GB2368594A - Fuel compositions with reduced soot emissions - Google Patents
Fuel compositions with reduced soot emissions Download PDFInfo
- Publication number
- GB2368594A GB2368594A GB0119910A GB0119910A GB2368594A GB 2368594 A GB2368594 A GB 2368594A GB 0119910 A GB0119910 A GB 0119910A GB 0119910 A GB0119910 A GB 0119910A GB 2368594 A GB2368594 A GB 2368594A
- Authority
- GB
- United Kingdom
- Prior art keywords
- fuel composition
- fuel
- trialkoxyalkanes
- emissions
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 59
- 239000000203 mixture Substances 0.000 title claims abstract description 41
- 239000004071 soot Substances 0.000 title claims abstract description 12
- 238000002485 combustion reaction Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 8
- FKZYYYDRLJCHGL-UHFFFAOYSA-N 1,1,3-trimethoxypropane Chemical compound COCCC(OC)OC FKZYYYDRLJCHGL-UHFFFAOYSA-N 0.000 claims abstract description 6
- LGICWIVABSMSDK-UHFFFAOYSA-N 1,1,3-triethoxypropane Chemical compound CCOCCC(OCC)OCC LGICWIVABSMSDK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000779 smoke Substances 0.000 claims description 14
- 239000000654 additive Substances 0.000 abstract description 3
- 239000002283 diesel fuel Substances 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 10
- 239000013618 particulate matter Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 239000005864 Sulphur Substances 0.000 description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- -1 tripropoxypropane Chemical compound 0.000 description 3
- FGWYWKIOMUZSQF-UHFFFAOYSA-N 1,1,1-triethoxypropane Chemical compound CCOC(CC)(OCC)OCC FGWYWKIOMUZSQF-UHFFFAOYSA-N 0.000 description 2
- ZGMNAIODRDOMEK-UHFFFAOYSA-N 1,1,1-trimethoxypropane Chemical compound CCC(OC)(OC)OC ZGMNAIODRDOMEK-UHFFFAOYSA-N 0.000 description 2
- JJECTDWWDUULIN-UHFFFAOYSA-N 1,1,1-tris(2-ethoxyethoxy)propane Chemical compound CCOCCOC(CC)(OCCOCC)OCCOCC JJECTDWWDUULIN-UHFFFAOYSA-N 0.000 description 2
- IXXQONYXPMUSKK-UHFFFAOYSA-N 1,1,1-tris(2-methoxyethoxy)propane Chemical compound COCCOC(CC)(OCCOC)OCCOC IXXQONYXPMUSKK-UHFFFAOYSA-N 0.000 description 2
- BVJWWEDLLIXXBR-UHFFFAOYSA-N 1,1,3-tributoxybutane Chemical compound CCCCOC(C)CC(OCCCC)OCCCC BVJWWEDLLIXXBR-UHFFFAOYSA-N 0.000 description 2
- PUVORSXETVEDHG-UHFFFAOYSA-N 1,1,3-triethoxy-2-methylpropane Chemical compound CCOCC(C)C(OCC)OCC PUVORSXETVEDHG-UHFFFAOYSA-N 0.000 description 2
- MDIBXLWYZGZAKL-UHFFFAOYSA-N 1,1,3-triethoxybutane Chemical compound CCOC(C)CC(OCC)OCC MDIBXLWYZGZAKL-UHFFFAOYSA-N 0.000 description 2
- NOTUZOWIVBFLNL-UHFFFAOYSA-N 1,1,3-triethoxycyclohexane Chemical compound CCOC1CCCC(OCC)(OCC)C1 NOTUZOWIVBFLNL-UHFFFAOYSA-N 0.000 description 2
- OMAKZNALRADTRX-UHFFFAOYSA-N 1,1,3-trimethoxybutane Chemical compound COC(C)CC(OC)OC OMAKZNALRADTRX-UHFFFAOYSA-N 0.000 description 2
- ZFIYZJYQOFVGKP-UHFFFAOYSA-N 1,1,3-tripropoxybutane Chemical compound CCCOC(C)CC(OCCC)OCCC ZFIYZJYQOFVGKP-UHFFFAOYSA-N 0.000 description 2
- BQIKKNNMJKMBEQ-UHFFFAOYSA-N 1-(1,1-dibutoxypropoxy)butane Chemical compound CCCCOC(CC)(OCCCC)OCCCC BQIKKNNMJKMBEQ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- KOPMZTKUZCNGFY-UHFFFAOYSA-N 1,1,1-triethoxybutane Chemical compound CCCC(OCC)(OCC)OCC KOPMZTKUZCNGFY-UHFFFAOYSA-N 0.000 description 1
- KDLKLJZJBIVZLE-UHFFFAOYSA-N 1,3,3-triethoxybutane Chemical compound CCOCCC(C)(OCC)OCC KDLKLJZJBIVZLE-UHFFFAOYSA-N 0.000 description 1
- WVJCIWWRXMSNBN-UHFFFAOYSA-N 4-(1,3-dioxolan-2-yloxy)butan-1-ol Chemical compound OCCCCOC1OCCO1 WVJCIWWRXMSNBN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000010771 distillate fuel oil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000000177 wavelength dispersive X-ray spectroscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/026—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/02—Use of additives to fuels or fires for particular purposes for reducing smoke development
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
A fuel composition for a compression-ignition engine comprising one or more trialkoxyalkanes, wherein said one or more trialkoxyalkanes are present in an amount in the range of from 50 to 100 % wt. based on said fuel composition; a method of operating a compression-ignition engine, which comprises introducing into the combustion chambers of said engine said fuel composition; and the use in a compression-ignition engine of said fuel composition to reduce soot emissions. Preferred additives are 1,1,3-trimethoxypropane and 1,1,3 triethoxypropane.
Description
FUEL COMPOSITIONS
The present invention relates to fuel compositions, preferably diesel fuel compositions, their use in compression-ignition engines, and methods of operating said engines.
Although diesel engines are highly efficient, they are unsatisfactory in terms of emissions, especially of particulate matter.
Particulate matter is a result of the pyrolysis and partial oxidation of fuel during combustion. Particulate matter consists of soot, unburnt or partially burnt fuel condensed on soot particles (also known as the soluble organic fraction), and sulphuric acid. The soluble organic fraction can be removed using an oxidation catalyst. The amount of sulphuric acid present in particulate matter as a result of the combustion of low sulphur fuels in current engines is minimal.
Agglomeration of soot particles present leads to smoke.
The effect of particulate matter on health and the environment is of increasing concern. As a result, regulatory authorities are placing increasing restrictions on the acceptable limits for emissions from diesel engines.
Diesel fuel emissions are subject to a trade-off between the level of NOx emissions and the level of particulate matter emissions in that measures taken to reduce NOx emissions such as injection timing changes tend to increase particulate emissions and vice versa.
Whilst the advance of engine design has lead to large reductions in emissions, breakthrough performance may require special, improved fuels.
Such fuels would offer premium emissions performance in conventional engines and outstanding performance in improved engines.
Thus, it is highly desirable to lower particulate emissions in diesel fuels to such an extent that it is possible to have zero soot emissions, and therefore zero smoke emissions.
Both the sulphur content and other fuel properties such as density and cetane number will have an effect on the amount of particulate matter.
It has been shown, for instance in"Improvement of diesel combustion and emissions with addition of various oxygenated agents to diesel fuels", Miyamoto et al., Soc.
Automot. Eng., SP-1206 (Diesel Engine Combustion and
Emission Control): 193-199,1996, that oxygen-containing diesel fuels can lead to significant reductions in smoke and particulate emissions.
WO-A-98/56879 concerns a fuel composition comprising a major part of at least one fuel base and a minor part of at least one oxygenated compound, characterised in that it contains at least 0.05 % by weight of at least one trialkoxyalkane. The use of said compounds in diesel fuels is said to increase the cetane number of the resulting diesel fuel composition. A number of trialkoxyalkanes including trimethoxypropane, triethoxypropane, tripropoxypropane, tributoxypropane, 1,1, 3-trimethoxybutane, 1,1, 3-triethoxybutane, 1,1, 3tripropoxybutane and 1,1, 3-tributoxybutane are said to be suitable for this purpose. Tri (methoxyethoxy) propane, tri (ethoxyethoxy) propane, 2- (2-hydroxyethyl) ethoxy-1, 3dioxolane, 1, 1, 3-triethoxy-2-methylpropane, 1,3, 3
triethoxybutane and 1, 1, 3-triethoxycyclohexane are also preferred compounds. However, of the large number of compounds mentioned, only one compound, 1, 1,3triethoxypropane, is specifically exemplified.
WO-A-98/56879 further mentions that the use of such compounds makes it possible to limit the amount of aromatic hydrocarbons and sulphur-containing compounds that are responsible for the emission of particles.
However, this is not elaborated on any further.
Although particulate emissions in diesel fuels can be reduced by limiting the amount of aromatic hydrocarbons and sulphur-containing compounds present in said fuels, this approach is not ideal. Such a process is costly, and requires additional investment in specialised refinery equipment. In addition, the improvements that are achievable by this method for changing the composition of hydrocarbon fuels are limited.
It is therefore highly desirable to find alternative methods for the reduction of particulate emissions from diesel fuels that go beyond that achievable with hydrocarbon fuels.
It has now been surprisingly found that the use of trialkoxyalkanes as a major component in diesel fuels can reduce soot emissions to extremely low levels, and that in certain proportions such compounds can actually reduce said emissions to zero.
According to the present invention there is provided a fuel composition for a compression-ignition engine comprising one or more trialkoxyalkanes, wherein said one or more trialkoxyalkanes are present in an amount in the range of from 50 to 100 % wt. based on said fuel composition.
Said one or more trialkoxyalkanes are preferably present in an amount in the range of from 55 to 100 %
wt., more preferably 57 to 100 % wt., most preferably 57 to 75 % wt., based on said fuel composition.
In another aspect, the present invention provides a method of operating a compression-ignition engine, which comprises introducing into the combustion chambers of said engine a fuel composition according to the present invention as defined above.
The present invention further relates to the use in a compression-ignition engine of said fuel composition of the present invention. Particularly, it relates to the use in a compression-ignition engine of such a fuel composition to reduce the levels of soot produced in said engine as compared to the levels of soot produced when the engine is operated using a fuel composition not comprising said one or more trialkoxyalkanes.
The single Figure of the accompanying drawing illustrates the level of smoke emissions from a diesel fuel composition comprising Swedish Class I diesel fuel, and varying proportions of 1,1, 3-trimethoxypropane.
Middle distillate fuel oil can be derived from petroleum and typically has a boiling range in the range 1000C to 500oC, e. g. 150OC to 400OC. Such petroleumderived fuel oil may comprise atmospheric distillate or vacuum distillate, or cracked gas oil or a blend in any proportion of straight run and thermally and/or catalytically cracked distillates. Fuel oil compositions of the present invention are diesel fuel compositions.
Diesel fuels typically have an initial distillation
temperature of approximately 150OC to 210OC and a final distillation temperature of 290 to 390oC, depending on fuel grade and use.
The diesel fuel itself may be an additised (additivecontaining) fuel or an unadditised (additive-free) fuel.
If the diesel fuel is an additised fuel, it will contain
minor amounts of one or more additives, for example, one or more additives selected from anti-static agents, pipeline drag reducers, flow improvers (for example, ethylene/vinyl acetate copolymers or acrylate/maleic anhydride copolymers) and wax anti-settling agents (for example, those commercially available under the trade marks"PARAFLOW" (for example,"PARAFLOW"450 ; ex Infineum), "OCTEL" (for example, "OCTEL"W 5000; ex
Octel) and"DODIFLOW" (for example, "DODIFLOW"v 3958; ex Hoechst).
The present invention is not limited by the sulphur content, aromatic hydrocarbon content, density or viscosity of the diesel fuel composition.
Other desired properties for said diesel fuels are disclosed in the European CEN 590 specification.
The number of carbon atoms present in trialkoxyalkanes according to the present invention is not limited, but may conveniently be from 4 to 18, preferably from 5 to 12, and more preferably from 6 to 9.
Alkoxy substituents of trialkoxyalkanes according to the present invention may be identical or different, and may also be linear or branched. Said alkoxy substituents may contain from 1 to 5 carbon atoms, preferably from 1 to 3 carbon atoms. Said alkoxy substituents may contain further heteroatoms, in particular more than one oxygen atom.
Two of the alkoxy substituents may be linked to form a heterocycle of 5 or 6 atoms.
The alkane may be linear, branched or cyclic, and may contain further substituents in addition to said alkoxy substituents.
The substitution pattern of the alkoxy substituents is not limited. Said alkoxy substituents may be each attached to different carbon atoms of the alkane.
Alternatively, two of said alkoxy substituents may be attached to the same carbon atom of the alkane.
Alternatively, all three of said alkoxy substituents may be attached to the same carbon atom of the alkane, i. e. a terminal carbon atom of the alkane.
Substitution may occur at either mid-chain or terminal positions of the alkane.
Preferred trialkoxyalkanes according to the present invention include trimethoxypropane, triethoxypropane, tripropoxypropane, tributoxypropane, tri (methoxyethoxy) propane, tri (ethoxyethoxy) propane, 2 (2-hydroxyethyl) ethoxy-1,3-dioxolane, 1,1, 3trimethoxybutane, 1,1, 3-triethoxybutane, 1,1, 3tripropoxybutane, 1,1, 3-tributoxybutane, 1,1, 3-triethoxy2-methylpropane and 1,3, 3-triethoxybutane, 1,1, 3triethoxycyclohexane. Particularly preferred compounds are 1,1, 3-trimethoxypropane and 1, 1,3-triethoxypropane.
It is particularly preferred that the one or more trialkoxyalkanes are present in an amount sufficient to reduce smoke emissions of the fuel composition to zero upon combustion.
The present invention will now be illustrated by way of example by the following Examples.
In the following description, all parts and percentages are by weight, unless stated otherwise, and temperatures are in degrees Celsius.
Examples In the following Examples, the base fuel was a Swedish Class I Diesel Fuel. The properties of said base fuel are highlighted in Table 1.
TABLE 1
s r Density @ 15 C (IP365/ASTM D4052) g/cmJ 0. 8150 Distillation (IP123/ASTM D86) IBP OC 186. 0 10% 207. 0 20% 214. 0 30% 222. 0 40% 229. 0 50% 235. 0 60% 242. 0 70% 248. 0 80% 256. 0 90% 264. 0 95% 272. 0 FBP 290. 5 Cetane Number ASTM D613 54. 5 V. K. @ 40 C (IP71/ASTM D445) cSt 2. 030 Sulphur WDXRF (ASTM D2622) mg/kg < 5 Cloud Point (IP219) OC-32 CFPP (IP309) OC-37 HPLC Aromatics (IP391 Mod) Mono % m 4. 4 Di % m < 0. 1 Tri % m < 0. 1 Standard methods in the art were employed for determining smoke value, opacity, particulate content, NO emissions and CO emissions.
1, 1, 3-Trimethoxypropane (TMOP) and 1, 1, 3triethoxypropane (TEOP) may be prepared in accordance with the method described in FR-A-1447138.
Example 1
Results of Bench Engine Emission Tests with diesel fuel blended with 1,1, 3-Trimethoxypropane.
Blends of TMOP with a Swedish Class I diesel fuel were tested in a bench engine. The engine was a single cylinder diesel research engine manufactured by AVL/LEF based on a Volvo D12 unit. The fuel injection system employed ECU controlled unit injection. An intake boost compressor was fitted and the tests were done with an intake manifold pressure of 140kPa absolute. The speed was 1200rpm and the torque was maintained constant (130Nm) for all tests and was approximately half full load (rated for hydrocarbon fuel).
The results in Table 2 show that TMOP reduces the smoke emissions. For TMOP compositions of 57.8% wt. and greater, the smoke measurements (in units of Filtered Smoke Number (FSN) ) were indistinguishable from zero within experimental uncertainty. Such low levels of smoke emission are first achieved at about 50 % wt. TMOP. CO emissions are also very strongly reduced. The small increase in NOx emissions is offset by the large reduction in particulate matter.
The detailed results are of course dependent on the nature of the base fuel and the engine running conditions, but the qualitative behaviour is always the same: the soot emissions drop to essentially zero when a major proportion of the fuel is TMOP, as indicated by the smoke measurements (see Figure).
TABLE 2
TMOP Smoke, NO, CO, % wt. FSN g/kW. h g/kW. h 0.0% 1. 28 7. 96 3. 14 23.1% 0. 35 8. 19 1. 61 34.7% 0. 10 8. 50 0. 91 46.2% 0. 05 8. 77 0. 61 57.8% 0. 01 9. 09 0. 44 69.3% 0. 00 9. 50 0. 33 92. 5% 0. 00 10. 28 0. 22 Example 2
A further test in the same engine under the same load/speed/boost conditions and with the same base fuel as in Example 1 showed that particulate emissions are reduced by more than an order of magnitude with 57.8 % wt. (50 % v. ) TMOP (see Table 3).
TABLE 3
Smoke Opacity Particulate NO CO FSN % g/kW. h g/kW. h g/kW. h Base fuel 1. 21 4. 9 0. 219 8. 28 2. 86 Base fuel 1. 32 4. 78 0. 25 8. 11 3. 36 (repeat measurement) Base fuel + 0. 01 0. 47 0. 018 9. 3 0. 29 57.8 % wt. TMOP Example 3
A further test in the same engine under the same load/speed/boost conditions and with the same base fuel as in Example 1 showed that particulate emissions are reduced by more than an order of magnitude with 73 % wt.
TEOP (see Table 4).
TABLE 4
Smoke Opacity NOx CO FSN % g/kW. h g/kW. h Base Fuel 1.16 5.12 9.03 3.00 Base Fuel (repeat 1. 17 4. 94 9. 04 3. 17 measurement) Base Fuel + 73 % 0. 03 0. 13 9. 13 0. 41 wt. TEOP
Claims (9)
1. A fuel composition for a compression-ignition engine comprising one or more trialkoxyalkanes, wherein said one or more trialkoxyalkanes are present in an amount in the range of from 50 to 100 % wt. based on said fuel composition.
2. A fuel composition according to claim 1, wherein said one or more trialkoxyalkanes are present in an amount in the range of from 55 to 100 % wt. based on said fuel composition.
3. A fuel composition according to claim 2, wherein said one or more trialkoxyalkanes are present in an amount in the range of from 57 to 100 % wt. based on said fuel composition.
4. A fuel composition according to claim 3, wherein said one or more trialkoxyalkanes are present in an amount in the range of from 57 to 75 % wt. based on said fuel composition.
5. A fuel composition according to any one of Claims 1 to 4, wherein said one or more trialkoxyalkanes are present in an amount sufficient to reduce smoke emissions of the fuel composition to zero upon combustion.
6. A fuel composition according to any one of Claims 1 to 5, wherein said one or more trialkoxyalkanes are selected from 1,1, 3-trimethoxypropane and 1,1, 3 triethoxypropane.
7. A method of operating a compression-ignition engine, which comprises introducing into the combustion chambers of said engine a fuel composition according to any one of Claims 1 to 6.
8. The use in a compression-ignition engine of a fuel composition according to any one of Claims 1 to 6.
9. The use in a compression-ignition engine of a fuel composition according to any one of Claims 1 to 6, to reduce the levels of soot produced in said engine as compared to the levels of soot produced when the engine is operated using a fuel composition not comprising said one or more trialkoxyalkanes.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00307048 | 2000-08-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
GB0119910D0 GB0119910D0 (en) | 2001-10-10 |
GB2368594A true GB2368594A (en) | 2002-05-08 |
Family
ID=8173195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB0119910A Withdrawn GB2368594A (en) | 2000-08-17 | 2001-08-15 | Fuel compositions with reduced soot emissions |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2368594A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044107A1 (en) * | 2002-11-13 | 2004-05-27 | Shell Internationale Research Maatschappij B.V. | Diesel fuel compositions |
WO2011161032A1 (en) | 2010-06-22 | 2011-12-29 | Shell Internationale Research Maatschappij B.V. | Diesel fuel formulation |
CN114958451A (en) * | 2022-06-15 | 2022-08-30 | 浙江吉利控股集团有限公司 | Mutual-soluble preservative for gasoline and methanol flexible fuel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647288A (en) * | 1985-08-30 | 1987-03-03 | Union Oil Company Of California | Hydrocarbon fuel composition containing orthoester and cyclic aldehyde polymer |
US5268008A (en) * | 1982-12-27 | 1993-12-07 | Union Oil Company Of California | Hydrocarbon fuel composition |
US5308365A (en) * | 1993-08-31 | 1994-05-03 | Arco Chemical Technology, L.P. | Diesel fuel |
WO1998056879A1 (en) * | 1997-06-09 | 1998-12-17 | Elf Antar France | Fuel composition for diesel engines containing oxygenated compounds |
-
2001
- 2001-08-15 GB GB0119910A patent/GB2368594A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268008A (en) * | 1982-12-27 | 1993-12-07 | Union Oil Company Of California | Hydrocarbon fuel composition |
US4647288A (en) * | 1985-08-30 | 1987-03-03 | Union Oil Company Of California | Hydrocarbon fuel composition containing orthoester and cyclic aldehyde polymer |
US5308365A (en) * | 1993-08-31 | 1994-05-03 | Arco Chemical Technology, L.P. | Diesel fuel |
WO1998056879A1 (en) * | 1997-06-09 | 1998-12-17 | Elf Antar France | Fuel composition for diesel engines containing oxygenated compounds |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044107A1 (en) * | 2002-11-13 | 2004-05-27 | Shell Internationale Research Maatschappij B.V. | Diesel fuel compositions |
US7229481B2 (en) | 2002-11-13 | 2007-06-12 | Shell Oil Company | Diesel fuel compositions |
WO2011161032A1 (en) | 2010-06-22 | 2011-12-29 | Shell Internationale Research Maatschappij B.V. | Diesel fuel formulation |
US8734541B2 (en) | 2010-06-22 | 2014-05-27 | Shell Oil Company | Diesel fuel formulation |
AU2011269085B2 (en) * | 2010-06-22 | 2014-09-18 | Shell Internationale Research Maatschappij B.V. | Diesel fuel formulation |
CN114958451A (en) * | 2022-06-15 | 2022-08-30 | 浙江吉利控股集团有限公司 | Mutual-soluble preservative for gasoline and methanol flexible fuel |
Also Published As
Publication number | Publication date |
---|---|
GB0119910D0 (en) | 2001-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0303862B1 (en) | Additive composition | |
EP1153110B1 (en) | Fuel formulations to extend the lean limit | |
CA2618146A1 (en) | Fuel composition exhibiting a reduced acceleration time | |
CA2483200C (en) | Diesel fuel compositions | |
EP1290112A1 (en) | Diesel fuel composition | |
JP2004507567A (en) | Diesel fuel composition | |
JP2006028493A (en) | Fuel oil composition for premixed compression self-ignition engine | |
US6858047B1 (en) | Fuel additive containing lithium alkylaromatic sulfonate and peroxides | |
CA2467096A1 (en) | Diesel fuel compositions | |
GB2368594A (en) | Fuel compositions with reduced soot emissions | |
US6758870B2 (en) | Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number | |
US9447356B2 (en) | Diesel fuel with improved ignition characteristics | |
JP2005343919A (en) | Fuel oil composition for premixed compression self-ignition engine | |
US11512261B2 (en) | Diesel fuel with improved ignition characteristics | |
JP2007269865A (en) | Fuel oil for diesel engine having multi-stage injection mechanism, combustion method, diesel engine | |
US9862905B2 (en) | Diesel fuel with improved ignition characteristics | |
JP2006037075A (en) | Fuel oil composition for premixed compression self-ignition engine | |
WO2021225734A1 (en) | Motor gasoline with improved octane and method of use | |
BR112020020962B1 (en) | USE OF AN EXPANSION AGENT | |
WO2010000759A1 (en) | Gasoline compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |