CN113673222B - A fine-grained sentiment analysis method for social media text based on two-way collaborative network - Google Patents
A fine-grained sentiment analysis method for social media text based on two-way collaborative network Download PDFInfo
- Publication number
- CN113673222B CN113673222B CN202110782124.XA CN202110782124A CN113673222B CN 113673222 B CN113673222 B CN 113673222B CN 202110782124 A CN202110782124 A CN 202110782124A CN 113673222 B CN113673222 B CN 113673222B
- Authority
- CN
- China
- Prior art keywords
- backward
- network
- hidden layer
- layer unit
- sentiment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/205—Parsing
- G06F40/211—Syntactic parsing, e.g. based on context-free grammar [CFG] or unification grammars
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/3331—Query processing
- G06F16/334—Query execution
- G06F16/3344—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
- G06F40/289—Phrasal analysis, e.g. finite state techniques or chunking
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Machine Translation (AREA)
Abstract
Description
技术领域technical field
本发明涉及自然语言处理中的社交媒体文本细粒度情感分析技术领域,具体涉及一种基于关系感知的双向协同网络的社交媒体文本细粒度情感分析方法。The invention relates to the technical field of fine-grained sentiment analysis of social media texts in natural language processing, in particular to a method for fine-grained sentiment analysis of social media texts based on a relationship-aware bidirectional collaborative network.
背景技术Background technique
随着互联网的发展,社交媒体作为人们彼此之间用来分享见解、经验和观点的平台,已经成为人们生活不可缺少的部分。社交媒体中涉及了大量的文本内容,很多时候,企业单位需要获取用户对某些产品服务等内容的情感评价,以帮助提升产品或服务的质量。不同于对整个句子或者文档的情感分析,细粒度情感分析是对文本中更加细粒度的属性作出情感极性的判断,该任务需要抽取出文本中情感分析的对象和描述该分析对象情感的观点词,并判断该分析对象的情感倾向。在如今互联网的迅速发展下,细粒度情感分析已经有着越来越重要的实践和应用价值。With the development of the Internet, social media has become an integral part of people's lives as a platform for people to share insights, experiences and perspectives with each other. Social media involves a large amount of text content. In many cases, enterprises need to obtain users' emotional evaluations of certain products and services to help improve the quality of products or services. Different from the sentiment analysis of the whole sentence or document, the fine-grained sentiment analysis is to judge the sentiment polarity of the more fine-grained attributes in the text. This task needs to extract the object of sentiment analysis in the text and the viewpoint that describes the sentiment of the object to be analyzed. words, and judge the emotional tendency of the analysis object. With the rapid development of the Internet today, fine-grained sentiment analysis has become more and more important in practice and application value.
在细粒度情感分析任务中,国内外现有的方法大多数只关注3个子任务中的一种或者两种。然而,该任务的3个子任务之间的信息可以对彼此有互相促进的作用,如一段文本中,抽取出情感分析的对象后,该信息可以进一步帮助观点词的抽取,而抽取出的观点词又可以反映出分析对象的情感偏向。反过来,在一段文本中,首先对文本做情感分析,情感分析的结果可以帮助提取出反映这些情感的观点词,对观点词的抽取又可以帮助提取出和这些观点词相关的分析对象。这种双向的子任务之间的关系信息可以帮助当前子任务得到更好的抽取或分类结果,然而,现有的方法中没有考虑到过这种双向的子任务之间的关系信息,考虑到这一点,目前亟待提出一种基于双向协同网络的社交媒体文本细粒度情感分析方法。In the fine-grained sentiment analysis task, most of the existing methods at home and abroad only focus on one or two of the three subtasks. However, the information between the three subtasks of this task can promote each other. For example, in a text, after the object of sentiment analysis is extracted, the information can further help the extraction of opinion words, while the extracted opinion words It can also reflect the emotional bias of the analysis object. Conversely, in a piece of text, sentiment analysis is first performed on the text. The result of sentiment analysis can help to extract opinion words that reflect these sentiments, and the extraction of opinion words can help to extract the analysis objects related to these opinion words. This bidirectional relationship information between subtasks can help the current subtask to obtain better extraction or classification results. However, the existing methods have not considered such bidirectional relationship information between subtasks. Considering In this regard, it is urgent to propose a fine-grained sentiment analysis method for social media texts based on two-way collaborative networks.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于关系感知的双向协同网络的社交媒体文本细粒度情感分析方法。该方法先利用前向协同网络考虑到前向的3种任务之间的关系信息,然后利用后向协同网络考虑到后向的3种任务之间的关系信息,接着融合多前向和后向的不同任务间的关系信息,得到最终的分析对象、观点和情感的标注结果。The purpose of the present invention is to solve the above-mentioned defects in the prior art, and to provide a fine-grained sentiment analysis method for social media text based on a relationship-aware bidirectional collaborative network. The method first uses the forward collaborative network to consider the relationship information between the three forward tasks, and then uses the backward collaborative network to consider the relationship information between the three backward tasks, and then fuses multiple forward and backward tasks. The relationship information between different tasks is obtained, and the final analysis object, opinion and sentiment annotation results are obtained.
本发明的目的可以通过采取如下技术方案达到:The purpose of the present invention can be achieved by adopting the following technical solutions:
一种基于双向协同网络的社交媒体文本细粒度情感分析方法,所述分析方法包括以下步骤:A fine-grained sentiment analysis method for social media text based on two-way collaborative network, the analysis method comprises the following steps:
S1、将用户话语文本数据中的每个句子切分为词w=(w1,w2,...,wi,...,wN),将词用词向量表示,其中w是词序列,Ew是词向量序列,wi是第i个词,是第i个词的词向量,1≤i≤N,N为词的个数,emb为词向量维度大小,为维度为emb的实数向量空间;S1. Divide each sentence in the user utterance text data into words w=(w 1 , w 2 , . . . , wi , . . . , w N ), and use the word vector Representation, where w is the word sequence, E w is the word vector sequence, w i is the ith word, is the word vector of the ith word, 1≤i≤N, N is the number of words, emb is the dimension of the word vector, is a real vector space of dimension emb;
S2、将词向量分别输入前向协同网络和后向协同网络中得到前向和后向的分析对象编码表示 和前向和后向的观点编码表示和前向和后向的情感编码表示和其中是第i个词的前向分析对象编码表示,是第i个词的后向分析对象编码表示,是第i个词的前向观点编码表示,是第i个词的后向观点编码表示,是第i个词的前向情感编码表示,是第i个词的后向情感编码表示,1≤i≤N,d为前向和后向分析对象、观点和情感编码表示的维度大小,为维度为d的实数向量空间;S2, the word vector Input the forward collaborative network and the backward collaborative network respectively to obtain the forward and backward analysis object coding representation and Forward and backward view-encoded representations and Forward and Backward Sentiment Coding Representations and in is the forward parsed object-encoded representation of the ith word, is the backward-analyzed object-encoded representation of the ith word, is the forward view-encoded representation of the ith word, is the backward opinion-encoded representation of the ith word, is the forward sentiment encoding representation of the ith word, is the backward sentiment coding representation of the i-th word, 1≤i≤N, d is the dimension size of the forward and backward analysis object, opinion and sentiment coding representation, is a real vector space of dimension d;
S3、分别将前向和后向的分析对象编码表示和观点编码表示和情感编码表示和进行融合运算,输入到分析对象分类网络、观点分类网络、情感分类网络中,分别输出分析对象、观点、情感的标注结果Pa、Po、Ps,其中ca、co和cs分别是分析对象标签个数、观点标签个数和情感标签个数,和分别为维度为N×ca、N×co和N×cs的实数向量空间;S3. Respectively encode the forward and backward analysis objects and opinion coding and emotion coding representation and Perform fusion operation, input into the analysis object classification network, opinion classification network, and sentiment classification network, and output the labeling results Pa, P o , and P s of the analysis object, opinion, and emotion respectively , among which c a , c o and c s are the number of object labels, opinion labels and sentiment labels, respectively, and are real vector spaces with dimensions N× ca , N×c o and N×c s , respectively;
S4、根据标注结果和真实结果,以最小化交叉熵损失函数为目标对前向协同网络、后向协同网络、分析对象分类网络、观点分类网络、情感分类网络迭代训练;S4. According to the labeled results and the real results, iteratively trains the forward collaborative network, the backward collaborative network, the analysis object classification network, the opinion classification network, and the sentiment classification network with the goal of minimizing the cross-entropy loss function;
S5、将待分类的社交媒体文本输入前向协同网络、后向协同网络、分析对象分类网络、观点分类网络、情感分类网络中得到细粒度情感分析结果。S5. Input the social media text to be classified into the forward collaborative network, the backward collaborative network, the analysis object classification network, the opinion classification network, and the sentiment classification network to obtain fine-grained sentiment analysis results.
进一步地,所述步骤S2中将词向量分别输入前向和后向协同网络中得到前向和后向的分析对象编码表示 和前向和后向的观点编码表示和前向和后向的情感编码表示和具体实施过程如下:Further, in the step S2, the word vector is Enter the forward and backward collaborative network to obtain the forward and backward parsed object coding representations, respectively and Forward and backward view-encoded representations and Forward and Backward Sentiment Coding Representations and The specific implementation process is as follows:
S21、将词向量输入前向协同网络得到前向的分析对象编码表示前向的观点编码表示和前向的情感编码表示 S21, the word vector Enter the forward collaborative network to obtain a forward encoded representation of the analyzed object Forward View Encoded Representation and forward sentiment encoding representation
S22、将词向量输入后向协同网络得到后向的分析对象编码表示后向的观点编码表示和后向的情感编码表示 S22, the word vector Input the backward collaborative network to obtain the backward encoded representation of the analyzed object Backward View Encoding Representation and backward emotion coding representation
进一步地,所述步骤S21中将词向量输入前向协同网络得到前向的分析对象编码表示前向的观点编码表示和前向的情感编码表示具体实施过程如下:Further, in the step S21, the word vector Enter the forward collaborative network to obtain a forward encoded representation of the analyzed object Forward View Encoded Representation and forward sentiment encoding representation The specific implementation process is as follows:
S211、将词向量输入前向协同网络的第一卷积神经网络得到前向分析对象隐层单元 S211, the word vector Input the first convolutional neural network of the forward collaborative network to obtain the hidden layer unit of the forward analysis object
其中,是前向协同网络的第一卷积神经网络进行卷积运算后第i个词对应的前向分析对象隐层单元,再将前向分析对象隐层单元输入前向协同网络的第一全连接网络得到前向的分析对象编码表示 in, is the hidden layer unit of the forward analysis object corresponding to the i-th word after the first convolutional neural network of the forward collaborative network performs the convolution operation, and then the hidden layer unit of the forward analysis object is The first fully connected network input to the forward collaborative network obtains the forward parsed object encoding representation
其中,是权重为wca的前向协同网络的第一卷积神经网络,是权重为wa的前向协同网络的第一全连接网络。in, is the first convolutional neural network of the forward synergistic network with weight w ca , is the first fully connected network of the forward cooperative network with weight wa .
S212、将词向量输入前向协同网络的第二卷积神经网络得到前向观点隐层单元 S212, the word vector The second convolutional neural network input to the forward synergistic network obtains the forward view hidden layer unit
其中,是前向协同网络的第二卷积神经网络进行卷积运算后第i个词对应的前向观点隐层单元,是权重为wco的前向协同网络的第二卷积神经网络,将前向观点隐层单元和前向分析对象隐层单元进行关系计算得到观点对分析对象的关系隐层单元HO2A:in, is the forward view hidden layer unit corresponding to the i-th word after the second convolutional neural network of the forward collaborative network performs the convolution operation, is the second convolutional neural network of the forward synergistic network with weight w co , which combines the forward view hidden layer unit and forward analysis object hidden layer unit Perform relational calculation to obtain the relational hidden layer unit H O2A of the viewpoint to the analysis object:
其中,softmax(·)是归一化指数函数,×代表矩阵乘法操作,是的转置,将观点对分析对象的关系隐层单元HO2A和前向观点隐层单元输入前向协同网络的第二全连接网络得到前向的观点编码表示 where softmax( ) is the normalized exponential function, × represents the matrix multiplication operation, Yes The transpose of the view to the analysis object relation hidden layer unit H O2A and forward view hidden layer unit The second fully-connected network that feeds the forward collaborative network obtains a forward opinion-encoded representation
其中,是权重为wo的前向协同网络的第二全连接网络;in, is the second fully connected network of the forward cooperative network with weight wo ;
S213、将词向量输入前向协同网络的第三卷积神经网络得到前向情感隐层单元 S213, the word vector The third convolutional neural network input to the forward synergistic network obtains the forward emotional hidden layer unit
其中,是前向协同网络的第三卷积神经网络进行卷积运算后第i个词对应的前向情感隐层单元,是权重为wcs的卷积神经网络,将前向情感隐层单元和前向分析对象隐层单元进行关系计算得到情感对分析对象的关系隐层单元HS2A:in, is the forward emotional hidden layer unit corresponding to the i-th word after the third convolutional neural network of the forward collaborative network performs the convolution operation, is a convolutional neural network with a weight of w cs , which converts the forward emotional hidden layer unit and forward analysis object hidden layer unit Perform relational calculation to obtain the relational hidden layer unit H S2A of the sentiment to the analysis object:
将前向情感隐层单元和前向观点隐层单元进行关系计算得到情感对观点的关系隐层单元HS2O:The forward emotional hidden layer unit and forward view hidden units Perform relational calculation to obtain the relational hidden layer unit H S2O of sentiment to opinion:
其中,是的转置,将情感对分析对象的关系隐层单元HS2A,情感对观点的关系隐层单元HS2O和前向情感隐层单元输入前向协同网络的第三全连接网络得到前向的情感编码表示 in, Yes The transposition of the sentiment-to-analysis object relational hidden layer unit H S2A , the sentiment-to-view relational hidden layer unit H S2O and the forward sentiment hidden layer unit The third fully-connected network that feeds the forward synergistic network obtains a forward emotion-encoded representation
其中,是权重为ws的前向协同网络的第三全连接网络。in, is the third fully connected network of the forward cooperative network with weight ws .
进一步地,所述步骤S22中将词向量输入后向协同网络得到后向的分析对象编码表示后向的观点编码表示和后向的情感编码表示具体实施过程如下:Further, in the step S22, the word vector Input the backward collaborative network to obtain the backward encoded representation of the analyzed object Backward View Encoding Representation and backward emotion coding representation The specific implementation process is as follows:
S221、将词向量输入后向协同网络的第一卷积神经网络得到后向情感隐层单元 S221. The word vector The first convolutional neural network input to the backward collaborative network gets the backward emotional hidden layer unit
其中,是后向协同网络的第一卷积神经网络进行卷积运算后第i个词对应的后向情感隐层单元,再将后向情感隐层单元输入后向协同网络的第一全连接网络得到后向的情感编码表示 in, is the backward emotional hidden layer unit corresponding to the i-th word after the first convolutional neural network of the backward collaborative network performs the convolution operation, and then the backward emotional hidden layer unit is The first fully-connected network that feeds the backward collaborative network obtains a backward sentiment-encoded representation
其中,是权重为wcs_的后向协同网络的第一卷积神经网络,是权重为ws_的后向协同网络的第一全连接网络;in, is the first convolutional neural network of the backward collaborative network with weight w cs_ , is the first fully connected network of the backward collaborative network with weight ws_ ;
S222、将词向量输入后向协同网络的第二卷积神经网络得到后向观点隐层单元 S222, the word vector The second convolutional neural network input to the backward synergistic network obtains the backward view hidden layer unit
其中,是后向协同网络的第二卷积神经网络进行卷积运算后第i个词对应的后向观点隐层单元,是权重为wco_的卷积神经网络,将后向观点隐层单元和后向情感隐层单元进行关系计算得到观点对情感的关系隐层单元HO2S:in, is the backward view hidden layer unit corresponding to the i-th word after the second convolutional neural network of the backward collaborative network performs the convolution operation, is a convolutional neural network with weight w co_ , which converts the backward view hidden layer unit and the backward emotional hidden layer unit Carry out relational calculation to obtain the relational hidden layer unit H O2S of opinion to emotion:
其中,softmax(·)是归一化指数函数,×代表矩阵乘法操作,是的转置,将观点对情感的关系隐层单元HO2S和后向观点隐层单元输入后向协同网络的第二全连接网络得到后向的分析对象编码表示 where softmax( ) is the normalized exponential function, × represents the matrix multiplication operation, Yes The transpose of the view-to-sentiment relationship hidden unit H O2S and backward view hidden unit The second fully connected network input to the backward collaborative network obtains the backward parsed object encoding representation
其中,是权重为wo_的后向协同网络的第二全连接网络;in, is the second fully connected network of the backward collaborative network with weight w o_ ;
S223、将词向量输入后向协同网络的第三卷积神经网络得到后向分析对象隐层单元 S223, the word vector The third convolutional neural network inputting the backward synergistic network obtains the hidden layer unit of the backward analysis object
其中,是后向协同网络的第三卷积神经网络进行卷积运算后第i个词对应的后向分析对象隐层单元,是权重为wca_的后向协同网络的第三卷积神经网络,将后向分析对象隐层单元和后向情感隐层单元进行关系计算得到分析对象对情感的关系隐层单元HA2S:in, is the hidden layer unit of the backward analysis object corresponding to the i-th word after the third convolutional neural network of the backward collaborative network performs the convolution operation, is the third convolutional neural network of the backward collaborative network with weight w ca_ , which analyzes the hidden layer unit of the object backward and the backward emotional hidden layer unit The relationship calculation is performed to obtain the relationship hidden layer unit H A2S of the analysis object's emotion:
将后向分析对象隐层单元和后向观点隐层单元进行关系计算得到分析对象对观点的关系隐层单元HA2O:The hidden layer unit of the backward analysis object and the backward view hidden unit Perform relational calculation to obtain the relational hidden layer unit H A2O of the analysis object to the viewpoint:
其中,是的转置,将分析对象对情感的关系隐层单元HA2S、分析对象对观点的关系隐层单元HA2O和后向分析对象隐层单元输入后向协同网络的第三全连接网络得到后向的分析对象表示 in, Yes The transposition of the hidden layer unit H A2S of the relationship between the analysis object and the sentiment, the hidden layer unit H A2O of the relationship between the analysis object and the opinion, and the hidden layer unit of the backward analysis object The third fully connected network input to the backward collaborative network obtains the backward analytical object representation
其中,是权重为wa_的后向协同网络的第三全连接网络。in, is the third fully connected network of the backward cooperative network with weight wa_ .
进一步地,所述步骤S3中分别将前向和后向的分析对象编码表示和观点编码表示和情感编码表示和进行融合运算,输入到分类网络中,分别输出分析对象、观点、情感的标注结果Pa、Po、Ps,具体实施过程如下:Further, in the step S3, the forward and backward analysis object codes are respectively represented and opinion coding and emotion coding representation and Perform fusion operation, input it into the classification network, and output the annotation results P a , P o , and P s of the analyzed objects, opinions, and emotions, respectively. The specific implementation process is as follows:
S31、将前向的分析对象编码表示和后向的分析对象编码表示进行融合运算,输入到分析对象分类网络中,输出分析对象标注结果 S31. Code the forward analysis object to represent and the backward parsed object encoding representation Fusion operation is performed, input to the analysis object classification network, and output analysis object labeling results
其中,是分析对象分类网络,由一个权重为wcls_a的全连接网络组成;in, is the analysis object classification network, which consists of a fully connected network with a weight of w cls_a ;
S32、将前向的观点编码表示和后向的观点编码表示进行融合运算,输入到观点分类网络中,输出观点标注结果 S32, encoding the forward viewpoint and backward view-encoded representations Perform a fusion operation, input it into the opinion classification network, and output the opinion labeling result
其中,是观点分类网络,由一个权重为wcls_o的全连接网络组成;in, is the opinion classification network, which consists of a fully connected network with weight w cls_o ;
S33、将前向的情感编码表示和后向的情感编码表示进行融合运算,输入到情感分类网络中,输出情感标注结果 S33. Express the forward emotion code and backward emotion coding representation Perform a fusion operation, input it into the sentiment classification network, and output the sentiment labeling result
其中,是情感分类网络,由一个权重为wcls_s的全连接网络组成。in, is the sentiment classification network, consisting of a fully connected network with weights w cls_s .
进一步地,所述用户话语文本数据包括中文数据和/或英文数据。Further, the user utterance text data includes Chinese data and/or English data.
本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:
本发明可以考虑到细粒度情感分析任务中,抽取文本中情感分析的对象、抽取描述该分析对象情感的观点词和分析对象的情感倾向3个子任务之间的关系,前一个子任务可以为后一个子任务提供相关信息从而辅助后一个子任务,反过来,后一个子任务的信息也可以被前一个子任务利用,从而辅助前一个子任务。本发明考虑到了任务间的这种关系信息,利用来自其他子任务的信息帮助每个子任务更好的分类或标注,从而达到更好的效果。The present invention can take into account the relationship between three subtasks in the fine-grained sentiment analysis task, extracting the object of sentiment analysis in the text, extracting opinion words describing the sentiment of the analysis object, and analyzing the sentiment tendency of the object, and the former subtask can be the latter subtask. A subtask provides relevant information to assist the next subtask, and conversely, the information of the latter subtask can also be used by the previous subtask to assist the previous subtask. The present invention takes into account the relationship information between tasks, and utilizes information from other subtasks to help each subtask to better classify or label, thereby achieving better results.
附图说明Description of drawings
图1是本发明公开的一种基于双向协同网络的社交媒体文本细粒度情感分析方法的流程图;1 is a flowchart of a method for fine-grained sentiment analysis of social media text based on a two-way collaborative network disclosed in the present invention;
图2是本发明公开的一种基于双向协同网络的社交媒体文本细粒度情感分析方法的概要图,从图2中可以看出关系感知双向协同网络的整体结构和效果。FIG. 2 is a schematic diagram of a fine-grained sentiment analysis method for social media text based on a two-way collaborative network disclosed in the present invention, and the overall structure and effect of the relationship-aware two-way collaborative network can be seen from FIG. 2 .
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例Example
本实施例公开了一种基于关系感知的双向协同网络的社交媒体文本细粒度情感分析方法,图1是本实施例方法的流程图,如图1所示,该情感分析方法包括以下步骤:This embodiment discloses a method for fine-grained sentiment analysis of social media text based on a relationship-aware two-way collaborative network. FIG. 1 is a flowchart of the method of this embodiment. As shown in FIG. 1 , the sentiment analysis method includes the following steps:
S1、将用户话语文本数据中的每个句子切分为词,如图2所示,句子被切分为词,表示如下:S1. Divide each sentence in the user utterance text data into words. As shown in Figure 2, the sentences are divided into words, which are expressed as follows:
w=(‘这’,‘家’,‘餐馆’,‘的’,‘菜品’,‘不错’,‘服务’,‘不太好’),并将词用词向量表示,其中w是词序列,Ew是词向量序列,wi是第i个词,是第i个词的词向量。1≤i≤N,N=8为词的个数,emb为词向量维度大小,这里为300,为维度为emb的实数向量空间;w=('this', 'home', 'restaurant', 'of', 'dish', 'good', 'service', 'not so good'), and use the word vector Representation, where w is the word sequence, E w is the word vector sequence, w i is the ith word, is the word vector of the ith word. 1≤i≤N, N=8 is the number of words, emb is the dimension of word vector, here is 300, is a real vector space of dimension emb;
S2、将词向量分别输入前向协同网络和后向协同网络中得到前向和后向的分析对象编码表示 和前向和后向的观点编码表示和前向和后向的情感编码表示和其中是第i个词的前向分析对象编码表示,是第i个词的前向观点编码表示,是第i个词的前向情感编码表示,是第i个词的后向分析对象编码表示,是第i个词的后向观点编码表示,是第i个词的后向情感编码表示,1≤i≤8,d为前向和后向分析对象,观点和情感编码表示的维度大小,这里是150,为维度为d的实数向量空间。S2, the word vector Input the forward collaborative network and the backward collaborative network respectively to obtain the forward and backward analysis object coding representation and Forward and backward view-encoded representations and Forward and Backward Sentiment Coding Representations and in is the forward parsed object-encoded representation of the ith word, is the forward view-encoded representation of the ith word, is the forward sentiment encoding representation of the ith word, is the backward-analyzed object-encoded representation of the ith word, is the backward opinion-encoded representation of the ith word, is the backward sentiment coding representation of the i-th word, 1≤i≤8, d is the forward and backward analysis object, the dimension size of opinion and sentiment coding representation, here is 150, is a real vector space of dimension d.
本实施例中,步骤S2实施过程如下:In this embodiment, the implementation process of step S2 is as follows:
S21、将词向量输入前向协同网络得到前向的分析对象编码表示前向的观点编码表示和前向的情感编码表示过程如下:S21, the word vector Enter the forward collaborative network to obtain a forward encoded representation of the analyzed object Forward View Encoded Representation and forward sentiment encoding representation The process is as follows:
S211、将词向量输入前向协同网络的第一卷积神经网络得到前向分析对象隐层单元 S211, the word vector Input the first convolutional neural network of the forward collaborative network to obtain the hidden layer unit of the forward analysis object
再将前向分析对象隐层单元输入前向协同网络的第一全连接网络得到前向的分析对象编码表示 Then the hidden layer unit of the forward analysis object The first fully connected network input to the forward collaborative network obtains the forward parsed object encoding representation
其中,是权重为wca的前向协同网络的第一卷积神经网络,是权重为wa的前向协同网络的第一全连接网络。in, is the first convolutional neural network of the forward synergistic network with weight w ca , is the first fully connected network of the forward cooperative network with weight wa .
S212、将词向量输入前向协同网络的第二卷积神经网络得到前向观点隐层单元 S212, the word vector The second convolutional neural network input to the forward synergistic network obtains the forward view hidden layer unit
其中,是权重为wco的前向协同网络的第二卷积神经网络,将前向观点隐层单元和前向分析对象隐层单元进行关系计算得到观点对分析对象的关系隐层单元HO2A:in, is the second convolutional neural network of the forward synergistic network with weight w co , which combines the forward view hidden layer unit and forward analysis object hidden layer unit Perform relational calculation to obtain the relational hidden layer unit H O2A of the viewpoint to the analysis object:
其中,softmax(·)是归一化指数函数,×代表矩阵乘法操作,是的转置,将观点对分析对象的关系隐层单元HO2A和前向观点隐层单元输入前向协同网络的第二全连接网络得到前向的观点编码表示 where softmax( ) is the normalized exponential function, × represents the matrix multiplication operation, Yes The transpose of the view to the analysis object relation hidden layer unit H O2A and forward view hidden layer unit The second fully-connected network that feeds the forward collaborative network obtains a forward opinion-encoded representation
其中,是权重为wo的前向协同网络的第二全连接网络。在分词后的句子[‘这’,‘家’,‘餐馆’,‘的’,‘菜品’,‘不错’,‘服务’,‘不太好’]中,若已知分析对象‘菜品’,则网络可以更加容易提取到观点‘不错’,已知分析对象‘服务’,则网络可以更加容易提取到观点‘不太好’。由于在得到前向观点编码表示的过程中网络考虑了来自分析对象的信息,网络会更容易得到正确的观点标注结果。in, is the second fully connected network of the forward cooperative network with weight wo . In the sentence after participle ['this', 'home', 'restaurant', 'of', 'dish', 'good', 'service', 'not so good'], if the analysis object 'dish' is known , the network can more easily extract the opinion 'good', and the analysis object 'service' is known, the network can more easily extract the opinion 'not good'. Since the network considers the information from the analyzed object in the process of obtaining the forward opinion encoded representation, it will be easier for the network to obtain the correct opinion labeling result.
S213、将词向量输入前向协同网络的第三卷积神经网络得到前向情感隐层单元 S213, the word vector The third convolutional neural network input to the forward synergistic network obtains the forward emotional hidden layer unit
其中,是权重为wcs的前向协同网络的第三卷积神经网络。将前向情感隐层单元和前向分析对象隐层单元进行关系计算得到情感对分析对象的关系隐层单元HS2A:in, is the third convolutional neural network of the forward synergistic network with weight w cs . The forward emotional hidden layer unit and forward analysis object hidden layer unit Perform relational calculation to obtain the relational hidden layer unit H S2A of the sentiment to the analysis object:
将前向情感隐层单元和前向观点隐层单元进行关系计算得到情感对观点的关系隐层单元HS2O:The forward emotional hidden layer unit and forward view hidden units Perform relational calculation to obtain the relational hidden layer unit H S2O of sentiment to opinion:
其中,是的转置。将情感对分析对象的关系隐层单元HS2A、情感对观点的关系隐层单元HS2O和前向情感隐层单元输入前向协同网络的第三全连接网络得到前向的情感编码表示 in, Yes transposition of . The relational hidden layer unit H S2A of sentiment to analysis object, the relational hidden layer unit H S2O of sentiment to opinion and the forward sentiment hidden layer unit The third fully-connected network that feeds the forward synergistic network obtains a forward emotion-encoded representation
其中,是权重为ws的前向协同网络的第三全连接网络。在分词后的句子[‘这’,‘家’,‘餐馆’,‘的’,‘菜品’,‘不错’,‘服务’,‘不太好’]中,若已知分析对象‘菜品’和对应的观点‘不错’,则有助于网络学习到积极的情感信息。若已知分析对象‘服务’和观点‘不太好’,则有助于网络学习到消极的情感信息。由于在得到前向情感编码表示的过程中考虑了来自分析对象和观点的信息,网络会更容易得到正确的情感标注结果。in, is the third fully connected network of the forward cooperative network with weight ws . In the sentence after participle ['this', 'home', 'restaurant', 'of', 'dish', 'good', 'service', 'not so good'], if the analysis object 'dish' is known and the corresponding opinion 'good', it helps the network to learn positive emotional information. If it is known that the analysis object 'service' and the opinion 'not so good', it will help the network to learn negative emotional information. Since the information from the analyzed objects and viewpoints is considered in the process of obtaining the forward sentiment coding representation, it is easier for the network to obtain the correct sentiment annotation results.
S22、将词向量输入后向协同网络得到后向的分析对象编码表示后向的观点编码表示和后向的情感编码表示过程如下:S22, the word vector Input the backward collaborative network to obtain the backward encoded representation of the analyzed object Backward View Encoding Representation and backward emotion coding representation The process is as follows:
S221、将词向量输入后向协同网络的第一卷积神经网络得到后向情感隐层单元 S221. The word vector The first convolutional neural network input to the backward collaborative network gets the backward emotional hidden layer unit
再将后向情感隐层单元输入后向协同网络的第一全连接网络得到后向的情感编码表示 Then the backward emotional hidden layer unit The first fully-connected network that feeds the backward collaborative network obtains a backward sentiment-encoded representation
其中,是权重为wcs_的后向协同网络的第一卷积神经网络,是权重为ws_的后向协同网络的第一全连接网络。in, is the first convolutional neural network of the backward collaborative network with weight w cs_ , is the first fully connected network of the backward collaborative network with weight ws_ .
S222、将词向量输入后向协同网络的第二卷积神经网络得到后向观点隐层单元 S222, the word vector The second convolutional neural network input to the backward synergistic network obtains the backward view hidden layer unit
其中,是权重为wco_的卷积神经网络。将后向观点隐层单元和后向情感隐层单元进行关系计算得到观点对情感的关系隐层单元HO2S:in, is a convolutional neural network with weights w co_ . Backward view hidden unit and the backward emotional hidden layer unit Carry out relational calculation to obtain the relational hidden layer unit H O2S of opinion to emotion:
其中,softmax(·)是归一化指数函数,×代表矩阵乘法操作,是的转置。将观点对情感的关系隐层单元HO2S和后向观点隐层单元输入后向协同网络的第二全连接网络得到后向的分析对象编码表示 where softmax( ) is the normalized exponential function, × represents the matrix multiplication operation, Yes transposition of . The view-to-sentiment relationship hidden layer unit H O2S and backward view hidden layer unit The second fully connected network input to the backward collaborative network obtains the backward parsed object encoding representation
其中,是权重为wo_的后向协同网络的第二全连接网络。在分词后的句子[‘这’,‘家’,‘餐馆’,‘的’,‘菜品’,‘不错’,‘服务’,‘不太好’]中,若已知情感为‘积极’和‘消极’,则有助于网络提取到情感对应的观点词,如‘不错’和‘不太好’。由于在得到后向观点编码表示的过程中考虑了来自情感的信息,网络会更容易得到正确的观点标注结果。in, is the second fully connected network of the backward cooperative network with weight w o_ . In the sentence after participle ['this', 'home', 'restaurant', 'of', 'dish', 'good', 'service', 'not so good'], if the known sentiment is 'positive' and 'negative', it helps the network to extract sentiment-corresponding opinion words, such as 'good' and 'not so good'. Since the information from the sentiment is considered in the process of obtaining the backward opinion encoded representation, the network will more easily get the correct opinion labeling results.
S223、将词向量输入后向协同网络的第三卷积神经网络得到后向分析对象隐层单元 S223, the word vector The third convolutional neural network inputting the backward synergistic network obtains the hidden layer unit of the backward analysis object
其中,是权重为wca_的后向协同网络的第三卷积神经网络。将后向分析对象隐层单元和后向情感隐层单元进行关系计算得到分析对象对情感的关系隐层单元HA2S:in, is the third convolutional neural network of the backward collaborative network with weight w ca_ . The hidden layer unit of the backward analysis object and the backward emotional hidden layer unit The relationship calculation is performed to obtain the relationship hidden layer unit H A2S of the analysis object's emotion:
将后向分析对象隐层单元和后向观点隐层单元进行关系计算得到分析对象对观点的关系隐层单元HA2O:The hidden layer unit of the backward analysis object and the backward view hidden unit Perform relational calculation to obtain the relational hidden layer unit H A2O of the analysis object to the viewpoint:
其中,是的转置。将分析对象对情感的关系隐层单元HA2S、分析对象对观点的关系隐层单元HA2O和后向分析对象隐层单元输入后向协同网络的第三全连接网络得到后向的分析对象表示 in, Yes transposition of . The hidden layer unit H A2S of the relationship between the analysis object and the sentiment, the hidden layer unit H A2O of the relationship between the analysis object and the opinion, and the hidden layer unit of the backward analysis object The third fully connected network input to the backward collaborative network obtains the backward analytical object representation
其中,是权重为wa_的后向协同网络的第三全连接网络。在分词后的句子[‘这’,‘家’,‘餐馆’,‘的’,‘菜品’,‘不错’,‘服务’,‘不太好’]中,若已知情感为‘积极’和观点词‘不错’,则网络更容易找出它们对应的分析对象是‘菜品’,若已知情感为‘消极’和观点词‘不太好’,则网络更容易找出它们对应的分析对象是‘服务’。由于在得到后向分析对象编码表示的过程中考虑了来自情感和观点的信息,网络会更容易得到正确的分析对象标注结果。in, is the third fully connected network of the backward cooperative network with weight wa_ . In the sentence after participle ['this', 'home', 'restaurant', 'of', 'dish', 'good', 'service', 'not so good'], if the known sentiment is 'positive' and the opinion word 'good', it is easier for the network to find out that their corresponding analysis object is 'dishes', if the known sentiment is 'negative' and the opinion word 'not good', the network is easier to find their corresponding analysis Objects are 'Services'. Since the information from sentiment and opinion is considered in the process of obtaining the encoded representation of the backward analyzed object, it is easier for the network to obtain the correct annotation of the analyzed object.
S3、分别将前向和后向的分析对象编码表示观点编码表示 情感编码表示进行融合运算,输入到分析对象分类网络、观点分类网络、情感分类网络中,分别输出分析对象、观点、情感的标注结果Pa、Po、Ps。其中分别为维度为8×3、8×4的实数向量空间。S3. Respectively encode the forward and backward analysis objects opinion coding emotion coding representation Fusion operation is performed, input to the analysis object classification network, opinion classification network, and sentiment classification network, and output the labeling results Pa, P o , and P s of the analysis object, opinion, and emotion, respectively . in are real vector spaces with dimensions of 8×3 and 8×4, respectively.
本实施例中,步骤S3过程如下:In this embodiment, the process of step S3 is as follows:
S31、将前向的分析对象编码表示和后向的分析对象编码表示融合,输入到分析对象分类网络中,输出分析对象标注结果 S31. Code the forward analysis object to represent and the backward parsed object encoding representation Fusion, input into the analysis object classification network, and output the analysis object annotation results
其中,分析对象标注结果对应标签为[0,0,0,0,1,0,1,0],“菜品”和“服务”被分配了非空标签,被标注为了分析对象。是分析对象分类网络,由一个权重为wcls_a的全连接网络组成。Among them, the corresponding label of the analysis object labeling result is [0, 0, 0, 0, 1, 0, 1, 0], and “dishes” and “services” are assigned non-empty labels and are marked as analysis objects. is the analysis object classification network, which consists of a fully connected network with weight w cls_a .
S32、将前向的观点编码表示和后向的观点编码表示融合,输入到观点分类网络中,输出观点标注结果 S32, encoding the forward viewpoint and backward view-encoded representations Fusion, input into the opinion classification network, and output the opinion labeling result
其中,观点标注结果对应标签为[0,0,0,0,0,1,0,1],“不错”和“不太好”被分配了非空标签,被标注为了观点。是观点分类网络,由一个权重为wcls_o的全连接网络组成。Among them, the corresponding label of the opinion labeling result is [0, 0, 0, 0, 0, 1, 0, 1], "good" and "not good" are assigned non-empty labels and are marked as opinions. is the opinion classification network, which consists of a fully connected network with weight w cls_o .
S33、将前向的情感编码表示和后向的情感编码表示融合,输入到情感分类网络中,输出情感标注结果 S33. Express the forward emotion code and backward emotion coding representation Fusion, input into the sentiment classification network, and output sentiment labeling results
其中,情感标注结果对应标签为[0,0,0,0,1,0,2,0],“菜品”被标注为标签1,代表积极的情感,“服务”被标注为标签2,代表消极的情感。是情感分类网络,由一个权重为wcls_s的全连接网络组成。Among them, the corresponding label of the emotion labeling result is [0, 0, 0, 0, 1, 0, 2, 0], “dish” is labeled as label 1, representing positive emotion, and “service” is labeled as label 2, representing negative emotions. is the sentiment classification network, consisting of a fully connected network with weights w cls_s .
S4、根据标注结果和真实结果,以最小化交叉熵损失函数为目标对前向协同网络、后向协同网络、分析对象分类网络、观点分类网络、情感分类网络迭代训练;S4. According to the labeled results and the real results, iteratively trains the forward collaborative network, the backward collaborative network, the analysis object classification network, the opinion classification network, and the sentiment classification network with the goal of minimizing the cross-entropy loss function;
S5、将待分类的社交媒体文本输入前向协同网络、后向协同网络、分析对象分类网络、观点分类网络、情感分类网络中得到细粒度情感分析结果。S5. Input the social media text to be classified into the forward collaborative network, the backward collaborative network, the analysis object classification network, the opinion classification network, and the sentiment classification network to obtain fine-grained sentiment analysis results.
综上所述,本实施例提出的基于关系感知双向协同网络的社交媒体文本细粒度情感分析方法,首先通过前向协同网络考虑前向的3个子任务间的关系,接着,使用后向协同网络考虑后向的3个子任务间的关系,接下来,将前向和后向的3个子任务的编码表示融合,分别进行抽取或分类。相对于传统的用于细粒度情感分析的模型来说,本发明可以考虑到该任务中3个子任务之间的关系信息,达到很好的分析效果,从而帮助社交媒体中进行用户情感的细粒度分析。To sum up, the fine-grained sentiment analysis method for social media text based on the relationship-aware bidirectional collaborative network proposed in this embodiment first considers the relationship between the three forward subtasks through the forward collaborative network, and then uses the backward collaborative network. Considering the relationship between the three backward subtasks, next, the encoded representations of the three forward and backward subtasks are fused to extract or classify respectively. Compared with the traditional model for fine-grained sentiment analysis, the present invention can take into account the relationship information between the three subtasks in the task, and achieve a good analysis effect, thereby helping the fine-grained user sentiment in social media. analyze.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110782124.XA CN113673222B (en) | 2021-07-12 | 2021-07-12 | A fine-grained sentiment analysis method for social media text based on two-way collaborative network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110782124.XA CN113673222B (en) | 2021-07-12 | 2021-07-12 | A fine-grained sentiment analysis method for social media text based on two-way collaborative network |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113673222A CN113673222A (en) | 2021-11-19 |
| CN113673222B true CN113673222B (en) | 2022-09-20 |
Family
ID=78539296
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110782124.XA Active CN113673222B (en) | 2021-07-12 | 2021-07-12 | A fine-grained sentiment analysis method for social media text based on two-way collaborative network |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113673222B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115563186A (en) * | 2022-05-23 | 2023-01-03 | 谢发泽 | User behavior intention output method and big data system based on big data analysis |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107168945A (en) * | 2017-04-13 | 2017-09-15 | 广东工业大学 | A kind of bidirectional circulating neutral net fine granularity opinion mining method for merging multiple features |
| CN110059188A (en) * | 2019-04-11 | 2019-07-26 | 四川黑马数码科技有限公司 | A kind of Chinese sentiment analysis method based on two-way time convolutional network |
| CN112528168A (en) * | 2020-12-23 | 2021-03-19 | 华南理工大学 | Social network text emotion analysis method based on deformable self-attention mechanism |
| CN112579778A (en) * | 2020-12-23 | 2021-03-30 | 重庆邮电大学 | Aspect-level emotion classification method based on multi-level feature attention |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107908635B (en) * | 2017-09-26 | 2021-04-16 | 百度在线网络技术(北京)有限公司 | Establishing text classification model and method and device for text classification |
-
2021
- 2021-07-12 CN CN202110782124.XA patent/CN113673222B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107168945A (en) * | 2017-04-13 | 2017-09-15 | 广东工业大学 | A kind of bidirectional circulating neutral net fine granularity opinion mining method for merging multiple features |
| CN110059188A (en) * | 2019-04-11 | 2019-07-26 | 四川黑马数码科技有限公司 | A kind of Chinese sentiment analysis method based on two-way time convolutional network |
| CN112528168A (en) * | 2020-12-23 | 2021-03-19 | 华南理工大学 | Social network text emotion analysis method based on deformable self-attention mechanism |
| CN112579778A (en) * | 2020-12-23 | 2021-03-30 | 重庆邮电大学 | Aspect-level emotion classification method based on multi-level feature attention |
Non-Patent Citations (2)
| Title |
|---|
| Spatial-temporal recurrent neural network for emotion recognition;Tong Zhang et al.;《IEEE Transactions on Cybernetics》;20180130;第49卷(第3期);1-3 * |
| 基于双向时间深度卷积网络的中文文本情感分类;彭德中等;《计算机应用与软件》;20191212;225-231 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113673222A (en) | 2021-11-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112000791B (en) | A motor fault knowledge extraction system and method | |
| CN111144448B (en) | Video barrage emotion analysis method based on multi-scale attention convolution coding network | |
| CN111382565B (en) | Method and system for extracting emotion-cause pairs based on multi-label | |
| Xu et al. | Sentiment analysis of social images via hierarchical deep fusion of content and links | |
| CN111950296B (en) | Comment target emotion analysis based on BERT fine tuning model | |
| US20240126576A1 (en) | Conversational Interface for Content Creation and Editing Using Large Language Models | |
| CN111353042B (en) | A fine-grained text opinion analysis method based on deep multi-task learning | |
| CN111414476A (en) | Attribute-level emotion analysis method based on multi-task learning | |
| Biradar et al. | Machine learning tool for exploring sentiment analysis on twitter data | |
| CN108363743A (en) | A kind of intelligence questions generation method, device and computer readable storage medium | |
| CN117436438A (en) | Emotion analysis method, training method and device for large language model | |
| CN114764564B (en) | Aspect-level sentiment polarity classification method based on linguistic knowledge integration | |
| CN110472245A (en) | A kind of multiple labeling emotional intensity prediction technique based on stratification convolutional neural networks | |
| CN115329073A (en) | Attention mechanism-based aspect level text emotion analysis method and system | |
| CN117057352A (en) | Cross-modal feature enhanced network-based multi-modal named entity recognition method and system | |
| CN112434161B (en) | Aspect-level emotion analysis method adopting bidirectional long-short term memory network | |
| CN114927177A (en) | Medical entity identification method and system fusing Chinese medical field characteristics | |
| CN118296135A (en) | Cross-domain migration-oriented aspect-level emotion triplet extraction method | |
| CN111666385A (en) | Customer service question-answering system based on deep learning and implementation method | |
| CN113673222B (en) | A fine-grained sentiment analysis method for social media text based on two-way collaborative network | |
| Xiang et al. | Aggregating local and global text features for linguistic steganalysis | |
| CN118013045B (en) | Sentence emotion detection method and device based on artificial intelligence | |
| CN114064873A (en) | Method and device for building FAQ knowledge base in insurance field and electronic equipment | |
| CN113536808A (en) | An automatic method for predicting the difficulty of reading comprehension test questions by introducing multiple textual relationships | |
| CN114416917B (en) | A dictionary-based text sentiment analysis method, system and storage medium in the power field |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |