+

CN113444721B - A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver - Google Patents

A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver Download PDF

Info

Publication number
CN113444721B
CN113444721B CN202110782360.1A CN202110782360A CN113444721B CN 113444721 B CN113444721 B CN 113444721B CN 202110782360 A CN202110782360 A CN 202110782360A CN 113444721 B CN113444721 B CN 113444721B
Authority
CN
China
Prior art keywords
protein
silver
nano
nano silver
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110782360.1A
Other languages
Chinese (zh)
Other versions
CN113444721A (en
Inventor
李相前
宋阳平
王士岩
刘培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202110782360.1A priority Critical patent/CN113444721B/en
Publication of CN113444721A publication Critical patent/CN113444721A/en
Application granted granted Critical
Publication of CN113444721B publication Critical patent/CN113444721B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention discloses an artificial modified gene, SNA15protein and a method for efficiently synthesizing nano silver by using the same, wherein the nucleotide sequence of the gene is shown as SEQ ID NO.1, and the amino acid sequence of the protein is shown as SEQ ID NO.2. The invention discloses a nucleic acid sequence corresponding to SNA15protein amino acid which can be used for efficiently synthesizing nano silver after artificial transformation for the first time. The biological nano silver solution prepared by the invention is brown, has stable property and particle size distribution of 2-25nm, and the synthesized nano silver surface is coated with protein participating in synthesizing nano silver, so that the biological nano silver solution has good biological function, and antibacterial experiments prove that the nano silver has broad-spectrum antibacterial effect and remarkable antibacterial effect.

Description

一种人工改造基因、SNA15蛋白及其高效合成纳米银的方法A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver

技术领域technical field

本发明涉及基因工程与蛋白质工程,具体涉及一种人工改造基因、SNA15蛋白及其高效合成纳米银的方法。The invention relates to genetic engineering and protein engineering, in particular to an artificially modified gene, SNA15 protein and a method for efficiently synthesizing nano silver.

背景技术Background technique

银自古以来就被人们用来做抗菌剂,但是随着科技的发展,抗生素的出现导致银在杀菌方面的利用率下降了。但是由于人们对抗生素的滥用导致目前从新药类别的研发到检测细菌对新药产生耐药性的时间正在逐渐缩短,以青霉素为例,目前青霉素三代四代用的居多。Silver has been used as an antibacterial agent since ancient times, but with the development of technology and the emergence of antibiotics, the utilization rate of silver in sterilization has declined. However, due to the abuse of antibiotics, the time from the development of new drug categories to the detection of bacterial resistance to new drugs is gradually shortening. Taking penicillin as an example, most of the third and fourth generations of penicillin are currently used.

纳米银的抑菌机制与抗生素的抑菌机制不同,纳米银在抑菌方面具有广谱性,纳米银的粒径越小,其杀菌性能越强。而一种类型的抗生素只能抑制某一类的细菌,因为纳米银的抑菌是通过直接暴露引起细菌的死亡,由于其特殊的纳米尺寸从而导致细菌发生纳米穿孔,使得纳米银插入到细菌的细胞膜或者细胞壁上,导致其结构被破坏从而致使细菌胞内组分外流,引起细菌死亡。当纳米银进入到细菌的细胞质膜时,会与含巯基的LPS结合,削弱其相互作用导致细胞膜的通透性增加,同时纳米银容易与氧结合,促进O2的解离生成ROS,粒径越小的纳米银其产生ROS的能力越强。入侵到胞内的纳米银会与胞内的DNA和蛋白质交联,导致有关氧化损伤修复基因的丢失和氧化损伤蛋白的缺失,并且导致处于自由态的DNA分子凝聚,影响细胞的正常分裂及功能的表达。The antibacterial mechanism of nano-silver is different from that of antibiotics. Nano-silver has a broad spectrum of antibacterial properties. The smaller the particle size of nano-silver, the stronger its bactericidal performance. And a type of antibiotic can only inhibit a certain type of bacteria, because the antibacterial effect of nano-silver is to cause the death of bacteria through direct exposure. Due to its special nano-size, it leads to nano-perforation of bacteria, so that nano-silver is inserted into the cell membrane or cell wall of bacteria, causing its structure to be destroyed, resulting in the outflow of bacterial intracellular components, causing bacterial death. When nano-silver enters the bacterial cytoplasmic membrane, it will combine with thiol-containing LPS, weakening its interaction and increasing the permeability of the cell membrane. At the same time, nano-silver is easy to combine with oxygen and promotes the dissociation of O2 to generate ROS. The smaller the particle size of nano-silver, the stronger its ability to generate ROS. Nanosilver invaded into the cell will cross-link with the DNA and protein in the cell, resulting in the loss of oxidative damage repair genes and oxidative damage proteins, and the condensation of free DNA molecules, affecting the normal division of cells and the expression of functions.

以纳米银作为抗菌剂在净水处理、食品保鲜、水产养殖、农业生产和生物医学应用中起着重要作用,同时纳米银还以纳米银浆的形式被运用到传感器等高新技术领域。随着纳米材料技术的飞速发展,纳米粒子的合成越来越方便,纳米粒子被大量生产,并在日常生活中得到广泛的应用。由于纳米银表面具有等离子体共振增强功能,并且不同形貌,不同粒径的纳米银用不同激发波长会影响纳米银的荧光增强效应。以该蛋白合成的球形银纳米粒子为例,粒径越大,其表面等离子体共振峰越发生红外偏移,表面等离子共振效应逐渐由吸收向散射转变。同时纳米银具有表面增强拉曼散射效应,能够使得待测物质的拉曼信号增强,具备实现单分子检测的特性,可以有效实现利用复合探针对例如癌细胞的靶向SERS成像进行检测、对水溶液中有毒有害物质现场检测、肿瘤细胞扩散情况进行检测等方面的应用。正是由于纳米银的表面效应以及量子尺寸导致纳米银在生物医学领域、表面增强拉曼效应,以及微电子领域占有重要地位。例如联合应用外用重组人碱性成纤维细胞生长因子、纳米银抗菌水凝胶敷料能减轻局部肿胀、缓解术后疼痛、促进踝部开放骨折创面恢复,缓解炎症反应及氧化应激反应,有效降低术后切口并发症发生率。纳米银抗菌凝胶可预防放射性皮炎的发生和降低放射性皮炎的严重程度,可减少由于皮肤反应引起的治疗中断,能改善治疗效果。Using nano-silver as an antibacterial agent plays an important role in water purification, food preservation, aquaculture, agricultural production and biomedical applications. At the same time, nano-silver is also used in high-tech fields such as sensors in the form of nano-silver paste. With the rapid development of nanomaterial technology, the synthesis of nanoparticles has become more and more convenient, and nanoparticles have been mass-produced and widely used in daily life. Since the surface of nano-silver has the function of plasmon resonance enhancement, and different shapes, different particle sizes of nano-silver and different excitation wavelengths will affect the fluorescence enhancement effect of nano-silver. Taking the spherical silver nanoparticles synthesized by this protein as an example, the larger the particle size, the more the infrared shift of its surface plasmon resonance peak, and the surface plasmon resonance effect gradually changes from absorption to scattering. At the same time, nano-silver has a surface-enhanced Raman scattering effect, which can enhance the Raman signal of the substance to be tested, and has the characteristics of realizing single-molecule detection. It can effectively realize the application of composite probes in the detection of targeted SERS imaging of cancer cells, on-site detection of toxic and harmful substances in aqueous solutions, and detection of tumor cell proliferation. It is precisely because of the surface effect and quantum size of nano-silver that nano-silver plays an important role in the field of biomedicine, surface-enhanced Raman effect, and microelectronics. For example, combined application of topical recombinant human basic fibroblast growth factor and nano-silver antibacterial hydrogel dressing can reduce local swelling, relieve postoperative pain, promote wound recovery of open ankle fractures, relieve inflammation and oxidative stress, and effectively reduce the incidence of postoperative incision complications. Nano-silver antibacterial gel can prevent the occurrence of radiation dermatitis and reduce the severity of radiation dermatitis, reduce the treatment interruption caused by skin reactions, and improve the treatment effect.

目前存在三种合成纳米银的主要方法:第一种是简单直接的物理方法,但是物理方法对设备要求高,这就带来了高额的成本,对于设备的损耗也较为严重,但是生产得到的纳米银粒径大小可以符合人们的预期,并且生产周期短;第二种是化学合成方法,这种方法带来的是环境污染加有毒试剂的使用,并且化学还原对导致合成的纳米银颗粒表面吸附刺激性化学物质增加毒性不利于生物医学方向的用途;第三种是绿色环保的生物合成方法,生物法相比其他两种方法具有反应温和,生产成本低,绿色环保无污染,而且在反应过程当中不需要还原剂等添加剂就可以完成纳米银制备的等一系列优点,随着绿色观念、环保观念的普及,利用生物系统合成纳米银粒子的生物法备受关注。生物纳米银在生物分子的保护下稳定性和分散性得到了较大提高,具有良好的生物相容性、特殊的理化性质及优异的抗菌、抗炎作用和较低的生物毒性,在生物医用材料领域内具有独特的优势和举足轻重的地位。从而研究生物合成纳米银粒径的最佳合成条件,深入了解纳米银的合成机制,对于制备更加高效、高产的抗菌银纳米产品意义重大。现有技术中CN110804089提出了一种来源于球形赖氨酸芽孢杆菌的纳米银合成蛋白及其应用,虽然其公开了合成纳米银的蛋白,但是其蛋白合成的纳米银效率较低,并且合成的纳米银分散效果较差,粒径较大,为获得更高效合成纳米银的蛋白而对该蛋白进行改造。There are currently three main methods for synthesizing nano-silver: the first is a simple and direct physical method, but the physical method has high requirements for equipment, which brings high costs and serious equipment loss, but the size of the nano-silver particles produced can meet people's expectations, and the production cycle is short; the second is chemical synthesis. This method brings environmental pollution and the use of toxic reagents, and chemical reduction is not conducive to the use of biomedical direction due to the increase in toxicity of irritating chemicals adsorbed on the surface of the synthesized silver nanoparticles. Compared with the other two methods, the method has a series of advantages such as mild reaction, low production cost, green environmental protection and no pollution, and can complete the preparation of nano-silver without additives such as reducing agents in the reaction process. With the popularization of green and environmental protection concepts, the biological method of using biological systems to synthesize nano-silver particles has attracted much attention. Under the protection of biomolecules, the stability and dispersibility of biological nano silver have been greatly improved. It has good biocompatibility, special physical and chemical properties, excellent antibacterial, anti-inflammatory effects and low biological toxicity. It has unique advantages and a pivotal position in the field of biomedical materials. Therefore, it is of great significance for the preparation of more efficient and high-yield antibacterial silver nano-products to study the optimal synthesis conditions of biosynthetic nano-silver particle size and to understand the synthesis mechanism of nano-silver. In the prior art, CN110804089 proposes a nano-silver synthetic protein derived from Bacillus lysinus globosa and its application. Although it discloses a protein for synthesizing nano-silver, the nano-silver efficiency of its protein synthesis is low, and the synthetic nano-silver has a poor dispersion effect and a large particle size. In order to obtain a more efficient protein for synthesizing nano-silver, the protein is transformed.

发明内容Contents of the invention

发明目的:针对现有技术中存在的问题,本发明提供一种经过人工改造后得到编码合成纳米银蛋白的基因,本发明的基因编码的蛋白可以高效合成纳米银,同时基因经原核表达纯化得到的蛋白进行纳米银合成属于非酶催化合成,在以单一非酶催化蛋白合成纳米银领域有重大意义,有利于解析非酶催化蛋白合成纳米银的机理及实现纳米银的可控合成。Purpose of the invention: Aiming at the problems existing in the prior art, the present invention provides a gene encoding and synthesizing nano-silver protein after artificial transformation. The protein encoded by the gene of the present invention can efficiently synthesize nano-silver. At the same time, the synthesis of nano-silver by the protein obtained by prokaryotic expression and purification belongs to non-enzyme-catalyzed synthesis. It is of great significance in the field of synthesizing nano-silver with a single non-enzyme-catalyzed protein.

本发明还提供能够高效合成具有生物活性纳米银的蛋白、载体、工程菌和应用。The invention also provides proteins, carriers, engineering bacteria and applications capable of efficiently synthesizing nano silver with biological activity.

技术方案:为了实现上述目的,本发明提供一种编码合成纳米银蛋白的基因,所述基因的核苷酸序列如SEQ ID NO.1所示。Technical solution: In order to achieve the above object, the present invention provides a gene encoding a synthetic nano-silver protein, the nucleotide sequence of which is shown in SEQ ID NO.1.

其中,所述基因通过已知纳米银蛋白的核苷酸为模板(CN110804089中SEQ IDNO.2;本发明中序列表中SEQ ID NO.5),通过对已知核苷酸编码的合成纳米银蛋白结构进行空间模拟,分析各结构域功能和作用,进行蛋白质的结构域重排,筛选获得可以高效进行纳米银合成的结构域,以重排后编码重排蛋白质的基因序列作为模板,通过定点突变获得序列如SEQ ID NO 1所示编码高效合成纳米银蛋白的基因。将目的基因与载体进行连接得到重组载体,将重组载体导入原核表达宿主内进行表达纯化。Wherein, the gene uses the nucleotide of the known nano silver protein as a template (SEQ ID NO.2 in CN110804089; SEQ ID NO.5 in the sequence listing of the present invention), and performs spatial simulation on the synthetic nano silver protein structure encoded by the known nucleotide, analyzes the functions and effects of each structural domain, performs protein structural domain rearrangement, and screens to obtain a structural domain that can efficiently synthesize nano silver. Using the gene sequence encoding the rearranged protein after the rearrangement as a template, the sequence obtained by site-directed mutagenesis is encoded and efficiently synthesized as shown in SEQ ID NO 1 The gene of nanosilver protein. The target gene is connected with the vector to obtain a recombinant vector, and the recombinant vector is introduced into a prokaryotic expression host for expression and purification.

本发明所述基因编码的能够高效合成具有生物活性纳米银的蛋白的氨基酸序列如SEQ ID NO.2所示。The amino acid sequence of the protein encoded by the gene of the present invention capable of efficiently synthesizing nano silver with biological activity is shown in SEQ ID NO.2.

本发明所述的重组载体,其包括所述的编码合成纳米银蛋白的基因。The recombinant vector of the present invention includes the gene encoding the synthetic nano-silver protein.

本发明所述的工程菌,其包括所述的编码合成纳米银蛋白的基因或者所述的合成纳米银蛋白或者重组载体。The engineering bacterium of the present invention includes the gene encoding the synthetic nano-silver protein or the synthetic nano-silver protein or a recombinant vector.

本发明所述的编码合成纳米银蛋白的基因通过生物法在制备纳米银中的应用。The application of the gene encoding the synthetic nano-silver protein described in the present invention in preparing nano-silver through a biological method.

本发明所述的合成纳米银蛋白通过生物法在制备纳米银中的应用。The application of the synthetic nano-silver protein of the present invention in preparing nano-silver through a biological method.

其中,所述应用中以硝酸银为底物浓度14~30mM,合成纳米银的反应温度范围为20~50℃,转速100~250rpm,pH为9~13,反应时间16~24h。Wherein, in the application, silver nitrate is used as the substrate concentration of 14-30mM, the reaction temperature range of synthesizing nano-silver is 20-50°C, the rotation speed is 100-250rpm, the pH is 9-13, and the reaction time is 16-24h.

其中,所述应用中制备的纳米银为球形纳米银,粒径大小分布于2-25nm。且每次纳米银合成条件可控,合成的纳米银粒径可控,该生物法合成的纳米银表面包裹着的蛋白具有良好的生物活性。Wherein, the nano-silver prepared in the application is spherical nano-silver, and the particle size distribution is in the range of 2-25nm. Moreover, the synthesis conditions of nano-silver are controllable each time, and the particle size of the synthesized nano-silver is controllable. The protein coated on the surface of the nano-silver synthesized by the biological method has good biological activity.

进一步地,所述应用中制备的纳米银为球形纳米银,粒径大小分布于2-25nm,其表面包被着参与合成纳米银的蛋白质。经过扫描电镜SEM的表征发现粒径小于10nm的纳米银呈现团聚状态,由SEM表征结果看团聚状态的纳米银粒径在80nm左右,其原因在于,纳米颗粒的粒径下降,其表面原子比例增加,导致表面配位数不足和高表面能,从而纳米银处于高度活化状态,从而粒径小的纳米银会呈现出团聚状态,将样品经过超声波分散后再进行TEM表征,发现大部分合成的纳米银粒径在10nm左右。Further, the nano-silver prepared in the application is spherical nano-silver with a particle size distribution of 2-25nm, and its surface is coated with proteins involved in the synthesis of nano-silver. After scanning electron microscopy (SEM) characterization, it was found that nano-silver with a particle size of less than 10nm was in an agglomerated state. According to the SEM characterization results, the particle size of the agglomerated nano-silver was around 80nm. The reason was that the particle size of the nano-particle decreased and the proportion of its surface atoms increased, resulting in insufficient surface coordination number and high surface energy, so that the nano-silver was in a highly activated state, so that the nano-silver with a small particle size would appear in an agglomerated state. After the sample was dispersed by ultrasonic waves, TEM was used to characterize it.

本发明运用基因工程技术改造编码合成纳米银蛋白的基因。所得到工程基因编码的蛋白能够高效合成纳米银,该蛋白在原核表达系统中表达含量高,并且该蛋白易于从原核表达系统中运用蛋白纯化的方式纯化,该蛋白能够在一定条件下稳定大量合成纳米银。本发明提出经过基因工程和蛋白工程改造后可以大量合成纳米银的蛋白序列以及核酸序列,该蛋白在常温等温和条件下能够通过生物法制备球形纳米银,该生物法合成的纳米银在透射电镜的表征下显示此方法合成的纳米银表面包裹着的该蛋白,体现出该生物法合成的纳米银具有良好的生物活性。同时该生物法合成的纳米银通过抑菌实验证实该纳米银具有广谱抗菌效果且抗菌效果显著。此外,本发明的蛋白每次进行纳米银合成的条件可控,粒径范围可控,且不受到其他因素的影响,只要在pH范围内,不需要特别高的温度,即可合成纳米银,并且经过DLS测得纳米银的粒径也在合成范围之内,可以工业化大量制备纳米银颗粒。The invention utilizes genetic engineering technology to modify the gene encoding and synthesizing the nano-silver protein. The protein encoded by the obtained engineering gene can efficiently synthesize nano silver, the protein has a high expression content in the prokaryotic expression system, and the protein is easy to be purified from the prokaryotic expression system by protein purification, and the protein can stably synthesize a large amount of nano silver under certain conditions. The present invention proposes that protein sequences and nucleic acid sequences of nano-silver can be synthesized in large quantities after genetic engineering and protein engineering transformation, and the protein can be prepared by a biological method under normal temperature and isothermal conditions. At the same time, the nano-silver synthesized by the biological method has been proved by antibacterial experiments that the nano-silver has a broad-spectrum antibacterial effect and the antibacterial effect is remarkable. In addition, the protein of the present invention can be synthesized with nano-silver under controllable conditions and particle size range, and is not affected by other factors. As long as it is within the pH range, nano-silver can be synthesized without a particularly high temperature, and the particle size of nano-silver measured by DLS is also within the synthesis range, and a large number of nano-silver particles can be industrially produced.

本发明成功扩增出其相应DNA,并且成功构建出重组载体,获得携带该重组载体的原核表达宿主或者工程菌,由于原核表达系统具有培养简单,迅速,经济,适合大规模工业生产工艺等诸多优点,使得生物法中利用单一蛋白制备纳米银具有工业化规模化应用的雏形,具有广泛的应用前景和工业价值。The present invention successfully amplifies its corresponding DNA, and successfully constructs a recombinant vector, and obtains a prokaryotic expression host or engineering bacteria carrying the recombinant vector. Since the prokaryotic expression system has many advantages such as simple, rapid, economical and suitable for large-scale industrial production processes, the preparation of nano-silver by using a single protein in the biological method has the prototype of industrial scale application, and has broad application prospects and industrial value.

本发明运用基因工程和蛋白质工程的技术人工改造后的蛋白可以将底物硝酸银还原成纳米银,有利于揭示纳米银合成机理,也利于生物合成纳米银的工业化生产及其应用,同时以金黄色葡萄球菌、大肠杆菌、青霉菌、酿酒酵母探究该生物法合成纳米银的抑菌能力。The present invention uses genetic engineering and protein engineering techniques to artificially transform the protein, which can reduce the substrate silver nitrate to nano-silver, which is beneficial to revealing the synthesis mechanism of nano-silver, and is also beneficial to the industrial production and application of biosynthetic nano-silver. At the same time, the antibacterial ability of the biologically synthesized nano-silver is explored with Staphylococcus aureus, Escherichia coli, Penicillium, and Saccharomyces cerevisiae.

有益效果:与现有技术相比,本发明具有如下优点:Beneficial effect: compared with the prior art, the present invention has the following advantages:

1、经过基因工程技术、蛋白质工程技术,人工改造得到的,能够高效合成具有生物活性的纳米银人工序列和人工蛋白,基因通过已知纳米银蛋白的核苷酸序列为模板(CN110804089中SEQ ID NO.2)进行空间模拟,分析各结构域功能和作用,筛选获得纳米银高效合成结构域,采用定点突变的技术进行突变,得到一段全新的人工序列。该基因编码的蛋白可以高效合成纳米银,并且可以起到降低小粒径纳米银团聚的作用,在该生物法中作为保护剂和分散剂。最终编码该蛋白的基因命名为SNA15其序列如SEQ ID NO 1所示。该蛋白命名为SNA15protein的氨基酸序列如SEQ ID NO.2。本发明首先对蛋白序列采用蛋白质工程技术进行蛋白结构模拟分析后,对蛋白结构域重排,随后运用基因工程技术对其对应的DNA序列多个位点进行定点突变,设计PCR反应条件,成功通过PCR定点突变出携带突变位点的DNA序列,突变后的序列编码的蛋白可以高效合成纳米银并且在水溶液中分散效果好,故本发明也首次公开了经过人工改造后可高效合成纳米银的SNA15 protein氨基酸所对应的核酸序列。1. After genetic engineering technology, protein engineering technology, and artificial transformation, it can efficiently synthesize nano-silver artificial sequences and artificial proteins with biological activity. The gene uses the nucleotide sequence of the known nano-silver protein as a template (SEQ ID NO.2 in CN110804089) to carry out space simulation, analyze the functions and effects of each structural domain, screen and obtain nano-silver high-efficiency synthesis domains, and use site-directed mutagenesis for mutation to obtain a new artificial sequence. The protein encoded by the gene can efficiently synthesize nano-silver, and can play a role in reducing the agglomeration of small-sized nano-silver, and is used as a protective agent and a dispersant in the biological method. The gene encoding the protein is finally named SNA15, and its sequence is shown in SEQ ID NO 1. The amino acid sequence of the protein named SNA15protein is shown in SEQ ID NO.2. The present invention first adopts protein engineering technology to perform protein structure simulation analysis on the protein sequence, then rearranges the protein domains, then uses genetic engineering technology to perform site-directed mutagenesis at multiple sites of its corresponding DNA sequence, and designs PCR reaction conditions. The DNA sequence carrying the mutation site is successfully obtained through PCR site-directed mutation. The protein encoded by the mutated sequence can efficiently synthesize nano-silver and has a good dispersion effect in aqueous solution. Therefore, the present invention also discloses for the first time the nucleic acid sequence corresponding to the amino acid of SNA15 protein that can efficiently synthesize nano-silver after artificial transformation.

2、本发明的SNA15 protein,pH范围在11~13,温度范围20~50℃的条件下对纳米银的合成效率较高,合成时间为16~24h,得到的生物纳米银溶液呈褐色,性质稳定,粒径分布在2~25nm,并且合成的纳米银表面包被着蛋白质,具有良好的生物活性和生物学功能。2. The SNA15 protein of the present invention has a pH range of 11 to 13 and a temperature range of 20 to 50°C. The synthetic efficiency of nano silver is relatively high, and the synthesis time is 16 to 24 hours. The obtained biological nano silver solution is brown and stable in nature, with a particle size distribution of 2 to 25 nm, and the surface of the synthesized nano silver is coated with protein, which has good biological activity and biological function.

3、本发明经过人工改造的蛋白成功合成了纳米银,发现该改造蛋白的关键功能区域,并成功扩增出其相对应的DNA,经过重组载体和原核表达,得到可以大量制备具有高效合成生物纳米银能力的工程菌,该SNA15 protein表达量高,是经人工改造之前表达量的10倍以上且蛋白性质稳定,SNA15 protein合成的纳米银具有良好的生物活性,粒径可控,合成条件温和,并且SNA15 protein蛋白合成纳米银属于非酶催化的纳米银合成,与常规酶催化的纳米银合成不同,不存在酶活中心突变导致无法合成纳米银的情况,目前仍未有该方面的研究。本发明有利于揭示利用单一非酶催化蛋白制备纳米银的合成机制,同时探究该生物法合成的纳米银对金黄色葡萄球菌、大肠杆菌、青霉菌、酿酒酵母的抑菌能力。具有极其广阔的应用前景和工业价值。3. The artificially modified protein of the present invention successfully synthesized nano silver, found the key functional region of the modified protein, and successfully amplified its corresponding DNA. After recombinant vector and prokaryotic expression, an engineering bacterium capable of efficiently synthesizing biological nano silver was obtained in large quantities. The expression level of the SNA15 protein is high, which is more than 10 times the expression level before artificial modification, and the protein is stable. The nano silver synthesized by SNA15 protein has good biological activity, controllable particle size, mild synthesis conditions, and SNA15 protein The synthesis of nano-silver belongs to non-enzyme-catalyzed nano-silver synthesis, which is different from the conventional enzyme-catalyzed synthesis of nano-silver. There is no mutation in the enzyme active center that makes it impossible to synthesize nano-silver. There is still no research on this aspect. The invention is conducive to revealing the synthesis mechanism of nano-silver prepared by using a single non-enzyme-catalyzed protein, and at the same time exploring the antibacterial ability of the nano-silver synthesized by the biological method to Staphylococcus aureus, Escherichia coli, Penicillium and Saccharomyces cerevisiae. It has extremely broad application prospects and industrial value.

附图说明Description of drawings

图1为目的基因的琼脂糖凝胶电泳;Fig. 1 is the agarose gel electrophoresis of target gene;

图2为pET-28a(+)重组质粒双酶切验证琼脂糖凝胶电泳;Fig. 2 is the agarose gel electrophoresis of pET-28a (+) recombinant plasmid double-enzyme digestion verification;

图3为改造蛋白上清和对照组的SDS-PAGE电泳图与原始蛋白经过亲和层析纯化后的SDS-PAGE电泳图;其中图3a为重组蛋白的SNA15 protein,图3b为改造之前的蛋白(阳性对照);Fig. 3 is the SDS-PAGE electrophoresis pattern of the modified protein supernatant and the control group and the SDS-PAGE electrophoresis pattern of the original protein after affinity chromatography purification; wherein Fig. 3a is the SNA15 protein of the recombinant protein, and Fig. 3b is the protein before transformation (positive control);

图4为阴离子层析纯化的SDS-PAGE电泳图;Fig. 4 is the SDS-PAGE electrophoresis figure of anion chromatography purification;

图5为纳米银合成峰图以及合成颜色;其中图5a为不同蛋白在相同条件下所合成纳米银的特征吸收峰图,图5b为不同蛋白在相同条件下所合成纳米银合成的纳米银溶液的颜色,图5c为重组蛋白的SNA15 protein在不同温度下合成纳米银;Fig. 5 is nano-silver synthesis peak diagram and synthetic color; wherein Fig. 5a is the characteristic absorption peak diagram of nano-silver synthesized by different proteins under the same conditions, Fig. 5b is the color of nano-silver solution synthesized by different proteins under the same conditions, and Fig. 5c is the synthesis of nano-silver by SNA15 protein of recombinant protein at different temperatures;

图6为SEM扫描电镜表征图;Figure 6 is a SEM scanning electron microscope characterization diagram;

图7为TEM透射电镜表征图;Figure 7 is a TEM characterization diagram;

图8为纳米银对金黄色葡萄球菌,大肠杆菌,酿酒酵母,青霉菌的抑菌效果。Figure 8 shows the antibacterial effect of nano silver on Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae and Penicillium.

具体实施方式Detailed ways

下面结合实施例和附图对本发明做进一步的说明。The present invention will be further described below in conjunction with the embodiments and the accompanying drawings.

以下实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径获得。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.

实施例1Example 1

基因克隆、表达载体的构建与验证Gene cloning, construction and verification of expression vectors

以已知纳米银蛋白的核苷酸为模板(CN110804089中SEQ ID NO.2;本发明中序列表中SEQ ID NO.5),通过对已知核苷酸编码的合成纳米银蛋白结构进行空间模拟,分析各结构域功能和作用,进行蛋白质的结构域重排,筛选获得可以高效进行纳米银合成的结构域(筛选方法同实施例2和3),以重排后编码重排蛋白质的基因序列作为模板,设计定点突变引物,引物交由上海杰李生物技术有限公司合成,定点突变序列如下:With the nucleotide of known nano silver protein as template (SEQ ID NO.2 in CN110804089; SEQ ID NO.5 in the sequence listing in the present invention), by carrying out spatial simulation to the synthetic nano silver protein structure of known nucleotide encoding, analyze each structural domain function and effect, carry out the structural domain rearrangement of protein, screen and obtain the structural domain that can efficiently carry out nano silver synthesis (screening method is the same as embodiment 2 and 3), with the gene sequence of coding rearrangement protein after rearrangement as template, design site-directed mutagenesis primer, primer cross Synthesized by Shanghai Jieli Biotechnology Co., Ltd., the site-directed mutation sequence is as follows:

SEQ ID NO.3:FSEQ ID NO. 3: F

GGAATTCCATATGGATCGAACTCGCCCAAAAGATAAGAAAGTAAAAGTGAAAAATTCAAAAACTTTAGTTGTGACTTTCTCTAAAACATTAGATTCTTCAGATGGAAACGGAATTCCATATGGATCGAACTCGCCCAAAAGATAAGAAAGTAAAAGTGAAAAATTCAAAACTTTAGTTGTGACTTTCTCTAAAACATTAGATTCTTCAGATGGAAAC

SEQ ID NO.4:RSEQ ID NO.4: R

CCGCTCGAGAGCTACAGTAAATCCGTCAGCTGCTCTCTTCGTAGTTTCTGGTTTGAATACAGTTGCAAAGTCAGTTTTAAGATTAGCAATATGAGTTGAATCATCTTCCCGCTCGAGAGCTACAGTAAATCCGTCAGCTGCTCTCTTCGTAGTTTCTGGTTTGAATACAGTTGCAAAGTCAGTTTTAAGATTAGCAATATGAGTTGAATCATCTTC

采用PCR定点突变目的基因。PCR为降落PCR,程序设计如下,98℃预变性5min,98℃变性15s,起初退火温度为65℃,退火15s,一共15个循环。每隔一个循环温度下降1℃,每次退火时间为15s,72℃延伸100s,前一部分变性退火延伸为15个循环。后续程序为98℃变性15s,退火温度为55℃,退火15s,延伸温度72℃,延伸100s,一共30个循环,充分延伸5min,12℃保温。Site-directed mutation of the target gene by PCR. The PCR is a touch-down PCR, and the program design is as follows: pre-denaturation at 98°C for 5 minutes, denaturation at 98°C for 15s, initial annealing temperature at 65°C, annealing for 15s, a total of 15 cycles. The temperature was decreased by 1°C every other cycle, the annealing time was 15s each time, the extension was 100s at 72°C, and the denaturing annealing extension in the previous part was 15 cycles. The follow-up procedure is denaturation at 98°C for 15 s, annealing at 55°C for 15 s, extension at 72°C, and extension for 100 s, a total of 30 cycles, full extension for 5 min, and heat preservation at 12°C.

PCR体系为5×PrimeSTAR GXL Buffer 10μL,上游引物F1μL,下游引物R1μL,PrimeSTAR GXL DNA Polymerase 1μL,模板0.1μL,dNTP Mixture 4μL,DMSO 2.5μL,ddH2O30.5μL(其中各试剂均购于Takara);待PCR程序完成之后,取样1μL进行琼脂糖凝胶电泳,结果如图1所示。通过PCR直接回收的方式得到的目的基因与pET-28a(+)载体都使用限制性内切酶NdeⅠ和XhoⅠ进行双酶切,对双酶切产物进行琼脂糖凝胶电泳,割胶回收,将回收到的酶切产物使用T4 DNA连接酶进行连接。将连接产物导入感受态细胞DH5α中进行转化,向转化后的离心管加入700uL无抗LB液体培养基,37℃温和振荡培养60min后,将菌液5000rpm离心2min,每管弃去600uL的上清液,利用剩余培养基悬浮沉淀菌体后,均匀涂布于含Kan抗性的筛选平板上,将平板37℃放置过夜培养。于含有Kan抗性的平板上挑取阳性转化子,转接到5mL含液体LB培养基(含Kan 50ug/mL)中进行过夜培养12h后提取质粒,进行双酶切验证,验证图片如图2所示。将图2质粒送至上海杰李生物技术有限公司进行测序,得到的目的基因的核苷酸序列如SEQ ID NO.1所示,长度为1614bp,命名为SNA15。The PCR system was 5×PrimeSTAR GXL Buffer 10 μL, upstream primer F1 μL, downstream primer R1 μL, PrimeSTAR GXL DNA Polymerase 1 μL, template 0.1 μL, dNTP Mixture 4 μL, DMSO 2.5 μL, ddH 2 O3 0.5 μL (each reagent was purchased from Takara); after the PCR program was completed, sample 1 μL for agar Sugar gel electrophoresis, the results are shown in Figure 1. Both the target gene and the pET-28a(+) vector obtained by direct recovery by PCR were double-digested with restriction endonucleases NdeI and XhoI, and the double-digested products were subjected to agarose gel electrophoresis, recovered by tapping the gel, and the recovered enzyme-digested products were ligated with T4 DNA ligase. The ligation product was introduced into competent cells DH5α for transformation, and 700uL of anti-antibiotic-free LB liquid medium was added to the transformed centrifuge tube. After gentle shaking at 37°C for 60 minutes, the bacterial solution was centrifuged at 5000rpm for 2 minutes, and 600uL of supernatant was discarded from each tube. Positive transformants were picked on a plate containing Kan resistance, transferred to 5 mL of liquid LB medium (containing Kan 50ug/mL) for overnight culture for 12 hours, and then the plasmid was extracted for double enzyme digestion verification. The verification picture is shown in Figure 2. The plasmid in Figure 2 was sent to Shanghai Jieli Biotechnology Co., Ltd. for sequencing. The nucleotide sequence of the target gene obtained is shown in SEQ ID NO.1, with a length of 1614bp and named SNA15.

实施例2Example 2

重组蛋白的SNA15 protein表达与纯化Expression and purification of recombinant protein SNA15 protein

将实施例1成功构建好的载体质粒转入感受态细胞BL21中,取感受态细胞BL21内导入空质粒进行空载对照,并将模板基因(CN110804089中SEQ ID NO.2)按同样的方法构建载体转入感受态细胞BL21中作为阳性对照,大肠杆菌转化步骤相同,转化完成后,分别向转化后的离心管加入700uL无抗LB液体培养基,37℃温和振荡培养50min后,将两管菌液5000rpm离心2min,每管弃去600uL的上清液,利用剩余培养基悬浮沉淀菌体后,均匀涂布于含Kan抗性的筛选平板上,将两块平板37℃放置过夜培养。然后从抗性平板上挑取单菌落接种于5mL液体培养基(含Kan 50ug/mL)中进行过夜培养,16h后将两管5mL液体培养基(含Kan50ug/mL)培养的大肠杆菌分别转接到800mL液体LB培养基(含Kan 50ug/mL)中进行培养,培养条件为37℃,180rpm,培养4h左右。OD至0.6时加入终浓度0.05mM的IPTG进行诱导,诱导条件为16℃,180rpm诱导16h。在4℃,1.5MPa条件下进行3个循环的破碎,然后用超声破碎仪在冰水浴的条件下,以400W,工作2s,间隔8s为循环超声30min。后以10000rpm,50min,4℃离心取上清,取等量溶液进行SDS-PAGE电泳。结果如图3a所示,1:含有重组载体的大肠杆菌上清液;2:未转化的大肠杆菌上清液,由图3可见成功表达的蛋白大小在57.7kDa,与蛋白预期大小一致。图3b改造之前的蛋白(阳性对照)大小在120kDa,图3b的条带为镍柱纯化后的条带,可以看出其表达量低,并且经纯化发现其性质不稳定,由BBI蛋白质定量试剂(上海生工)溶液测定蛋白浓度发现SNA15 protein表达量高,是经人工改造之前表达量的10倍以上,且在进行蛋白质纯化的过程中发现SNA15 protein蛋白性质稳定。将SNA15protein的破碎上清经过镍柱亲和层析,目的蛋白质的挂柱、洗杂和洗脱。挂柱前先对柱子进行处理,确保柱子上没有蛋白质,然后用裂解液进行平衡,平衡后再用离心后的上清通过镍柱,反复3遍,使上清中的目的蛋白质都挂在柱子上,然后用裂解buffer配成的20mM咪唑进行洗杂直至用G-250检测流出液时G-250不变蓝,洗杂后用Elution buffer洗脱至流出液用G-250检测时不变蓝,至此目的蛋白质被洗脱下来,得到用镍柱亲和层析初步纯化的目的。镍柱亲和层析得到的样品里面会含有核酸和较多的杂蛋白质,为了能够得到更纯、质量更好的样品,需要将得到的样品用离子交换层析做了进一步纯化。采用离子交换层析,将蛋白质的浓缩,因为镍柱洗脱后的蛋白质溶液由于体积太大不能直接上样过离子交换层析,需经过浓缩把大体积浓缩到上样所要求的体积范围内,把镍柱洗脱后的溶液转移至浓缩管中,在4℃,6000rpm条件下浓缩,然后用Buffer A稀释。上样前需对蛋白质纯化仪AKTA进行平衡处理,进行阴离子层析。取不同稀释样品等体积上样量进行SDS-PAGE电泳,结果如图4所示。结果显示获得蛋白质样品只有一条单一条带,说明得到纯化后的重组蛋白的SNA15 protein纯度较高只有一条单一的条带,其氨基酸序列如SEQ ID NO.2所示。The vector plasmid successfully constructed in Example 1 was transferred into the competent cell BL21, and the empty plasmid was introduced into the competent cell BL21 for empty control, and the template gene (SEQ ID NO.2 in CN110804089) was constructed by the same method and transferred into the competent cell BL21 as a positive control. The E. coli transformation procedure was the same. Centrifuge the two tubes of bacterial solution at 5000rpm for 2min, discard 600uL of supernatant in each tube, use the remaining culture medium to suspend and precipitate the bacterial cells, spread evenly on the screening plate containing Kan resistance, and place the two plates at 37°C for overnight culture. Then pick a single colony from the resistant plate and inoculate it in 5mL liquid medium (containing Kan 50ug/mL) for overnight culture. After 16 hours, transfer the Escherichia coli cultured in two tubes of 5mL liquid medium (containing Kan50ug/mL) to 800mL liquid LB medium (containing Kan 50ug/mL) for cultivation. The culture conditions are 37°C, 180rpm, and cultured for about 4h. When the OD reached 0.6, IPTG with a final concentration of 0.05mM was added for induction, and the induction conditions were 16°C, 180rpm for 16h. Under the conditions of 4°C and 1.5MPa, three cycles of crushing were carried out, and then a sonicator was used in an ice-water bath, with 400W, working for 2s, and an interval of 8s as a cycle of ultrasonication for 30min. Afterwards, centrifuge at 10000rpm, 50min, 4°C to get the supernatant, and take an equal amount of the solution for SDS-PAGE electrophoresis. The results are shown in Figure 3a, 1: supernatant of E. coli containing the recombinant vector; 2: supernatant of untransformed E. coli. It can be seen from Figure 3 that the size of the successfully expressed protein is 57.7 kDa, which is consistent with the expected size of the protein. The size of the protein (positive control) before modification in Figure 3b is 120kDa, and the band in Figure 3b is the band after nickel column purification. It can be seen that its expression level is low, and its property is found to be unstable after purification. The protein concentration of BBI protein quantification reagent (Shanghai Sangong) was used to measure the protein concentration. It was found that the expression level of SNA15 protein was high, which was more than 10 times the expression level before artificial modification, and it was found that the SNA15 protein protein was stable in the process of protein purification. The crushed supernatant of SNA15protein was subjected to nickel column affinity chromatography, and the target protein was hung on the column, washed and eluted. Before hanging the column, treat the column to ensure that there is no protein on the column, then balance it with the lysate, and then use the supernatant after centrifugation to pass through the nickel column, repeat 3 times, so that the target protein in the supernatant is hung on the column, and then wash the impurities with 20mM imidazole prepared from the cleavage buffer until the G-250 does not turn blue when the effluent is detected by G-250. So far, the target protein is eluted, and the target is preliminarily purified by nickel column affinity chromatography. The samples obtained by nickel column affinity chromatography will contain nucleic acids and more impurity proteins. In order to obtain more pure and better quality samples, the obtained samples need to be further purified by ion exchange chromatography. Ion exchange chromatography is used to concentrate the protein. Because the protein solution eluted by the nickel column is too large to be directly loaded on the ion exchange chromatography, it needs to be concentrated to concentrate the large volume to the volume required for loading. Before loading the sample, the protein purification instrument AKTA needs to be equilibrated for anion chromatography. Equal volumes of different diluted samples were taken for SDS-PAGE electrophoresis, and the results are shown in Figure 4. The results showed that the obtained protein sample had only one single band, indicating that the purified recombinant protein SNA15 protein had a relatively high purity and only had one single band, and its amino acid sequence was shown in SEQ ID NO.2.

实施例3Example 3

合成纳米银的过程、表征与分析Synthesis, Characterization and Analysis of Silver Nanoparticles

收集实施例2中得到的只有单一条带的目的蛋白,将收集到的纯组分目的蛋白混合,在5mL合成体系中加入14mg硝酸银再加入终浓度为152ug/mL的SNA15 protein蛋白溶液,另一管对照加入152ug/mL的纯化的原始蛋白溶液(改造之前模板蛋白,即实施例2的阳性对照),剩下的溶液均用超纯水补齐至5mL,pH调至12,温度30℃,转速250rpm,反应时间16h即可合成纳米银,空白对照组内不加入目的蛋白其他条件与实验组一致,测定其特征吸收峰与合成的纳米银溶液的颜色,图5所示A、B、C分别为SNA15 protein合成的纳米银、原始蛋白合成的纳米银(阳性对照)、对照组不添加任何蛋白,图5a可知本发明实施例2制备经过改造的蛋白在420nm处产生吸收峰,而未经改造的蛋白在430nm处产生吸收峰,纳米银的表面等离子共振是由于粒子的表面电子云协同振动产生的,通常在410-440nm内有一吸收峰,一般情况下,粒子越小,吸收峰的位置就越向前偏移,这表明改造后的蛋白合成的纳米银粒径更小,合成效果更好,并且由图5b可见经过改造的蛋白合成的纳米银颜色深浓度更高(其中A为深褐色、B为浅黄色、C为透明)。按上述方法调整不同的反应温度(20-60℃),如图5c中A、B、C、D、E的温度分别为30℃、20℃、40℃、50℃、60℃,相同pH的情况下进行的纳米银合成实验,由图像可知在其在30℃的合成条件最好。此外,将实施例2阴离子层析洗脱的蛋白溶液进一步去除Nacl对纳米银合成实验的影响,采用透析的方式梯度透析置换掉Nacl,并且将置换的蛋白溶液控制在152ug/mL,以上述相同条件进行纳米银合成得到纳米银溶液。Collect the target protein with only a single band obtained in Example 2, mix the collected pure components of the target protein, add 14 mg of silver nitrate to the 5 mL synthesis system, and then add the SNA15 protein solution with a final concentration of 152 ug/mL, and add 152 ug/mL of purified original protein solution (template protein before transformation, that is, the positive control of Example 2) to the other control tube, and the remaining solution is made up to 5 mL with ultrapure water, and the pH is adjusted to 12, the temperature is 30 ° C, and the rotation speed is 250 r pm, reaction time 16h can synthesize nano-silver, do not add target protein in the blank control group, other conditions are consistent with the experimental group, measure its characteristic absorption peak and the color of the synthesized nano-silver solution, A, B, C shown in Figure 5 are respectively the nano-silver synthesized by SNA15 protein, the nano-silver synthesized by the original protein (positive control), and the control group does not add any protein. It can be seen from Fig. Plasmon resonance is caused by the synergistic vibration of the electron cloud on the surface of the particle, and there is usually an absorption peak within 410-440nm. In general, the smaller the particle, the more the position of the absorption peak shifts forward, which indicates that the particle size of the nano-silver synthesized by the modified protein is smaller and the synthesis effect is better, and it can be seen from Figure 5b that the color of the nano-silver synthesized by the modified protein is higher in color (A is dark brown, B is light yellow, and C is transparent). Adjust different reaction temperatures (20-60°C) according to the above method, as shown in Figure 5c, the temperatures of A, B, C, D, and E are 30°C, 20°C, 40°C, 50°C, and 60°C, respectively. In the nano-silver synthesis experiment carried out under the same pH, it can be seen from the image that the synthesis condition at 30°C is the best. In addition, the protein solution eluted by anion chromatography in Example 2 was further removed from the influence of Nacl on the nano-silver synthesis experiment, and Nacl was replaced by gradient dialysis by dialysis, and the replaced protein solution was controlled at 152ug/mL, and nano-silver was synthesized under the same conditions as above to obtain a nano-silver solution.

SNA15 protein合成的纳米银其表征SEM如图6所示,图6可见合成的纳米银在溶液中整体的分散效果好,并未出现大面积的团聚现象,将样品进行超声后再进行TEM透射电镜,TEM如图7所示,显示纳米银成功合成,粒径大小分布于2-25nm,且透射电镜下面可以看出纳米银表面包裹着蛋白显示该生物法合成的纳米银具有良好的生物活性。The nano-silver synthesized by SNA15 protein is characterized by SEM as shown in Figure 6. Figure 6 shows that the overall dispersion effect of the synthesized nano-silver in the solution is good, and there is no large-scale agglomeration phenomenon. After the sample is ultrasonically subjected to TEM transmission electron microscopy, TEM is shown in Figure 7. It shows that nano-silver was successfully synthesized, and the particle size distribution is 2-25nm.

实施例4Example 4

合成纳米银抑菌方面的应用Application of synthetic nano-silver in antibacterial aspect

将金黄色葡萄球菌、大肠杆菌培养到对数期,在2瓶固体LB培养基快要凝固的时候分别加入培养基体积量1%的大肠杆菌、金黄色葡萄球菌摇匀之后倒入一次性平板中,等平板凝固放置牛津杯在制成的固体LB平板上。将培养到对数期的酿酒酵母在1瓶固体YPD培养基快要凝固的时候加入培养基体积量1%酿酒酵母摇匀之后倒入一次性平板中,等平板凝固放置牛津杯在制成的固体YPD平板上。将在茄子瓶PDA斜面上培养7天的青霉菌孢子,用30mL无菌水刮下,稀释一倍,稀释后的孢子液取200uL涂布至PDA平板上,所有平板均取相同体积的实施例3制备的纳米银溶液100μL加入牛津杯内,其中1-AgNPs为阴离子层析洗脱蛋白直接进行纳米银合成实验得到的纳米银溶液,2-AgNPs为阴离子层析洗脱蛋白透析去除Nacl对合成实验干扰所合成的纳米银溶液,氨苄青霉素钠以工作浓度100ug/mL加入100μL,SNA15 protein蛋白溶液加入100μL。将LB平板都置于37℃下进行培养,YPD平板置于30℃下进行培养,PDA平板置于28℃恒温恒湿培养箱进行培养;其中大肠杆菌、金黄色葡萄球菌培养时间为12h,酿酒酵母培养时间为24h,青霉菌培养时间为72h,其结果图8所示,该纳米银具有广谱抗菌能力,对原核生物大肠杆菌,金黄色葡萄球菌,以及真核生物酿酒酵母,青霉菌均有很好的抑制能力,并且去除Nacl所得到的纳米银抑菌效果更强。Cultivate Staphylococcus aureus and Escherichia coli to the logarithmic phase. When the two bottles of solid LB medium are about to solidify, add Escherichia coli and Staphylococcus aureus with a volume of 1% of the medium volume, shake well, pour them into a disposable plate, wait for the plate to solidify and place the Oxford cup on the solid LB plate. When the Saccharomyces cerevisiae cultured to the logarithmic phase is about to solidify, add 1% of the medium volume Saccharomyces cerevisiae and shake well, then pour it into a disposable plate, wait for the plate to solidify and place the Oxford cup on the solid YPD plate made. The Penicillium spores cultured on the PDA slant of the eggplant bottle for 7 days were scraped off with 30mL sterile water, diluted twice, and 200uL of the diluted spore liquid was taken and spread on the PDA plate. All plates took the same volume of 100 μL of the nano-silver solution prepared in Example 3 and added it to the Oxford cup. 1-AgNPs was the nano-silver solution obtained by directly carrying out the nano-silver synthesis experiment of anion chromatography eluted protein, and 2-AgNPs was the anion chromatography eluted protein dialyzed to remove Na cl The nano-silver solution synthesized by interfering with the synthesis experiment, ampicillin sodium was added at a working concentration of 100ug/mL to 100 μL, and the SNA15 protein protein solution was added to 100 μL. The LB plates were cultured at 37°C, the YPD plates were cultured at 30°C, and the PDA plates were cultured in a constant temperature and humidity incubator at 28°C; the culture time of Escherichia coli and Staphylococcus aureus was 12 hours, the culture time of Saccharomyces cerevisiae was 24 hours, and the culture time of Penicillium was 72 hours. Inhibitory ability, and the antibacterial effect of nano-silver obtained by removing Nacl is stronger.

实施例5Example 5

采用实施例3合成过程,不同之处在于:硝酸银底物浓度为14mM,合成纳米银的反应温度范围为20℃,转速100rpm,pH为9,反应时间24h。The synthesis process of Example 3 was adopted, with the difference that the substrate concentration of silver nitrate was 14 mM, the reaction temperature range for synthesizing nano-silver was 20° C., the rotation speed was 100 rpm, the pH was 9, and the reaction time was 24 hours.

实施例6Example 6

采用实施例3合成过程,不同之处在于:硝酸银为底物浓度30mM,合成纳米银的反应温度范围为50℃,转速250rpm,pH为13,反应时间16h。Using the synthesis process of Example 3, the difference is that silver nitrate is used as the substrate with a concentration of 30 mM, the reaction temperature range for synthesizing nano-silver is 50° C., the rotation speed is 250 rpm, the pH is 13, and the reaction time is 16 hours.

在上述条件下,均可以成功合成出纳米银,而且每次合成条件都很稳定。Under the above conditions, nano-silver can be successfully synthesized, and each synthesis condition is very stable.

综上,本发明制备的纳米银形状规则为球形纳米银,其中,该合成纳米银反应为非酶催化的纳米银合成反应,该纳米银粒径范围为2-25nm,合成粒径范围可控,并且所合成的纳米银表面包被着蛋白。这说明该纳米银具有良好的生物活性,并且经过国内外文献的报道,纳米银可以用来抵抗肿瘤,有优秀的抗肿瘤作用,有望被运用到肿瘤的治疗当中,例如对于肺癌细胞,乳腺癌细胞的抑制。但是这种具有生物活性的纳米银对正常巨噬细胞毒性很低,有望开发出新的抗癌制剂,同时纳米银拥有优秀的抗菌性能,且具有广谱性,在食品保鲜,水产养殖等诸多领域具有广泛的前景。In summary, the shape of the silver nanometer prepared by the present invention is spherical nanosilver, wherein the synthetic nanosilver reaction is a non-enzyme-catalyzed nanosilver synthesis reaction, the particle size range of the nanosilver is 2-25nm, and the synthetic particle size range is controllable, and the surface of the synthesized nanosilver is coated with protein. This shows that the nano-silver has good biological activity, and according to domestic and foreign literature reports, nano-silver can be used to resist tumors, has excellent anti-tumor effect, and is expected to be used in the treatment of tumors, such as the inhibition of lung cancer cells and breast cancer cells. However, this biologically active nanosilver has very low toxicity to normal macrophages, and it is expected to develop new anticancer agents. At the same time, nanosilver has excellent antibacterial properties and has a broad spectrum, and has broad prospects in many fields such as food preservation and aquaculture.

序列表 sequence listing

<110> 淮阴工学院<110> Huaiyin Institute of Technology

<120> 一种人工改造基因、SNA15蛋白及其高效合成纳米银的方法<120> An artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver

<160> 5<160> 5

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1614<211> 1614

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

atggatcgaa ctcgcccaaa agataagaaa gtaaaagtga aaaattcaaa aactttagtt 60atggatcgaa ctcgcccaaa agataagaaa gtaaaagtga aaaattcaaa aactttagtt 60

gtgactttct ctaaaacatt agattcttca gatggaaaca aaaacaacta tactgttctt 120gtgactttct ctaaaacatt agattcttca gatggaaaca aaaacaacta tactgttctt 120

gataaagacg gaaaagttat ttctgttaaa gacgcagtat tatctaacga taaaaaatct 180gataaagacg gaaaagttat ttctgttaaa gacgcagtat tatctaacga taaaaaatct 180

gtaactgtaa ctctatataa agagttatca gatggtaaga acacattaga agttaagaat 240gtaactgtaa ctctatataa agagttatca gatggtaaga acacattaga agttaagaat 240

gtaaaagata acacaaaatt agagaataca atgttagatt ataaagaagt tattgaaaat 300gtaaaagata acacaaaatt agagaataca atgttagatt ataaagaagt tattgaaaat 300

gctgacagag tagctcctac aatggattca aaatcatgga acacatctca aagacgagtt 360gctgacagag tagctcctac aatggattca aaatcatgga acacatctca aagacgagtt 360

gttattaaat tctctgaaaa aatggatgtt gaaacattat ctaactactc taattatctt 420gttattaaat tctctgaaaa aatggatgtt gaaacattat ctaactactc taattatctt 420

gtagatatta atggacaatt acgttcagaa ttagctacta aaaatcgcaa attaaataat 480gtagatatta atggacaatt acgttcagaa ttagctacta aaaatcgcaa attaaataat 480

gttcatattt taggttctga taattctgat tttgttgaaa ttgctaccaa aaccaatgat 540gttcatattt taggttctga taattctgat tttgttgaaa ttgctaccaa aaccaatgat 540

gttaatattg aagttgaaaa tgcttttgat attggtggtt cttctaatac tttacatact 600gttaatattg aagttgaaaa tgcttttgat attggtggtt cttctaatac tttacatact 600

gttttagctt taaatgatgg ttctaaatta ggtgaatcta ctactggttt tgaatataaa 660gttttagctt taaatgatgg ttctaaatta ggtgaatcta ctactggttt tgaatataaa 660

tctaaagttg ctgctgaaac tattaatatt attacttttg ctcaaaaaat taaaggtggt 720tctaaagttg ctgctgaaac tattaatatt attacktttg ctcaaaaaat taaaggtggt 720

tcttactctg ctgcattagt tgatagaaaa actgttgaaa tcaaatttaa tgctggcatc 780tcttactctg ctgcattagt tgatagaaaa actgttgaaa tcaaatttaa tgctggcatc 780

gaagatgtaa aagctggtgg tattacttta gctacaggta gcacaaatac aatttcttca 840gaagatgtaa aagctggtgg tattacttta gctacaggta gcacaaatac aatttcttca 840

attgaagcaa atggtacttc aactgttaaa gtgaaatttg ataaagaaat taatgctgac 900attgaagcaa atggtacttc aactgttaaa gtgaaatttg ataaagaaat taatgctgac 900

gcttctaatt tcgaattaaa tgtaaaattt gataaattag ttactttagc tggtgattca 960gcttctaatt tcgaattaaa tgtaaaattt gataaattag ttactttagc tggtgattca 960

tttacaggtt ctgatgtaat caaagcgcca acaaaaacag tagctggtaa tttattggat 1020tttacaggtt ctgatgtaat caaagcgcca acaaaaacag tagctggtaa tttattggat 1020

aaagttgctc ctgaagtggt tggagacgct aattatgcaa caaatcaagc tgataaaaca 1080aaagttgctc ctgaagtggt tggagacgct aattatgcaa caaatcaagc tgataaaaca 1080

attttagttc catttactga agaacttaca cttaatggat cttctgcaga attagctgca 1140attttagttc catttactga agaacttaca cttaatggat cttctgcaga attagctgca 1140

aatgatttta aagttgttcg tcacagtgat agaaaaacac taactgcagg ttctgattat 1200aatgatttta aagttgttcg tcacagtgat agaaaaacac taactgcagg ttctgattat 1200

actgtaaaac tatctcctga taataaaggt gttttaatta ctattaaagc agcagatact 1260actgtaaaac tatctcctga taataaaggt gttttaatta ctattaaagc agcagatact 1260

acagttggtg ttttagatgt taataaaatt gattctgcta atgctcaatt atcttatgct 1320acagttggtg ttttagatgt taataaaatt gattctgcta atgctcaatt atcttatgct 1320

gaagtttatt ctggtgcttt tattgctgct gaatcaactc gtgaatctgc aaatgcaatt 1380gaagtttatt ctggtgcttt tattgctgct gaatcaactc gtgaatctgc aaatgcaatt 1380

gacttcggtg ctgcaactgc aaaaactgct acagttagtg gatcatacaa aactactggt 1440gacttcggtg ctgcaactgc aaaaactgct acagttagtg gatcatacaa aactactggt 1440

cctacagatg ttgaagctaa tgaaacttta gtatttactt tctcttctga agatgattca 1500cctacagatg ttgaagctaa tgaaacttta gtatttactt tctcttctga agatgattca 1500

actcatattg ctaatcttaa aactgacttt gcaactgtat tcaaaccaga aactacgaag 1560actcatattg ctaatcttaa aactgacttt gcaactgtat tcaaaccaga aactacgaag 1560

agagcagctg acggatttac tgtagctctc gagcaccacc accaccacca ctga 1614agagcagctg acggatttac tgtagctctc gagcaccacc accaccacca ctga 1614

<210> 2<210> 2

<211> 537<211> 537

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

Met Asp Arg Thr Arg Pro Lys Asp Lys Lys Val Lys Val Lys Asn SerMet Asp Arg Thr Arg Pro Lys Asp Lys Lys Val Lys Val Lys Asn Ser

1 5 10 151 5 10 15

Lys Thr Leu Val Val Thr Phe Ser Lys Thr Leu Asp Ser Ser Asp GlyLys Thr Leu Val Val Thr Phe Ser Lys Thr Leu Asp Ser Ser Asp Gly

20 25 30 20 25 30

Asn Lys Asn Asn Tyr Thr Val Leu Asp Lys Asp Gly Lys Val Ile SerAsn Lys Asn Asn Tyr Thr Val Leu Asp Lys Asp Gly Lys Val Ile Ser

35 40 45 35 40 45

Val Lys Asp Ala Val Leu Ser Asn Asp Lys Lys Ser Val Thr Val ThrVal Lys Asp Ala Val Leu Ser Asn Asp Lys Lys Ser Val Thr Val Thr

50 55 60 50 55 60

Leu Tyr Lys Glu Leu Ser Asp Gly Lys Asn Thr Leu Glu Val Lys AsnLeu Tyr Lys Glu Leu Ser Asp Gly Lys Asn Thr Leu Glu Val Lys Asn

65 70 75 8065 70 75 80

Val Lys Asp Asn Thr Lys Leu Glu Asn Thr Met Leu Asp Tyr Lys GluVal Lys Asp Asn Thr Lys Leu Glu Asn Thr Met Leu Asp Tyr Lys Glu

85 90 95 85 90 95

Val Ile Glu Asn Ala Asp Arg Val Ala Pro Thr Met Asp Ser Lys SerVal Ile Glu Asn Ala Asp Arg Val Ala Pro Thr Met Asp Ser Lys Ser

100 105 110 100 105 110

Trp Asn Thr Ser Gln Arg Arg Val Val Ile Lys Phe Ser Glu Lys MetTrp Asn Thr Ser Gln Arg Arg Val Val Ile Lys Phe Ser Glu Lys Met

115 120 125 115 120 125

Asp Val Glu Thr Leu Ser Asn Tyr Ser Asn Tyr Leu Val Asp Ile AsnAsp Val Glu Thr Leu Ser Asn Tyr Ser Asn Tyr Leu Val Asp Ile Asn

130 135 140 130 135 140

Gly Gln Leu Arg Ser Glu Leu Ala Thr Lys Asn Arg Lys Leu Asn AsnGly Gln Leu Arg Ser Glu Leu Ala Thr Lys Asn Arg Lys Leu Asn Asn

145 150 155 160145 150 155 160

Val His Ile Leu Gly Ser Asp Asn Ser Asp Phe Val Glu Ile Ala ThrVal His Ile Leu Gly Ser Asp Asn Ser Asp Phe Val Glu Ile Ala Thr

165 170 175 165 170 175

Lys Thr Asn Asp Val Asn Ile Glu Val Glu Asn Ala Phe Asp Ile GlyLys Thr Asn Asp Val Asn Ile Glu Val Glu Asn Ala Phe Asp Ile Gly

180 185 190 180 185 190

Gly Ser Ser Asn Thr Leu His Thr Val Leu Ala Leu Asn Asp Gly SerGly Ser Ser Asn Thr Leu His Thr Val Leu Ala Leu Asn Asp Gly Ser

195 200 205 195 200 205

Lys Leu Gly Glu Ser Thr Thr Gly Phe Glu Tyr Lys Ser Lys Val AlaLys Leu Gly Glu Ser Thr Thr Gly Phe Glu Tyr Lys Ser Lys Val Ala

210 215 220 210 215 220

Ala Glu Thr Ile Asn Ile Ile Thr Phe Ala Gln Lys Ile Lys Gly GlyAla Glu Thr Ile Asn Ile Ile Thr Phe Ala Gln Lys Ile Lys Gly Gly

225 230 235 240225 230 235 240

Ser Tyr Ser Ala Ala Leu Val Asp Arg Lys Thr Val Glu Ile Lys PheSer Tyr Ser Ala Ala Leu Val Asp Arg Lys Thr Val Glu Ile Lys Phe

245 250 255 245 250 255

Asn Ala Gly Ile Glu Asp Val Lys Ala Gly Gly Ile Thr Leu Ala ThrAsn Ala Gly Ile Glu Asp Val Lys Ala Gly Gly Ile Thr Leu Ala Thr

260 265 270 260 265 270

Gly Ser Thr Asn Thr Ile Ser Ser Ile Glu Ala Asn Gly Thr Ser ThrGly Ser Thr Asn Thr Ile Ser Ser Ile Glu Ala Asn Gly Thr Ser Ser Thr

275 280 285 275 280 285

Val Lys Val Lys Phe Asp Lys Glu Ile Asn Ala Asp Ala Ser Asn PheVal Lys Val Lys Phe Asp Lys Glu Ile Asn Ala Asp Ala Ser Asn Phe

290 295 300 290 295 300

Glu Leu Asn Val Lys Phe Asp Lys Leu Val Thr Leu Ala Gly Asp SerGlu Leu Asn Val Lys Phe Asp Lys Leu Val Thr Leu Ala Gly Asp Ser

305 310 315 320305 310 315 320

Phe Thr Gly Ser Asp Val Ile Lys Ala Pro Thr Lys Thr Val Ala GlyPhe Thr Gly Ser Asp Val Ile Lys Ala Pro Thr Lys Thr Val Ala Gly

325 330 335 325 330 335

Asn Leu Leu Asp Lys Val Ala Pro Glu Val Val Gly Asp Ala Asn TyrAsn Leu Leu Asp Lys Val Ala Pro Glu Val Val Gly Asp Ala Asn Tyr

340 345 350 340 345 350

Ala Thr Asn Gln Ala Asp Lys Thr Ile Leu Val Pro Phe Thr Glu GluAla Thr Asn Gln Ala Asp Lys Thr Ile Leu Val Pro Phe Thr Glu Glu

355 360 365 355 360 365

Leu Thr Leu Asn Gly Ser Ser Ala Glu Leu Ala Ala Asn Asp Phe LysLeu Thr Leu Asn Gly Ser Ser Ala Glu Leu Ala Ala Asn Asp Phe Lys

370 375 380 370 375 380

Val Val Arg His Ser Asp Arg Lys Thr Leu Thr Ala Gly Ser Asp TyrVal Val Arg His Ser Asp Arg Lys Thr Leu Thr Ala Gly Ser Asp Tyr

385 390 395 400385 390 395 400

Thr Val Lys Leu Ser Pro Asp Asn Lys Gly Val Leu Ile Thr Ile LysThr Val Lys Leu Ser Pro Asp Asn Lys Gly Val Leu Ile Thr Ile Lys

405 410 415 405 410 415

Ala Ala Asp Thr Thr Val Gly Val Leu Asp Val Asn Lys Ile Asp SerAla Ala Asp Thr Thr Val Gly Val Leu Asp Val Asn Lys Ile Asp Ser

420 425 430 420 425 430

Ala Asn Ala Gln Leu Ser Tyr Ala Glu Val Tyr Ser Gly Ala Phe IleAla Asn Ala Gln Leu Ser Tyr Ala Glu Val Tyr Ser Gly Ala Phe Ile

435 440 445 435 440 445

Ala Ala Glu Ser Thr Arg Glu Ser Ala Asn Ala Ile Asp Phe Gly AlaAla Ala Glu Ser Thr Arg Glu Ser Ala Asn Ala Ile Asp Phe Gly Ala

450 455 460 450 455 460

Ala Thr Ala Lys Thr Ala Thr Val Ser Gly Ser Tyr Lys Thr Thr GlyAla Thr Ala Lys Thr Ala Thr Val Ser Gly Ser Tyr Lys Thr Thr Gly

465 470 475 480465 470 475 480

Pro Thr Asp Val Glu Ala Asn Glu Thr Leu Val Phe Thr Phe Ser SerPro Thr Asp Val Glu Ala Asn Glu Thr Leu Val Phe Thr Phe Ser Ser

485 490 495 485 490 495

Glu Asp Asp Ser Thr His Ile Ala Asn Leu Lys Thr Asp Phe Ala ThrGlu Asp Asp Ser Thr His Ile Ala Asn Leu Lys Thr Asp Phe Ala Thr

500 505 510 500 505 510

Val Phe Lys Pro Glu Thr Thr Lys Arg Ala Ala Asp Gly Phe Thr ValVal Phe Lys Pro Glu Thr Thr Lys Arg Ala Ala Asp Gly Phe Thr Val

515 520 525 515 520 525

Ala Leu Glu His His His His His HisAla Leu Glu His His His His His His His His

530 535 530 535

<210> 3<210> 3

<211> 109<211> 109

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

ggaattccat atggatcgaa ctcgcccaaa agataagaaa gtaaaagtga aaaattcaaa 60ggaattccat atggatcgaa ctcgcccaaa agataagaaa gtaaaagtga aaaattcaaa 60

aactttagtt gtgactttct ctaaaacatt agattcttca gatggaaac 109aactttagtt gtgactttct ctaaaacatt agattcttca gatggaaac 109

<210> 4<210> 4

<211> 108<211> 108

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

ccgctcgaga gctacagtaa atccgtcagc tgctctcttc gtagtttctg gtttgaatac 60ccgctcgaga gctacagtaa atccgtcagc tgctctcttc gtagtttctg gtttgaatac 60

agttgcaaag tcagttttaa gattagcaat atgagttgaa tcatcttc 108agttgcaaag tcagttttaa gattagcaat atgagttgaa tcatcttc 108

<210> 5<210> 5

<211> 3252<211> 3252

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 5<400> 5

atggcaaagc aaaacaaagg ccgcaaattt tttgcagcaa gcgcaacagc tgcattagtt 60atggcaaagc aaaacaaagg ccgcaaattt tttgcagcaa gcgcaacagc tgcattagtt 60

gcatctgcaa tcgtacctgt agcatctgct gcacaattaa acgacttcaa caaaatctct 120gcatctgcaa tcgtacctgt agcatctgct gcacaattaa acgacttcaa caaaatctct 120

ggctacgcta aagaagcagt tcaatcttta gtagacgctg gtgtaatcca aggggatgct 180ggctacgcta aagaagcagt tcaatcttta gtagacgctg gtgtaatcca aggggatgct 180

aacggcaact tcaacccact taaaactatc tcacgtgcgg aagctgctac aatcttcact 240aacggcaact tcaacccact taaaactatc tcacgtgcgg aagctgctac aatcttcact 240

aacgctctag aattagaagc agaaggtgat gtaaacttca aagacgttaa agctgatgct 300aacgctctag aattagaagc agaaggtgat gtaaacttca aagacgttaa agctgatgct 300

tggtactacg atgctatcgc agcaactgta gaaaacggaa tttttgaagg tgtaagtgct 360tggtactacg atgctatcgc agcaactgta gaaaacggaa tttttgaagg tgtaagtgct 360

actgaattcg caccaaacaa acaattaact cgttctgaag ctgctaaaat tttagtagat 420actgaattcg caccaaacaa acaattaact cgttctgaag ctgctaaaat tttagtagat 420

gctttcgaat tagagggtga aggcgatcta agcgaattcg ctgacgcttc tactgttaaa 480gctttcgaat tagagggtga aggcgatcta agcgaattcg ctgacgcttc tactgttaaa 480

ccatgggcta aatcttacct agaaatcgca gttgcaaacg gcgttatcaa aggttctgaa 540ccatgggcta aatcttacct agaaatcgca gttgcaaacg gcgttatcaa aggttctgaa 540

gcaaatggta aaacaaactt aaacccaaat gctccaatta ctcgccaaga cttcgcagtt 600gcaaatggta aaacaaactt aaacccaaat gctccaatta ctcgccaaga cttcgcagtt 600

gtattctcac gtactattga aaacgtagat gctactccaa aagttgacaa aatcgaagta 660gtattctcac gtactattga aaacgtagat gctactccaa aagttgacaa aatcgaagta 660

gttgacgcta aaactttaaa cgttacttta tctgacggta ctaaagaaac tgttacttta 720gttgacgcta aaactttaaa cgttacttta tctgacggta ctaaagaaac tgttacttta 720

gaaaaagctt tagagcctaa caaagaaaca gaagttactt tcaaaattaa ggatgttgaa 780gaaaaagctt tagagcctaa caaagaaaca gaagttactt tcaaaattaa ggatgttgaa 780

tacaaagcta aagttactta tgttgtaact acagctactg cagttaaatc tgtatctgca 840tacaaagcta aagttactta tgttgtaact acagctactg cagttaaatc tgtatctgca 840

actaacctta aagaagtagt agttgaattc gacggtaaag ttgataaaga aacagcaact 900actaacctta aagaagtagt agttgaattc gacggtaaag ttgataaaga aacagcaact 900

gataaagcaa actattcttt aaaatcaggt aaagtaatta aatctgttaa gcttttagac 960gataaagcaa actattcttt aaaatcaggt aaagtaatta aatctgttaa gcttttagac 960

gatgagaaaa cagttgttct tacattagaa gatagactaa acaacaataa agttgatgca 1020gatgagaaaa cagttgttct tacattagaa gatagactaa acaacaataa agttgatgca 1020

gttagtgttt ctaatgtaaa agctggcact ttaactattt cagctaaaaa tgtagaattc 1080gttagtgttt ctaatgtaaa agctggcact ttaactattt cagctaaaaa tgtagaattc 1080

aaagcagttg ataacgaaat tccaactgtt aaagaagtaa aatctttagg aacaaaagct 1140aaagcagttg ataacgaaat tccaactgtt aaagaagtaa aatctttagg aacaaaagct 1140

cttaaagttg tattctcaga accagttgat gatgtaaaac aaggaaactt cactttagac 1200cttaaagttg tattctcaga accagttgat gatgtaaaac aaggaaactt cactttagac 1200

ggtaaagctt tctatggtaa agttactgtt actggaaatg aggtagtatt aactccttac 1260ggtaaagctt tctatggtaa agttactgtt actggaaatg aggtagtatt aactccttac 1260

agcacatcag cattagctgt tggtactcat tcattacaag tttctcaaat taaagacttt 1320agcacatcag cattagctgt tggtactcat tcattacaag tttctcaaat taaagacttt 1320

gcaggattca cttctcttac atctacaact gaatttactg tagtggaaga taaagaagct 1380gcaggattca cttctcttac atctacaact gaatttactg tagtggaaga taaagaagct 1380

ccaacagtaa ctgaatcaag tgcgactctt gaaacactta ctttaacatt ctcagaagat 1440ccaacagtaa ctgaatcaag tgcgactctt gaaacactta ctttaacatt ctcagaagat 1440

gttgatccag attctatttc agcttctaaa gtattctgga aatcaggttc tgataaaaaa 1500gttgatccag attctatttc agcttctaaa gtattctgga aatcaggttc tgataaaaaa 1500

gctgctaaat ctgtagagcg tgttgaaggt aataaatata aatctacttt tgaaggagta 1560gctgctaaat ctgtagagcg tgttgaaggt aataaatata aatctacttt tgaaggagta 1560

aacactcttc caactggatc tgtaacagtt tatgttgaag gagtaaaaga ttactctggt 1620aacactcttc caactggatc tgtaacagtt tatgttgaag gagtaaaaga ttactctggt 1620

aatacaattg ctgcggatac aaaagtagtt gtttcaccac aagttgatca aactcgtcca 1680aatacaattg ctgcggatac aaaagtagtt gtttcaccac aagttgatca aactcgtcca 1680

gaagttaaga aagtataagt gaaaaattca acaactttag ttgtgacttt ctctaaaaca 1740gaagttaaga aagtataagt gaaaaattca acaactttag ttgtgacttt ctctaaaaca 1740

ttaggttctt cagctggaaa caaaaacaac tatactgttc ttgataaaga cggaaaagtt 1800ttaggttctt cagctggaaa caaaaacaac tatactgttc ttgataaaga cggaaaagtt 1800

atttctgtta aagacgcagt attatctaac gataaaaaat ctgtaactgt aactctatat 1860atttctgtta aagacgcagt attatctaac gataaaaaat ctgtaactgt aactctatat 1860

aaagagttat cagatggtaa gaacacatta gaagttaaga atgtaaaaga taacacaaaa 1920aaagagttat cagatggtaa gaacacatta gaagttaaga atgtaaaaga taacacaaaa 1920

ttagagaata caatgttaga ttataaagaa gttattgaaa atgctgacag agtagctcct 1980ttagagaata caatgttaga ttataaagaa gttattgaaa atgctgacag agtagctcct 1980

acaatggatt caaaatcatg gaacacatct caaagacgag ttgttattaa attctctgaa 2040acaatggatt caaaatcatg gaacacatct caaagacgag ttgtttattaa attctctgaa 2040

aaaatggatg ttgaaacatt atctaactac tctaattatc ttgtagatat taatggacaa 2100aaaatggatg ttgaaacatt atctaactac tctaattatc ttgtagatat taatggacaa 2100

ttacgttcag aattagctac taaaaatcgc aaattaaata atgttcatat tttaggttct 2160ttacgttcag aattagctac taaaaatcgc aaattaaata atgttcatat tttaggttct 2160

gataattctg attttgttga aattgctacc aaaaccaatg atgttaatat tgaagttgaa 2220gataattctg attttgttga aattgctacc aaaaccaatg atgttaatat tgaagttgaa 2220

aatgcttttg atattggtgg ttcttctaat actttacata ctgttttagc tttaaatgat 2280aatgcttttg atattggtgg ttcttctaat actttacata ctgttttagc tttaaatgat 2280

ggttctaaat taggtgaatc tactactggt tttgaatata aatctaaagt tgctgctgaa 2340ggttctaaat taggtgaatc tactactggt tttgaatata aatctaaagt tgctgctgaa 2340

actattaata ttattacttt tgctcaaaaa attaaaggtg gttcttactc tgctgcatta 2400actattaata ttattacttt tgctcaaaaa attaaaggtg gttcttactc tgctgcatta 2400

gttgatagaa aaactgttga aatcaaattt aatgctggca tcgaagatgt aaaagctggt 2460gttgatagaa aaactgttga aatcaaattt aatgctggca tcgaagatgt aaaagctggt 2460

ggtattactt tagctacagg tagcacaaat acaatttctt caattgaagc aaatggtact 2520ggtattactt tagctacagg tagcacaaat acaatttctt caattgaagc aaatggtact 2520

tcaactgtta aagtgaaatt tgataaagaa attaatgctg acgcttctaa tttcgaatta 2580tcaactgtta aagtgaaatt tgataaagaa attaatgctg acgcttctaa tttcgaatta 2580

aatgtaaaat ttgataaatt agttacttta gctggtgatt catttacagg ttctgatgta 2640aatgtaaaat ttgataaatt agttacttta gctggtgatt catttacagg ttctgatgta 2640

atcaaagcgc caacaaaaac agtagctggt aatttattgg ataaagttgc tcctgaagtg 2700atcaaagcgc caacaaaaac agtagctggt aatttattgg ataaagttgc tcctgaagtg 2700

gttggagacg ctaattatgc aacaaatcaa gctgataaaa caattttagt tccatttact 2760gttggagacg ctaattatgc aacaaatcaa gctgataaaa caattttagt tccattatact 2760

gaagaactta cacttaatgg atcttctgca gaattagctg caaatgattt taaagttgtt 2820gaagaactta cacttaatgg atcttctgca gaattagctg caaatgattt taaagttgtt 2820

cgtcacagtg atagaaaaac actaactgca ggttctgatt atactgtaaa actatctcct 2880cgtcacagtg atagaaaaac actaactgca ggttctgatt atactgtaaa actatctcct 2880

gataataaag gtgttttaat tactattaaa gcagcagata ctacagttgg tgttttagat 2940gataataaag gtgttttaat tactattaaa gcagcagata ctacagttgg tgttttagat 2940

gttaataaaa ttgattctgc taatgctcaa ttatcttatg ctgaagttta ttctggtgct 3000gttaataaaa ttgattctgc taatgctcaa ttatcttatg ctgaagttta ttctggtgct 3000

tttattgctg ctgaatcaac tcgtgaatct gcaaatgcaa ttgacttcgg tgctgcaact 3060tttattgctg ctgaatcaac tcgtgaatct gcaaatgcaa ttgacttcgg tgctgcaact 3060

gcaaaaactg ctacagttag tggatcatac aaaactactg gtcctacaga tgttgaagct 3120gcaaaaactg ctacagttag tggatcatac aaaactactg gtcctacaga tgttgaagct 3120

aatgaaactt tagtatttac tttctcttct gaagttgatt caactcttat tgctgatctt 3180aatgaaactt tagtatttac tttctcttct gaagttgatt caactcttat tgctgatctt 3180

aaaactgagt ttgcaactgt attcaaacca gaaactacta atggagctgc tgatggtttt 3240aaaactgagt ttgcaactgt attcaaacca gaaactacta atggagctgc tgatggtttt 3240

acagttgctt ga 3252acagttgctt ga 3252

Claims (10)

1. A gene for encoding synthesized nano silver protein is characterized in that the nucleotide sequence of the gene is shown as SEQ ID NO. 1.
2. The gene for encoding synthetic nano silver protein according to claim 1, wherein the structure domain rearrangement of the protein is performed by spatially simulating the structure of known synthetic nano silver protein, analyzing the functions and actions of each structure domain, screening to obtain the structure domain capable of efficiently synthesizing nano silver, and the gene sequence for encoding rearranged protein after rearrangement is used as a template, and the gene for encoding the efficient synthetic nano silver protein with the sequence shown as SEQ ID NO.1 is obtained through multiple site-directed mutagenesis.
3. The gene for encoding synthetic nano-silver protein according to claim 2, wherein the site-directed mutagenesis primer is shown in SEQ ID NO. 3-4.
4. A protein encoded by the gene of claim 1 and capable of efficiently synthesizing bioactive nano silver, wherein the amino acid sequence of the protein is shown as SEQ ID NO.2.
5. A recombinant vector comprising the gene encoding a synthetic nanosilver protein of claim 1.
6. An engineering bacterium, which is characterized by comprising the gene for encoding the synthesized nano silver protein according to claim 1 or the synthesized nano silver protein according to claim 4 or the recombinant vector according to claim 5.
7. Use of the gene encoding the synthesized nano silver protein according to claim 1 in the preparation of nano silver by a biological method.
8. Use of the synthetic nano-silver protein of claim 4 for preparing nano-silver by biological method.
9. The use according to claim 7 or 8, wherein silver nitrate is used as a substrate, the substrate concentration is 14-30 mM, the reaction temperature range for synthesizing nano silver is 20-50 ℃, the rotation speed is 100-250 rpm, the pH is 9-13, and the reaction time is 16-24 h.
10. The use according to claim 7 or 8, wherein the nanosilver produced in the use is spherical nanosilver with a particle size distribution of 2-25nm, the surface of which is coated with proteins involved in the synthesis of nanosilver.
CN202110782360.1A 2021-07-09 2021-07-09 A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver Active CN113444721B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110782360.1A CN113444721B (en) 2021-07-09 2021-07-09 A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110782360.1A CN113444721B (en) 2021-07-09 2021-07-09 A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver

Publications (2)

Publication Number Publication Date
CN113444721A CN113444721A (en) 2021-09-28
CN113444721B true CN113444721B (en) 2023-07-21

Family

ID=77815763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110782360.1A Active CN113444721B (en) 2021-07-09 2021-07-09 A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver

Country Status (1)

Country Link
CN (1) CN113444721B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210052389A (en) 2018-08-27 2021-05-10 리제너론 파마슈티칼스 인코포레이티드 Use of Raman spectroscopy in downstream purification
CN114381456B (en) * 2021-12-31 2023-09-22 淮阴工学院 An artificially synthesized nanosilver synthesis protein gene and its expressed protein and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907668A (en) * 2016-04-25 2016-08-31 淮阴工学院 Screening and identification method of microorganism for synthesizing silver nanoparticles and characterization of silver nanoparticles
CN110804089B (en) * 2019-10-18 2022-03-11 淮阴工学院 A kind of nano-silver synthetic protein derived from Bacillus sphaeroides and its application

Also Published As

Publication number Publication date
CN113444721A (en) 2021-09-28

Similar Documents

Publication Publication Date Title
Baumgartner et al. Biomimetic magnetite formation: from biocombinatorial approaches to mineralization effects
Haikarainen et al. Dps-like proteins: structural and functional insights into a versatile protein family
CN113444721B (en) A kind of artificially modified gene, SNA15 protein and its method for efficiently synthesizing nano silver
Yeo et al. Novel silica-forming peptides derived from Ectocarpus siliculosus
CN103254316B (en) Antimicrobial peptide with drug-resistance bacteria resistance activity and synthesis and application thereof
Lin et al. A further insight into the biosorption mechanism of Au (III) by infrared spectrometry
CN109486782B (en) Method for improving sucrose phosphorylase expression efficiency through molecular chaperone co-expression
Roychoudhury et al. RETRACTED ARTICLE: Diatom-based biosynthesis of gold-silica nanocomposite and their DNA binding affinity
CN114480445A (en) Preparation and application of humanized superoxide dismutase hSOD1 mutant
Dhabalia et al. Antifungal activity of biosynthesized silver nanoparticles from Candida albicans on the strain lacking the CNP41 gene
CN114891817A (en) A kind of polypeptide and its preparation method and application
Li et al. Surface sieving coordinated IMAC material for purification of His-tagged proteins
CN112301021B (en) A kind of endolysozyme and perforin composition against the expression of Escherichia coli phage and its preparation method and application
CN103122347B (en) Lyase for killing staphylococcus and application of lyase
KR102420704B1 (en) Method for increasing stability of target protein immobilized in silica nanoparticle by salt treatment
CN109207459A (en) A kind of agar-agar enzyme mutant that Fixedpoint mutation modified thermal stability improves
CN110804089B (en) A kind of nano-silver synthetic protein derived from Bacillus sphaeroides and its application
Zhang et al. Soluble expression and purification of recombinant bovine ferritin H-chain
CN113061590B (en) Algae toxin degrading enzyme, composite material and application
CN114106197B (en) Narrow-spectrum antibacterial peptide and application thereof
CN113476588B (en) Multifunctional nanoparticles targeting breast cancer, preparation method and application thereof
CN101705238B (en) Bacillus natto glutamic acid dehydrogenase coding genes, protein and bacterial strain
CN107828749A (en) A kind of low temperature resistant superoxide dismutase MnSOD in deep-sea sea cucumber source and preparation method thereof
CN114381456B (en) An artificially synthesized nanosilver synthesis protein gene and its expressed protein and application
CN112266905A (en) A kind of polypeptide modified amino acid dehydrogenase and its preparation and immobilization method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载