and the pulse laser light for component excitation used in the present invention are shown below, which are used only because YAG lasers can be easily obtained at low cost. It goes without saying that other laser light may be used. Laser wavelength for plasma and component excitation: 1064 nm (fundamental wave of YAG laser) 532 nm (second harmonic of YAG laser) or 355 nm (third harmonic of YAG laser)
【0029】上述の記載から分かるように、本発明では
LBS法及びLIF法を組み合わせている。この組み合
わせによって、それぞれの欠点を解消することが可能と
なる。具体的には、第1のプラズマ生成用レーザ光で局
所的な場所の温度を10000℃〜20000℃に上昇
させるため、殆ど全ての化学種が原子状態となる。この
時点で化学種の結合状態による励起波長の変化は考慮す
る必要はなくなり、プラズマ化されたB,Liの原子を
対象として、これらを励起するレーザ光を入射するだけ
で、B,Liの濃度計測を満足できる。つまり、LBS
法を2段階用いるシステムとなるが、これによりLBS
法1段階の場合と比較して、検出感度が大幅に向上(3
桁から5桁程度)する。As can be seen from the above description, the present invention combines the LBS method and the LIF method. This combination makes it possible to eliminate the respective disadvantages. Specifically, since the temperature of a local place is raised to 10000 ° C. to 20,000 ° C. by the first plasma generation laser beam, almost all chemical species are in an atomic state. At this point, it is not necessary to consider the change in the excitation wavelength due to the bonding state of the chemical species. The B and Li concentrations can be changed only by injecting a laser beam that excites the plasma B and Li atoms. We can satisfy measurement. That is, LBS
Is a system that uses the two-stage method.
The detection sensitivity is greatly improved compared to the case of the first step of the method (3.
About 5 digits from the first digit).
【0030】次に、再び図1に戻って本発明の原子力発
電プラントにおける適用例について説明する。前述した
ように、一次冷却系の高温側配管6の一部又は加圧器4
の液相部外周面に測定場25を設定し、ここに、LBS
2段階方式のB,Li成分濃度の制御方法もしくは装置
20の成分濃度計測システム20a(図2において鎖線
で囲まれた部分)を導入する。原子炉冷却水中のB,L
i濃度は、原子炉制御等の事情から、ある規定された値
に常時保つ必要がある。そのため、B,Li成分濃度の
制御装置20を化学体積制御系10と連係させ、B,L
i濃度の実際の計測値及び維持すべき既定値に基づい
て、B,Li成分の必要となる希釈/濃縮及び除去量を
算出し、原子力発電プラント運転員に表示する。Next, returning to FIG. 1, an application example of the present invention in a nuclear power plant will be described. As described above, a part of the high-temperature side pipe 6 of the primary cooling system or the pressurizer 4
A measurement field 25 is set on the outer peripheral surface of the liquid phase portion of
A two-stage method for controlling the concentration of B and Li components or a component concentration measuring system 20a (a portion surrounded by a chain line in FIG. 2) of the apparatus 20 is introduced. B, L in reactor cooling water
The i-concentration needs to be constantly maintained at a certain specified value due to circumstances such as reactor control. Therefore, the control device 20 for the B and Li component concentrations is linked to the chemical volume control system 10 so that
The necessary dilution / concentration and removal amounts of the B and Li components are calculated based on the actual measured value of the i concentration and the predetermined value to be maintained, and displayed to the nuclear power plant operator.
【0031】即ち、上記の計測手順に従って得られた分
析結果は、原子力発電プラントの中央制御室36に配置
しうる制御板指示部(図示せず)に濃度表示されると共
に、更に同中央制御室36のコンピュータ34a,34
bで処理され、B,Liに対する測定時点での濃度基準
値との比較評価を行い、体積制御系10に関する希釈/
除去/濃縮操作が必要であると判断された場合に、その
操作量の具体的指示値を改めて中央制御室36の制御板
指示部に表示するだけでなく、該指示値に基づいて、化
学体積制御系10の抽出ライン10aに設けられた制御
弁37を開閉し、抽出ライン10aの通水量を制御す
る。即ち、測定もしくは検出濃度値が設定範囲の下限値
よりも低くなったときは、制御弁37を開き、その逆に
設定範囲の上限値よりも高くなったときは、制御弁37
を閉じる。That is, the analysis results obtained in accordance with the above-described measurement procedure are displayed on a control panel indicating section (not shown) which can be arranged in the central control room 36 of the nuclear power plant, and the concentration is further displayed. 36 computers 34a, 34
b, Li, B and Li are compared and evaluated with the concentration reference values at the time of measurement.
When it is determined that the removal / concentration operation is necessary, not only the specific indication value of the operation amount is displayed again on the control panel indication portion of the central control room 36, but also the chemical volume is determined based on the indication value. The control valve 37 provided on the extraction line 10a of the control system 10 is opened and closed to control the amount of water flowing through the extraction line 10a. That is, when the measured or detected concentration value is lower than the lower limit of the set range, the control valve 37 is opened, and when the measured or detected concentration value is higher than the upper limit of the set range, the control valve 37 is opened.
Close.
【0032】このように、LBS2段階方式のB,Li
成分濃度の計測システム20aの測定場を原子炉一次冷
却系の高温側配管6に設定すると共に、該計測システム
20aの分析結果のコンピュータ処理に基づいて、一次
冷却系の低温側配管8に連絡する化学体積制御系10の
冷却水抽出ライン10aに設けられた制御弁37を制御
することにより、原子炉冷却水中のB,Li成分濃度の
リアルタイム計測が可能となり、一次冷却系のB,Li
濃度値を常時オンライン処理できることにより、原子炉
の反応度制御及び水質管理をより効率的に運営でき、こ
れは、定期検査等の工程期間を短縮させることにも繋が
る。As described above, the LBS two-stage system B, Li
The measurement field of the component concentration measurement system 20a is set to the high temperature side pipe 6 of the primary cooling system of the reactor, and is connected to the low temperature side pipe 8 of the primary cooling system based on the computer processing of the analysis result of the measurement system 20a. By controlling the control valve 37 provided in the cooling water extraction line 10a of the chemical volume control system 10, real-time measurement of the B and Li component concentrations in the reactor cooling water becomes possible, and the B and Li
By being able to constantly process the concentration value online, it is possible to more efficiently operate the reactivity control and water quality management of the reactor, which also leads to shortening the period of the process such as periodic inspection.
【0033】この場合、測定場に設けられる測定セル4
0としては、図5及び図6に示すものが好適である。図
5及び図6において、該測定セル40は、ほぼ正六面体
であって、実施形態では、対峙する上下の2面に試料水
である通常70〜80℃の冷却水の入口側通流管41
a,出口側通流管41bが取り付けられ(図6)、そし
てプラズマ生成用パルスレーザ光及び励起用パルスレー
ザ光が入射する面には、封止手段もしくは振動防止手段
であるゴム製或いはプラスチック製のようなO−リング
42を介して光透過ガラス43が設けられる。また、こ
の光透過ガラス43と対峙する面には、同様の封止手段
42を介してレーザトラップ板44が設けられる。該レ
ーザトラップ板44はトラップ効果の高いテフロン板と
するのが好適であり、測定セル本体及び通流管はステン
レス鋼製とするのが好適である。対峙する残りの2面に
はプラズマ光及び発光を透過する光透過ガラス45、4
6が同様の封止手段42を介して設けられている(図
5)。In this case, the measuring cell 4 provided in the measuring field
As 0, those shown in FIGS. 5 and 6 are preferable. 5 and 6, the measuring cell 40 is a substantially regular hexahedron, and in the embodiment, the inlet-side flow pipe 41 of the cooling water, usually 70-80 ° C., which is the sample water, is provided on the two upper and lower surfaces facing each other.
a, the outlet side flow pipe 41b is attached (FIG. 6), and the surface on which the pulse laser beam for plasma generation and the pulse laser beam for excitation are incident is made of rubber or plastic which is sealing means or vibration preventing means. A light transmitting glass 43 is provided via an O-ring 42 as described above. A laser trap plate 44 is provided on a surface facing the light transmitting glass 43 via a similar sealing means 42. The laser trap plate 44 is preferably a Teflon plate having a high trapping effect, and the measurement cell main body and the flow pipe are preferably made of stainless steel. On the other two opposing surfaces, light transmitting glasses 45 and 4 for transmitting plasma light and light emission are provided.
6 are provided via similar sealing means 42 (FIG. 5).
【0034】なお、図4に示すように、測定感度を更に
向上させるために、プラズマ生成用パルスレーザ光又は
励起用パルスレーザ光の照射の0.1〜1μs後に、波
長幅が0.1hm以下で検出対象成分を励起する波長に
調整したレーザ光を照射する波長可変レーザ50を更に
備えることができる。該波長可変レーザ50も同期装置
35に接続されており、波長可変レーザ50からのレー
ザ光はミラー51,52と前述のミラー22,23等を
介して測定セル内の冷却水に照射される。このLBS/
LIF複合方式を用いれば、更に検出感度を向上させる
ことができる。 B,Li選択励起用レーザ波長… B:208.89nm又は249.68nm Li:274.12nm,323.26nm又は67
0.78As shown in FIG. 4, in order to further improve the measurement sensitivity, the wavelength width is 0.1 hm or less 0.1 to 1 μs after the irradiation of the plasma generation pulse laser beam or the excitation pulse laser beam. And a wavelength tunable laser 50 for irradiating a laser beam adjusted to a wavelength for exciting the detection target component. The wavelength tunable laser 50 is also connected to the synchronizer 35, and the laser light from the wavelength tunable laser 50 irradiates the cooling water in the measurement cell via the mirrors 51 and 52 and the above-mentioned mirrors 22 and 23. This LBS /
If the LIF combined method is used, the detection sensitivity can be further improved. B, Li selective excitation laser wavelength B: 208.89 nm or 249.68 nm Li: 274.12 nm, 323.26 nm or 67
0.78
【0035】[0035]
【発明の効果】本発明によれば、冷却系を有する原子炉
において、該冷却系の冷却水中の検出対象成分の濃度を
規定値に制御する方法であって、前記冷却系に前記検出
対象成分の測定場を設定し、該測定場の冷却水に対しプ
ラズマ生成用パルスレーザ光を照射し、前記プラズマ生
成用パルスレーザ光の照射により発生するプラズマ光に
基づいて前記検出対象成分の濃度値を検出し、該濃度値
を表す濃度信号により前記冷却系の冷却水注入制御弁を
開閉制御する。また、本発明の制御方法によると、冷却
系に検出対象成分の測定場を設定し、該測定場の冷却水
に対しプラズマ生成用パルスレーザ光と検出対象成分の
励起用パルスレーザ光とを同期して照射し、前記プラズ
マ生成用パルスレーザ光の照射により発生するプラズマ
光と前記励起用パルスレーザ光の照射により前記検出対
象成分から発する発光強度とに基づいて前記検出対象成
分の濃度値を検出し、該濃度値を表す濃度信号により前
記冷却系の冷却水注水制御弁を開閉制御する。そのた
め、本発明によれば、冷却系の濃度値を常時オンライン
処理できることにより、原子炉の反応度制御及び水質管
理をより効率的に運営でき、これは、定期検査等の工程
期間を短縮させることにも繋がる。According to the present invention, in a nuclear reactor having a cooling system, a method for controlling the concentration of a component to be detected in cooling water of the cooling system to a specified value, wherein the component to be detected is added to the cooling system The measurement field is set, and the cooling water of the measurement field is irradiated with the pulse laser beam for plasma generation, and the concentration value of the detection target component is determined based on the plasma light generated by the irradiation of the pulse laser beam for plasma generation. Detecting and controlling the cooling water injection control valve of the cooling system by a concentration signal representing the concentration value. Further, according to the control method of the present invention, a measurement field for the component to be detected is set in the cooling system, and the pulse laser light for plasma generation and the pulse laser light for excitation of the component to be detected are synchronized with the cooling water in the measurement field. Detecting the concentration value of the detection target component based on the plasma light generated by the irradiation of the plasma generation pulse laser light and the emission intensity emitted from the detection target component by the irradiation of the excitation pulse laser light. Then, the cooling water injection control valve of the cooling system is controlled to open and close by a concentration signal representing the concentration value. Therefore, according to the present invention, the concentration value of the cooling system can be constantly processed on-line, so that the reactivity control and water quality management of the reactor can be operated more efficiently. Also leads to.
【0036】また、原子炉冷却水の水質管理担当作業者
が、サンプリング時、サンプル輸送時、分析時を通じて
サンプルに含まれる放射性腐食生成物から受ける被曝の
可能性を避けることができるため、作業者の健康管理に
も大きく寄与する。更に、以上のレーザによる濃度計測
が確立することで、従来法での作業試料の採取、分析装
置への輸送及び測定作業そのものに要する時間が無くな
るため、原子炉冷却水中のB,Liのような成分のリア
ルタイムな濃度把握が可能となり、濃度管理に関連する
作業が効率化する。Further, the worker in charge of water quality control of the reactor cooling water can avoid the possibility of exposure to radioactive corrosion products contained in the sample during sampling, transporting the sample, and analyzing the sample. It greatly contributes to the health management of people. Furthermore, the establishment of the above-mentioned concentration measurement using a laser eliminates the time required for collecting a working sample, transporting it to an analyzer, and measuring itself in the conventional method, thereby reducing the time required for B, Li in the reactor cooling water. It becomes possible to grasp the concentrations of the components in real time, and work related to concentration management becomes more efficient.
【0037】また、別の本発明のように、測定セル内の
水に対し発射されるプラズマ生成用パルスレーザ光のパ
ルスエネルギを10〜40mJに設定しておけば、冷却
水中の検出対象成分でも検出するのに適するエネルギレ
ベルとなり、冷却水中の成分でも効果的に検出すること
ができる。本発明の実施形態のように、プラズマ生成用
パルスレーザ光及び励起用パルスレーザ光の発射間隔を
1μs〜13μsの範囲にしておけば、測定感度が向上
する。また、本発明の実施形態のように、プラズマ生成
用パルスレーザ光又は励起用パルスレーザ光の照射の
0.1〜1μs後に、波長幅が0.1hm以下で検出対
象成分を励起する波長に調整したレーザ光を照射する波
長可変レーザを設ければ、測定感度を更に向上させるこ
とができる。If the pulse energy of the pulse laser beam for plasma generation emitted to the water in the measuring cell is set to 10 to 40 mJ as in the present invention, the detection target component in the cooling water can be reduced. The energy level is suitable for detection, and components in the cooling water can be effectively detected. As in the embodiment of the present invention, the measurement sensitivity is improved by setting the emission interval between the plasma generation pulse laser beam and the excitation pulse laser beam in the range of 1 μs to 13 μs. Further, as in the embodiment of the present invention, the wavelength is adjusted to a wavelength that excites the detection target component with a wavelength width of 0.1 hm or less 0.1 to 1 μs after the irradiation of the plasma generation pulse laser light or the excitation pulse laser light. If a wavelength tunable laser for irradiating the laser light is provided, the measurement sensitivity can be further improved.
【0038】また、励起用パルスレーザ光の照射により
検出対象成分から発する発光強度を酸素原子から発する
発光線に基づいて補正すれば測定精度をより向上させる
ことができる。Further, the measurement accuracy can be further improved by correcting the emission intensity emitted from the detection target component by the irradiation of the excitation pulse laser beam based on the emission line emitted from the oxygen atom.
【0039】別の様相の本発明によれば、測定セルに
は、プラズマ生成用パルスレーザ光及び励起用パルスレ
ーザ光が入射する面に対峙する面に、封止手段を介して
レーザトラップ板が設けられているため、レーザ光を効
果的にトラップすることができ、また、封止手段により
漏水を防止したり、振動を吸収したりすることができ
る。According to another aspect of the present invention, the measurement cell is provided with a laser trap plate via a sealing means on a surface opposed to a surface on which the plasma generation pulse laser beam and the excitation pulse laser beam are incident. Since it is provided, the laser light can be trapped effectively, and the sealing means can prevent water leakage and absorb vibration.
【図1】 本発明の一実施形態に係る検出対象成分の濃
度制御方法及び装置が適用された加圧水型原子炉プラン
トの概要図である。FIG. 1 is a schematic diagram of a pressurized water reactor plant to which a method and an apparatus for controlling the concentration of a detection target component according to an embodiment of the present invention are applied.
【図2】 本発明の検出対象成分の濃度測定装置を示す
概要図である。FIG. 2 is a schematic diagram showing the apparatus for measuring the concentration of a component to be detected according to the present invention.
【図3】 図2の濃度制御装置で実行される手順を図解
した説明図である。FIG. 3 is an explanatory diagram illustrating a procedure executed by the density control device of FIG. 2;
【図4】 本発明の検出対象成分の更に高感度な濃度測
定装置を示す概要図である。FIG. 4 is a schematic diagram showing an apparatus for measuring the concentration of a detection target component with higher sensitivity according to the present invention.
【図5】 図2及び図4の濃度制御装置において用いら
れている測定セルの断面図である。FIG. 5 is a cross-sectional view of a measurement cell used in the concentration control devices of FIGS. 2 and 4.
【図6】 図2及び図4の濃度制御装置において用いら
れている測定セルの側面図である。FIG. 6 is a side view of a measurement cell used in the concentration control device of FIGS. 2 and 4.
【図7】 (a)はLBS法適用過程を示し、(b)は
LIF適用過程を示す本発明の測定原理概念図である。FIG. 7A is a conceptual diagram of the measurement principle of the present invention showing an LBS application process, and FIG. 7B is a LIF application process.
【図8】 Li水溶液発光スペクトルの波長と強度
(%)の関係を示す図表である。FIG. 8 is a chart showing the relationship between the wavelength and the intensity (%) of the emission spectrum of an aqueous Li solution.
【図9】 Liの場合についてYAGレーザ照射からの
経過時間と信号強度との関係を示す図表である。FIG. 9 is a table showing the relationship between the elapsed time from YAG laser irradiation and the signal intensity in the case of Li.
【図10】 Liの場合についてレーザ出力と信号強度
との関係を示す図表である。FIG. 10 is a chart showing a relationship between laser output and signal intensity in the case of Li.
【図11】 Liの場合についてパルス間隔と信号強度
との関係を示す図表である。FIG. 11 is a table showing a relationship between a pulse interval and a signal intensity in the case of Li.
【図12】 原子力発電所における従来のB,Li濃度
測定手順を図解する説明図である。FIG. 12 is an explanatory diagram illustrating a conventional B, Li concentration measurement procedure in a nuclear power plant.
2…蒸気発生器、3…加圧水型原子炉、4…加圧器、6
…一次冷却系の高温側配管、8…一次冷却系の低温側配
管、10…化学体積制御系、10a…抽出ライン、10
b…充填ライン、20…濃度制御装置、21…プラズマ
生成用パルスレーザ、25…測定場、26…B,Li選
択励起用パルスレーザ、34a,34b…コンピュータ
(算出手段)、37…制御弁、40…測定セル、41a
…入口側通流管(入口)、41b…出口側通流管(出
口)、42…O−リング(封止手段)、43,45,4
6…石英ガラス(光透過ガラス)、44…レーザトラッ
プ板(テフロン板)、50…波長可変レーザ。2 steam generator, 3 pressurized water reactor, 4 pressurizer, 6
... High temperature side piping of primary cooling system, 8 ... Low temperature side piping of primary cooling system, 10 ... Chemical volume control system, 10a ... Extraction line, 10
b: filling line, 20: concentration control device, 21: pulse laser for plasma generation, 25: pulse field for measurement, 26: pulse laser for selective excitation of B and Li, 34a, 34b: computer (calculation means), 37: control valve, 40 ... Measurement cell, 41a
... Inlet side flow pipe (inlet), 41b ... Outlet side flow pipe (outlet), 42 ... O-ring (sealing means), 43, 45, 4
6: quartz glass (light transmitting glass), 44: laser trap plate (Teflon plate), 50: tunable laser.
フロントページの続き (72)発明者 林原 浩文 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 Fターム(参考) 2G043 AA01 BA07 CA02 CA03 DA05 EA10 GA06 GA08 GA23 GB17 GB19 GB21 HA08 KA08 KA09 2G075 AA05 BA03 CA29 CA40 DA07 EA01 EA08 FA03 FA11 FB07 FC12 FC14 GA15 GA16 GA21Continued on the front page (72) Inventor Hirofumi Hayashibara 2-1-1, Shinhama, Araimachi, Takasago-shi, Hyogo F-term in Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. 2G043 AA01 BA07 CA02 CA03 DA05 EA10 GA06 GA08 GA23 GB17 GB19 GB21 HA08 KA08 KA09 2G075 AA05 BA03 CA29 CA40 DA07 EA01 EA08 FA03 FA11 FB07 FC12 FC14 GA15 GA16 GA21
Claims (12)
系の冷却水中の検出対象成分の濃度を規定値に制御する
方法であって、前記冷却系に前記検出対象成分の測定場
を設定し、該測定場の冷却水に対しプラズマ生成用パル
スレーザ光を照射し、前記プラズマ生成用パルスレーザ
光の照射により前記検出対象成分から発する発光強度に
基づいて前記検出対象成分の濃度の実際値を検出し、該
実際値及び前記規定値のコンピュータ処理に基づいて、
前記冷却系に接続された検出対象成分調整ラインの制御
弁を開閉制御する、検出対象成分の濃度制御方法。In a nuclear reactor having a cooling system, a method for controlling a concentration of a detection target component in cooling water of the cooling system to a specified value, wherein a measurement field of the detection target component is set in the cooling system. Irradiating the plasma generation pulse laser light to the cooling water of the measurement site, and calculating the actual value of the concentration of the detection target component based on the emission intensity emitted from the detection target component by the irradiation of the plasma generation pulse laser light. Detecting, based on computer processing of the actual value and the specified value,
A concentration control method for a detection target component, wherein a control valve of a detection target component adjustment line connected to the cooling system is opened and closed.
系の冷却水中の検出対象成分の濃度を規定値に制御する
装置であって、前記冷却系に設定された前記検出対象成
分の測定場に配置される測定セルと、該測定セルの冷却
水に対しプラズマ生成用パルスレーザ光を照射するプラ
ズマ生成用パルスレーザと、前記プラズマ生成用パルス
レーザ光の照射により前記検出対象成分から発する発光
強度に基づいて前記検出対象成分の濃度の実際値を連続
的に算出する算出手段と、前記検出対象成分の濃度の前
記実際値が前記規定値に対して許容しうるか否かを判断
する判断手段と、前記冷却系に接続された検出対象成分
調整ラインの制御弁と、前記検出対象成分の濃度の前記
実際値が異常値と判断された場合に、前記実際値が前記
規定値に復帰するように前記制御弁を開閉制御する制御
手段とを備える、検出対象成分の濃度制御装置。2. An apparatus for controlling a concentration of a component to be detected in cooling water of a cooling system to a specified value in a reactor having a cooling system, wherein a measurement field of the component to be detected set in the cooling system is provided. A measurement cell arranged in the cell, a plasma generation pulse laser for irradiating the plasma generation pulse laser beam to the cooling water of the measurement cell, and an emission intensity emitted from the detection target component by the plasma generation pulse laser beam irradiation. Calculating means for continuously calculating the actual value of the concentration of the detection target component based on the determination means, and determining means for determining whether the actual value of the concentration of the detection target component is acceptable with respect to the specified value. A control valve for a detection target component adjustment line connected to the cooling system, and when the actual value of the concentration of the detection target component is determined to be an abnormal value, the actual value returns to the specified value. Control means for controlling the opening and closing of the control valve as described above.
からなる一次冷却系により連絡する加圧水型原子炉にお
いて、前記一次冷却系の冷却水中におけるB,Li成分
の濃度を規定値に制御するための装置であって、前記一
次冷却系の高温側に設定された前記B,Li成分の測定
場に配置される測定セルと、該測定セルの冷却水に対し
プラズマ生成用パルスレーザ光を照射するプラズマ生成
用パルスレーザと、前記プラズマ生成用パルスレーザ光
の照射により前記B,Li成分から発する発光強度に基
づいて前記B,Li成分の濃度の実際値を算出する算出
手段と、前記一次冷却系の前記低温側配管に接続された
B,Li成分調整ラインの制御弁と、前記B,Li成分
の濃度の前記実際値が異常値と判断された場合に、前記
実際値が前記規定値に復帰するように前記制御弁を開閉
制御する制御手段とを備える、原子炉冷却水濃度の制御
装置。3. A pressurized water reactor connected to a steam generator by a primary cooling system comprising a high-temperature side pipe and a low-temperature side pipe, wherein the concentrations of B and Li components in the cooling water of the primary cooling system are controlled to specified values. Cell for measuring the B and Li components set on the high-temperature side of the primary cooling system, and irradiating the cooling water of the measurement cell with a pulse laser beam for plasma generation. A pulse laser for generating plasma, a calculating means for calculating an actual value of the concentration of the B and Li components based on an emission intensity emitted from the B and Li components by irradiation of the pulse laser beam for generating plasma, and the primary cooling A control valve for a B, Li component adjustment line connected to the low-temperature side pipe of the system; and, when the actual value of the concentration of the B, Li component is determined to be an abnormal value, the actual value is the specified value. Control means for controlling the opening and closing of the control valve so as to return to the normal state.
系の冷却水中の検出対象成分の濃度を規定値に制御する
方法であって、前記冷却系に前記検出対象成分の測定場
を設定し、該測定場の冷却水に対しプラズマ生成用パル
スレーザ光を照射し、前記プラズマ生成用パルスレーザ
光の照射により発生するプラズマ光に基づいて前記検出
対象成分の濃度値を検出し、該濃度値を表す濃度信号に
より前記冷却系の冷却水注入制御弁を開閉制御すること
を特徴とする原子炉冷却水濃度の制御方法。4. A method for controlling a concentration of a component to be detected in cooling water of a cooling system to a specified value in a reactor having a cooling system, wherein a measuring field of the component to be detected is set in the cooling system. Irradiating the cooling water of the measurement site with a pulse laser beam for plasma generation, detecting the concentration value of the detection target component based on the plasma light generated by the irradiation of the pulse laser beam for plasma generation, And controlling the opening and closing of a cooling water injection control valve of the cooling system by a concentration signal representing the following.
系の冷却水中の検出対象成分の濃度を規定値に制御する
方法であって、前記冷却系に前記検出対象成分の測定場
を設定し、該測定場の冷却水に対しプラズマ生成用パル
スレーザ光と検出対象成分の励起用パルスレーザ光とを
同期して照射し、前記プラズマ生成用パルスレーザ光の
照射により発生するプラズマ光と前記励起用パルスレー
ザ光の照射により前記検出対象成分から発する発光強度
とに基づいて前記検出対象成分の濃度値を検出し、該濃
度値を表す濃度信号により前記冷却系の冷却水注入制御
弁を開閉制御することを特徴とする原子炉冷却水濃度の
制御方法。5. A method for controlling a concentration of a component to be detected in cooling water of a cooling system to a specified value in a reactor having a cooling system, wherein a measuring field of the component to be detected is set in the cooling system. Irradiating the cooling water of the measurement site with a pulsed laser beam for plasma generation and a pulsed laser beam for excitation of a component to be detected in synchronization with each other, and irradiating the plasma light generated by the irradiation with the pulsed laser beam for plasma generation and the excitation Detecting the concentration value of the detection target component based on the emission intensity emitted from the detection target component by irradiating the pulse laser light for use, and controlling the opening and closing of the cooling water injection control valve of the cooling system by a concentration signal representing the concentration value. A method for controlling the concentration of reactor cooling water.
系の冷却水中の検出対象成分の濃度を規定値に制御する
装置であって、前記冷却系に設定された前記検出対象成
分の測定場に配置される測定セルと、該測定セルの冷却
水に対しプラズマ生成用パルスレーザ光及び検出対象成
分の励起用パルスレーザ光をそれぞれ同期して照射する
プラズマ生成用パルスレーザ及び励起用パルスレーザ
と、前記プラズマ生成用パルスレーザ光の照射により発
生するプラズマ光と前記励起用パルスレーザ光の照射に
より前記検出対象成分から発する発光強度とに基づいて
前記検出対象成分の濃度の実際値を連続的に算出する算
出手段と、前記検出対象成分の濃度の前記実際値が前記
規定値に対して許容しうか否かを判断する判断手段と、
前記冷却系に接続された検出対象成分調整ラインの制御
弁と、前記検出対象成分の濃度の前記実際値が異常値と
判断された場合に、前記実際値が前記規定値に復帰する
ように前記制御弁を開閉制御する制御手段とを備える、
原子炉冷却水濃度の制御装置。6. In a nuclear reactor having a cooling system, an apparatus for controlling the concentration of a detection target component in cooling water of the cooling system to a specified value, wherein a measurement field of the detection target component set in the cooling system is provided. A measuring cell disposed in the measuring cell, a plasma generating pulse laser and an exciting pulse laser that irradiate the cooling water of the measuring cell with the plasma generating pulse laser light and the pulse laser light for excitation of the component to be detected in synchronization with each other. The actual value of the concentration of the detection target component is continuously changed based on the plasma light generated by the irradiation of the plasma generation pulse laser light and the emission intensity emitted from the detection target component by the irradiation of the excitation pulse laser light. Calculating means for calculating, and determining means for determining whether the actual value of the concentration of the detection target component is acceptable for the specified value,
The control valve of the detection target component adjustment line connected to the cooling system, and when the actual value of the concentration of the detection target component is determined to be an abnormal value, the actual value returns to the specified value. Control means for controlling the opening and closing of the control valve,
Reactor cooling water concentration control device.
からなる一次冷却系により連絡する加圧水型原子炉にお
いて、前記一次冷却系の冷却水中におけるB,Li成分
の濃度を規定値に制御するための装置であって、前記一
次冷却系の高温側に設定された前記B,Li成分の測定
場に配置される測定セルと、該測定セルの冷却水に対し
プラズマ生成用パルスレーザ光及び前記B,Li成分の
励起用パルスレーザ光をそれぞれ同期して照射するプラ
ズマ生成用パルスレーザ及び励起用パルスレーザと、前
記プラズマ生成用パルスレーザ光の照射及び前記励起用
パルスレーザ光の照射により前記B,Li成分から発す
る発光強度に基づいて前記B,Li成分の濃度の実際値
を算出する算出手段と、前記一次冷却系の前記低温側配
管に接続されたB,Li成分調整ラインの制御弁と、前
記B,Li成分の濃度の前記実際値が異常値と判断され
た場合に、前記実際値が前記規定値に復帰するように前
記制御弁を開閉制御する制御手段とを備える、原子炉冷
却水濃度の制御装置。7. In a pressurized water reactor connected to a steam generator by a primary cooling system comprising a high-temperature side pipe and a low-temperature side pipe, the concentrations of B and Li components in the cooling water of the primary cooling system are controlled to specified values. A measurement cell arranged in a measurement field of the B and Li components set on a high temperature side of the primary cooling system; and a pulse laser beam for plasma generation with respect to cooling water of the measurement cell. A pulse laser for plasma generation and a pulse laser for excitation, each of which irradiates a pulse laser beam for excitation of B and Li components in synchronization with each other, and the irradiation of the pulse laser beam for plasma generation and the pulse laser beam for excitation , A calculating means for calculating the actual value of the concentration of the B and Li components based on the emission intensity emitted from the Li component, and B and B connected to the low temperature side pipe of the primary cooling system. A control valve for the Li component adjustment line, and a control for opening and closing the control valve so that the actual value returns to the specified value when the actual value of the concentration of the B and Li components is determined to be an abnormal value. And a control unit for controlling the concentration of the reactor cooling water.
ように測定場に配置された測定セルと、該測定セル内の
水に対しパルスエネルギ10〜40mJのプラズマ生成
用パルスレーザ光を発射するプラズマ生成用レーザと、
前記水に含まれる検出対象成分の励起用パルスレーザ光
を前記プラズマ生成用パルスレーザ光と同期して発射す
る励起用レーザと、前記プラズマ生成用パルスレーザ光
の照射により発生するプラズマ光及び前記励起用パルス
レーザ光の照射により前記検出対象成分から発する発光
の強度に基づいて前記検出対象成分の濃度の実際値を算
出する算出手段とを備える検出対象成分の濃度計測シス
テム。8. A measuring cell arranged in a measuring field so as to allow flow of water and penetration of a laser beam, and a pulse laser beam for generating plasma having a pulse energy of 10 to 40 mJ for water in the measuring cell. A laser for generating plasma to be fired,
An excitation laser that emits an excitation pulse laser beam of the detection target component contained in the water in synchronization with the plasma generation pulse laser beam; a plasma beam generated by irradiation of the plasma generation pulse laser beam; And a calculating means for calculating an actual value of the concentration of the detection target component based on the intensity of light emitted from the detection target component upon irradiation with the pulse laser light for use.
前記励起用パルスレーザ光の発射間隔は1μs〜13μ
sの範囲にある請求項8に記載の濃度計測システム。9. An emission interval between the plasma generation pulse laser beam and the excitation pulse laser beam is 1 μs to 13 μs.
9. The concentration measurement system according to claim 8, wherein the concentration is in the range of s.
は前記励起用パルスレーザ光の照射の0.1〜1μs後
に、波長幅が0.1hm以下で前記検出対象成分を再励
起する波長に調整したレーザ光を照射する波長可変レー
ザを更に備える請求項8又は9に記載の濃度計測システ
ム。10. A laser having a wavelength width of 0.1 hm or less and adjusted to a wavelength at which the detection target component is re-excited 0.1 to 1 μs after irradiation of the plasma generation pulse laser light or the excitation pulse laser light. The concentration measuring system according to claim 8, further comprising a wavelength variable laser that emits light.
前記励起用パルスレーザ光の照射により前記検出対象成
分から発する発光強度を酸素原子から発する発光線に基
づいて補正する請求項8乃至10のいずれかに記載の濃
度計測システム。11. The computing means is a computer,
The concentration measurement system according to any one of claims 8 to 10, wherein the emission intensity emitted from the detection target component by the irradiation of the excitation pulse laser beam is corrected based on an emission line emitted from oxygen atoms.
て、前記プラズマ生成用パルスレーザ光及び前記励起用
パルスレーザ光が入射する第1面には封止手段を介して
光透過ガラスが設けられ、該第1面と対峙する第2面に
は封止手段を介してレーザトラップ板が設けられ、前記
第1面及び前記第2面を除いて対峙する2面には前記水
の通流を許容する入口及び出口が設けられ、対峙する残
りの2面に前記プラズマ光及び前記発光を透過する光透
過ガラスが封止手段を介して設けられている請求項8乃
至11のいずれかに記載の濃度計測システム。12. The measurement cell is substantially a hexahedron, and a light transmitting glass is provided on a first surface on which the pulse laser beam for plasma generation and the pulse laser beam for excitation are incident via a sealing unit. A laser trap plate is provided on the second surface facing the first surface via sealing means, and the water flow is applied to the two surfaces facing each other except for the first surface and the second surface. 12. The method according to claim 8, wherein an allowable inlet and an outlet are provided, and a light transmitting glass transmitting the plasma light and the light emission is provided via sealing means on the remaining two opposite surfaces. Concentration measurement system.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13107999A JP3611285B2 (en) | 1999-05-12 | 1999-05-12 | Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13107999A JP3611285B2 (en) | 1999-05-12 | 1999-05-12 | Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2000321393A true JP2000321393A (en) | 2000-11-24 |
| JP3611285B2 JP3611285B2 (en) | 2005-01-19 |
Family
ID=15049508
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13107999A Expired - Fee Related JP3611285B2 (en) | 1999-05-12 | 1999-05-12 | Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3611285B2 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001311793A (en) * | 2000-04-28 | 2001-11-09 | Mitsubishi Heavy Ind Ltd | Method of detecting leakage of coolant metal and leakage detector |
| JP2004020242A (en) * | 2002-06-13 | 2004-01-22 | Shikoku Res Inst Inc | Seawater leak monitoring method, and seawater leak monitoring device |
| JP2005147788A (en) * | 2003-11-13 | 2005-06-09 | Inst Nuclear Energy Research Rocaec | Boric acid purification and reuse system and method using reverse osmosis separation |
| JP2005201762A (en) * | 2004-01-15 | 2005-07-28 | Toshiba Corp | Lithium leak detection device and lithium leak detection method |
| JP2010515043A (en) * | 2006-12-26 | 2010-05-06 | アレヴァ エヌペ | A method for estimating the concentration of chemical elements in the primary coolant of a nuclear reactor. |
| JP2012032388A (en) * | 2010-06-30 | 2012-02-16 | Central Res Inst Of Electric Power Ind | Method and device of measuring concentration of metallic surface adhesion component |
| JP2013083511A (en) * | 2011-10-07 | 2013-05-09 | Ishikawajima Constr Materials Co Ltd | Tubular structure |
| JP2013190411A (en) * | 2012-02-15 | 2013-09-26 | Central Research Institute Of Electric Power Industry | Concentration measurement method and device of metal surface adhesion component |
| KR101403344B1 (en) * | 2012-02-15 | 2014-06-11 | 한국수력원자력 주식회사 | In-situ corrosion analysis apparatus for nuclear power plant using laser measurement |
| RU2606369C1 (en) * | 2015-09-16 | 2017-01-10 | Сергей Константинович Манкевич | System of measuring concentration of boric acid in power nuclear reactor heat carrier circuit |
| WO2017032379A1 (en) | 2015-08-23 | 2017-03-02 | Copenhagen Atomics Aps | Method for operating a molten salt nuclear reactor |
| JP2018205267A (en) * | 2017-06-09 | 2018-12-27 | 日立Geニュークリア・エナジー株式会社 | Boron reuse system and method of operating boron reuse system |
-
1999
- 1999-05-12 JP JP13107999A patent/JP3611285B2/en not_active Expired - Fee Related
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001311793A (en) * | 2000-04-28 | 2001-11-09 | Mitsubishi Heavy Ind Ltd | Method of detecting leakage of coolant metal and leakage detector |
| JP3510561B2 (en) | 2000-04-28 | 2004-03-29 | 三菱重工業株式会社 | Coolant metal leak detection method and leak detector |
| JP2004020242A (en) * | 2002-06-13 | 2004-01-22 | Shikoku Res Inst Inc | Seawater leak monitoring method, and seawater leak monitoring device |
| JP2005147788A (en) * | 2003-11-13 | 2005-06-09 | Inst Nuclear Energy Research Rocaec | Boric acid purification and reuse system and method using reverse osmosis separation |
| JP2005201762A (en) * | 2004-01-15 | 2005-07-28 | Toshiba Corp | Lithium leak detection device and lithium leak detection method |
| JP2010515043A (en) * | 2006-12-26 | 2010-05-06 | アレヴァ エヌペ | A method for estimating the concentration of chemical elements in the primary coolant of a nuclear reactor. |
| JP2012032388A (en) * | 2010-06-30 | 2012-02-16 | Central Res Inst Of Electric Power Ind | Method and device of measuring concentration of metallic surface adhesion component |
| JP2013083511A (en) * | 2011-10-07 | 2013-05-09 | Ishikawajima Constr Materials Co Ltd | Tubular structure |
| JP2013190411A (en) * | 2012-02-15 | 2013-09-26 | Central Research Institute Of Electric Power Industry | Concentration measurement method and device of metal surface adhesion component |
| KR101403344B1 (en) * | 2012-02-15 | 2014-06-11 | 한국수력원자력 주식회사 | In-situ corrosion analysis apparatus for nuclear power plant using laser measurement |
| WO2017032379A1 (en) | 2015-08-23 | 2017-03-02 | Copenhagen Atomics Aps | Method for operating a molten salt nuclear reactor |
| RU2606369C1 (en) * | 2015-09-16 | 2017-01-10 | Сергей Константинович Манкевич | System of measuring concentration of boric acid in power nuclear reactor heat carrier circuit |
| JP2018205267A (en) * | 2017-06-09 | 2018-12-27 | 日立Geニュークリア・エナジー株式会社 | Boron reuse system and method of operating boron reuse system |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3611285B2 (en) | 2005-01-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3611285B2 (en) | Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system | |
| CN101949852B (en) | Spectral standardization-based coal quality on-line detection method | |
| EP3338283B1 (en) | Method for operating a molten salt nuclear reactor | |
| EP4012723A1 (en) | Method for monitoring irradiation embrittlement of nuclear power plant reactor pressure vessel | |
| Ruas et al. | Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution | |
| Andrews et al. | Sensor technology for molten salt reactor off-gas systems | |
| Holt et al. | Predisposal conditioning, treatment, and performance assessment of radioactive waste streams | |
| Corcoran et al. | An overview of thermochemical modelling of CANDU fuel and applications to the nuclear industry | |
| Trtica et al. | LIBS hydrogen isotopes detection: significance in nuclear/fusion technology | |
| Galbács et al. | Nuclear Applications of Laser‐Induced Breakdown Spectroscopy | |
| Morgan et al. | Post-irradiation examination of optical components for advanced fission reactor instrumentation | |
| US4882122A (en) | Method and apparatus for obtaining a water sample from the core of a boiling water reactor | |
| CN108088813B (en) | An online detection device for metal elements in molten salt | |
| Guillong et al. | A laser ablation system for the analysis of radioactive samples using inductively coupled plasma mass spectrometry | |
| Choi et al. | Laser ablation saturated absorption spectroscopy (LA-SAS) for in situ detection of neodymium isotopes | |
| KR101285530B1 (en) | Method and system for monitoring leakage of steam generator tube of nuclear power plant using trace level of boron | |
| Burak et al. | Laser-spectroscopy testbed for impurity monitoring in liquid metal-cooled fast reactors | |
| KR200208966Y1 (en) | the apparatus analyzing the total concentration of Fe composition in the circular system water in the power plant | |
| JP2002372495A (en) | Liquid quality analysis apparatus | |
| Haste et al. | Iodine benchmarks in the SARNET network of excellence | |
| KR100869074B1 (en) | Heavy water leakage monitoring method and apparatus using mass spectrometry | |
| Irvine et al. | Development of Laser-Induced Breakdown Spectroscopy for the Californium-252 Supply Program | |
| JPS62239051A (en) | Method and instrument for measuring concentration of metal | |
| JPH11352277A (en) | Corrosion evaluation method for reactor materials | |
| Jacob | Optical Probes for Real-Time Measurement of Impurity Concentrations in Molten Sodium and Molten Salt Systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040921 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041018 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |