+

CN113522030B - 一种光热膜蒸馏用三层膜的制备方法 - Google Patents

一种光热膜蒸馏用三层膜的制备方法 Download PDF

Info

Publication number
CN113522030B
CN113522030B CN202110993248.2A CN202110993248A CN113522030B CN 113522030 B CN113522030 B CN 113522030B CN 202110993248 A CN202110993248 A CN 202110993248A CN 113522030 B CN113522030 B CN 113522030B
Authority
CN
China
Prior art keywords
solution
membrane
layer
spinning
nanofiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110993248.2A
Other languages
English (en)
Other versions
CN113522030A (zh
Inventor
康卫民
刘梦瑶
王春艳
鞠敬鸽
黄宇婷
史佳丽
胡伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binzhou Cornell New Material Technology Co ltd
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN202110993248.2A priority Critical patent/CN113522030B/zh
Publication of CN113522030A publication Critical patent/CN113522030A/zh
Application granted granted Critical
Publication of CN113522030B publication Critical patent/CN113522030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种光热膜蒸馏用三层膜的制备方法,属于膜蒸馏技术领域。所述三层膜是由聚四氟乙烯纳米纤维膜作为疏水基层,聚偏氟乙烯纳米纤维膜作为中间粘结层,炭黑/聚乙烯醇复合纳米纤维膜作为亲水光热层,所述亲水光热层利用中间粘结层负载于疏水基层。其特征包括:(1)静电溶吹聚四氟乙烯纳米纤维膜的制备;(2)静电纺聚偏氟乙烯纳米纤维膜的制备;(3)静电纺炭黑/聚乙烯醇复合纳米纤维膜的制备;(4)三层膜的复合四个步骤。采用本发明制备的光热膜蒸馏用三层膜具有优异的光热转化性能、较高的水通量、抗盐性和防污性能,在处理高盐废水方面具有广阔的应用前景。

Description

一种光热膜蒸馏用三层膜的制备方法
技术领域
本发明属于光热膜蒸馏技术领域,具体涉及一种光热膜蒸馏用三层膜的制备方法。
背景技术
随着工业的高速发展和人口膨胀,水资源短缺已成为全球面临的严重挑战。海水储量丰富,占全球地表含水量的97%,通过海水淡化技术利用海水资源是解决水资源问题的有效途径。目前,海水淡化工艺主要包括多级闪蒸(MSF)、多效蒸馏(MED)、机械蒸汽压缩(MVC)、反渗透(RO)、纳滤(NF)和膜蒸馏(MD)等。其中,MD是一种膜技术与传统热蒸馏相结合的技术,因出水水质高、运行压力低和运行温度低等优点备受关注。然而,尽管膜蒸馏技术优势显著,但膜蒸馏技术迄今为止仍未实现产业化,这是由于传统膜蒸馏技术仍存在一些局限性,包括给水加热需要损耗大量电能,以及疏水膜与有机污染物之间的强相互作用导致膜污染和膜润湿问题。
为此,采用低品位或可再生能源作为热源替代电能成为膜蒸馏工艺优化的重要举措之一。其中,太阳能因其分布广、成本低而成为MD的理想能源。太阳能驱动MD过程消除了通过外部方式加热水的能源成本,从而为高效的水处理开辟了新的机会。太阳能驱动MD成功的关键是太阳能的高效收集和转移,若采用太阳光直接加热水源,水对太阳光的吸收能力差效率低;若设置太阳能集热装置必然会增加膜蒸馏系统的复杂性。因此,通过制备光热膜成为利用太阳能的优选方案之一。等离子体金属、半导体、碳基材料等纳米粒子已被证明可以有效吸收太阳能,其中碳基材料因其固有的优异性能而被选为优良的光热转换材料,可广泛应用于日常生活中。良好的光热效应、高吸光度和低反射率是碳基材料作为光热材料的关键因素。常用的碳基材料包括炭黑、石墨、石墨烯、碳纳米管、碳复合材料、无定形碳等。
另一方面,针对光热MD膜的膜润湿和膜污染问题,近年来,科学家利用油水分离及抗生物粘附材料的知识和理论,得到亲水材料与污染物之间可以形成水层,可用作有机污染物附着的坚固屏障,赋予MD膜优异防污染和防润湿性能。
本发明探讨出一种光热膜蒸馏用三层膜的制备方法,采用高效的静电溶吹技术开发了一种简单、低成本、高效率的光热膜蒸馏用三层膜,PTFE纳米纤维膜作为疏水基层,其较低的导热率可以减少热量损失,PVDF纳米纤维膜作为中间粘结层,表面能介于PTFE和PVA之间,可有效改善两层之间的附着力,以成本低廉的炭黑纳米颗粒和PVA为原料制备亲水光热层,具有优异的光热性能和亲水性,三层协同具有优异的耐久性,同时实现了高效的局部加热和出色的长期稳定运行,在处理海水淡化方面具有广阔的应用前景。
发明内容
本发明涉及一种光热膜蒸馏用三层膜的制备方法,通过太阳能照射引发光热层的高效局部加热,取代了通过外部加热整个给水系统的需要,消除了传统MD固有的效率限制和巨大的功率需求。基层PTFE高疏水低导热率可以起到了疏水和减少热量损失的作用,中间层PVDF起到紧密粘结作用,表层C/PVA起到了光热防污作用。三层膜具有互相贯通的开孔结构,显著减小蒸汽传质阻力,提高水通量,三层协同具有优异的耐久性,实现了高效的局部加热和出色的长期稳定运行。本发明所制备的光热膜蒸馏用三层膜在膜蒸馏领域具有广阔的应用前景。
1、一种光热膜蒸馏用三层膜的制备方法,其特征在于,包括以下步骤:
(1)静电溶吹聚四氟乙烯(PTFE)纳米纤维膜的制备:将一定量的聚四氟乙烯溶液和一定量聚乙烯醇溶液按照一定比例混合,在室温搅拌0.5~3h,得到纺丝液,采用静电溶吹技术对上述溶液进行纺丝,经煅烧,制得PTFE纳米纤维膜。
(2)静电纺聚偏氟乙烯(PVDF)纳米纤维膜的制备:将一定量的聚偏氟乙烯粉末加入到N,N-二甲基甲酰胺溶剂中,40~60℃下搅拌6~12h至溶质溶解,得到纺丝液,采用静电纺丝技术对上述溶液进行纺丝,制得PVDF纳米纤维膜。
(3)静电纺炭黑/聚乙烯醇(C/PVA)复合纳米纤维膜的制备:将一定量的炭黑加入到聚乙烯醇溶液中,室温超声3~5h使炭黑分散均匀,得到纺丝液,采用静电纺丝技术对上述溶液进行纺丝,制得C/PVA复合纳米纤维膜。
(4)三层膜的复合:上述步骤(1)制备的PTFE膜作为基层,步骤(2)制备得PVDF膜作为中间粘结层,步骤(1)制备的C/PVA膜作为光热表层,将三者进行热压复合,制备出光热膜蒸馏用三层膜。图1是本发明光热膜蒸馏用三层膜的制备流程图。
优选的,步骤(1)中所述聚四氟乙烯溶液的质量分数为60%,聚乙烯醇溶液的质量分数为8~12%,两者的混合质量比为5∶2。
优选的,步骤(1)中静电溶吹纺丝参数为纺丝液供给速率25~35ml/h,电压35~45kV,气压0.06~0.12MPa,接收距离60~90cm,煅烧温度360~400℃。
优选的,步骤(2)中聚偏氟乙烯溶液的质量分数为9%。
优选的,步骤(3)中聚乙烯醇溶液的质量分数为10%,炭黑占聚乙烯醇的质量比为0~30%。
优选的,步骤(2)和(3)中静电纺丝参数电压为15~25kV,接收距离为15~20cm,纺丝速度0.5~1.0mL/h。
优选的,步骤(4)中热压温度为170~190℃,时间为0.5~2h。
三层膜的亲水层聚乙烯醇PVA固有的亲水性和良好的可纺性使其成为一种有吸引力的防污聚合物。考虑到PVA聚合物的水溶性,在水处理应用过程中,有必要进行交联处理,以防止静电纺丝亲水涂层膨胀,高温热压不仅能使三层膜紧密复合,还可同时进行PVA的热交联处理。
与现有的技术相比,本发明的优点如下:(1)以高效的静电溶吹技术制备PTFE膜作为基膜,具有优异的隔热性能和疏水性,可有效减少热量损失和防止渗透侧被冷水浸润。(2)PVDF膜的表面能介于PTFE和PVA之间,可以有效改善两层之间的附着力,起到粘合剂的作用。(3)C/PVA光热层中混入低成本高效光热材料炭黑纳米粒子,使表层具有良好的光热转化性能,通过太阳能照射引发光热层的高效局部加热,取代了通过外部加热整个给水系统的需要,消除了传统MD固有的效率限制和巨大的功率需求。在疏水膜上加一层PVA亲水层,膜对表面活性剂、油和腐殖酸表现出良好的防污染性能,可以有效防止膜被含低表面张力污染物所润湿和污染,具有较高的水通量、抗盐性和防污性能,可长期稳定运行,本发明所制备的三层膜在光热膜蒸馏海水淡化领域具有广阔的应用前景。
附图说明
图1是本发明光热膜蒸馏用三层膜的制备流程图。
图2是利用本发明实施例1制备的PTFE纳米纤维膜的电镜图。
图3是利用本发明实施例1制备的PVDF纳米纤维膜的电镜图。
图4是利用本发明实施例1制备的C/PVA纳米纤维膜的电镜图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
(1)取一定量的聚乙烯醇粉末溶于水中,室温搅拌3h,90℃搅拌4h,配置成10%的聚乙烯醇水溶液,冷却待用。
(2)静电溶吹PTFE纳米纤维膜的制备:将60%的PTFE溶液和10%PVA溶液按照比例5∶2混合,在室温搅拌1h,得到纺丝液;采用静电溶吹技术(纺丝液供给速率30ml/h,电压40kV,气压0.1MPa,接收距离80cm)对上述溶液进行纺丝,经390℃高温煅烧,制得PTFE纳米纤维膜。
(3)静电纺PVDF纳米纤维膜的制备,将一定量的PVDF粉末加入到N,N-二甲基甲酰胺溶剂中,50℃下搅拌6h至溶质完全溶解,配置成9%的PVDF纺丝液,采用静电纺丝技术(参数电压15kV,接受距离20cm,纺丝速度0.6mL/h)对上述溶液进行纺丝,制得PVDF纳米纤维膜。
(4)静电纺炭黑/聚乙烯醇(C/PVA)复合纳米纤维膜的制备,取一定量的10%的PVA溶液,加入(占PVA含量)10%的炭黑,室温超声3-5h使炭黑分散均匀,得到纺丝液,采用静电纺丝技术(参数电压15-25kV,接受距离15-20cm,纺丝速度0.5-1mL/h)对上述溶液进行纺丝,制得C/PVA复合纳米纤维膜。
(5)三层膜的复合,上述步骤(1)制备的PTFE膜作为基层,步骤(2)制备得PVDF膜作为中间粘结层,步骤(1)制备的C/PVA膜作为光热表层,将三者进行180℃热压复合,制备出光热膜蒸馏用三层膜。
(6)上述制得的三层膜,三者厚度比为10∶1∶4进行复合,膜的总厚度为160-180μm。图2是利用本发明实施例1制备的PTFE纳米纤维膜的电镜图,图3是利用本发明实施例1制备的PVDF纳米纤维膜的电镜图,图4是利用本发明实施例1制备的C/PVA纳米纤维膜的电镜图。
(7)光热膜蒸馏测试:由太阳模拟器、玻璃模具、电子天平、电导率仪、蠕动泵与恒温水箱组成的直接接触式膜蒸馏系统测试所制备膜的光热膜蒸馏性能。渗透液和进料液的温度始终由恒温水箱保持在20℃。进料液和渗透液均由蠕动泵循环,恒定流量为0.25L/min,模拟海水浓度为3.5wt%NaCl,设定光照强度为1kW/m2,测试面积2×2cm2。抗污染性能测试中,进料液是由3.5%NaCl、3g/L CaCl2、10mg/L SDS、10mg/L HA组成的混合液。由电导率仪与天平测量,膜蒸馏软件记录渗透液的电导率变化以及渗透通量变化。采用红外热成像仪测量膜表面的温度变化。渗透通量J通过渗透液的重量变化计算,由以下公式计算得到:
J=ΔM/(ΔT×S)
式中:J为通量(kg/m2h),ΔM渗透液增重(kg),ΔT运行时间(h),S膜有效面积(cm2)
截盐率R通过渗透液的电导率计算,由以下公式计算得到:
R=[(Cf-Cp)/Cf]×100%
式中:R截留率,Cf进料液的浓度(g/L),Cp渗透液的浓度(g/L)。可根据电导率和浓度的线性关系,由电导率计算出溶液浓度。
所制备得到的三层膜测试结果如表1所示,在模拟一个太阳光照条件下,经90s光照后,膜表面温度最高可达47.1℃,运行10h渗透通量可达1.15kg/m2h,截留率高达99.9%以上。三层膜在处理含各种污染物的盐水时具有良好的稳定性,截留率仍可保持在99.99%以上,而商业膜PVDF、PTFE基膜在此过程中污染严重,产生膜润湿和膜污染现象。
实施例2
(1)同实施例1。
(2)同实施例1。
(3)同实施例1。
(4)静电纺炭黑/聚乙烯醇(C/PVA)复合纳米纤维膜的制备,取一定量的10%的PVA溶液,加入(占PVA含量)20%的炭黑,室温超声3-5h使炭黑分散均匀,得到纺丝液,采用静电纺丝技术(参数电压15-25kV,接受距离15-20cm,纺丝速度0.5-1mL/h)对上述溶液进行纺丝,制得C/PVA复合纳米纤维膜。
(5)同实施例1。
(6)同实施例1。
(7)同实施例1。
所制备得到的三层膜测试结果如表1所示,在模拟一个太阳光照条件下,经90s光照后,膜表面温度最高可达52.6℃,运行10h渗透通量可达1.54kg/m2h,截盐率高达99.9%以上。
实施例3
(1)同实施例1。
(2)同实施例1。
(3)同实施例1。
(4)静电纺炭黑/聚乙烯醇(C/PVA)复合纳米纤维膜的制备,取一定量的10%的PVA溶液,加入(占PVA含量)30%的炭黑,室温超声3-5h使炭黑分散均匀,得到纺丝液,采用静电纺丝技术(参数电压15-25kV,接受距离15-20cm,纺丝速度0.5-1mL/h)对上述溶液进行纺丝,制得C/PVA复合纳米纤维膜。
(5)同实施例1。
(6)同实施例1。
(7)同实施例1。
所制备得到的三层膜测试结果如表1所示,在模拟一个太阳光照条件下,经90s光照后,膜表面温度最高可达53℃,运行10h渗透通量1.60kg/m2h,截盐率高达99.9%以上。
表1光热膜蒸馏用三层膜的性能
Figure BSA0000250963660000061

Claims (1)

1.一种光热膜蒸馏用三层膜的制备方法,其特征在于,包括以下步骤:
(1)静电溶吹聚四氟乙烯(PTFE)纳米纤维膜的制备:将一定量的聚四氟乙烯溶液和一定量聚乙烯醇溶液按照一定比例混合,在室温下搅拌0.5~3h,得到纺丝液;采用静电溶吹技术对上述溶液进行纺丝,经煅烧,制得PTFE纳米纤维膜;
(2)静电纺聚偏氟乙烯(PVDF)纳米纤维膜的制备:将一定量的聚偏氟乙烯粉末加入到N,N-二甲基甲酰胺溶剂中,40~60℃下搅拌6~12h至溶质溶解,得到纺丝液,采用静电纺丝技术对上述溶液进行纺丝,制得PVDF纳米纤维膜;
(3)静电纺炭黑/聚乙烯醇(C/PVA)复合纳米纤维膜的制备:将一定量的炭黑加入到聚乙烯醇溶液中,室温超声3~5h使炭黑分散均匀,得到纺丝液,采用静电纺丝技术对上述溶液进行纺丝,制得C/PVA复合纳米纤维膜;
(4)三层膜的复合,上述步骤(1)制备的PTFE膜作为基层,步骤(2)制备得PVDF膜作为中间粘结层,步骤(1)制备的C/PVA膜作为光热表层,将三者进行热压复合,制备出光热膜蒸馏用三层膜;
所述静电溶吹聚四氟乙烯(PTFE)纳米纤维膜的制备中,聚四氟乙烯溶液的质量分数为60%,聚乙烯醇溶液的质量分数为8~12%,两者的混合质量比为5∶2;静电溶吹纺丝参数为纺丝液供给速率25~35ml/h,电压35~45kV,气压0.06~0.12MPa,接收距离60~90cm;煅烧温度360~400℃;
所述静电纺聚偏氟乙烯(PVDF)纳米纤维膜和静电纺炭黑/聚乙烯醇(C/PVA)复合纳米纤维膜的制备中,聚偏氟乙烯溶液的质量分数为9%,聚乙烯醇溶液的质量分数为10%,炭黑占聚乙烯醇的质量为0~30%;静电纺丝参数电压为15~25kV,接收距离为15~20cm,纺丝速度0.5~1.0mL/h;
所述三层膜的复合过程中,热压温度为170~190℃,时间为0.5~2h。
CN202110993248.2A 2021-08-27 2021-08-27 一种光热膜蒸馏用三层膜的制备方法 Active CN113522030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110993248.2A CN113522030B (zh) 2021-08-27 2021-08-27 一种光热膜蒸馏用三层膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110993248.2A CN113522030B (zh) 2021-08-27 2021-08-27 一种光热膜蒸馏用三层膜的制备方法

Publications (2)

Publication Number Publication Date
CN113522030A CN113522030A (zh) 2021-10-22
CN113522030B true CN113522030B (zh) 2023-01-13

Family

ID=78093027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110993248.2A Active CN113522030B (zh) 2021-08-27 2021-08-27 一种光热膜蒸馏用三层膜的制备方法

Country Status (1)

Country Link
CN (1) CN113522030B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055063A (zh) * 2022-07-05 2022-09-16 天津工业大学 一种Janus双功能光热膜蒸馏用复合纳米纤维膜的制备方法
CN115198519B (zh) * 2022-07-15 2023-08-08 武汉纺织大学 高效光热转化亲/疏水纤维毡及其制备方法
CN115487679A (zh) * 2022-08-22 2022-12-20 佛山市南海区苏科大环境研究院 双驱型超亲水光热膜及其制备方法
CN115447234B (zh) * 2022-10-08 2023-10-27 自然资源部天津海水淡化与综合利用研究所 一种用于光热转换的双面膜材料的制备方法
CN116407962B (zh) * 2023-05-22 2023-12-19 江南大学 一种co2-光热双重响应型纳米乳液分离膜及其制备方法及其应用
CN119588173B (zh) * 2024-11-28 2025-09-26 南京工业大学 一种双层光热膜蒸馏材料的制备方法及装置
CN119660863B (zh) * 2024-12-03 2025-09-05 大连海事大学 一种用于有机工业废水处理的抗生物污损催化光热膜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103998115B (zh) * 2011-11-17 2015-11-25 义安理工学院 用于膜蒸馏应用的三层疏水-亲水膜
CN104411384B (zh) * 2012-04-02 2016-06-29 义安理工学院 用于除盐的真空气隙膜蒸馏体系
CN103469488A (zh) * 2013-09-29 2013-12-25 天津工业大学 一种增强型静电纺纳米纤维锂离子电池隔膜的制备方法
CN108404685B (zh) * 2018-04-14 2020-12-18 哈尔滨工业大学 一种高通透、耐润湿、抗污染膜蒸馏用蒸馏膜的制备方法
CN108889138B (zh) * 2018-05-28 2021-04-30 中国科学院宁波材料技术与工程研究所 一种聚合物微孔膜及其制备方法和应用
CN109825956A (zh) * 2019-03-06 2019-05-31 天津工业大学 一种反渗透膜支撑材料及其制备方法
CN113230903B (zh) * 2021-04-26 2022-06-21 浙江大学 便携式光热海水淡化中空纤维膜、制备方法、装置及应用

Also Published As

Publication number Publication date
CN113522030A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN113522030B (zh) 一种光热膜蒸馏用三层膜的制备方法
Wu et al. Solar-driven evaporators for water treatment: challenges and opportunities
CN113230903B (zh) 便携式光热海水淡化中空纤维膜、制备方法、装置及应用
CN103263856B (zh) 一种膜蒸馏用静电纺丝疏水纳米纤维多孔膜的制备方法
CN115055063A (zh) 一种Janus双功能光热膜蒸馏用复合纳米纤维膜的制备方法
CN106809897A (zh) 用于海水淡化及净水处理的石墨烯光热转化材料制备方法
CN103861468A (zh) 一种染料脱盐及其废水处理的复合纳滤膜及其制备方法
CN113559721A (zh) 一种具有自漂浮结构的静电纺海水淡化膜的制备方法
CN111744369A (zh) 一种耐润湿、抗油污的Janus型蒸馏膜及其制备方法及应用
CN114619748B (zh) 碳纳米管基单向导湿光热膜、制备方法和制得的太阳能界面蒸发装置
US20220241733A1 (en) Carbon nanotube/nanofiber conductive composite membrane and preparation method thereof
Tang et al. A review: Electrospinning applied to solar interfacial evaporator
CN110124532A (zh) 一种掺杂改性氧化石墨烯的聚偏氟乙烯光热膜及其制备方法
Chen et al. Gradient heating induced better balance among water transportation, salt resistance and heat supply in a high performance multi-functional solar-thermal desalination device
CN107021549A (zh) 石墨烯/碳纳米管/碳纳米纤维膜三元复合电容型脱盐电极的制备方法
CN117585749A (zh) 一种具有多尺度结构的光热纤维膜材料的制备方法和应用
CN115124102A (zh) 一种zif-8衍生碳-木材海绵复合蒸发材料及其制备方法和应用
CN114477342A (zh) 一种全天候石墨烯基海水淡化纤维膜及其制备方法
CN113699693A (zh) 一种超疏水、抗粘附的纳米纤维膜及其制备方法和应用
CN116617878A (zh) 一种ptfe/fep复合纳滤膜的制备方法
Yu et al. Energy saving dual-mode recycling of wastewater by MWCNTs-COOK/PDA/PVA assisted composite membrane
Wu et al. A self-floating photothermal evaporator with 3D gradient water channel for highly efficient solar seawater desalination
CN110327789A (zh) 一种碳纳米管/纳米纤维导电复合膜及其制备方法
CN118126405A (zh) 一种水电联产复合木质纤维素基气凝胶及其制备方法
CN117258561A (zh) 一种磁性粒子负载纳米管改性的超滤膜及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230117

Address after: 256500 east of the intersection of Xingbo 4th Road and Xinbo Road, economic development zone, Boxing County, Binzhou City, Shandong Province

Patentee after: Shandong Cornell Material Technology Co.,Ltd.

Address before: No. 399 Bingshui Road, Xiqing District, Tianjin, Tianjin

Patentee before: TIANJIN POLYTECHNIC University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250318

Address after: 256600 East of Provincial Highway 228, West of Xingye 9th Road, and South of Xingbo 11th Road, Economic Development Zone, Boxing County, Binzhou City, Shandong Province

Patentee after: Binzhou Cornell New Material Technology Co.,Ltd.

Country or region after: China

Address before: 256500 east of the intersection of Xingbo 4th Road and Xinbo Road, economic development zone, Boxing County, Binzhou City, Shandong Province

Patentee before: Shandong Cornell Material Technology Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载