+

HK1225203B - Motion-video encoding apparatus and method and motion-video decoding apparatus and method - Google Patents

Motion-video encoding apparatus and method and motion-video decoding apparatus and method Download PDF

Info

Publication number
HK1225203B
HK1225203B HK16113209.2A HK16113209A HK1225203B HK 1225203 B HK1225203 B HK 1225203B HK 16113209 A HK16113209 A HK 16113209A HK 1225203 B HK1225203 B HK 1225203B
Authority
HK
Hong Kong
Prior art keywords
prediction
intra
image
unit
frame
Prior art date
Application number
HK16113209.2A
Other languages
Chinese (zh)
Other versions
HK1225203A1 (en
Inventor
峯泽彰
关口俊一
杉本和夫
Original Assignee
三菱电机株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱电机株式会社 filed Critical 三菱电机株式会社
Publication of HK1225203A1 publication Critical patent/HK1225203A1/en
Publication of HK1225203B publication Critical patent/HK1225203B/en

Links

Description

运动图像编码装置及方法、运动图像解码装置及方法Motion picture encoding device and method, motion picture decoding device and method

本申请是申请号为201180047243.5,申请日为2011年7月21日,发明名称为“运动图像编码装置、运动图像解码装置、运动图像编码方法以及运动图像解码方法”的分案申请。This application is a divisional application of application number 201180047243.5, application date July 21, 2011, and invention name “Motion image encoding device, motion image decoding device, motion image encoding method and motion image decoding method”.

技术领域Technical Field

本发明涉及对运动图像高效地进行编码的运动图像编码装置以及运动图像编码方法、和对被高效地编码的运动图像进行解码的运动图像解码装置以及运动图像解码方法。The present invention relates to a moving picture encoding device and a moving picture encoding method for efficiently encoding a moving picture, and a moving picture decoding device and a moving picture decoding method for decoding an efficiently encoded moving picture.

背景技术Background Art

例如,在MPEG(Moving Picture Experts Group,运动图像专家组)、“ITU-TH.26x”等国际标准影像编码方式中,将输入影像帧分割为矩形的块(编码对象块),针对该编码对象块,实施使用已编码的图像信号的预测处理,从而生成预测图像,按照块单位对作为该编码对象块与预测图像的差分的预测误差信号进行正交变换、量化处理,从而进行信息压缩。For example, in international standard image coding methods such as MPEG (Moving Picture Experts Group) and "ITU-TH.26x", the input image frame is divided into rectangular blocks (coding object blocks), and prediction processing using the encoded image signal is performed on the coding object block to generate a predicted image. The prediction error signal, which is the difference between the coding object block and the predicted image, is orthogonally transformed and quantized on a block-by-block basis to perform information compression.

例如,在作为国际标准方式的AVC/H.264(ISO/IEC 14496-10|ITU-T H.264)中,根据已编码的附近像素进行帧内(intra)预测处理,或者进行接近帧之间的运动补偿预测处理(例如,参照非专利文献1)。For example, in AVC/H.264 (ISO/IEC 14496-10 | ITU-T H.264), which is an international standard, intra prediction is performed based on coded nearby pixels, or motion compensation prediction is performed between adjacent frames (see, for example, Non-Patent Document 1).

在MPEG-4AVC/H.264中,在亮度的帧内预测模式中,能够按照块单位,从多个预测模式之中选择1个预测模式。In MPEG-4 AVC/H.264, in the intra prediction mode of luma, one prediction mode can be selected from a plurality of prediction modes on a block-by-block basis.

图10是示出亮度的块尺寸是4×4像素时的帧内预测模式的说明图。FIG. 10 is an explanatory diagram showing intra prediction modes when the luma block size is 4×4 pixels.

在图10中,白色的圆是编码对象的块内的像素。黑色的圆是预测中使用的像素,是已编码的邻接块内的像素。In FIG10 , white circles are pixels in the block to be coded, and black circles are pixels used for prediction, which are pixels in adjacent blocks that have already been coded.

在图10中,作为帧内预测模式,准备了9个模式0~模式8,其中模式2是进行平均值预测的模式,用上面和左边的块的邻接像素的平均值来预测编码对象块内的像素。In FIG10 , nine modes 0 to 8 are prepared as intra prediction modes. Mode 2 is a mode for performing average value prediction, in which pixels in the encoding target block are predicted using the average value of adjacent pixels of the blocks above and to the left.

模式2以外的模式是进行方向性预测的模式。模式0是垂直方向预测,通过将上面的块的邻接像素在垂直方向上重复而生成预测图像。例如,在纵条纹图案时选择模式0。Modes other than Mode 2 perform directional prediction. Mode 0 is vertical prediction, generating a predicted image by vertically repeating adjacent pixels of the upper block. For example, Mode 0 is selected for a vertical stripe pattern.

模式1是水平方向预测,通过将左边的块的邻接像素在水平方向上重复而生成预测图像。例如,在横条纹图案时选择模式1。Mode 1 is horizontal prediction, which generates a predicted image by repeating the adjacent pixels of the left block horizontally. For example, mode 1 is selected when a horizontal stripe pattern is used.

模式3~模式8使用上面或者左边的块的邻接像素,在规定的方向(箭头表示的方向)上生成插值像素来生成预测图像。Modes 3 to 8 generate a predicted image by generating interpolated pixels in a predetermined direction (direction indicated by an arrow) using adjacent pixels of the block above or to the left.

应用帧内预测的亮度的块尺寸可以从4×4像素、8×8像素、16×16像素中选择,在8×8像素的情况下,与4×4像素的情况同样地规定了9个帧内预测模式。The block size of luminance to which intra prediction is applied can be selected from 4×4 pixels, 8×8 pixels, and 16×16 pixels. In the case of 8×8 pixels, nine intra prediction modes are defined similarly to the case of 4×4 pixels.

在16×16像素的情况下,规定了4个帧内预测模式(平均值预测、垂直方向预测、水平方向预测、平面预测)。In the case of 16×16 pixels, four intra prediction modes (average prediction, vertical prediction, horizontal prediction, and planar prediction) are specified.

平面预测是将在斜向方向上对上面的块的邻接像素和左边的块的邻接像素进行内插插值而生成的像素作为预测值的模式。Planar prediction is a mode in which pixels generated by interpolating adjacent pixels of an upper block and adjacent pixels of a left block in a diagonal direction are used as prediction values.

在块尺寸为4×4像素或者8×8像素时的方向性预测模式下,例如在45度等根据模式而预先规定的方向上生成预测值,所以在块内的目标的边界(边缘)的方向与预测模式表示的方向一致的情况下,预测效率变高而能够削减代码量。In the directional prediction mode when the block size is 4×4 pixels or 8×8 pixels, a prediction value is generated in a direction predetermined according to the mode, such as 45 degrees. Therefore, when the direction of the boundary (edge) of the target within the block is consistent with the direction indicated by the prediction mode, the prediction efficiency becomes higher and the amount of code can be reduced.

但是,只要在边缘的方向与预测模式表示的方向之间稍微地产生偏差、或者即使方向一致但编码对象块内的边缘稍微地失真(摇摆、弯曲等),就会局部地发生大的预测误差,预测效率极端地下降。However, if there is a slight deviation between the direction of the edge and the direction indicated by the prediction mode, or even if the directions are consistent but the edge within the encoding target block is slightly distorted (wobbling, bending, etc.), a large local prediction error will occur, and the prediction efficiency will drop drastically.

为了防止这样的预测效率降低,在8×8像素的方向性预测中,通过将对已编码的邻接像素实施平滑化滤波而得到的结果作为在预测图像的生成时使用的参照图像,从而生成平滑化了的预测图像,降低在产生了预测方向的稍微的偏差、在边缘产生了稍微的失真的情况下发生的预测误差。In order to prevent such a decrease in prediction efficiency, in the directional prediction of 8×8 pixels, the result obtained by applying a smoothing filter to the encoded adjacent pixels is used as a reference image when generating the predicted image, thereby generating a smoothed predicted image, thereby reducing the prediction error that occurs when a slight deviation in the prediction direction or a slight distortion at the edge occurs.

非专利文献1:MPEG-4AVC(ISO/IEC 14496-10)/ITU-T H.264规格Non-Patent Document 1: MPEG-4 AVC (ISO/IEC 14496-10)/ITU-T H.264 Standard

发明内容Summary of the Invention

以往的图像编码装置如以上那样构成,所以如果实施滤波处理而生成平滑化了的预测图像,则即使产生预测方向的稍微的偏差、在边缘产生稍微的失真,也能够降低所发生的预测误差。但是,在非专利文献1中,除了8×8像素的块以外不实施滤波处理,对8×8像素的块所使用的滤波器也只有一种。实际上,即使在8×8像素以外的尺寸的块中,也同样地存在如下问题:即使预测图像和编码对象图像的图样类似,也会由于边缘的稍微的不匹配而局部地发生大的预测误差,有时会产生预测效率的大幅降低。Conventional image coding devices are configured as described above. By applying filtering to generate a smoothed predicted image, even if there are slight deviations in the prediction direction or slight distortion at edges, the resulting prediction error can be reduced. However, in Non-Patent Document 1, filtering is not performed except for 8×8 pixel blocks, and only one type of filter is used for 8×8 pixel blocks. In practice, even for blocks of sizes other than 8×8 pixels, the same problem exists: even if the predicted image and the target image have similar patterns, slight mismatches at edges can lead to large localized prediction errors, sometimes significantly reducing prediction efficiency.

另外,存在如下课题:即使在同一尺寸的块中,如果在对预测误差信号进行量化时使用的量化参数、块内的像素的位置等不同,则适合于降低局部性的预测误差的滤波器不同,但仅准备了一种滤波器,从而无法充分降低预测误差。In addition, there is the following problem: even in blocks of the same size, if the quantization parameters used when quantizing the prediction error signal, the positions of the pixels within the block, etc. are different, the filters suitable for reducing the local prediction error will be different, but only one filter is prepared, and the prediction error cannot be fully reduced.

本发明是为了解决上述那样的课题而完成的,其目的在于得到一种能够降低局部地发生的预测误差来提高图像质量的运动图像编码装置、运动图像解码装置、运动图像编码方法以及运动图像解码方法。The present invention is made to solve the above-mentioned problems, and its purpose is to obtain a motion picture encoding device, a motion picture decoding device, a motion picture encoding method and a motion picture decoding method that can reduce locally occurring prediction errors to improve image quality.

本发明涉及的图像解码装置具备帧内预测单元,该帧内预测单元在与编码块有关的编码模式是帧内编码模式的情况下,针对成为所述编码块的预测处理的单位的块的每一个实施与在该块中使用的帧内预测参数对应的帧之内预测处理,从而生成预测图像;所述帧内预测单元按照所述帧内预测参数,根据参照像素生成中间预测值,仅在所述块内的特定的位置,将通过针对中间预测值的滤波处理而得到的值作为最终的预测值,在所述块内的其它位置,将中间预测值作为最终的预测值。The image decoding device according to the present invention includes an intra-frame prediction unit. When the coding mode associated with a coding block is the intra-frame coding mode, the intra-frame prediction unit performs intra-frame prediction processing corresponding to the intra-frame prediction parameters used in each block, thereby generating a predicted image. The intra-frame prediction unit generates intermediate prediction values from reference pixels according to the intra-frame prediction parameters, and uses the value obtained by filtering the intermediate prediction value as the final prediction value only at specific positions within the block, and uses the intermediate prediction value as the final prediction value at other positions within the block.

根据本发明,具备帧内预测单元,该帧内预测单元在与编码块有关的编码模式是帧内编码模式的情况下,针对成为所述编码块的预测处理的单位的块的每一个实施与在该块中使用的帧内预测参数对应的帧之内预测处理,从而生成预测图像,所述帧内预测单元按照所述帧内预测参数,根据参照像素生成中间预测值,仅在所述块内的特定的位置,将通过针对中间预测值的滤波处理而得到的值作为最终的预测值,在所述块内的其它位置,将中间预测值作为最终的预测值,所以具有如下效果:降低局部地发生的预测误差,从而在运动图像解码装置侧也能够生成图像质量高的与在运动图像编码装置侧生成的帧内预测图像相同的帧内预测图像。According to the present invention, there is an intra-frame prediction unit, which, when the coding mode related to the coding block is the intra-frame coding mode, performs intra-frame prediction processing corresponding to the intra-frame prediction parameters used in the block for each block that serves as the unit of prediction processing for the coding block, thereby generating a predicted image. The intra-frame prediction unit generates an intermediate prediction value based on the reference pixels according to the intra-frame prediction parameters, and uses the value obtained by filtering the intermediate prediction value as the final prediction value only at a specific position within the block, and uses the intermediate prediction value as the final prediction value at other positions within the block. Therefore, it has the following effect: the prediction error that occurs locally is reduced, so that an intra-frame prediction image with high image quality that is the same as the intra-frame prediction image generated on the motion image coding device side can be generated on the motion image decoding device side.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是示出本发明的实施方式1的运动图像编码装置的结构图。FIG1 is a diagram showing the structure of a moving picture encoding apparatus according to Embodiment 1 of the present invention.

图2是示出本发明的实施方式1的运动图像解码装置的结构图。FIG2 is a diagram showing the configuration of the moving picture decoding apparatus according to Embodiment 1 of the present invention.

图3是示出本发明的实施方式1的运动图像编码装置的处理内容的流程图。FIG3 is a flowchart showing the processing contents of the moving picture encoding apparatus according to Embodiment 1 of the present invention.

图4是示出本发明的实施方式1的运动图像解码装置的处理内容的流程图。FIG4 is a flowchart showing the processing contents of the moving picture decoding apparatus according to Embodiment 1 of the present invention.

图5是示出最大尺寸的编码块被层次性地分割为多个编码块的情况的说明图。FIG. 5 is an explanatory diagram showing a case where a coding block of a maximum size is hierarchically divided into a plurality of coding blocks.

图6(a)是示出分割后的分块的分布的图,(b)是通过4叉树图形示出对层次分割后的分块分配了编码模式m(Bn)的状况的说明图。FIG6(a) is a diagram showing the distribution of partitions after division, and FIG6(b) is an explanatory diagram showing, in a quad-tree graph, the allocation of coding modes m( Bn ) to the partitions after hierarchical division.

图7是示出在编码块Bn内的各分块Pi n中可选择的帧内预测参数(帧内预测模式)的一个例子的说明图。FIG7 is an explanatory diagram showing an example of intra-frame prediction parameters ( intra -frame prediction modes) selectable in each partition Pin within a coding block Bn .

图8是示出在li n=mi n=4时、生成分块Pi n内的像素的预测值时使用的像素的一个例子的说明图。FIG8 is an explanatory diagram showing an example of pixels used when generating predicted values of pixels in a block Pin when lin = min = 4 .

图9是示出N=5的情况的参照像素配置的一个例子的说明图。FIG. 9 is an explanatory diagram showing an example of reference pixel arrangement in the case of N=5.

图10是示出亮度的块尺寸是4×4像素的情况的帧内预测模式的说明图。FIG. 10 is an explanatory diagram showing intra prediction modes in a case where the block size of luminance is 4×4 pixels.

(符号说明)(Explanation of Symbols)

1:编码控制部(编码控制单元);2:块分割部(块分割单元);3:切换开关(帧内预测单元、运动补偿预测单元);4:帧内预测部(帧内预测单元);5:运动补偿预测部(运动补偿预测单元);6:减法部(差分图像生成单元);7:变换/量化部(图像压缩单元);8:逆量化/逆变换部;9:加法部;10:帧内预测用存储器;11:环路滤波器部;12:运动补偿预测帧存储器;13:可变长编码部(可变长编码单元);51:可变长解码部(可变长解码单元);52:切换开关(帧内预测单元、运动补偿预测单元);53:帧内预测部(帧内预测单元);54:运动补偿预测部(运动补偿预测单元);55:逆量化/逆变换部(差分图像生成单元);56:加法部(解码图像生成单元);57:帧内预测用存储器;58:环路滤波器部;59:运动补偿预测帧存储器。1: Coding control unit (coding control unit); 2: Block division unit (block division unit); 3: Switch (intra-frame prediction unit, motion-compensated prediction unit); 4: Intra-frame prediction unit (intra-frame prediction unit); 5: Motion-compensated prediction unit (motion-compensated prediction unit); 6: Subtraction unit (differential image generation unit); 7: Transformation/quantization unit (image compression unit); 8: Inverse quantization/inverse transformation unit; 9: Addition unit; 10: Intra-frame prediction memory; 11: Loop filter unit; 12: Motion-compensated prediction frame memory; 13: variable length coding unit (variable length coding unit); 51: variable length decoding unit (variable length decoding unit); 52: switching switch (intra-frame prediction unit, motion compensation prediction unit); 53: intra-frame prediction unit (intra-frame prediction unit); 54: motion compensation prediction unit (motion compensation prediction unit); 55: inverse quantization/inverse transformation unit (differential image generation unit); 56: addition unit (decoded image generation unit); 57: memory for intra-frame prediction; 58: loop filter unit; 59: motion compensation prediction frame memory.

具体实施方式DETAILED DESCRIPTION

以下,为了更详细地说明本发明,根据附图,说明具体实施方式。Hereinafter, in order to explain the present invention in more detail, specific embodiments will be described with reference to the accompanying drawings.

实施方式1.Implementation method 1.

在该实施方式1中,说明如下的运动图像编码装置和运动图像解码装置:该运动图像编码装置输入影像的各帧图像,并通过根据已编码的附近像素实施帧之内预测处理或者在接近帧之间实施运动补偿预测处理而生成预测图像,并针对作为该预测图像与帧图像的差分图像的预测误差信号通过正交变换/量化而实施了压缩处理之后,进行可变长编码而生成比特流,该运动图像解码装置对从该运动图像编码装置输出的比特流进行解码。In this embodiment 1, the following motion image encoding device and motion image decoding device are described: the motion image encoding device inputs each frame image of the image, and generates a predicted image by performing intra-frame prediction processing based on the encoded nearby pixels or performing motion compensation prediction processing between adjacent frames, and after performing compression processing on the prediction error signal which is the differential image between the predicted image and the frame image through orthogonal transformation/quantization, variable-length coding is performed to generate a bit stream, and the motion image decoding device decodes the bit stream output from the motion image encoding device.

该实施方式1的运动图像编码装置的特征在于,适应于影像信号的空间/时间方向的局部性的变化,将影像信号分割为各种尺寸的区域来进行帧之内/帧之间自适应编码。The moving picture encoding apparatus of this first embodiment is characterized in that it divides the video signal into regions of various sizes to perform intra-frame/inter-frame adaptive encoding in response to local changes in the spatial/temporal directions of the video signal.

一般情况下,影像信号具有空间/时间上信号的复杂度局部地发生变化的特性。在空间上观察时,在某特定的影像帧上,既存在天空、壁等那样的在比较宽的图像区域中具有均匀的信号特性的图样,还混合存在人物或具有细致的纹理的绘画等在小的图像区域内具有复杂的纹理图案的图样。In general, image signals exhibit local variations in signal complexity across space and time. When viewed spatially, within a given image frame, patterns with uniform signal characteristics across relatively wide image regions, such as the sky and walls, are mixed with patterns with complex textures within smaller image regions, such as figures and paintings with detailed textures.

在时间上观察时,对于天空、壁而言,局部的时间方向的图样的变化小,但对于运动的人物、物体而言,其轮廓在时间上进行刚体/非刚体的运动,所以时间上的变化大。When observed in time, for the sky and the wall, the changes in the local time direction pattern are small, but for moving people and objects, their outlines undergo rigid/non-rigid motion in time, so the changes in time are large.

在编码处理中,通过时间/空间上的预测来生成信号功率、熵小的预测误差信号,从而削减整体的代码量,但如果能够对尽可能大的图像信号区域均匀地应用用于预测的参数,则能够减小该参数的代码量。In the encoding process, a prediction error signal with low signal power and entropy is generated through temporal/spatial prediction, thereby reducing the overall amount of code. However, if the parameters used for prediction can be evenly applied to the largest possible image signal area, the amount of code for the parameter can be reduced.

另一方面,如果针对时间上/空间上变化大的图像信号图案应用同一预测参数,则预测的错误增加,所以无法削减预测误差信号的代码量。On the other hand, if the same prediction parameters are applied to an image signal pattern that varies greatly temporally and spatially, prediction errors increase, making it impossible to reduce the amount of code for the prediction error signal.

因此,优选针对时间上/空间上变化大的图像信号图案减小预测对象的区域,从而即使增加用于预测的参数的数据量,也降低预测误差信号的功率/熵。Therefore, it is preferable to reduce the prediction target region for image signal patterns that vary greatly temporally and spatially, thereby reducing the power and entropy of the prediction error signal even if the amount of parameter data used for prediction is increased.

为了进行这样的适应于影像信号的一般性的性质的编码,在该实施方式1的运动图像编码装置中,从规定的最大块尺寸起层次性地分割影像信号的区域,针对每个分割区域实施预测处理、预测误差的编码处理。In order to perform such encoding adapted to the general properties of the image signal, the moving picture encoding apparatus of this embodiment 1 hierarchically divides the image signal into regions starting from a predetermined maximum block size, and performs prediction processing and prediction error encoding processing on each divided region.

该实施方式1的运动图像编码装置作为处理对象的影像信号除了由亮度信号和2个色差信号构成的YUV信号、从数字摄像元件输出的RGB信号等任意的颜色空间的彩色影像信号以外,还有单色图像信号、红外线图像信号等影像帧由水平/垂直二维的数字采样(像素)列构成的任意的影像信号。The motion image encoding device of this embodiment 1 processes, as image signals, color image signals of arbitrary color spaces such as YUV signals composed of a luminance signal and two color difference signals, and RGB signals output from a digital camera element, as well as arbitrary image signals whose image frames are composed of horizontal/vertical two-dimensional columns of digital samples (pixels), such as monochrome image signals and infrared image signals.

各像素的灰度既可以是8比特,也可以是10比特、12比特等的灰度。The grayscale of each pixel may be 8 bits, 10 bits, 12 bits, or the like.

但是,在以下的说明中,只要没有特别说明,设为所输入的影像信号是YUV信号。另外,设为2个色差分量U、V相对亮度分量Y是被子采样的4:2:0格式的信号。However, in the following description, unless otherwise specified, the input video signal is assumed to be a YUV signal. In addition, the two color difference components U and V are assumed to be a 4:2:0 format signal subsampled with respect to the luminance component Y.

另外,将与影像的各帧对应的处理数据单位称为“图片”,在该实施方式1中,以“图片”为被顺序扫描(逐行扫描)的影像帧的信号而进行说明。但是,在影像信号是隔行扫描信号的情况下,“图片”也可以是作为构成影像帧的单位的场图像信号。Furthermore, the unit of processed data corresponding to each image frame is referred to as a "picture." In this first embodiment, a "picture" is described as a signal of an image frame that is scanned sequentially (progressive scanning). However, if the image signal is an interlaced signal, a "picture" may also be a field image signal that constitutes a unit of an image frame.

图1是示出本发明的实施方式1的运动图像编码装置的结构图。FIG1 is a diagram showing the structure of a moving picture encoding apparatus according to Embodiment 1 of the present invention.

在图1中,编码控制部1实施如下处理:决定成为实施帧内预测处理(帧之内预测处理)或者运动补偿预测处理(帧之间预测处理)时的处理单位的编码块的最大尺寸,并且决定最大尺寸的编码块被层次性地分割时的上限的层次数。In Figure 1, the encoding control unit 1 implements the following processing: determines the maximum size of the coding block that serves as the processing unit when performing intra-frame prediction processing (within-frame prediction processing) or motion compensation prediction processing (inter-frame prediction processing), and determines the upper limit of the number of layers when the maximum-sized coding block is hierarchically divided.

另外,编码控制部1实施如下处理:从可利用的1个以上的编码模式(1个以上的帧内编码模式、1个以上的帧间编码模式)中,选择适合于层次性地分割的各个编码块的编码模式。Furthermore, the encoding control unit 1 performs processing for selecting an encoding mode suitable for each hierarchically divided encoding block from one or more available encoding modes (one or more intra-frame encoding modes and one or more inter-frame encoding modes).

另外,编码控制部1实施如下处理:针对各个编码块,决定在压缩差分图像时使用的量化参数以及变换块尺寸,并且决定在实施预测处理时使用的帧内预测参数或者帧间预测参数。将量化参数以及变换块尺寸包含于预测误差编码参数而输出到变换/量化部7、逆量化/逆变换部8以及可变长编码部13等。The encoding control unit 1 also performs processing to determine, for each encoding block, the quantization parameter and transform block size used when compressing the differential image, and the intra-frame prediction parameters or inter-frame prediction parameters used when performing prediction processing. The quantization parameter and transform block size are included in the prediction error coding parameters and output to the transform/quantization unit 7, the inverse quantization/inverse transform unit 8, and the variable length encoding unit 13.

另外,编码控制部1构成了编码控制单元。In addition, the encoding control unit 1 constitutes an encoding control unit.

块分割部2实施如下处理:如果输入了表示输入图像的影像信号,则将该影像信号表示的输入图像分割为由编码控制部1决定的最大尺寸的编码块,并且直至达到由编码控制部1决定的上限的层次数为止,将该编码块层次性地分割。另外,块分割部2构成了块分割单元。The block division unit 2 performs the following processing: upon receiving an image signal representing an input image, the block division unit 2 divides the input image represented by the image signal into coding blocks of the maximum size determined by the coding control unit 1, and further divides the coding blocks hierarchically until the upper limit of the number of layers determined by the coding control unit 1 is reached. The block division unit 2 also constitutes a block division unit.

切换开关3实施如下处理:如果由编码控制部1选择的编码模式是帧内编码模式,则将由块分割部2分割的编码块输出到帧内预测部4,如果由编码控制部1选择的编码模式是帧间编码模式,则将由块分割部2分割的编码块输出到运动补偿预测部5。The switching switch 3 implements the following processing: if the encoding mode selected by the encoding control unit 1 is the intra-frame encoding mode, the encoding block divided by the block division unit 2 is output to the intra-frame prediction unit 4; if the encoding mode selected by the encoding control unit 1 is the inter-frame encoding mode, the encoding block divided by the block division unit 2 is output to the motion compensation prediction unit 5.

帧内预测部4实施如下处理:如果从切换开关3接收到由块分割部2分割的编码块,则使用帧之内的已编码的图像信号,根据从编码控制部1输出的帧内预测参数,实施针对该编码块的帧之内预测处理,从而生成预测图像。The intra-frame prediction unit 4 performs the following processing: if a coding block divided by the block division unit 2 is received from the switching switch 3, it uses the encoded image signal within the frame and implements intra-frame prediction processing for the coding block based on the intra-frame prediction parameters output from the encoding control unit 1 to generate a predicted image.

其中,帧内预测部4在生成了上述预测图像之后,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的编码有关的各种参数的状态选择滤波器,并使用该滤波器,实施针对上述预测图像的滤波处理,将滤波处理后的预测图像输出到减法部6以及加法部9。Among them, after generating the above-mentioned predicted image, the intra-frame prediction unit 4 selects a filter from one or more pre-prepared filters according to the state of various parameters related to the encoding of the filtering object block, and uses the filter to implement filtering processing on the above-mentioned predicted image, and outputs the filtered predicted image to the subtraction unit 6 and the addition unit 9.

对于上述滤波器,考虑接下来的4个参数中的至少1个以上的参数来选择。The above filter is selected by taking into consideration at least one of the following four parameters.

·参数(1)Parameters (1)

上述预测图像的块尺寸The block size of the above predicted image

·参数(2)Parameters (2)

由编码控制部1决定的量化参数The quantization parameter determined by the encoding control unit 1

·参数(3)Parameters (3)

在生成预测图像时使用的帧之内的已编码的图像信号与滤波处理对象像素的距离The distance between the coded image signal within the frame used to generate the predicted image and the pixel to be filtered

·参数(4)Parameters (4)

由编码控制部1决定的帧内预测参数The intra-frame prediction parameters determined by the encoding control unit 1

另外,由切换开关3以及帧内预测部4构成了帧内预测单元。The switch 3 and the intra prediction unit 4 constitute an intra prediction unit.

运动补偿预测部5实施如下处理:由编码控制部1选择帧间编码模式作为适合于由块分割部2分割的编码块的编码模式的情况下,使用由运动补偿预测帧存储器12保存的1帧以上的参照图像,根据从编码控制部1输出的帧间预测参数,实施针对该编码块的运动补偿预测处理,从而生成预测图像。The motion compensation prediction unit 5 performs the following processing: when the inter-frame coding mode is selected by the coding control unit 1 as the coding mode suitable for the coding block divided by the block division unit 2, the motion compensation prediction processing is performed on the coding block based on the inter-frame prediction parameters output from the coding control unit 1 using one or more reference images stored in the motion compensation prediction frame memory 12, thereby generating a predicted image.

另外,由切换开关3以及运动补偿预测部5构成了运动补偿预测单元。The switch 3 and the motion compensation prediction unit 5 constitute a motion compensation prediction unit.

减法部6实施如下处理:通过从由块分割部2分割的编码块,减去由帧内预测部4或者运动补偿预测部5生成的预测图像,从而生成差分图像(=编码块-预测图像)。另外,减法部6构成了差分图像生成单元。The subtraction unit 6 performs processing to generate a difference image (= coded block - predicted image) by subtracting the predicted image generated by the intra prediction unit 4 or the motion compensation prediction unit 5 from the coded block divided by the block division unit 2. The subtraction unit 6 constitutes a difference image generation unit.

变换/量化部7实施如下处理:以从编码控制部1输出的预测误差编码参数中包含的变换块尺寸单位,实施由减法部6生成的差分图像的变换处理(例如,DCT(离散余弦变换)、预先对特定的学习系列进行了基底设计的KL变换等正交变换处理),并且使用该预测误差编码参数中包含的量化参数,对该差分图像的变换系数进行量化,从而将量化后的变换系数作为差分图像的压缩数据而输出。另外,变换/量化部7构成了图像压缩单元。The transform/quantization unit 7 performs a transform process (e.g., a DCT (discrete cosine transform) or an orthogonal transform such as a KL transform with a pre-designed basis for a specific learning series) on the difference image generated by the subtraction unit 6 in units of the transform block size included in the prediction error coding parameters output from the encoding control unit 1. Furthermore, the transform coefficients of the difference image are quantized using the quantization parameters included in the prediction error coding parameters, and the quantized transform coefficients are output as compressed data of the difference image. Furthermore, the transform/quantization unit 7 constitutes image compression means.

逆量化/逆变换部8实施如下处理:使用从编码控制部1输出的预测误差编码参数中包含的量化参数,对从变换/量化部7输出的压缩数据进行逆量化,以该预测误差编码参数中包含的变换块尺寸单位,实施逆量化的压缩数据的逆变换处理(例如,逆DCT(逆离散余弦变换)、逆KL变换等逆变换处理),从而将逆变换处理后的压缩数据作为局部解码预测误差信号而输出。The inverse quantization/inverse transform unit 8 performs the following processing: using the quantization parameter included in the prediction error coding parameter output from the encoding control unit 1, the compressed data output from the transform/quantization unit 7 is inverse quantized, and the inverse transform processing (for example, inverse DCT (inverse discrete cosine transform), inverse KL transform, and other inverse transform processing) of the inversely quantized compressed data is performed in units of transform block size included in the prediction error coding parameter, thereby outputting the compressed data after the inverse transform processing as a local decoded prediction error signal.

加法部9实施如下处理:将从逆量化/逆变换部8输出的局部解码预测误差信号和表示由帧内预测部4或者运动补偿预测部5生成的预测图像的预测信号进行相加,从而生成表示局部解码图像的局部解码图像信号。The adding unit 9 performs the following processing: adds the local decoded prediction error signal output from the inverse quantization/inverse transform unit 8 and the prediction signal representing the predicted image generated by the intra-frame prediction unit 4 or the motion compensation prediction unit 5, thereby generating a local decoded image signal representing the local decoded image.

帧内预测用存储器10是保存由加法部9生成的局部解码图像信号表示的局部解码图像作为由帧内预测部4在下次的帧内预测处理中使用的图像的RAM等记录介质。The intra prediction memory 10 is a recording medium such as a RAM that stores the local decoded image represented by the local decoded image signal generated by the adder 9 as an image used by the intra prediction unit 4 in the next intra prediction process.

环路滤波器部11实施如下处理:补偿由加法器9生成的局部解码图像信号中包含的编码失真,将编码失真补偿后的局部解码图像信号表示的局部解码图像作为参照图像输出到运动补偿预测帧存储器12。The loop filter unit 11 performs processing to compensate for coding distortion included in the local decoded image signal generated by the adder 9 and outputs the local decoded image represented by the local decoded image signal after coding distortion compensation to the motion compensation prediction frame memory 12 as a reference image.

运动补偿预测帧存储器12是保存利用环路滤波器部11进行的滤波处理后的局部解码图像作为由运动补偿预测部5在下次的运动补偿预测处理中使用的参照图像的RAM等记录介质。The motion-compensated prediction frame memory 12 is a recording medium such as RAM that stores the local decoded image filtered by the loop filter unit 11 as a reference image to be used by the motion-compensated prediction unit 5 in the next motion-compensated prediction process.

可变长编码部13实施如下处理:对从变换/量化部7输出的压缩数据、从编码控制部1输出的编码模式以及预测误差编码参数、从帧内预测部4输出的帧内预测参数或者从运动补偿预测部5输出的帧间预测参数进行可变长编码,生成该压缩数据、编码模式、预测误差编码参数、帧内预测参数/帧间预测参数的编码数据被复用的比特流。另外,可变长编码部13构成了可变长编码单元。The variable-length coding unit 13 performs variable-length coding on the compressed data output from the transform/quantization unit 7, the coding mode and prediction error coding parameters output from the coding control unit 1, and the intra-frame prediction parameters output from the intra-frame prediction unit 4 or the inter-frame prediction parameters output from the motion-compensated prediction unit 5, thereby generating a bitstream in which the compressed data, coding mode, prediction error coding parameters, and coded data of the intra-frame prediction parameters/inter-frame prediction parameters are multiplexed. The variable-length coding unit 13 constitutes a variable-length coding unit.

图2是示出本发明的实施方式1的运动图像解码装置的结构图。FIG2 is a diagram showing the configuration of the moving picture decoding apparatus according to Embodiment 1 of the present invention.

在图2中,可变长解码部51实施如下处理:从比特流上复用的编码数据可变长解码出与层次性地分割的各个编码块有关的压缩数据、编码模式、预测误差编码参数、帧内预测参数/帧间预测参数,将该压缩数据以及预测误差编码参数输出到逆量化/逆变换部55,并且将该编码模式以及帧内预测参数/帧间预测参数输出到切换开关52。另外,可变长解码部51构成了可变长解码单元。In FIG2 , the variable length decoding unit 51 performs the following processing: variable length decoding is performed on the coded data multiplexed on the bit stream to obtain compressed data, coding mode, prediction error coding parameters, and intra-frame prediction parameters/inter-frame prediction parameters related to each hierarchically divided coding block, and the compressed data and prediction error coding parameters are output to the inverse quantization/inverse transform unit 55, and the coding mode and intra-frame prediction parameters/inter-frame prediction parameters are output to the switch 52. The variable length decoding unit 51 constitutes a variable length decoding unit.

切换开关52实施如下处理:在从可变长解码部51输出的与编码块有关的编码模式是帧内编码模式的情况下,将从可变长解码部51输出的帧内预测参数输出到帧内预测部53,在该编码模式是帧间编码模式的情况下,将从可变长解码部51输出的帧间预测参数输出到运动补偿预测部54。The switching switch 52 implements the following processing: when the coding mode related to the coding block output from the variable length decoding unit 51 is the intra-frame coding mode, the intra-frame prediction parameters output from the variable length decoding unit 51 are output to the intra-frame prediction unit 53; when the coding mode is the inter-frame coding mode, the inter-frame prediction parameters output from the variable length decoding unit 51 are output to the motion compensation prediction unit 54.

帧内预测部53实施如下处理:使用帧之内的已解码的图像信号,根据从切换开关52输出的帧内预测参数,实施针对编码块的帧之内预测处理,从而生成预测图像。The intra prediction unit 53 performs a process of performing an intra prediction process on a coding block based on the intra prediction parameters output from the switch 52 using a decoded image signal within a frame, thereby generating a predicted image.

其中,帧内预测部53在生成了上述预测图像之后,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的解码有关的各种参数的状态选择滤波器,使用该滤波器,实施针对上述预测图像的滤波处理,将滤波处理后的预测图像输出到加法部56。Among them, after generating the above-mentioned predicted image, the intra-frame prediction unit 53 selects a filter from one or more pre-prepared filters according to the state of various parameters related to the decoding of the filtering processing object block, uses the filter to implement filtering processing on the above-mentioned predicted image, and outputs the filtered predicted image to the addition unit 56.

对于上述滤波器,考虑接下来的4个参数中的至少1个以上的参数来选择。The above filter is selected by taking into consideration at least one of the following four parameters.

·参数(1)Parameters (1)

上述预测图像的块尺寸The block size of the above predicted image

·参数(2)Parameters (2)

由可变长解码部51可变长解码出的量化参数The quantization parameter obtained by variable length decoding by the variable length decoding unit 51 is

·参数(3)Parameters (3)

在生成预测图像时使用的帧之内的已解码的图像信号与滤波处理对象像素的距离The distance between the decoded image signal within the frame used to generate the predicted image and the pixel to be filtered

·参数(4)Parameters (4)

由可变长解码部51可变长解码出的帧内预测参数The intra-frame prediction parameters obtained by variable-length decoding by the variable-length decoding unit 51 are

另外,由切换开关52以及帧内预测部53构成了帧内预测单元。The switch 52 and the intra prediction unit 53 constitute an intra prediction unit.

运动补偿预测部54实施如下处理:使用由运动补偿预测帧存储器59保存的1帧以上的参照图像,根据从切换开关52输出的帧间预测参数,实施针对编码块的运动补偿预测处理,从而生成预测图像。The motion-compensated prediction unit 54 performs a motion-compensated prediction process on the coding block based on the inter-frame prediction parameters output from the switch 52 using one or more reference images stored in the motion-compensated prediction frame memory 59 to generate a predicted image.

另外,由切换开关52以及运动补偿预测部54构成了运动补偿预测单元。The switch 52 and the motion compensation prediction unit 54 constitute a motion compensation prediction unit.

逆量化/逆变换部55实施如下处理:使用从可变长解码部51输出的预测误差编码参数中包含的量化参数,对从可变长解码部51输出的与编码块有关的压缩数据进行逆量化,以该预测误差编码参数中包含的变换块尺寸单位,实施逆量化的压缩数据的逆变换处理(例如,逆DCT(逆离散余弦变换)、逆KL变换等逆变换处理),从而将逆变换处理后的压缩数据作为解码预测误差信号(表示压缩前的差分图像的信号)输出。另外,逆量化/逆变换部55构成了差分图像生成单元。The inverse quantization/inverse transform unit 55 performs the following processing: using the quantization parameter included in the prediction error coding parameter output from the variable length decoding unit 51, it inversely quantizes the compressed data related to the coding block output from the variable length decoding unit 51, and performs inverse transform processing (for example, inverse DCT (inverse discrete cosine transform) or inverse KL transform) on the inversely quantized compressed data in units of the transform block size included in the prediction error coding parameter, thereby outputting the compressed data after the inverse transform processing as a decoded prediction error signal (a signal representing the difference image before compression). In addition, the inverse quantization/inverse transform unit 55 constitutes a difference image generation unit.

加法部56实施如下处理:通过将从逆量化/逆变换部55输出的解码预测误差信号和表示由帧内预测部53或者运动补偿预测部54生成的预测图像的预测信号进行相加,生成表示解码图像的解码图像信号。另外,加法部56构成了解码图像生成单元。The addition unit 56 performs processing to generate a decoded image signal representing a decoded image by adding the decoded prediction error signal output from the inverse quantization/inverse transform unit 55 and a prediction signal representing a predicted image generated by the intra prediction unit 53 or the motion compensation prediction unit 54. The addition unit 56 constitutes a decoded image generation unit.

帧内预测用存储器57是保存由加法部56生成的解码图像信号表示的解码图像作为由帧内预测部53在下次的帧内预测处理中使用的图像的RAM等记录介质。The intra prediction memory 57 is a recording medium such as a RAM that stores the decoded image represented by the decoded image signal generated by the adder 56 as an image to be used in the next intra prediction process by the intra prediction unit 53 .

环路滤波器部58实施如下处理:补偿由加法器56生成的解码图像信号中包含的编码失真,将编码失真补偿后的解码图像信号表示的解码图像作为参照图像输出到运动补偿预测帧存储器59。The loop filter unit 58 performs processing to compensate for coding distortion included in the decoded image signal generated by the adder 56 , and outputs a decoded image represented by the decoded image signal after coding distortion compensation to the motion compensation prediction frame memory 59 as a reference image.

运动补偿预测帧存储器59是保存利用环路滤波器部58进行的滤波处理后的解码图像作为由运动补偿预测部54在下次的运动补偿预测处理中使用的参照图像的RAM等记录介质。The motion-compensated prediction frame memory 59 is a recording medium such as RAM that stores the decoded image filtered by the loop filter unit 58 as a reference image to be used by the motion-compensated prediction unit 54 in the next motion-compensated prediction process.

在图1中,假设作为运动图像编码装置的构成要素的编码控制部1、块分割部2、切换开关3、帧内预测部4、运动补偿预测部5、减法部6、变换/量化部7、逆量化/逆变换部8、加法部9、环路滤波器部11以及可变长编码部13分别由专用的硬件(例如,安装了CPU的半导体集成电路、或者单片式微型计算机等)构成,但在运动图像编码装置由计算机构成的情况下,也可以将描述有编码控制部1、块分割部2、切换开关3、帧内预测部4、运动补偿预测部5、减法部6、变换/量化部7、逆量化/逆变换部8、加法部9、环路滤波器部11以及可变长编码部13的处理内容的程序保存到该计算机的存储器,由该计算机的CPU执行保存在该存储器中的程序。In FIG. 1 , it is assumed that the components of the moving picture coding apparatus, namely, the coding control unit 1, the block division unit 2, the switch 3, the intra-frame prediction unit 4, the motion-compensated prediction unit 5, the subtraction unit 6, the transform/quantization unit 7, the inverse quantization/inverse transform unit 8, the addition unit 9, the loop filter unit 11, and the variable-length coding unit 13, are each formed of dedicated hardware (e.g., a semiconductor integrated circuit or a single-chip microcomputer having a CPU mounted thereon). However, if the moving picture coding apparatus is formed of a computer, a program describing the processing details of the coding control unit 1, the block division unit 2, the switch 3, the intra-frame prediction unit 4, the motion-compensated prediction unit 5, the subtraction unit 6, the transform/quantization unit 7, the inverse quantization/inverse transform unit 8, the addition unit 9, the loop filter unit 11, and the variable-length coding unit 13 may be stored in a memory of the computer, and the CPU of the computer may execute the program stored in the memory.

图3是示出本发明的实施方式1的运动图像编码装置的处理内容的流程图。FIG3 is a flowchart showing the processing contents of the moving picture encoding apparatus according to Embodiment 1 of the present invention.

在图2中,假设作为运动图像解码装置的构成要素的可变长解码部51、切换开关52、帧内预测部53、运动补偿预测部54、逆量化/逆变换部55、加法部56以及环路滤波器部58分别由专用的硬件(例如,安装了CPU的半导体集成电路、或者单片式微型计算机等)构成,但在运动图像解码装置由计算机构成的情况下,也可以将描述有可变长解码部51、切换开关52、帧内预测部53、运动补偿预测部54、逆量化/逆变换部55、加法部56以及环路滤波器部58的处理内容的程序保存到该计算机的存储器,由该计算机的CPU执行保存在该存储器中的程序。In FIG2 , it is assumed that the variable length decoding unit 51, the switching switch 52, the intra-frame prediction unit 53, the motion compensation prediction unit 54, the inverse quantization/inverse transform unit 55, the adding unit 56, and the loop filter unit 58, which are components of the motion picture decoding device, are each composed of dedicated hardware (for example, a semiconductor integrated circuit in which a CPU is mounted, or a single-chip microcomputer, etc.). However, if the motion picture decoding device is composed of a computer, a program describing the processing contents of the variable length decoding unit 51, the switching switch 52, the intra-frame prediction unit 53, the motion compensation prediction unit 54, the inverse quantization/inverse transform unit 55, the adding unit 56, and the loop filter unit 58 may be stored in a memory of the computer, and the CPU of the computer may execute the program stored in the memory.

图4是示出本发明的实施方式1的运动图像解码装置的处理内容的流程图。FIG4 is a flowchart showing the processing contents of the moving picture decoding apparatus according to Embodiment 1 of the present invention.

接下来,说明动作。Next, the operation will be explained.

最初,说明图1的运动图像编码装置的处理内容。First, the processing contents of the moving picture encoding apparatus in FIG. 1 will be described.

首先,编码控制部1决定成为实施帧内预测处理(帧之内预测处理)或者运动补偿预测处理(帧之间预测处理)时的处理单位的编码块的最大尺寸,并且决定最大尺寸的编码块被层次性地分割时的上限的层次数(图3的步骤ST1)。First, the encoding control unit 1 determines the maximum size of the coding block that serves as the processing unit when performing intra-frame prediction processing (within-frame prediction processing) or motion compensation prediction processing (between-frame prediction processing), and determines the upper limit number of layers when the maximum-sized coding block is hierarchically divided (step ST1 of Figure 3).

作为编码块的最大尺寸的决定方法,例如,考虑针对所有图片决定为与输入图像的分辨率对应的尺寸的方法。As a method for determining the maximum size of a coding block, for example, a method of determining a size corresponding to the resolution of an input image for all pictures may be considered.

另外,考虑如下方法等:将输入图像的局部性的运动的复杂度的差异定量化为参数,在运动剧烈的图片中将最大尺寸决定为小的值,在运动少的图片中将最大尺寸决定为大的值。Another possible method is to quantify the difference in complexity of local motion in the input image as a parameter, and to determine a small maximum size for a picture with intense motion and a large maximum size for a picture with less motion.

作为上限的层次数的设定方法,例如考虑如下方法:输入图像的运动越剧烈,越增大层次数,设定为能够检测更细致的运动,如果输入图像的运动少,则设定为抑制层次数。As a method for setting the upper limit of the number of layers, for example, the more intense the motion of the input image, the larger the number of layers to enable finer motion detection, and the smaller the number of layers to enable finer motion detection, the less motion there is.

另外,编码控制部1从可利用的1个以上的编码模式(M种帧内编码模式、N种帧间编码模式)之中,选择适合于层次性地分割的各个编码块的编码模式(步骤ST2)。Furthermore, the encoding control unit 1 selects an encoding mode suitable for each hierarchically divided encoding block from one or more available encoding modes (M intra-frame encoding modes and N inter-frame encoding modes) (step ST2 ).

由编码控制部1进行的编码模式的选择方法是公知的技术,所以省略详细的说明,但例如还有如下方法等:使用可利用的任意的编码模式,实施针对编码块的编码处理来验证编码效率,在可利用的多个编码模式之中,选择编码效率最佳的编码模式。The method for selecting the coding mode performed by the coding control unit 1 is a well-known technology, so detailed description is omitted, but there are also methods such as the following: using any available coding mode, implementing coding processing on the coding block to verify the coding efficiency, and selecting the coding mode with the best coding efficiency among the multiple available coding modes.

另外,编码控制部1针对各个编码块决定在压缩差分图像时使用的量化参数以及变换块尺寸,并且决定在实施预测处理时使用的帧内预测参数或者帧间预测参数。Furthermore, the encoding control unit 1 determines, for each encoding block, a quantization parameter and a transform block size used when compressing a differential image, and determines intra-frame prediction parameters or inter-frame prediction parameters used when performing a prediction process.

编码控制部1将包括量化参数以及变换块尺寸的预测误差编码参数输出到变换/量化部7、逆量化/逆变换部8以及可变长编码部13。另外,根据需要将预测误差编码参数输出到帧内预测部4。The encoding control unit 1 outputs prediction error coding parameters including quantization parameters and transform block size to the transform/quantization unit 7, inverse quantization/inverse transform unit 8, and variable length encoding unit 13. In addition, the prediction error coding parameters are output to the intra prediction unit 4 as needed.

块分割部2如果输入了表示输入图像的影像信号,则将该影像信号表示的输入图像分割为由编码控制部1决定的最大尺寸的编码块,并且直至达到由编码控制部1决定的上限的层次数为止,将该编码块层次性地分割。When a video signal representing an input image is input, the block division unit 2 divides the input image represented by the video signal into coding blocks of the maximum size determined by the coding control unit 1, and divides the coding blocks hierarchically until the upper limit of the number of layers determined by the coding control unit 1 is reached.

此处,图5是示出最大尺寸的编码块被层次性地分割为多个编码块的情况的说明图。Here, FIG5 is an explanatory diagram showing a case where a coding block of a maximum size is hierarchically divided into a plurality of coding blocks.

在图5的例子中,最大尺寸的编码块是第0层次的编码块B0,在亮度分量中具有(L0,M0)的尺寸。In the example of FIG. 5 , the coding block of the largest size is the coding block B 0 of the 0th layer, which has a size of (L 0 , M 0 ) in the luminance component.

另外,在图5的例子中,将最大尺寸的编码块B0作为出发点,以4叉树构造,直至另行确定的规定的深度为止,层次性地进行分割,从而得到编码块BnIn the example of FIG. 5 , the maximum-sized coding block B 0 is used as a starting point, and the coding block B n is obtained by hierarchically dividing the coding block B n to a predetermined depth determined separately using a quadtree structure.

在深度n时,编码块Bn是尺寸(Ln,Mn)的图像区域。At depth n, coding block Bn is an image region of size ( Ln , Mn ).

其中,Ln和Mn既可以相同也可以不同,但在图5的例子中示出了Ln=Mn的情形。 Ln and Mn may be the same or different, but the example in FIG5 shows a case where Ln = Mn .

以后,将编码块Bn的尺寸定义为编码块Bn的亮度分量中的尺寸(Ln,Mn)。Hereinafter, the size of the coding block Bn is defined as the size ( Ln , Mn ) in the luma component of the coding block Bn .

块分割部2进行4叉树分割,所以(Ln+1,Mn+1)=(Ln/2,Mn/2)始终成立。Since the block division unit 2 performs quadtree division, (Ln +1 , Mn +1 ) = ( Ln /2, Mn /2) always holds.

但是,在如RGB信号等那样所有颜色分量具有相同采样数的彩色影像信号(4:4:4格式)中,所有颜色分量的尺寸成为(Ln,Mn),但在处理4:2:0格式的情况下,对应的色差分量的编码块的尺寸是(Ln/2,Mn/2)。However, in a color video signal (4:4:4 format) such as an RGB signal where all color components have the same number of samples, the size of all color components is ( Ln , Mn ). However, when processing the 4:2:0 format, the size of the coding block of the corresponding color difference component is ( Ln /2, Mn /2).

以后,将在第n层次的编码块Bn中可选择的编码模式记为m(Bn)。Hereinafter, the coding mode selectable in the coding block Bn of the nth layer is denoted as m( Bn ).

在由多个颜色分量构成的彩色影像信号的情况下,编码模式m(Bn)可以构成为针对每个颜色分量分别使用各自的模式,但以后,只要没有特别说明,则设为指示针对YUV信号、4:2:0格式的编码块的亮度分量的编码模式而进行说明。In the case of a color video signal composed of multiple color components, the coding mode m( Bn ) can be configured to use a separate mode for each color component. However, unless otherwise specified, the coding mode m(Bn) will be described as indicating the coding mode for the luminance component of a coding block in a YUV signal and 4:2:0 format.

在编码模式m(Bn)中,有1个或者多个帧内编码模式(总称为“INTRA”)、1个或者多个帧间编码模式(总称为“INTER”),编码控制部1如上所述从在该图片中可利用的所有编码模式或者其子群组之中,针对编码块Bn选择编码效率最佳的编码模式。In coding mode m( Bn ), there are one or more intra-frame coding modes (collectively referred to as "INTRA") and one or more inter-frame coding modes (collectively referred to as "INTER"). As described above, the coding control unit 1 selects the coding mode with the best coding efficiency for the coding block Bn from all coding modes or subgroups thereof that can be used in the picture.

编码块Bn如图5所示被进一步分割为1个或者多个预测处理单位(分块,partition)。As shown in FIG5 , the coding block Bn is further divided into one or more prediction processing units (partitions).

以后,将属于编码块Bn的分块记载为Pi n(i:第n层次中的分块编号)。Hereinafter, the partitions belonging to the coding block Bn will be referred to as Pin ( i: partition number in the nth layer).

如何进行属于编码块Bn的分块Pi n的分割作为信息而包含于编码模式m(Bn)中。How to partition the blocks P in the coding block B n is to be divided is included as information in the coding mode m(B n ).

对于分块Pi n,全部依照编码模式m(Bn)进行预测处理,但可以针对每个分块Pi n选择各自的预测参数。For all blocks P i n , prediction processing is performed according to the coding mode m(B n ), but individual prediction parameters can be selected for each block P i n .

编码控制部1针对最大尺寸的编码块,例如生成图6所示那样的块分割状态,确定编码块BnThe encoding control unit 1 generates a block division state as shown in FIG. 6 , for example, for the maximum-sized encoding block, and determines the encoding block B n .

图6(a)的阴影部分表示分割后的分块的分布,并且,图6(b)通过4叉树图形表示了对层次分割后的分块分配了编码模式m(Bn)的状况。The shaded portion of FIG6(a) indicates the distribution of the divided blocks, and FIG6(b) shows, in a quadtree diagram, the allocation of the coding modes m( Bn ) to the hierarchically divided blocks.

在图6(b)中,用□所包围的节点表示了被分配了编码模式m(Bn)的节点(编码块Bn)。In FIG6(b), the nodes surrounded by □ represent nodes (coding blocks Bn ) to which coding mode m( Bn ) is assigned.

当编码控制部1针对各个编码块Bn的分块Pi n选择最佳的编码模式m(Bn)时,如果该编码模式m(Bn)是帧内编码模式(步骤ST3),则切换开关3将由块分割部2分割的编码块Bn的分块Pi n输出到帧内预测部4。When the encoding control unit 1 selects the optimal encoding mode m( Bn ) for the block Pin of each encoding block Bn , if the encoding mode m( Bn ) is an intra-frame encoding mode (step ST3), the switching switch 3 outputs the block Pin of the encoding block Bn divided by the block division unit 2 to the intra-frame prediction unit 4.

另一方面,如果该编码模式m(Bn)是帧间编码模式(步骤ST3),则将由块分割部2分割的编码块Bn的分块Pi n输出到运动补偿预测部5。On the other hand, if the coding mode m(B n ) is the inter-frame coding mode (step ST3 ), the blocks P in of the coding block B n divided by the block dividing unit 2 are output to the motion compensation prediction unit 5 .

帧内预测部4如果从切换开关3接收到编码块Bn的分块Pi n,则使用帧之内的已编码的图像信号,根据从编码控制部1输出的帧内预测参数,实施针对该编码块Bn的分块Pi n的帧之内预测处理,从而生成帧内预测图像Pi n(步骤ST4)。Upon receiving the block Pin of the coding block Bn from the switching switch 3, the intra-frame prediction unit 4 uses the encoded image signal within the frame and, based on the intra-frame prediction parameters output from the encoding control unit 1, performs intra-frame prediction processing on the block Pin of the coding block Bn , thereby generating an intra-frame predicted image Pin ( step ST4).

其中,帧内预测部4在生成了上述帧内预测图像Pi n之后,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的编码有关的各种参数的状态选择滤波器,使用该滤波器,实施针对该帧内预测图像Pi n的滤波处理。Among them, after generating the above-mentioned intra-frame prediction image P i n , the intra-frame prediction unit 4 selects a filter from one or more pre-prepared filters according to the status of various parameters related to the encoding of the filtering processing object block, and uses the filter to perform filtering processing on the intra-frame prediction image P i n .

帧内预测部4如果实施了针对帧内预测图像Pi n的滤波处理,则将滤波处理后的帧内预测图像Pi n输出到减法部6以及加法部9,但为了使得在图2的运动图像解码装置也能够生成相同的帧内预测图像Pi n,将该帧内预测参数输出到可变长编码部13。After filtering the intra-frame prediction image P in , the intra-frame prediction unit 4 outputs the filtered intra-frame prediction image P in to the subtraction unit 6 and the addition unit 9. However, in order to enable the moving picture decoding apparatus in FIG. 2 to generate the same intra-frame prediction image P in , the intra-frame prediction parameters are output to the variable-length coding unit 13.

帧内预测部4的处理内容的概略如上所述,但详细的处理内容后述。The outline of the processing contents of the intra prediction unit 4 is as described above, but the detailed processing contents will be described later.

运动补偿预测部5如果从切换开关3接收到编码块Bn的分块Pi n,则使用由运动补偿预测帧存储器12保存的1帧以上的参照图像,根据从编码控制部1输出的帧间预测参数,实施针对该编码块Bn的分块Pi n的运动补偿预测处理,从而生成帧间预测图像Pi n(步骤ST5)。Upon receiving the block Pin of the coding block Bn from the switching switch 3, the motion-compensated prediction unit 5 uses one or more reference frames stored in the motion-compensated prediction frame memory 12 and, based on the inter-frame prediction parameters output from the encoding control unit 1, performs motion-compensated prediction processing on the block Pin of the coding block Bn , thereby generating an inter-frame predicted image Pin (step ST5).

另外,通过实施运动补偿预测处理来生成预测图像的技术是公知的技术,所以省略详细的说明。Note that the technology for generating a predicted image by performing motion compensation prediction processing is a well-known technology, and therefore detailed description thereof will be omitted.

如果帧内预测部4或者运动补偿预测部5生成了预测图像(帧内预测图像Pi n、帧间预测图像Pi n),则减法部6从由块分割部2分割的编码块Bn的分块Pi n,减去由帧内预测部4或者运动补偿预测部5生成的预测图像(帧内预测图像Pi n、帧间预测图像Pi n),从而生成差分图像,将表示该差分图像的预测误差信号ei n输出到变换/量化部7(步骤ST6)。If the intra prediction unit 4 or the motion compensation prediction unit 5 generates a prediction image (intra prediction image Pin , inter prediction image Pin ), the subtraction unit 6 subtracts the prediction image (intra prediction image Pin, inter prediction image Pin ) generated by the intra prediction unit 4 or the motion compensation prediction unit 5 from the block Pin of the coding block Bn divided by the block division unit 2 , thereby generating a difference image, and outputs a prediction error signal ein representing the difference image to the transform/quantization unit 7 (step ST6).

变换/量化部7如果从减法部6接收到表示差分图像的预测误差信号ei n,则以从编码控制部1输出的预测误差编码参数中包含的变换块尺寸单位,实施该差分图像的变换处理(例如,DCT(离散余弦变换)、预先对特定的学习系列进行了基底设计的KL变换等正交变换处理),并且使用该预测误差编码参数中包含的量化参数,对该差分图像的变换系数进行量化,从而将量化后的变换系数作为差分图像的压缩数据输出到逆量化/逆变换部8以及可变长编码部13(步骤ST7)。Upon receiving the prediction error signal e indicative of the differential image from the subtraction unit 6, the transform/quantization unit 7 performs a transform process (e.g., a DCT (discrete cosine transform), an orthogonal transform such as a KL transform whose basis is pre-designed for a specific learning series) on the differential image in units of a transform block size included in the prediction error coding parameters output from the encoding control unit 1, and quantizes the transform coefficients of the differential image using the quantization parameters included in the prediction error coding parameters, thereby outputting the quantized transform coefficients as compressed data of the differential image to the inverse quantization/inverse transform unit 8 and the variable-length coding unit 13 (step ST7).

逆量化/逆变换部8如果从变换/量化部7接收到差分图像的压缩数据,则使用从编码控制部1输出的预测误差编码参数中包含的量化参数,对该差分图像的压缩数据进行逆量化,以该预测误差编码参数中包含的变换块尺寸单位,实施逆量化的压缩数据的逆变换处理(例如,逆DCT(逆离散余弦变换)、逆KL变换等逆变换处理),从而将逆变换处理后的压缩数据作为局部解码预测误差信号ei n帽(由于电子申请的关系,将对字母文字附加的“^”记载为帽)输出到加法部9(步骤ST8)。If the inverse quantization/inverse transform unit 8 receives the compressed data of the differential image from the transform/quantization unit 7, it uses the quantization parameter included in the prediction error coding parameter output from the encoding control unit 1 to inverse quantize the compressed data of the differential image, and performs inverse transform processing (for example, inverse DCT (inverse discrete cosine transform), inverse KL transform, and other inverse transform processing) on the inverse quantized compressed data in units of transform block size included in the prediction error coding parameter, thereby outputting the compressed data after the inverse transform processing as a local decoding prediction error signal e i n cap (due to the relationship of electronic application, the "^" attached to the alphabetical characters is recorded as cap) to the addition unit 9 (step ST8).

加法部9如果从逆量化/逆变换部8接收到局部解码预测误差信号ei n帽,则将该局部解码预测误差信号ei n帽、和表示由帧内预测部4或者运动补偿预测部5生成的预测图像(帧内预测图像Pi n、帧间预测图像Pi n)的预测信号进行相加,从而生成局部解码分块图像Pi n帽或者作为其集合的局部解码编码块图像即局部解码图像(步骤ST9)。Upon receiving the local decoded prediction error signal ein - hat from the inverse quantization/inverse transform unit 8, the adder 9 adds the local decoded prediction error signal ein - hat and a prediction signal representing a predicted image (intra-frame predicted image Pin , inter-frame predicted image Pin ) generated by the intra-frame prediction unit 4 or the motion-compensated prediction unit 5, thereby generating a local decoded block image Pin - hat or a locally decoded coded block image as a collection thereof, i.e., a locally decoded image (step ST9).

加法部9当生成了局部解码图像时,将表示该局部解码图像的局部解码图像信号保存到帧内预测用存储器10,并且将该局部解码图像信号输出到环路滤波器部11。When generating a local decoded image, the adder 9 stores a local decoded image signal representing the local decoded image in the intra prediction memory 10 , and outputs the local decoded image signal to the loop filter 11 .

直至针对层次性地分割了的所有编码块Bn的处理完成为止,反复实施步骤ST3~ST9的处理,如果针对所有编码块Bn的处理完成,则转移到步骤ST12的处理(步骤ST10、ST11)。The processes of steps ST3 to ST9 are repeatedly performed until the processes of all the hierarchically divided coding blocks Bn are completed. When the processes of all the coding blocks Bn are completed, the process moves to step ST12 (steps ST10 and ST11).

可变长编码部13对从变换/量化部7输出的压缩数据、从编码控制部1输出的编码模式(包括表示编码块的分割状态的信息)以及预测误差编码参数、和从帧内预测部4输出的帧内预测参数或者从运动补偿预测部5输出的帧间预测参数进行熵编码。The variable length coding unit 13 performs entropy coding on the compressed data output from the transform/quantization unit 7, the coding mode (including information indicating the segmentation status of the coding block) and the prediction error coding parameters output from the coding control unit 1, and the intra-frame prediction parameters output from the intra-frame prediction unit 4 or the inter-frame prediction parameters output from the motion compensation prediction unit 5.

可变长编码部13对作为熵编码的编码结果的压缩数据、编码模式、预测误差编码参数、帧内预测参数/帧间预测参数的编码数据进行复用而生成比特流(步骤ST12)。The variable-length coding unit 13 multiplexes the compressed data, which is the result of entropy coding, the coding mode, the prediction error coding parameter, and the coded data of the intra-frame prediction parameter/inter-frame prediction parameter to generate a bit stream (step ST12 ).

环路滤波器部11如果从加法器9接收到局部解码图像信号,则补偿该局部解码图像信号中包含的编码失真,将编码失真补偿后的局部解码图像信号表示的局部解码图像作为参照图像保存到运动补偿预测帧存储器12(步骤ST13)。If the loop filter unit 11 receives a local decoded image signal from the adder 9, it compensates for the coding distortion contained in the local decoded image signal and saves the local decoded image represented by the local decoded image signal after coding distortion compensation as a reference image in the motion compensation prediction frame memory 12 (step ST13).

利用环路滤波器部11的滤波处理既可以以从加法器9输出的局部解码图像信号的最大编码块或者各个编码块单位进行,也可以以集中了多个最大编码块的单位进行、或者在输出了1个图片量的局部解码图像信号之后集中1个图片量来进行。The filtering processing using the loop filter unit 11 can be performed on the maximum coding block or each coding block unit of the local decoded image signal output from the adder 9, or can be performed on the unit of multiple maximum coding blocks, or on the unit of one picture after the local decoded image signal of one picture is output.

接下来,详细地说明帧内预测部4的处理内容。Next, the processing contents of the intra prediction unit 4 will be described in detail.

图7是示出在编码块Bn内的各分块Pi n中可选择的帧内预测参数(帧内预测模式)的一个例子的说明图。FIG7 is an explanatory diagram showing an example of intra-frame prediction parameters ( intra -frame prediction modes) selectable in each partition Pin within a coding block Bn .

在图7的例子中,示出帧内预测模式和该帧内预测模式表示的预测方向矢量,设计为随着可选择的帧内预测模式的个数增加,预测方向矢量彼此的相对角度变小。In the example of FIG. 7 , intra prediction modes and prediction direction vectors indicated by the intra prediction modes are shown, and the design is such that the relative angles between the prediction direction vectors decrease as the number of selectable intra prediction modes increases.

帧内预测部4根据针对分块Pi n的帧内预测参数、帧内预测图像Pi n的生成中使用的滤波器的选择参数,实施针对分块Pi n的帧内预测处理。The intra-frame prediction unit 4 performs intra-frame prediction processing on the block P i n based on the intra-frame prediction parameters for the block P i n and the selection parameters of the filter used in generating the intra-frame prediction image P i n .

以下,说明根据针对分块Pi n的亮度信号的帧内预测参数(帧内预测模式)生成亮度信号的帧内预测信号的帧内处理。The following describes the intra-frame processing of generating an intra-frame prediction signal of a luminance signal based on the intra-frame prediction parameters (intra-frame prediction mode) of the luminance signal for the block Pin .

此处,将分块Pi n的尺寸设为li n×mi n像素。Here, the size of the block Pin is set to lin × min pixels .

图8是示出在li n=mi n=4时、生成分块Pi n内的像素的预测值时使用的像素的一个例子的说明图。FIG8 is an explanatory diagram showing an example of pixels used when generating predicted values of pixels in a block Pin when lin = min = 4 .

在图8中,将与分块Pi n邻接的已编码的上分块的像素(2×li n+1)个和左分块的像素(2×mi n)个作为预测中使用的像素,但预测中使用的像素相比于图8所示的像素既可以多也可以少。In Figure 8, the pixels (2× lin +1) of the encoded upper block and the pixels (2×min ) of the left block adjacent to the block Pin are used as pixels for prediction, but the pixels used in the prediction can be more or less than the pixels shown in Figure 8.

另外,在图8中,将邻接的1行或者1列量的像素用于预测,但也可以将2行或者2列、或者其以上的像素用于预测。In addition, in FIG8 , pixels corresponding to one adjacent row or column are used for prediction, but pixels corresponding to two rows or two columns, or more, may be used for prediction.

在针对分块Pi n的帧内预测模式的索引值是2(平均值预测)的情况下,将上分块的邻接像素和左分块的邻接像素的平均值作为分块Pi n内的像素的预测值而生成中间预测图像。When the index value of the intra-frame prediction mode for block Pin is 2 (average value prediction), the average value of the adjacent pixels of the upper block and the adjacent pixels of the left block is used as the prediction value of the pixels within block Pin to generate an intermediate prediction image.

在帧内预测模式的索引值是2(平均值预测)以外的情况下,根据索引值表示的预测方向矢量vp=(dx,dy),生成分块Pi n内的像素的预测值。When the index value of the intra prediction mode is other than 2 (average value prediction), the predicted values of the pixels in the block Pin are generated based on the prediction direction vector vp = (dx, dy) indicated by the index value.

其中,将生成预测值的像素(预测对象像素)的分块Pi n内的相对坐标(以分块的左上像素为原点)设为(x,y)。Here, the relative coordinates within the block Pin of the pixel that generates the prediction value (prediction object pixel) (with the upper left pixel of the block as the origin) are set to (x, y).

预测中使用的参照像素的位置成为下述所示的A与邻接像素的交点。The position of a reference pixel used in prediction is the intersection of A and an adjacent pixel shown below.

其中,k是正的标量值。where k is a positive scalar value.

在参照像素处于整数像素位置的情况下,将该整数像素作为预测对象像素的预测值。When the reference pixel is at an integer pixel position, the integer pixel is used as the predicted value of the prediction target pixel.

另一方面,在参照像素不处于整数像素位置的情况下,将根据与参照像素邻接的整数像素生成的插值像素作为预测值。On the other hand, when the reference pixel is not located at an integer pixel position, an interpolated pixel generated from integer pixels adjacent to the reference pixel is used as a prediction value.

在图8的例子中,参照像素不处于整数像素位置,所以根据与参照像素邻接的2个像素进行内插而计算预测值。但是,预测值不限于根据邻接的2个像素生成,也可以根据邻接的2个像素以上的像素生成插值像素而作为预测值。In the example of FIG8 , since the reference pixel is not at an integer pixel position, the predicted value is calculated by interpolation based on two pixels adjacent to the reference pixel. However, the predicted value is not limited to being generated based on two adjacent pixels; an interpolated pixel may be generated based on two or more adjacent pixels to serve as the predicted value.

接下来,通过针对利用上述步骤生成的中间预测图像(预测值)进行滤波处理来取得最终的预测图像。Next, a final predicted image is obtained by performing filtering processing on the intermediate predicted image (predicted value) generated by the above steps.

以下,说明具体的滤波处理。The following describes specific filtering processing.

从预先准备的至少一个以上的滤波器之中,通过后述手法选择要使用的滤波器,针对中间预测图像的各像素,依照下述的式(1)进行滤波处理。A filter to be used is selected from at least one filter prepared in advance by a method described later, and filtering is performed on each pixel of the intermediate prediction image according to the following equation (1).

在式(1)中,an(n=0,1,...,N)是由与参照像素有关的系数(a0,a1,...,aN-1)和偏置系数aN构成的滤波系数。In the formula (1), a n (n=0, 1, ..., N) is a filter coefficient composed of coefficients (a 0 , a 1 , ..., a N-1 ) related to a reference pixel and an offset coefficient a N .

pn(n=0,1,...,N-1)表示包括滤波处理对象像素p0的滤波器的参照像素。p n (n=0, 1, ..., N-1) represents reference pixels of a filter including the filtering target pixel p 0 .

s(pn)表示各参照像素的亮度值、s帽(p0)表示滤波处理对象像素p0中的滤波处理后的亮度值。s(p n ) represents the luminance value of each reference pixel, and s hat (p 0 ) represents the luminance value after filtering at the filtering target pixel p 0 .

但是,滤波系数也可以构成为没有偏置系数aN。另外,N是任意的参照像素数。However, the filter coefficients may be configured without the offset coefficient a N . Note that N is an arbitrary number of reference pixels.

图9是示出N=5的情况的参照像素配置的一个例子的说明图。FIG. 9 is an explanatory diagram showing an example of reference pixel arrangement in the case of N=5.

在进行上述滤波处理时,分块Pi n的尺寸(li n×mi n)越大,在输入图像中越容易存在非直线的边缘等,越容易产生与中间预测图像的预测方向的偏差,所以优选对中间预测图像进行平滑化。When performing the above filtering processing, the larger the size of the block Pin ( line × minute ), the more likely it is that non-linear edges will exist in the input image, and the more likely it is that a deviation from the prediction direction of the intermediate prediction image will occur, so it is preferred to smooth the intermediate prediction image.

进而,预测误差的量化值越大,解码图像中产生的量化失真越大,根据与分块Pi n邻接的已编码像素生成的中间预测图像的预测精度越低,所以优选准备粗略地表现分块Pi n那样的被平滑化的预测图像。Furthermore, the larger the quantization value of the prediction error, the greater the quantization distortion generated in the decoded image, and the lower the prediction accuracy of the intermediate prediction image generated based on the encoded pixels adjacent to the block Pin , so it is preferable to prepare a smoothed prediction image that roughly represents the block Pin .

进而,在相同的分块Pi n内的像素中,越是远离中间预测图像的生成中使用的与分块Pi n邻接的已编码像素的像素,在中间预测图像与输入图像之间越容易产生边缘等的偏差,所以优选对预测图像进行平滑化,抑制产生了偏差时的急剧的预测误差增加。Furthermore, among the pixels within the same block Pin , the farther away from the encoded pixels adjacent to the block Pin used in generating the intermediate prediction image, the more likely it is that deviations such as edges will occur between the intermediate prediction image and the input image. Therefore, it is preferable to smooth the prediction image to suppress the sharp increase in prediction error when deviations occur.

另外,不仅需要变化滤波器的强度,而且对于滤波器的参照像素配置,也需要根据中间预测图像的预测方向适当地配置参照像素,以使得防止中间预测图像的边缘等图样不自然地失真。Furthermore, not only the strength of the filter needs to be varied, but also the reference pixels of the filter need to be appropriately arranged according to the prediction direction of the intermediate prediction image to prevent the edges of the intermediate prediction image from being unnaturally distorted.

因此,在滤波器选择处理中,构成为考虑下述的4个参数(1)~(4),来选择滤波器。Therefore, in the filter selection process, the filter is selected in consideration of the following four parameters (1) to (4).

(1)分块Pi n的尺寸(li n×mi n)(1) Size of Pin block (l in × min in )

(2)预测误差编码参数中包含的量化参数(2) Quantization parameters included in the prediction error coding parameters

(3)在中间预测图像的生成时使用的已编码像素(图8所示的“预测中使用的像素”)群与滤波处理对象像素的距离(3) The distance between the group of coded pixels used in generating the intermediate prediction image (“pixels used in prediction” shown in FIG8 ) and the pixel to be filtered

(4)生成了中间预测图像时的帧内预测模式的索引值(4) Index value of the intra-frame prediction mode when the intermediate prediction image is generated

具体而言,分块Pi n的尺寸(li n×mi n)越大、由量化参数决定的量化值越大、滤波处理对象像素与位于分块Pi n的左边以及上面的中间预测图像的生成时使用的已编码像素群的距离越大,则构成为使用平滑化的强度越强的滤波器,并且,成为考虑了帧内预测模式的预测方向的滤波强度以及参照像素配置。即,通过针对上述参数的各个组合,从预先准备的滤波器群之中进行适当的滤波器的对应关联,从而实现与上述参数对应的滤波器的自适应选择。Specifically, as the size (l in × m in ) of the block Pin increases, as the quantization value determined by the quantization parameter increases, and as the distance between the pixel being filtered and the coded pixel group used to generate the intermediate prediction image to the left and above the block Pin increases, a filter with a stronger smoothing strength is used. Furthermore, the filter strength and reference pixel arrangement in the prediction direction of the intra-frame prediction mode are taken into consideration. In other words, by associating appropriate filters from a pre-prepared filter group for each combination of the above parameters, adaptive selection of filters corresponding to the above parameters is achieved.

但是,滤波强度的种类只要是2种类以上,则可以是任意个种类,作为滤波器的强度的表现,也可以将最弱的滤波器定义为与没有滤波处理等价的处理。因此,也可以构成如下那样的滤波处理:仅对中间预测图像内的特定的像素进行滤波处理,对其以外的像素进行最弱的滤波处理即不进行滤波处理。However, any number of filter strength types may be used, as long as there are at least two. As an expression of filter strength, the weakest filter may be defined as equivalent to no filtering. Therefore, it is possible to configure filtering such that only specific pixels within the intermediate prediction image are filtered, while all other pixels are filtered using the weakest filter, i.e., no filtering.

另外,在上述说明中,以预先准备了必要的数量的滤波器为前提而进行了说明,但也可以将滤波器定义为上述滤波器选择参数的函数来使用以根据上述滤波器选择参数的值来计算出滤波器。In the above description, it is assumed that a necessary number of filters are prepared in advance. However, the filter may be defined as a function of the filter selection parameter and calculated based on the value of the filter selection parameter.

进而,在上述说明中,示出了构成为考虑4个参数(1)~(4)来选择滤波器的例子,但也可以构成为考虑4个参数(1)~(4)中的至少1个以上的参数来选择滤波器。作为一个例子,可以举出如下结构:在考虑上述4个参数中的(3)和(4)的情况下,根据帧内预测模式的预测方向,距各滤波处理对象像素的预测中使用的像素的距离(在图8的例子中,与邻接于块的上端的“参照像素”的距离)越大,选择强度越强的滤波器。Furthermore, in the above description, an example is shown in which a filter is selected by considering four parameters (1) to (4), but a filter may be selected by considering at least one of the four parameters (1) to (4). As an example, the following configuration can be cited: when considering (3) and (4) of the four parameters, a filter with a stronger strength is selected as the distance from the pixel used for prediction of each filtering target pixel (in the example of FIG. 8 , the distance from the "reference pixel" adjacent to the upper end of the block) increases according to the prediction direction of the intra-frame prediction mode.

另外,由于4个参数(1)~(4)是在运动图像解码装置侧也已知的参数,所以不会发生任何由于进行上述滤波处理而应编码的附加信息。Furthermore, since the four parameters (1) to (4) are already known to the video decoding apparatus, no additional information to be encoded due to the above-mentioned filtering process is generated.

通过同样的步骤,生成针对分块Pi n内的亮度信号的所有像素的预测像素,输出所生成的帧内预测图像Pi nThrough the same steps, predicted pixels for all pixels of the luminance signal within the block Pin are generated, and the generated intra-frame predicted image Pin is output.

关于帧内预测图像Pi n的生成中使用的帧内预测参数,为了将其复用到比特流而输出到可变长编码部13。The intra-frame prediction parameters used to generate the intra- frame prediction image Pin are output to the variable-length coding unit 13 in order to multiplex them into the bit stream.

针对分块Pi n内的色差信号,也通过与亮度信号同样的步骤,实施基于帧内预测参数(帧内预测模式)的帧内预测处理,将帧内预测图像的生成中使用的帧内预测参数输出到可变长编码部13。For the color difference signal within the block Pin , intra-frame prediction processing based on intra-frame prediction parameters (intra-frame prediction mode) is implemented through the same steps as the luminance signal, and the intra-frame prediction parameters used in generating the intra-frame prediction image are output to the variable length coding unit 13.

其中,关于色差信号的帧内预测,既可以构成为与亮度信号同样地进行在上述中说明的滤波处理,也可以构成为不进行在上述中说明的滤波处理。However, regarding the intra-frame prediction of the chrominance signal, the filtering process described above may be performed in the same manner as the luminance signal, or the filtering process described above may not be performed.

接下来,说明图2的图像解码装置的处理内容。Next, the processing contents of the image decoding apparatus in FIG. 2 will be described.

可变长解码部51如果输入了从图1的图像编码装置输出的比特流,则实施针对该比特流的可变长解码处理,按照由1帧以上的图片构成的序列单位或者图片单位对帧尺寸的信息进行解码(图4的步骤ST21)。If the variable length decoding unit 51 inputs the bit stream output from the image encoding device in Figure 1, it implements variable length decoding processing on the bit stream and decodes the frame size information according to the sequence unit or picture unit composed of more than one frame (step ST21 in Figure 4).

可变长解码部51通过与图1的编码控制部1同样的步骤,决定成为实施帧内预测处理(帧之内预测处理)或者运动补偿预测处理(帧之间预测处理)时的处理单位的编码块的最大尺寸,并且决定最大尺寸的编码块被层次性地分割时的上限的层次数(步骤ST22)。The variable length decoding unit 51 determines the maximum size of the coding block that serves as the processing unit when performing intra-frame prediction processing (within-frame prediction processing) or motion compensation prediction processing (between-frame prediction processing) through the same steps as the encoding control unit 1 in Figure 1, and determines the upper limit of the number of layers when the maximum-sized coding block is hierarchically divided (step ST22).

例如,在图像编码装置中根据输入图像的分辨率决定了编码块的最大尺寸的情况下,根据之前解码出的帧尺寸信息来决定编码块的最大尺寸。For example, when the maximum size of a coding block is determined according to the resolution of an input image in an image coding apparatus, the maximum size of the coding block is determined according to previously decoded frame size information.

另外,在表示编码块的最大尺寸以及上限的层次数的信息复用于比特流中的情况下,参照从该比特流解码出的信息。Furthermore, when information indicating the maximum size of a coding block and the upper limit of the number of layers is multiplexed in a bitstream, the information decoded from the bitstream is referenced.

在比特流中复用的最大尺寸的编码块B0的编码模式m(B0)中,包括表示最大尺寸的编码块B0的分割状态的信息,所以可变长解码部51解码出比特流中复用的最大尺寸的编码块B0的编码模式m(B0),从而确定层次性地分割的各个编码块Bn(步骤ST23)。The coding mode m(B 0 ) of the maximum-sized coding block B 0 multiplexed in the bitstream includes information indicating the division state of the maximum-sized coding block B 0. Therefore, the variable-length decoding unit 51 decodes the coding mode m(B 0 ) of the maximum-sized coding block B 0 multiplexed in the bitstream, thereby determining each hierarchically divided coding block B n (step ST23).

可变长解码部51如果确定了各个编码块Bn,则解码出该编码块Bn的编码模式m(Bn),根据属于该编码模式m(Bn)的分块Pi n的信息,确定属于编码块Bn的分块Pi nAfter determining each coding block B n , the variable length decoding unit 51 decodes the coding mode m(B n ) of the coding block B n and determines the partition Pin belonging to the coding block B n based on the information of the partition Pin belonging to the coding mode m(B n ) .

可变长解码部51如果确定了属于编码块Bn的分块Pi n,则针对每个分块Pi n,解码出压缩数据、编码模式、预测误差编码参数、帧内预测参数/帧间预测参数(步骤ST24)。When the variable-length decoding unit 51 determines the partition Pin belonging to the coding block Bn , it decodes the compressed data, coding mode, prediction error coding parameters, and intra-frame prediction parameters/inter-frame prediction parameters for each partition Pin (step ST24).

即,在对编码块Bn分配的编码模式m(Bn)是帧内编码模式的情况下,针对属于编码块的每个分块Pi n解码出帧内预测参数。That is, when the coding mode m(B n ) assigned to the coding block B n is the intra coding mode, intra prediction parameters are decoded for each partition P i n belonging to the coding block.

在对编码块Bn分配的编码模式m(Bn)是帧间编码模式的情况下,针对属于编码块的每个分块Pi n解码出帧间预测参数。When the coding mode m(B n ) assigned to the coding block B n is the inter-frame coding mode, inter-frame prediction parameters are decoded for each partition P i n belonging to the coding block.

成为预测处理单位的分块进而根据预测误差编码参数中包含的变换块尺寸信息被分割为成为变换处理单位的1个或者多个分块,针对成为变换处理单位的每个分块解码出压缩数据(变换/量化后的变换系数)。The block that becomes the prediction processing unit is further divided into one or more blocks that become the transformation processing units according to the transformation block size information contained in the prediction error coding parameter, and compressed data (transformation/quantized transformation coefficients) are decoded for each block that becomes the transformation processing unit.

切换开关52在从可变长解码部51确定的属于编码块Bn的分块Pi n的编码模式m(Bn)是帧内编码模式的情况下(步骤ST25),将从可变长解码部51输出的帧内预测参数输出到帧内预测部53。When the coding mode m( Bn ) of the partition Pin belonging to the coding block Bn determined by the variable length decoding unit 51 is the intra coding mode (step ST25), the switching switch 52 outputs the intra prediction parameters output from the variable length decoding unit 51 to the intra prediction unit 53.

另一方面,在分块Pi n的编码模式m(Bn)是帧间编码模式的情况下(步骤ST25),将从可变长解码部51输出的帧间预测参数输出到运动补偿预测部54。On the other hand, when the coding mode m(B n ) of the block P i n is the inter-frame coding mode (step ST25 ), the inter-frame prediction parameters output from the variable-length decoding unit 51 are output to the motion compensation prediction unit 54 .

帧内预测部53如果从切换开关52接收到帧内预测参数,则与图1的帧内预测部4同样地,使用帧之内的已解码的图像信号,根据该帧内预测参数,实施针对编码块Bn的分块Pi n的帧之内预测处理,从而生成帧内预测图像Pi n(步骤ST26)。Upon receiving the intra-frame prediction parameters from the switching switch 52, the intra-frame prediction unit 53, like the intra-frame prediction unit 4 in FIG1 , uses the decoded image signal within the frame and performs intra-frame prediction processing on the block P in the coding block B according to the intra -frame prediction parameters, thereby generating an intra-frame predicted image P ( step ST26).

其中,帧内预测部53在生成帧内预测图像Pi n时,通过与图1的帧内预测部4相同的手法,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的解码有关的各种参数的状态选择滤波器,使用该滤波器,实施针对该帧内预测图像Pi n的滤波处理,将滤波处理后的帧内预测图像Pi n作为最终的帧内预测图像。Among them, when generating the intra-frame prediction image P i n , the intra-frame prediction unit 53 selects a filter from one or more pre-prepared filters according to the status of various parameters related to the decoding of the filtering processing object block through the same method as the intra-frame prediction unit 4 in Figure 1, uses the filter to perform filtering processing on the intra-frame prediction image P i n , and uses the filtered intra-frame prediction image P i n as the final intra-frame prediction image.

另外,在上述说明中,以预先准备了必要的数量的滤波器为前提而进行了说明,但在图1的帧内预测部4以根据滤波器选择中使用的参数的状态来计算滤波器的方式将滤波器定义为上述参数的函数的情况下,帧内预测部53也可以同样地构成为以根据与上述滤波处理对象块的解码有关的各种参数的状态来计算滤波器的方式将滤波器定义为上述参数的函数。In addition, in the above description, it is assumed that the necessary number of filters are prepared in advance. However, in the case where the intra-frame prediction unit 4 in Figure 1 defines the filter as a function of the above parameters in a manner of calculating the filter according to the state of the parameters used in filter selection, the intra-frame prediction unit 53 can also be configured to define the filter as a function of the above parameters in a manner of calculating the filter according to the state of various parameters related to the decoding of the above-mentioned filtering processing object block.

运动补偿预测部54如果从切换开关52接收到帧间预测参数,则使用由运动补偿预测帧存储器59保存的1帧以上的参照图像,根据该帧间预测参数,实施针对编码块Bn的分块Pi n的运动补偿预测处理,从而生成帧间预测图像Pi n(步骤ST27)。Upon receiving the inter-frame prediction parameters from the switching switch 52, the motion-compensated prediction unit 54 uses one or more reference frames stored in the motion-compensated prediction frame memory 59 to perform motion-compensated prediction processing on the block Pin of the coding block Bn according to the inter-frame prediction parameters, thereby generating an inter - frame predicted image Pin (step ST27).

逆量化/逆变换部55使用从可变长解码部51输出的预测误差编码参数中包含的量化参数,对从可变长解码部51输出的与编码块有关的压缩数据进行逆量化,以该预测误差编码参数中包含的变换块尺寸单位,实施逆量化的压缩数据的逆变换处理(例如,逆DCT(逆离散余弦变换)、逆KL变换等逆变换处理),从而将逆变换处理后的压缩数据作为解码预测误差信号(表示压缩前的差分图像的信号)输出到加法部56(步骤ST28)。The inverse quantization/inverse transform unit 55 uses the quantization parameter included in the prediction error coding parameter output from the variable length decoding unit 51 to inverse quantize the compressed data related to the coding block output from the variable length decoding unit 51, and performs inverse transform processing (for example, inverse DCT (inverse discrete cosine transform), inverse KL transform, and other inverse transform processing) on the inverse quantized compressed data in units of transform block size included in the prediction error coding parameter, thereby outputting the compressed data after the inverse transform processing as a decoded prediction error signal (a signal representing the differential image before compression) to the addition unit 56 (step ST28).

加法部56如果从逆量化/逆变换部55接收到解码预测误差信号,则将该解码预测误差信号和表示由帧内预测部53或者运动补偿预测部54生成的预测图像的预测信号进行相加,从而生成解码图像,将表示该解码图像的解码图像信号保存到帧内预测用存储器57,并且将该解码图像信号输出到环路滤波器部58(步骤ST29)。If the adding unit 56 receives the decoded prediction error signal from the inverse quantization/inverse transform unit 55, it adds the decoded prediction error signal and the prediction signal representing the predicted image generated by the intra-frame prediction unit 53 or the motion compensation prediction unit 54 to generate a decoded image, saves the decoded image signal representing the decoded image to the intra-frame prediction memory 57, and outputs the decoded image signal to the loop filter unit 58 (step ST29).

直至针对层次性地分割了的所有编码块Bn的处理完成位置,反复实施步骤ST23~ST29的处理(步骤ST30)。The processes of steps ST23 to ST29 are repeatedly performed until the processing is completed for all the hierarchically divided coding blocks Bn (step ST30).

环路滤波器部58如果从加法部56接收到解码图像信号,则补偿该解码图像信号中包含的编码失真,将编码失真补偿后的解码图像信号表示的解码图像作为参照图像保存到运动补偿预测帧存储器59(步骤ST31)。Upon receiving the decoded image signal from the adder 56 , the loop filter 58 compensates for coding distortion included in the decoded image signal and stores the decoded image represented by the decoded image signal after coding distortion compensation as a reference image in the motion compensation prediction frame memory 59 (step ST31 ).

利用环路滤波器部58的滤波处理既可以以从加法部56输出的解码图像信号的最大编码块或者各个编码块单位进行,也可以在输出了与1个画面量的宏块相当的解码图像信号之后集中1个画面量来进行。The filtering process by the loop filter unit 58 can be performed in units of the largest coding block or each coding block of the decoded image signal output from the adder unit 56, or can be performed collectively for one picture after the decoded image signal equivalent to one picture's macroblock is output.

如以上说明,根据该实施方式1,运动图像编码装置的帧内预测部4在通过使用帧之内的已编码的图像信号来实施帧之内预测处理而生成帧内预测图像时,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的编码有关的各种参数的状态选择滤波器,使用该滤波器,实施针对预测图像的滤波处理,所以起到能够降低局部地发生的预测误差来提高图像质量的效果。As described above, according to the first embodiment, when the intra-frame prediction unit 4 of the motion image encoding device generates an intra-frame predicted image by performing intra-frame prediction processing using the encoded image signal within the frame, a filter is selected from one or more pre-prepared filters according to the states of various parameters related to the encoding of the filtering object block, and filtering processing is performed on the predicted image using the filter, thereby achieving the effect of reducing the prediction error that occurs locally and improving the image quality.

另外,根据该实施方式1,帧内预测部4在(1)分块Pi n的尺寸(li n×mi n)、(2)预测误差编码参数中包含的量化参数、(3)中间预测图像的生成时使用的已编码像素群与滤波处理对象像素的距离、(4)生成了中间预测图像时的帧内预测模式的索引值之中,考虑至少1个以上的参数来选择滤波器,所以得到如下效果:抑制在与编码对象图像的相关性高的中间预测图像中在编码对象图像的边缘的方向与预测方向之间稍微地产生偏差或者在边缘存在稍微的失真的情况下产生的局部性的预测误差,起到能够改善预测效率的效果。In addition, according to the first embodiment, the intra-frame prediction unit 4 selects a filter by considering at least one parameter among (1) the size of the block Pin ( l in × m in ) , (2) the quantization parameter included in the prediction error coding parameter, (3) the distance between the encoded pixel group used when generating the intermediate prediction image and the filtering object pixel, and (4) the index value of the intra-frame prediction mode when the intermediate prediction image is generated. Therefore, the following effect is obtained: a local prediction error caused by a slight deviation between the direction of the edge of the encoding target image and the prediction direction in the intermediate prediction image having a high correlation with the encoding target image or a slight distortion of the edge is suppressed, thereby achieving the effect of improving the prediction efficiency.

根据该实施方式1,运动图像解码装置的帧内预测部53在通过使用帧之内的已解码的图像信号来实施帧之内预测处理而生成帧内预测图像时,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的解码有关的各种参数的状态选择滤波器,使用该滤波器,实施针对预测图像的滤波处理,所以起到如下效果:降低局部地发生的预测误差,在运动图像解码装置侧也能够生成与在运动图像编码装置侧生成的帧内预测图像相同的帧内预测图像。According to this embodiment 1, when the intra-frame prediction unit 53 of the motion image decoding device generates an intra-frame prediction image by performing intra-frame prediction processing using the decoded image signal within the frame, a filter is selected from one or more pre-prepared filters according to the states of various parameters related to the decoding of the filtering processing object block, and the filtering processing is performed on the prediction image using the filter, thereby achieving the following effects: the prediction error occurring locally is reduced, and the intra-frame prediction image that is the same as the intra-frame prediction image generated on the motion image encoding device side can be generated on the motion image decoding device side.

另外,根据该实施方式1,帧内预测部53在(1)分块Pi n的尺寸(li n×mi n)、(2)预测误差编码参数中包含的量化参数、(3)中间预测图像的生成时使用的已编码像素群与滤波处理对象像素的距离、(4)生成了中间预测图像时的帧内预测模式的索引值之中,考虑至少1个以上的参数来选择滤波器,所以得到如下效果:抑制在与编码对象图像的相关性高的中间预测图像中在编码对象图像的边缘的方向与预测方向之间稍微地产生偏差或者在边缘存在稍微的失真的情况下产生的局部性的预测误差,起到在运动图像解码装置侧也能够生成与在运动图像编码装置侧生成的帧内预测图像相同的帧内预测图像的效果。In addition, according to the first embodiment, the intra-frame prediction unit 53 selects a filter by considering at least one parameter among (1) the size of the block Pin ( l in × m in ) , (2) the quantization parameter included in the prediction error coding parameter, (3) the distance between the encoded pixel group used when generating the intermediate prediction image and the filtering object pixel, and (4) the index value of the intra-frame prediction mode when the intermediate prediction image is generated. Therefore, the following effect is achieved: in the intermediate prediction image having a high correlation with the encoding object image, a local prediction error caused by a slight deviation between the direction of the edge of the encoding object image and the prediction direction or a slight distortion of the edge is suppressed, so that the same intra-frame prediction image as the intra-frame prediction image generated on the motion image encoding device side can be generated on the motion image decoding device side.

实施方式2.Implementation method 2.

在上述实施方式1中,示出了如下例子:帧内预测部4在通过使用帧之内的已编码的图像信号来实施帧之内预测处理而生成帧内预测图像时,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的编码有关的各种参数的状态选择滤波器,使用该滤波器,实施针对预测图像的滤波处理。但也可以设计编码对象的块和预测图像间的平方误差和成为最小的维纳滤波器,在与使用从预先准备的1个以上的滤波器之中选择的滤波器相比使用上述维纳滤波器时预测误差的降低程度更高的情况下,代替该选择的滤波器而使用上述维纳滤波器,实施针对预测图像的滤波处理。In the first embodiment described above, an example is shown in which the intra-frame prediction unit 4, when performing intra-frame prediction processing using an already encoded image signal within a frame to generate an intra-frame predicted image, selects a filter from one or more pre-prepared filters based on the states of various parameters related to the encoding of the target block to be filtered, and performs filtering processing on the predicted image using the filter. However, a Wiener filter may be designed to minimize the sum of squared errors between the target block to be encoded and the predicted image. If the prediction error is reduced more significantly when using the Wiener filter than when using the filter selected from the one or more pre-prepared filters, the Wiener filter may be used instead of the selected filter to perform filtering processing on the predicted image.

以下,具体说明处理内容。The following describes the details of the processing.

在上述实施方式1中,帧内预测部4、53从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的编码有关的各种参数的状态选择滤波器。但是,在考虑4个参数(1)~(4)来选择滤波器的情况下,能够从选择候补之中选择适当的滤波器,但在除了选择候补以外存在最佳的滤波器的情况下,无法进行“最佳的滤波处理”。In the first embodiment described above, the intra-frame prediction units 4 and 53 select a filter from one or more pre-prepared filters based on the states of various parameters related to the encoding of the target block to be filtered. However, when selecting a filter based on the four parameters (1) to (4), an appropriate filter can be selected from among the selection candidates. However, if an optimal filter exists other than the selection candidates, "optimal filtering" cannot be performed.

在该实施方式2中,其特征在于,按照图片单位,在运动图像编码装置侧,设计最佳的滤波器来实施滤波处理,并且对该滤波器的滤波系数等进行编码,在运动图像解码装置侧,解码出该滤波系数等来实施使用了该滤波器的滤波处理。In this embodiment 2, it is characterized in that, on the side of the motion image encoding device, an optimal filter is designed according to the picture unit to implement filtering processing, and the filter coefficients, etc. of the filter are encoded, and on the side of the motion image decoding device, the filter coefficients, etc. are decoded to implement filtering processing using the filter.

运动图像编码装置的帧内预测部4与上述实施方式1同样地,通过实施针对编码块Bn的分块Pi n的帧之内预测处理,从而生成帧内预测图像Pi nThe intra prediction unit 4 of the moving picture coding apparatus generates an intra prediction image Pin by performing an intra prediction process on the partition Pin of the coding block Bn , similarly to the first embodiment.

另外,帧内预测部4通过与上述实施方式1同样的方法,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的编码有关的各种参数的状态选择滤波器,使用该滤波器对帧内预测图像Pi n进行滤波处理。In addition, the intra-frame prediction unit 4 selects a filter from one or more pre-prepared filters according to the status of various parameters related to the encoding of the filtering target block in the same way as in the above-mentioned embodiment 1, and uses the filter to filter the intra-frame prediction image Pin .

帧内预测部4在图片内的所有编码块Bn中决定了帧内预测参数之后,针对在图片内使用了相同的滤波器的区域(具有同一滤波器索引的区域)的每一个,设计该区域内的输入图像和帧内预测图像的平方误差和(对象区域内的平均平方误差)成为最小的维纳滤波器。After the intra-frame prediction unit 4 determines the intra-frame prediction parameters in all coding blocks Bn in the picture, it designs a Wiener filter for each area in the picture where the same filter is used (area with the same filter index) so that the sum of the square errors between the input image and the intra-frame prediction image in the area (the average square error in the object area) is minimized.

关于维纳滤波器,能够通过中间预测图像信号s’的自相关矩阵Rs's'、以及输入图像信号s与中间预测图像信号s’的互相关矩阵Rss',根据下述的式(4)求出滤波系数w。矩阵Rs's',Rss'的大小对应于所求出的滤波器抽头数。Regarding the Wiener filter, the filter coefficient w can be calculated using the autocorrelation matrix R s's' of the intermediate predicted image signal s' and the cross-correlation matrix R ss' between the input image signal s and the intermediate predicted image signal s' according to the following equation (4). The size of the matrices R s's' and R ss' corresponds to the calculated number of filter taps.

帧内预测部4如果设计了维纳滤波器,则将使用该维纳滤波器来实施了滤波处理时的滤波器设计对象区域内的平方误差和设为D1,将对与该维纳滤波器有关的信息(例如,滤波系数)进行了编码时的代码量设为R1,将使用与上述实施方式1同样的方法选择的滤波器来实施了滤波处理时的滤波器设计对象区域内的平方误差和设为D2,确认下述的式(5)是否成立。If the intra-frame prediction unit 4 designs a Wiener filter, the sum of square errors in the filter design object area when the Wiener filter is used to implement filtering processing is set to D1, the code amount when the information related to the Wiener filter (for example, the filter coefficient) is encoded is set to R1, and the sum of square errors in the filter design object area when the filtering processing is implemented using a filter selected by the same method as the above-mentioned embodiment 1 is set to D2, and confirm whether the following formula (5) is established.

D1+λ·R1<D2 (5)D1+λ·R1<D2 (5)

其中,λ是常数。Here, λ is a constant.

帧内预测部4在式(5)成立的情况下,代替通过与上述实施方式1同样的方法选择的滤波器,而使用该维纳滤波器来实施滤波处理。When equation (5) holds true, the intra prediction unit 4 performs filtering using the Wiener filter instead of the filter selected by the same method as in the first embodiment.

另一方面,在式(5)不成立的情况下,使用通过与上述实施方式1同样的方法选择的滤波器来实施滤波处理。On the other hand, when the equation (5) does not hold, filtering processing is performed using a filter selected by the same method as in the first embodiment.

此处,虽然使用平方误差和D1、D2进行了评价,但不限于此,也可以代替平方误差和D1、D2,而使用误差的绝对值和等其他表示预测的失真的尺度来进行评价。Although the evaluation is performed here using the sum of squared errors D1 and D2, the present invention is not limited thereto and the evaluation may be performed using another measure indicating the distortion of the prediction, such as the sum of absolute values of errors, instead of the sum of squared errors D1 and D2.

帧内预测部4在使用维纳滤波器来实施滤波处理的情况下,需要该维纳滤波器的滤波系数、表示将哪个索引的滤波器置换为维纳滤波器的滤波器更新信息。When the intra prediction unit 4 performs filtering processing using a Wiener filter, it requires filter coefficients of the Wiener filter and filter update information indicating which filter index is to be replaced with the Wiener filter.

具体而言,在将可通过使用了滤波器选择参数的滤波处理而选择的滤波器的数量设为L并对各滤波器分配0~L-1的索引的情况下,针对各个索引,在使用所设计出的维纳滤波器的情况下,需要将“1”的值作为滤波器更新信息进行编码,在使用预先准备的滤波器的情况下,需要将“0”的值作为滤波器更新信息进行编码。Specifically, when the number of filters that can be selected through filtering processing using filter selection parameters is set to L and each filter is assigned an index of 0 to L-1, for each index, when using the designed Wiener filter, it is necessary to encode the value of "1" as filter update information, and when using a pre-prepared filter, it is necessary to encode the value of "0" as filter update information.

可变长编码部13对从帧内预测部4输出的滤波器更新信息进行可变长编码,将该滤波器更新信息的编码数据复用到比特流。The variable-length coding unit 13 performs variable-length coding on the filter update information output from the intra prediction unit 4 and multiplexes the coded data of the filter update information into a bit stream.

此处,示出了针对在图片内使用了相同的滤波器的区域的每一个设计该区域内的输入图像和预测图像的平均平方误差成为最小的维纳滤波器的例子,但也可以构成为不按照图片单位而按照其他特定的区域单位,针对使用了相同的滤波器的区域的每个,设计该区域内的输入图像和预测图像的平均平方误差成为最小的维纳滤波器,也可以仅针对某特定的图片进行滤波器设计、或者仅限于符合特定的条件的情况(例如,附加场景变换检测功能并检测到场景变换的图片的情况)下进行上述滤波器设计。Here, an example is shown of designing a Wiener filter so that the mean square error between the input image and the predicted image in each area where the same filter is used in a picture is minimized. However, the example may also be configured such that, for each area where the same filter is used, a Wiener filter is designed so that the mean square error between the input image and the predicted image in the area is minimized not by picture units but by other specific area units. The filter may also be designed only for a specific picture, or may be designed only for situations that meet specific conditions (for example, a scene change detection function is added and a picture in which a scene change is detected).

运动图像解码装置的可变长解码部51根据比特流中复用的编码数据可变长解码出滤波器更新信息。The variable length decoding unit 51 of the moving picture decoding apparatus obtains filter update information by variable length decoding based on the coded data multiplexed in the bit stream.

帧内预测部53与上述实施方式1同样地,实施针对编码块Bn的分块Pi n的帧之内预测处理,从而生成帧内预测图像Pi nThe intra prediction unit 53 performs intra prediction processing on the partition P in the coding block B n in the same manner as in the first embodiment, thereby generating an intra prediction image P in .

帧内预测部53如果从可变长解码部51接收到滤波器更新信息,则参照该滤波器更新信息,确认在相应的索引的滤波器中有无更新。Upon receiving the filter updating information from the variable length decoding unit 51 , the intra prediction unit 53 refers to the filter updating information and checks whether or not the filter of the corresponding index has been updated.

帧内预测部53在该确认的结果,某区域的滤波器被置换为维纳滤波器的情况下,读出该滤波器更新信息中包含的维纳滤波器的滤波系数,确定该维纳滤波器,使用该维纳滤波器,实施帧内预测图像Pi n的滤波处理。When the result of the confirmation shows that the filter of a certain area is replaced by the Wiener filter, the intra-frame prediction unit 53 reads out the filter coefficient of the Wiener filter contained in the filter update information, determines the Wiener filter, and uses the Wiener filter to perform filtering processing on the intra-frame prediction image P i n .

另一方面,在未被置换为维纳滤波器的区域中,通过与上述实施方式1同样的方法选择滤波器,使用该滤波器,实施帧内预测图像Pi n的滤波处理。On the other hand, in the region not replaced by the Wiener filter, a filter is selected by the same method as in the first embodiment, and filtering processing is performed on the intra- frame prediction image Pin using this filter.

如以上说明,根据该实施方式2,设计编码对象的块与预测图像间的平方误差和成为最小的维纳滤波器,在与使用从预先准备的1个以上的滤波器之中选择的滤波器相比使用该维纳滤波器时预测误差的降低程度更高的情况下,代替该选择的滤波器而使用该维纳滤波器,来实施针对预测图像的滤波处理,所以起到能够比上述实施方式1进一步降低局部地发生的预测误差的效果。As described above, according to this embodiment 2, a Wiener filter is designed in which the sum of the square errors between the block of the encoding object and the predicted image is minimized. When the degree of reduction in the prediction error is higher when using the Wiener filter than when using a filter selected from one or more pre-prepared filters, the Wiener filter is used instead of the selected filter to perform filtering processing on the predicted image, thereby achieving the effect of further reducing the locally occurring prediction error compared to the above-mentioned embodiment 1.

另外,本申请发明在该发明的范围内,能够进行各实施方式的自由的组合、或者各实施方式的任意的构成要素的变形、或者在各实施方式中能够省略任意的构成要素。Furthermore, the present invention can freely combine the various embodiments, modify any components of the various embodiments, or omit any components in the various embodiments within the scope of the invention.

产业上的可利用性Industrial applicability

以上那样,本发明的运动图像编码装置、运动图像解码装置、运动图像编码方法以及运动图像解码方法构成为帧内预测单元在通过使用帧之内的已编码的图像信号来实施帧之内预测处理而生成预测图像时,从预先准备的1个以上的滤波器之中,根据与滤波处理对象块的编码有关的各种参数的状态选择滤波器,使用该滤波器,实施针对预测图像的滤波处理,将滤波处理后的预测图像输出到差分图像生成单元,所以适用于对运动图像高效地进行编码的运动图像编码装置以及运动图像编码方法、和对被高效地编码的运动图像进行解码的运动图像解码装置以及运动图像解码方法等。As described above, the motion image encoding device, motion image decoding device, motion image encoding method, and motion image decoding method of the present invention are configured such that, when the intra-frame prediction unit generates a predicted image by performing intra-frame prediction processing using an encoded image signal within a frame, a filter is selected from one or more pre-prepared filters according to the states of various parameters related to the encoding of the filtering target block, and filtering processing is performed on the predicted image using the filter, and the filtered predicted image is output to the differential image generation unit. Therefore, the motion image encoding device and motion image encoding method for efficiently encoding motion images, and the motion image decoding device and motion image decoding method for decoding efficiently encoded motion images, etc.

Claims (4)

1.一种运动图像解码装置,其特征在于,1. A moving picture decoding device, characterized in that: 具备帧内预测单元,该帧内预测单元在与编码块有关的编码模式是帧内编码模式的情况下,针对成为预测处理的单位的分块的每一个分块实施帧内预测处理,生成帧内预测图像,An intra-frame prediction unit is provided for performing intra-frame prediction processing on each block serving as a unit of prediction processing to generate an intra-frame prediction image when the coding mode associated with the coding block is the intra-frame coding mode. 所述帧内预测单元按照帧内预测模式,根据参照像素生成中间预测图像,按照所述帧内预测模式,仅对所述中间预测图像所具有的像素的一部分进行滤波处理从而得到所述帧内预测图像,将所述帧内预测图像的、所述分块中的特定位置的像素作为最终预测图像而生成,将所述中间预测图像的、所述分块中的其他位置的像素作为最终预测图像而生成,The intra-frame prediction unit generates an intermediate prediction image based on reference pixels according to an intra-frame prediction mode, performs filtering processing on only a portion of pixels of the intermediate prediction image according to the intra-frame prediction mode to obtain the intra-frame prediction image, generates pixels at a specific position in the block of the intra-frame prediction image as a final prediction image, and generates pixels at other positions in the block of the intermediate prediction image as a final prediction image, 所述帧内预测模式包括进行平均值预测的模式和进行方向性预测的模式。The intra prediction mode includes a mode for performing average value prediction and a mode for performing directional prediction. 2.一种运动图像编码装置,其特征在于,2. A moving picture encoding device, characterized in that 具备帧内预测单元,该帧内预测单元在与编码块有关的编码模式是帧内编码模式的情况下,针对成为预测处理的单位的分块的每一个分块实施帧内预测处理,生成帧内预测图像,An intra-frame prediction unit is provided for performing intra-frame prediction processing on each block serving as a unit of prediction processing to generate an intra-frame prediction image when the coding mode associated with the coding block is the intra-frame coding mode. 所述帧内预测单元按照帧内预测模式,根据参照像素生成中间预测图像,按照所述帧内预测模式,仅对所述中间预测图像所具有的像素的一部分进行滤波处理从而得到所述帧内预测图像,将所述帧内预测图像的、所述分块中的特定位置的像素作为最终预测图像而生成,将所述中间预测图像的、所述分块中的其他位置的像素作为最终预测图像而生成,The intra-frame prediction unit generates an intermediate prediction image based on reference pixels according to an intra-frame prediction mode, performs filtering processing on only a portion of pixels of the intermediate prediction image according to the intra-frame prediction mode to obtain the intra-frame prediction image, generates pixels at a specific position in the block of the intra-frame prediction image as a final prediction image, and generates pixels at other positions in the block of the intermediate prediction image as a final prediction image, 所述帧内预测模式包括进行平均值预测的模式和进行方向性预测的模式。The intra prediction mode includes a mode for performing average value prediction and a mode for performing directional prediction. 3.一种运动图像编码方法,其特征在于,3. A motion picture encoding method, characterized in that: 具备帧内预测处理步骤,在该帧内预测处理步骤中,在与编码块有关的编码模式是帧内编码模式的情况下,针对成为预测处理的单位的分块的每一个分块实施帧内预测处理,生成帧内预测图像,The method comprises an intra-frame prediction processing step, in which, when the coding mode associated with the coding block is the intra-frame coding mode, intra-frame prediction processing is performed on each block serving as a unit of prediction processing to generate an intra-frame prediction image. 在所述帧内预测处理步骤中,按照帧内预测模式,根据参照像素生成中间预测图像,按照所述帧内预测模式,仅对所述中间预测图像所具有的像素的一部分进行滤波处理从而得到所述帧内预测图像,将所述帧内预测图像的、所述分块中的特定位置的像素作为最终预测图像而生成,将所述中间预测图像的、所述分块中的其他位置的像素作为最终预测图像而生成,In the intra-frame prediction processing step, an intermediate prediction image is generated based on reference pixels according to an intra-frame prediction mode, filtering is performed on only a portion of pixels of the intermediate prediction image according to the intra-frame prediction mode to obtain the intra-frame prediction image, pixels at a specific position in the block of the intra-frame prediction image are generated as a final prediction image, and pixels at other positions in the block of the intermediate prediction image are generated as a final prediction image, 所述帧内预测模式包括进行平均值预测的模式和进行方向性预测的模式。The intra prediction mode includes a mode for performing average value prediction and a mode for performing directional prediction. 4.一种运动图像解码方法,其特征在于,4. A motion picture decoding method, characterized in that: 具备帧内预测处理步骤,在该帧内预测处理步骤中,在与编码块有关的编码模式是帧内编码模式的情况下,针对成为预测处理的单位的分块的每一个分块实施帧内预测处理,生成帧内预测图像,The method comprises an intra-frame prediction processing step, in which, when the coding mode associated with the coding block is the intra-frame coding mode, intra-frame prediction processing is performed on each block serving as a unit of prediction processing to generate an intra-frame prediction image. 在所述帧内预测处理步骤中,按照帧内预测模式,根据参照像素生成中间预测图像,按照所述帧内预测模式,仅对所述中间预测图像所具有的像素的一部分进行滤波处理从而得到所述帧内预测图像,将所述帧内预测图像的、所述分块中的特定位置的像素作为最终预测图像而生成,将所述中间预测图像的、所述分块中的其他位置的像素作为最终预测图像而生成,In the intra-frame prediction processing step, an intermediate prediction image is generated based on reference pixels according to an intra-frame prediction mode, filtering is performed on only a portion of pixels of the intermediate prediction image according to the intra-frame prediction mode to obtain the intra-frame prediction image, pixels at a specific position in the block of the intra-frame prediction image are generated as a final prediction image, and pixels at other positions in the block of the intermediate prediction image are generated as a final prediction image, 所述帧内预测模式包括进行平均值预测的模式和进行方向性预测的模式。The intra prediction mode includes a mode for performing average value prediction and a mode for performing directional prediction.
HK16113209.2A 2010-09-30 2013-08-08 Motion-video encoding apparatus and method and motion-video decoding apparatus and method HK1225203B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010-221471 2010-09-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
HK13109293.0A Addition HK1182244B (en) 2010-09-30 2011-07-21 Motion-video encoding apparatus, motion-video decoding apparatus, motion-video encoding method, and motion-video decoding method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
HK13109293.0A Division HK1182244B (en) 2010-09-30 2011-07-21 Motion-video encoding apparatus, motion-video decoding apparatus, motion-video encoding method, and motion-video decoding method

Publications (2)

Publication Number Publication Date
HK1225203A1 HK1225203A1 (en) 2017-09-29
HK1225203B true HK1225203B (en) 2019-11-01

Family

ID=

Similar Documents

Publication Publication Date Title
JP6851429B2 (en) Image decoding device, image decoding method, image coding device and image coding method
JP6091584B2 (en) Image encoding device, image decoding device, image encoding method, image decoding method, and encoded data
HK1225203B (en) Motion-video encoding apparatus and method and motion-video decoding apparatus and method
HK1219593B (en) Motion-video encoding apparatus, motion-video decoding apparatus, motion-video encoding method, and motion-video decoding method
HK1225204B (en) Motion-video encoding apparatus and method and motion-video decoding apparatus and method
HK1224114B (en) Image encoding device and method, image decoding device and method
HK1224113B (en) Image encoding device and method, image decoding device and method
HK1225541B (en) Image encoding device and method, image decoding device and method
HK1224112B (en) Image encoding device and method, image decoding device and method
HK1225203A1 (en) Motion-video encoding apparatus and method and motion-video decoding apparatus and method
HK1225204A1 (en) Motion-video encoding apparatus and method and motion-video decoding apparatus and method
HK1219594B (en) Motion-video encoding apparatus, motion-video decoding apparatus, motion-video encoding method, and motion-video decoding method
HK1182244B (en) Motion-video encoding apparatus, motion-video decoding apparatus, motion-video encoding method, and motion-video decoding method
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载