CN112749010A - Edge calculation task allocation method for fusion recommendation system - Google Patents
Edge calculation task allocation method for fusion recommendation system Download PDFInfo
- Publication number
- CN112749010A CN112749010A CN202011617690.7A CN202011617690A CN112749010A CN 112749010 A CN112749010 A CN 112749010A CN 202011617690 A CN202011617690 A CN 202011617690A CN 112749010 A CN112749010 A CN 112749010A
- Authority
- CN
- China
- Prior art keywords
- edge
- task
- edge server
- cloud
- sender
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5072—Grid computing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Information Transfer Between Computers (AREA)
Abstract
本发明提供了一种融合推荐系统的边缘计算任务分配方法,包括:步骤1,将云端模块、边缘服务器模块和移动端相互建立连接构建云‑边‑端融合推荐系统;步骤2,任务发送者向云‑边‑端融合推荐系统发送任务请求;步骤3,云‑边‑端融合推荐系统接受到任务发送者发送的任务请求,边缘服务器模块根据部署在路侧设施上的多个根据需求进行启动执行任务的边缘服务器的位置信息、计算能力构建边缘服务器数据库。本发明将缓存的边缘服务器与推荐的边缘服务器相结合设计,推荐命中率高,并证明了推荐命中率问题是一个单调子模函数和NP‑hard问题,提高了计算机资源利用率,降低了时间消耗。
The present invention provides an edge computing task allocation method for a fusion recommendation system, comprising: step 1, establishing a connection between a cloud module, an edge server module and a mobile terminal to construct a cloud-edge-terminal fusion recommendation system; step 2, a task sender Send a task request to the cloud-edge-terminal fusion recommendation system; step 3, the cloud-edge-terminal fusion recommendation system receives the task request sent by the task sender, and the edge server module performs the tasks according to the needs of the multiple devices deployed on the roadside facilities. The location information and computing capacity of the edge server that starts the task are used to construct an edge server database. The invention combines the cached edge server and the recommended edge server to design, the recommendation hit rate is high, and it is proved that the recommended hit rate problem is a monotone submodular function and NP-hard problem, which improves the utilization rate of computer resources and reduces the time. consume.
Description
技术领域technical field
本发明涉及计算机任务分配技术领域,特别涉及一种融合推荐系统的边缘计算任务分配方法。The invention relates to the technical field of computer task assignment, in particular to an edge computing task assignment method of a fusion recommendation system.
背景技术Background technique
根据Cisco的报告,移动数据流量将在未来的5年中增长7倍,到2021年将达到每月49艾字节(exabyte,EB)(1EB-106TB),同时全球IoT设备数量将从目前的80亿增长到120亿。这将使其接入网络获取移动边缘服务器的计算资源变得困难。According to a Cisco report, mobile data traffic will grow sevenfold over the next 5 years, reaching 49 exabytes (EB) (1EB-106TB) per month by 2021, while the global number of IoT devices will increase from the current 8 billion to 12 billion. This will make it difficult for it to access the network to obtain the computing resources of the mobile edge server.
此外,5G网络时代,大规模的任务处理需求也开始呈现,例如多媒体特效任务、大数据处理任务等。在这些任务场景下,最常见的用户需求就是实时性需求,也即要求任务能够被快速响应、快速执行、且执行结果能够快速回传给用户。为了应对移动互联网及物联网的高速发展,5G需满足超低时延、超低功耗、超高可靠、超高密度连接的新型业务需求。因此,最小化任务完成时间是任务卸载问题中最常见的目标。In addition, in the 5G network era, large-scale task processing requirements have also begun to appear, such as multimedia special effects tasks and big data processing tasks. In these task scenarios, the most common user requirement is the real-time requirement, that is, the task is required to be quickly responded to, executed quickly, and the execution result can be quickly returned to the user. In order to cope with the rapid development of the mobile Internet and the Internet of Things, 5G needs to meet the new business requirements of ultra-low latency, ultra-low power consumption, ultra-high reliability, and ultra-high-density connections. Therefore, minimizing task completion time is the most common goal in task offloading problems.
当前移动边缘计算中的卸载问题主要包括:页面卸载,即边缘缓存,页面提供者将常用页面缓存于边缘云上,以降低用户请求页面时的延时和能耗。相关研究中已有考虑页面分布和用户移动性的缓存策略。任务卸载,该问题即是决定何时、何地、多少任务应从移动设备卸载至边缘上执行,以降低计算延时和节省能耗。该类研究中主要集中于考虑多用户环境和多服务器环境下的卸载决策问题。页面卸载主要关心边缘云的存储能力,不同步考虑计算能力。而在任务卸载的相关研究中,是以边缘云具有足够的软硬件资源支持任务计算为常态假设的,这与边缘云资源受限以及无法支持所有类型的任务是相违背的。The current unloading problems in mobile edge computing mainly include: page unloading, that is, edge caching. The page provider caches frequently used pages on the edge cloud to reduce the delay and energy consumption when users request pages. There have been cache strategies considering page distribution and user mobility in related research. Task offloading, the problem of deciding when, where, and how many tasks should be offloaded from mobile devices to the edge to reduce computational latency and save energy. This kind of research mainly focuses on the problem of uninstall decision in multi-user environment and multi-server environment. Page unloading mainly concerns the storage capacity of the edge cloud, and does not consider the computing power synchronously. In the related research on task offloading, the normal assumption is that the edge cloud has sufficient hardware and software resources to support task computing, which is contrary to the limited resources of the edge cloud and the inability to support all types of tasks.
针对MEC的任务卸载问题,许多学者做了相关研究。在考虑前程和回程链路容量约束以及用户的最大时延约束条件下,通过最小化网络总能耗提出了一种有效卸载方案。在权衡能耗和时延下,提出了一种能量感知的计算卸载方案,并将智能设备电池的剩余能量引入能量消耗和延迟的加权因子的定义中,有效地降低了系统的总消耗。考虑到任务卸载的等待时间和可靠性之间的折中,研究了将用户设备的任务分割成子任务并依次卸载到附近边缘节点。但是以上文献并没有对有限的无线和计算资源进行合理的分配。在多用户的MEC系统下,以最小化用户和MEC服务器的平均能量消耗为目标,提出了一种在线的任务卸载算法。考虑系统的总能耗最小化,研究了卸载决定、无线资源和计算资源分配的联合优化问题。尽管如此,已有的任务调度算法都仅仅是通过优化能耗和延迟进行任务卸载和分配,却从未从任务本身出发选择边缘服务器处理任务。For the task offloading problem of MEC, many scholars have done related research. Considering the capacity constraints of fronthaul and backhaul links and the maximum delay constraints of users, an effective offloading scheme is proposed by minimizing the total energy consumption of the network. Under the trade-off between energy consumption and delay, an energy-aware computing offloading scheme is proposed, and the remaining energy of the smart device battery is introduced into the definition of the weighting factor of energy consumption and delay, which effectively reduces the total consumption of the system. Considering the trade-off between the latency and reliability of task offloading, the task of user equipment is divided into subtasks and offloaded to nearby edge nodes in turn. However, the above literatures do not reasonably allocate the limited wireless and computing resources. Under the multi-user MEC system, an online task offloading algorithm is proposed to minimize the average energy consumption of users and MEC servers. Considering the minimization of the total energy consumption of the system, the joint optimization problem of offloading decision, radio resource and computing resource allocation is studied. Nevertheless, the existing task scheduling algorithms only perform task offloading and allocation by optimizing energy consumption and delay, but never select edge servers to process tasks from the task itself.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种融合推荐系统的边缘计算任务分配方法,其目的是为了解决传统的任务分配方法未从任务本身出发选择边缘服务器处理任务的问题。The present invention provides an edge computing task assignment method for a fusion recommendation system, the purpose of which is to solve the problem that the traditional task assignment method does not select an edge server to process the task from the task itself.
为了达到上述目的,本发明的实施例提供了一种融合推荐系统的边缘计算任务分配方法,包括:In order to achieve the above object, an embodiment of the present invention provides an edge computing task allocation method for a fusion recommendation system, including:
步骤1,将云端模块、边缘服务器模块和移动端相互建立连接构建云-边-端融合推荐系统;Step 1: Connect the cloud module, the edge server module and the mobile terminal to each other to construct a cloud-edge-terminal fusion recommendation system;
步骤2,任务发送者向云-边-端融合推荐系统发送任务请求;
步骤3,云-边-端融合推荐系统接受到任务发送者发送的任务请求,边缘服务器模块根据部署在路侧设施上的多个根据需求进行启动执行任务的边缘服务器的位置信息、计算能力构建边缘服务器数据库;Step 3: The cloud-edge-device fusion recommendation system receives the task request sent by the task sender, and the edge server module constructs the location information and computing power of a plurality of edge servers deployed on the roadside facilities that start executing tasks according to requirements. Edge server database;
步骤4,云-边-端融合推荐系统从边缘服务器数据库中筛选出能够处理当前任务的边缘服务器信息;
步骤5,根据当前任务发送者的位置信息通过过滤算法对筛选出的边缘服务器信息进行过滤;
步骤6,对过滤出的边缘服务器信息根据边缘服务器的计算能力进行聚类,得到能够执行任务请求的边缘服务器的位置信息和计算能力信息并启动能够执行任务请求的边缘服务器;Step 6: Clustering the filtered edge server information according to the computing capability of the edge server, obtaining the location information and computing capability information of the edge server capable of executing the task request, and starting the edge server capable of executing the task request;
步骤7,根据能够完成任务执行的边缘服务器的位置信息和计算能力信息在边缘服务器模块建立的边缘服务器表,边缘服务器模块将边缘服务器表推荐到云端模块;Step 7: According to the edge server table established in the edge server module according to the location information and computing capability information of the edge server that can complete the task execution, the edge server module recommends the edge server table to the cloud module;
步骤8,云-边-端融合推荐系统将边缘服务器模块推荐到云端模块的边缘服务器表与在云端模块缓存但未参加上一阶段任务执行的边缘服务器结合;
步骤9,云-边-端融合推荐系统将既为边缘服务器模块推荐到云端模块的边缘服务器又为云端模块缓存的边缘服务器筛选出,根据筛选出的边缘服务器构建最终推荐边缘服务器信息表;
步骤10,云-边-端融合推荐系统对任务请求的任务特征进行分析,将最终推荐边缘服务器信息表中能够执行当前任务请求的边缘服务器选择出,并推荐给任务发送者,当任务发送者接收到云-边-端融合推荐系统推荐的边缘服务器时,边缘服务器执行任务发送者的当前任务请求;Step 10: The cloud-edge-device fusion recommendation system analyzes the task characteristics of the task request, selects the edge server that can execute the current task request in the final recommended edge server information table, and recommends it to the task sender, as the task sender. When receiving the edge server recommended by the cloud-edge-device fusion recommendation system, the edge server executes the current task request of the task sender;
步骤11,通过设计推荐优化算法对云-边-端融合推荐系统向任务发送者的推荐命中率进行优化,得到最优推荐命中率。Step 11: Optimize the recommendation hit rate of the cloud-edge-terminal fusion recommendation system to the task sender by designing a recommendation optimization algorithm, and obtain the optimal recommendation hit rate.
其中,所述步骤3具体包括:Wherein, the
步骤31,提取和归纳各个边缘服务器的部署位置,筛选该边缘服务器部署位置信息;Step 31, extracting and summarizing the deployment positions of each edge server, and screening the deployment position information of the edge servers;
步骤32,归纳边缘服务器部署区域,确定边缘服务器部署位置;Step 32, summarizing the deployment area of the edge server, and determining the deployment location of the edge server;
步骤33,提取任务发送者位置,筛选满足任务发送者通信范围内的边缘服务器部署位置,得到任务发送者通信范围内的边缘服务器部署位置集合;Step 33, extracting the position of the task sender, screening the edge server deployment positions within the communication range of the task sender, and obtaining a set of edge server deployment positions within the communication range of the task sender;
步骤34,根据边缘服务器部署位置集合对每个的边缘服务器的计算能力进行分析;Step 34, analyze the computing capability of each edge server according to the set of edge server deployment locations;
步骤35,对在任务发送者通信范围内的各个边缘服务器的位置信息进行排序和归纳,确定各个边缘服务器部署位置,建立边缘服务器的部署位置数据库;Step 35, sorting and summarizing the location information of each edge server within the communication range of the task sender, determining the deployment location of each edge server, and establishing a deployment location database of the edge server;
步骤36,对在任务发送者通信范围内的各个边缘服务器的计算能力进行归纳,建立参与任务处理的边缘服务器数据库。Step 36: Summarize the computing capabilities of each edge server within the communication range of the task sender, and establish a database of edge servers participating in task processing.
其中,所述步骤5具体包括:Wherein, the
步骤51,根据边缘服务器模块传来的当前任务发送者的位置信息,通过过滤算法将当前任务发送者的一定通信范围内的边缘服务器信息进行过滤。Step 51 , according to the location information of the current task sender transmitted from the edge server module, filter the edge server information within a certain communication range of the current task sender through a filtering algorithm.
其中,所述步骤6具体包括:Wherein, the
步骤61,将二次过滤后的边缘服务器信息中需要推荐的边缘服务器信息分离出;Step 61, separating the edge server information that needs to be recommended from the edge server information after the secondary filtering;
步骤62,当分离出的边缘服务器信息过多时,将计算能力充足的边缘服务器进行聚类,得到计算能力充足的边缘服务器的位置信息并启动。Step 62 , when the information of the separated edge servers is too much, the edge servers with sufficient computing capabilities are clustered to obtain the location information of the edge servers with sufficient computing capabilities and start.
其中,所述步骤7具体包括:Wherein, the
步骤71,根据得到的计算能力充足的边缘服务器的边缘服务器的位置信息建立边缘服务器表;Step 71, establishing an edge server table according to the obtained location information of the edge server of the edge server with sufficient computing capability;
步骤72,边缘服务器模块将边缘服务器表推荐到云端模块。Step 72, the edge server module recommends the edge server table to the cloud module.
其中,所述步骤8具体包括:Wherein, the
步骤81,云-边-端融合推荐系统将边缘服务器模块推荐云端模块的边缘服务器表进行记录;Step 81, the cloud-edge-device fusion recommendation system records the edge server table of the cloud module recommended by the edge server module;
步骤82,将边缘服务器模块推荐的边缘服务器与云端模块缓存的边缘服务器结合。Step 82, combine the edge server recommended by the edge server module with the edge server cached by the cloud module.
其中,所述步骤9和所述步骤10具体包括:Wherein, the
将既在云端模块缓存又为边缘服务器模块推荐的边缘服务器筛选出构建最终推荐边缘服务器信息表,云-边-端融合推荐系统运用广度优先搜索将最终推荐边缘服务器信息表中能够处理当前任务请求的边缘服务器添加至边缘服务器表的末尾,云-边-端融合推荐系统向任务发送者推荐m个能够完成当前任务请求的边缘服务器。Filter out the edge servers that are cached in the cloud module and recommended for the edge server module to construct the final recommended edge server information table. The cloud-edge-device fusion recommendation system uses breadth-first search to select the final recommended edge server information table that can process the current task request. The edge servers of m are added to the end of the edge server table, and the cloud-edge-device fusion recommendation system recommends m edge servers that can complete the current task request to the task sender.
其中,所述步骤11具体包括:Wherein, the
由于任务发送者处于移动状态,边缘服务器处于灵活状态,任务发送者与边缘服务器之间所需要处理的任务随时间而变化,被选定为处理任务请求的边缘服务器在当前网络状态下处于任务发送者的通信范围内:Since the task sender is in a mobile state and the edge server is in a flexible state, the tasks that need to be processed between the task sender and the edge server change with time, and the edge server selected to process the task request is in the task sending state in the current network state. within the communication range of:
qij=prob{ED j in the range of TS i}∈{0,1} (1)q ij =prob{ED j in the range of TS i}∈{0,1} (1)
其中,qij表示任务发送者的通信范围,i表示任务发送者,j表示边缘服务器,TS表示任务发送者。Among them, q ij represents the communication range of the task sender, i represents the task sender, j represents the edge server, and TS represents the task sender.
其中,所述步骤11还包括:Wherein, the
当任务发送者的任务请求推荐命中时,将任务请求的推荐命中率表示为整数变量的函数,如下所示:When the task request of the task sender is recommended to hit, express the recommended hit rate of the task request as a function of an integer variable, as follows:
其中,n表示任务请求,n∈K,表示任务发送者i发送的任务请求,当任务k不合理时,任务发送者发送任务请求n的概率,满足M表示边缘服务器数,K表示任务数,xnj表示在任务发送者通信范围内被用于处理任务n的边缘服务器数目。Among them, n represents the task request, n∈K, Represents the task request sent by the task sender i. When the task k is unreasonable, the probability of the task sender sending the task request n is satisfied. M represents the number of edge servers, K represents the number of tasks, and x nj represents the number of edge servers used to process task n within the communication range of the task sender.
其中,所述步骤11还包括:Wherein, the
将优化推荐策略的问题表示为:The problem of optimizing the recommendation strategy is formulated as:
其中,N表示任务发送者,pik表示任务发送者i请求处理任务k的概率,xnj表示在任务发送者通信范围内被用于处理任务n的边缘服务器数目,C表示处理任务所需的边缘服务器最大数目。Among them, N represents the task sender, p ik represents the probability that the task sender i requests to process the task k, x nj represents the number of edge servers used to process the task n within the communication range of the task sender, and C represents the required amount of processing tasks. Maximum number of edge servers.
本发明的上述方案有如下的有益效果:The above-mentioned scheme of the present invention has the following beneficial effects:
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,采用云-边-端融合推荐系统通过对任务发送者的任务请求进行任务特征分析并选择合适的边缘服务器,进而将任务分配到合适的边缘服务器执行;将缓存的边缘服务器与推荐的边缘服务器相结合,推荐命中率高,并证明了推荐命中率问题是一个单调子模函数的NP-hard问题,提高了计算机资源利用率,降低了时间消耗。The edge computing task allocation method of the fusion recommendation system according to the above-mentioned embodiment of the present invention adopts the cloud-edge-terminal fusion recommendation system to analyze the task characteristics of the task request of the task sender and select an appropriate edge server, and then assign the task to the task request. It is allocated to the appropriate edge server for execution; the cached edge server is combined with the recommended edge server, and the recommendation hit rate is high, and it is proved that the recommendation hit rate problem is an NP-hard problem of a monotonic submodular function, which improves the utilization of computer resources. rate, reducing time consumption.
附图说明Description of drawings
图1为本发明的流程图;Fig. 1 is the flow chart of the present invention;
图2为本发明的结构示意图;Fig. 2 is the structural representation of the present invention;
图3为本发明的推荐流程示意图;FIG. 3 is a schematic diagram of a recommendation flow of the present invention;
图4为本发明在不同BFS参数下的推荐率示意图;4 is a schematic diagram of the recommendation rate of the present invention under different BFS parameters;
图5为本发明在优化后的不同推荐模式下的推荐率示意图;FIG. 5 is a schematic diagram of the recommendation rate of the present invention in different recommendation modes after optimization;
图6为本发明在不同车辆下的时间消耗示意图;6 is a schematic diagram of the time consumption of the present invention under different vehicles;
图7为本发明在不同任务大小下的时间消耗示意图。FIG. 7 is a schematic diagram of the time consumption of the present invention under different task sizes.
具体实施方式Detailed ways
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention more clear, the following will be described in detail with reference to the accompanying drawings and specific embodiments.
本发明针对现有的任务分配方法未从任务本身出发选择边缘服务器处理任务的问题,提供了一种融合推荐系统的边缘计算任务分配方法。Aiming at the problem that the existing task assignment method does not select the edge server to process the task from the task itself, the present invention provides an edge computing task assignment method integrating a recommendation system.
如图1至图7所示,本发明的实施例提供了一种融合推荐系统的边缘计算任务分配方法,包括:步骤1,将云端模块、边缘服务器模块和移动端相互建立连接构建云-边-端融合推荐系统;步骤2,任务发送者向云-边-端融合推荐系统发送任务请求;步骤3,云-边-端融合推荐系统接受到任务发送者发送的任务请求,边缘服务器模块根据部署在路侧设施上的多个根据需求进行启动执行任务的边缘服务器的位置信息、计算能力构建边缘服务器数据库;步骤4,云-边-端融合推荐系统从边缘服务器数据库中筛选出能够处理当前任务的边缘服务器信息;步骤5,根据当前任务发送者的位置信息通过过滤算法对筛选出的边缘服务器信息进行过滤;步骤6,对过滤出的边缘服务器信息根据边缘服务器的计算能力进行聚类,得到能够执行任务请求的边缘服务器的位置信息和计算能力信息并启动能够执行任务请求的边缘服务器;步骤7,根据能够完成任务执行的边缘服务器的位置信息和计算能力信息在边缘服务器模块建立的边缘服务器表,边缘服务器模块将边缘服务器表推荐到云端模块;步骤8,云-边-端融合推荐系统将边缘服务器模块推荐到云端模块的边缘服务器表与在云端模块缓存但未参加上一阶段任务执行的边缘服务器结合;步骤9,云-边-端融合推荐系统将既为边缘服务器模块推荐到云端模块的边缘服务器又为云端模块缓存的边缘服务器筛选出,根据筛选出的边缘服务器构建最终推荐边缘服务器信息表;步骤10,云-边-端融合推荐系统对任务请求的任务特征进行分析,将最终推荐边缘服务器信息表中能够执行当前任务请求的边缘服务器选择出,并推荐给任务发送者,当任务发送者接收到云-边-端融合推荐系统推荐的边缘服务器时,边缘服务器执行任务发送者的当前任务请求;步骤11,通过设计推荐优化算法对云-边-端融合推荐系统向任务发送者的推荐命中率进行优化,得到最优推荐命中率。As shown in FIG. 1 to FIG. 7 , an embodiment of the present invention provides an edge computing task allocation method for a fusion recommendation system, including: Step 1: Connect the cloud module, the edge server module and the mobile terminal to each other to construct a cloud-edge - Terminal fusion recommendation system;
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,假设将边缘服务器信息记录看作是一系列的数据点,则每一个边缘服务器ID-计算能力-位置数据点为:S=(id,computing power,position);所有的边缘服务器信息可以记为:Q=(S1,S2,…,Sn);由于在实际中,边缘服务器部署位置固定不变只会在需要时启动,需要基于任务发送者的位置大致划定其某一通信范围内的边缘服务器,并过滤出边缘服务器位置信息。获取规定范围内的边缘服务器位置信息分为:提取边缘服务器部署位置、归纳边缘服务器部署区域、分析边缘服务器计算能力。1.提取边缘服务器部署位置包括提取和归纳各个边缘服务器的部署位置,筛选该边缘服务器部署位置信息。2.归纳边缘服务器部署区域包括确定、筛选、合并边缘服务器部署部署位置、归纳边缘服务器部署区域。3.分析边缘服务器计算能力包括排序边缘服务器部署区域、筛选边缘服务器部署区域、分析边缘服务器计算能力。每一个部署位置表明边缘服务器在某一个地点发生了具有某种特定意义的行为。通过对部署位置的提取和归纳,得到任务发送者通信范围内的边缘服务器部署位置集合,进而分析出每个边缘服务器的计算能力情况,最后对各个边缘服务器进行排序和归纳,确定边缘服务器位置,建立边缘服务器位置数据库,再对在固定位置区域的边缘服务器计算能力进行归纳,建立边缘服务器数据库。In the edge computing task allocation method of the fusion recommendation system described in the above-mentioned embodiment of the present invention, it is assumed that the edge server information record is regarded as a series of data points, then each edge server ID-computing capability-location data point is: S =(id,computing power,position); all edge server information can be recorded as: Q=(S 1 , S 2 ,...,S n ); since in practice, the deployment position of edge servers is fixed and only when needed It is necessary to roughly delineate the edge servers within a certain communication range of the task sender based on the location of the task sender, and filter out the location information of the edge servers. Obtaining edge server location information within a specified range is divided into: extracting edge server deployment locations, summarizing edge server deployment areas, and analyzing edge server computing capabilities. 1. Extracting the deployment location of the edge server includes extracting and summarizing the deployment location of each edge server, and filtering the deployment location information of the edge server. 2. Summarizing edge server deployment areas includes determining, filtering, and merging edge server deployment locations, and summarizing edge server deployment areas. 3. Analysis of edge server computing capabilities includes sorting edge server deployment areas, screening edge server deployment areas, and analyzing edge server computing capabilities. Each deployment location indicates that the edge server has a specific behavior at a certain location. By extracting and summarizing the deployment locations, the set of edge server deployment locations within the communication range of the task sender is obtained, and then the computing capability of each edge server is analyzed. Establish an edge server location database, and then summarize the edge server computing capabilities in the fixed location area to establish an edge server database.
其中,所述步骤3具体包括:步骤31,提取和归纳各个边缘服务器的部署位置,筛选该边缘服务器部署位置信息;步骤32,归纳边缘服务器部署区域,确定边缘服务器部署位置;步骤33,提取任务发送者位置,筛选满足任务发送者通信范围内的边缘服务器部署位置,得到任务发送者通信范围内的边缘服务器部署位置集合;步骤34,根据边缘服务器部署位置集合对每个的边缘服务器的计算能力进行分析;步骤35,对在任务发送者通信范围内的各个边缘服务器的位置信息进行排序和归纳,确定各个边缘服务器部署位置,建立边缘服务器的部署位置数据库;步骤36,对在任务发送者通信范围内的各个边缘服务器的计算能力进行归纳,建立参与任务处理的边缘服务器数据库。Wherein, the
其中,所述步骤5具体包括:步骤51,根据边缘服务器模块传来的当前任务发送者的位置信息,通过过滤算法将当前任务发送者的一定通信范围内的边缘服务器信息进行过滤。The
其中,所述步骤6具体包括:步骤61,将二次过滤后的边缘服务器信息中需要推荐的边缘服务器信息分离出;步骤62,当分离出的边缘服务器信息过多时,将计算能力充足的边缘服务器进行聚类,得到计算能力充足的边缘服务器的位置信息并启动。The
其中,所述步骤7具体包括:步骤71,根据得到的计算能力充足的边缘服务器的边缘服务器的位置信息建立边缘服务器表;步骤72,边缘服务器模块将边缘服务器表推荐到云端模块。The
其中,所述步骤8具体包括:步骤81,云-边-端融合推荐系统将边缘服务器模块推荐云端模块的边缘服务器表进行记录;步骤82,将边缘服务器模块推荐的边缘服务器与云端模块缓存的边缘服务器结合。The
其中,所述步骤9和所述步骤10具体包括:将既在云端模块缓存又为边缘服务器模块推荐的边缘服务器筛选出构建最终推荐边缘服务器信息表,云-边-端融合推荐系统运用广度优先搜索将最终推荐边缘服务器信息表中能够处理当前任务请求的边缘服务器添加至边缘服务器表的末尾,云-边-端融合推荐系统向任务发送者推荐m个能够完成当前任务请求的边缘服务器。Wherein, the
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,边缘服务器信息表包含推荐的边缘服务器信息还包含云端已缓存的边缘服务器信息,云-边-端融合推荐系统基于任务请求的内容关系从边缘服务器信息表中选择出适合的边缘服务器并推荐给任务发送者。In the edge computing task allocation method of the fusion recommendation system according to the above-mentioned embodiment of the present invention, the edge server information table includes the recommended edge server information and the edge server information that has been cached in the cloud, and the cloud-edge-terminal fusion recommendation system is based on the task request. Select the appropriate edge server from the edge server information table and recommend it to the task sender.
其中,所述步骤11具体包括:由于任务发送者处于移动状态,边缘服务器处于灵活状态,任务发送者与边缘服务器之间所需要处理的任务随时间而变化,被选定为处理任务请求的边缘服务器在当前网络状态下处于任务发送者的通信范围内:The
qij=prob{ED j in the range of TS i}∈{0,1} (1)q ij =prob{ED j in the range of TS i}∈{0,1} (1)
其中,qij表示任务发送者的通信范围,i表示任务发送者,j表示边缘服务器,TS表示任务发送者。Among them, q ij represents the communication range of the task sender, i represents the task sender, j represents the edge server, and TS represents the task sender.
其中,所述步骤11还包括:当任务发送者的任务请求推荐命中时,将任务请求的推荐命中率表示为整数变量的函数,如下所示:Wherein, the
其中,n表示任务请求,n∈K,表示任务发送者i发送的任务请求,当任务k不合理时,任务发送者发送任务请求n的概率,满足M表示边缘服务器数,K表示任务数,xnj表示在任务发送者通信范围内被用于处理任务n的边缘服务器数目。Among them, n represents the task request, n∈K, Represents the task request sent by the task sender i. When the task k is unreasonable, the probability of the task sender sending the task request n is satisfied. M represents the number of edge servers, K represents the number of tasks, and x nj represents the number of edge servers used to process task n within the communication range of the task sender.
其中,所述步骤11还包括:将优化推荐策略的问题表示为:Wherein, the
其中,N表示任务发送者,pik表示任务发送者i请求处理任务k的概率,xnj表示在任务发送者通信范围内被用于处理任务n的边缘服务器数目,C表示处理任务所需的边缘服务器最大数目。Among them, N represents the task sender, p ik represents the probability that the task sender i requests to process the task k, x nj represents the number of edge servers used to process the task n within the communication range of the task sender, and C represents the required amount of processing tasks. Maximum number of edge servers.
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,任务发送者向云-边-端融合推荐系统发送任务请求,按以下的BFS方式搜索能够完成任务的边缘服务器信息,首先,向云-边-端融合推荐系统请求与任务内容相关的边缘服务器信息,并将请求到的边缘服务器信息从云-边-端融合推荐系统返回的顺序添加到列表M中。对于列表M中的边缘服务器信息进一步推荐与之相关的并且能够进行任务处理的边缘服务器信息,并将它们添加到列表M的末尾。以此类推添加其他相关边缘服务器信息,直到达到检索深度,通过TORS算法在列表M中搜索同时包含在云端缓存中的边缘服务器信息,并将其添加到输出列表G中,直到浏览完列表M中的所有边缘服务器信息并且输出列表G中包含N个边缘服务器信息,以先到为准(line 5-10)。当进行完上述步骤后,输出列表G中的边缘服务器数目少于N,则将N-|G|个边缘服务器信息添加到输出列表G(line 11-16)中。In the edge computing task allocation method for the fusion recommendation system described in the above-mentioned embodiments of the present invention, the task sender sends a task request to the cloud-edge-terminal fusion recommendation system, and searches for information on edge servers that can complete the task in the following BFS manner. , request edge server information related to the task content from the cloud-edge-device fusion recommendation system, and add the requested edge server information to the list M in the order returned by the cloud-edge-device fusion recommendation system. For the edge server information in the list M, further recommend the edge server information related to it and capable of task processing, and add them to the end of the list M. Add other related edge server information by analogy until the retrieval depth is reached, search the list M for edge server information that is also included in the cloud cache through the TORS algorithm, and add it to the output list G until the list M is browsed and the output list G contains N edge server information, whichever comes first (line 5-10). After the above steps are performed, the number of edge servers in the output list G is less than N, then the N-|G| edge server information is added to the output list G (line 11-16).
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,对公式(3)的优化问题,证明如下:The edge computing task allocation method of the fusion recommendation system described in the above-mentioned embodiment of the present invention, the optimization problem of formula (3) is proved as follows:
优化问题的目标函数为NP-hard问题,用表示和当前处理任务k相关的边缘服务器集合,如下所示:The objective function of the optimization problem is an NP-hard problem, using Represents the set of edge servers related to the current processing task k, as follows:
其中,t表示不同于边缘服务器j的用于处理当前任务k的边缘服务器,M表示边缘服务器数;Among them, t represents an edge server different from edge server j for processing the current task k, and M represents the number of edge servers;
边缘服务器子集表示为假设只有边缘服务器j被推荐处理任务(xj=1and),因此推荐率将会等于(是边缘服务器t处理任务i的概率)。当不只有边缘服务器j被推荐处理任务,用S'表示所有被当前任务所覆盖的边缘服务器并集因此推荐率等于因此目标函数相当于:The subset of edge servers is represented as Suppose that only edge server j is recommended to process the task (x j = 1 and ), so the referral rate will be equal to ( is the probability that edge server t processes task i). When more than one edge server j is recommended to process the task, let S' denote the union of all edge servers covered by the current task So the recommendation rate is equal to So the objective function is equivalent to:
其中,表示边缘服务器t处理任务i的概率,qit表示边缘服务器t在任务i的发送者通信范围。in, represents the probability that edge server t processes task i, and q it represents the communication range of edge server t in the sender of task i.
上述就相当于加权元素的最大覆盖问题,其中元素对应于边缘服务器,权重对应于概率值,并且所选子集数量必须小于处理任务所需的边缘服务器最大数目,并且被覆盖元素并集为S'。这是一个已知的NP-hard问题。因此,在每个任务覆盖的范围内有很多被推荐的边缘服务器问题也是一个NP-hard问题。The above is equivalent to the maximum coverage problem of weighted elements, where elements correspond to edge servers, weights correspond to probability values, and the number of selected subsets must be less than the maximum number of edge servers required to process the task, and the union of covered elements is S '. This is a known NP-hard problem. Therefore, the problem of having many recommended edge servers within the scope covered by each task is also an NP-hard problem.
目标函数为单调子模函数,并且受基数约束:目标函数等同于集合函数其中K×M是边缘服务器推荐集合(k,j),k表示任务,j表示边缘服务器,S={k∈K,i∈M:xkj=1},如下所示:The objective function is a monotonic submodular function and is constrained by the cardinality: objective function Equivalent to aggregate function where K×M is the recommended set of edge servers (k, j), k represents the task, j represents the edge server, and S={k∈K,i∈M:x kj =1}, as follows:
其中,pik表示任务发送者i请求处理任务k的概率,表示任务发送者i发送的任务请求,当任务k不合理时,任务发送者发送任务请求n的概率,满足qij表示任务发送者的通信范围,i表示任务发送者,j表示边缘服务器。where p ik represents the probability that task sender i requests to process task k, Represents the task request sent by the task sender i. When the task k is unreasonable, the probability of the task sender sending the task request n is satisfied. q ij represents the communication range of the task sender, i represents the task sender, and j represents the edge server.
一个集合函数被刻画为子模集合函数当且仅当对于每个和ε∈V\B认为:An aggregate function is characterized as a submodular aggregate function if and only if for each and ε∈V\B that:
[f(A∪{ε})-f(A)]-[f(E∪{ε})-f(E)]≥0 (7)[f(A∪{ε})-f(A)]-[f(E∪{ε})-f(E)]≥0 (7)
其中,A和E表示集合,对所有A和E集合满足ε表示属于V不属于E的元素;Among them, A and E represent sets, satisfying for all A and E sets ε represents an element that belongs to V but not to E;
依据公式首先计算:According to the formula First calculate:
其中,l,ε表示不属于A的元素,pik表示任务发送者i请求处理任务k的概率,表示任务发送者i发送的任务请求,当任务k不合理时,任务发送者发送任务请求n的概率,满足qij和qim表示任务发送者的通信范围,i表示任务发送者,j,m表示边缘服务器。Among them, l, ε represent elements that do not belong to A, p ik represents the probability that task sender i requests to process task k, Represents the task request sent by the task sender i. When the task k is unreasonable, the probability of the task sender sending the task request n is satisfied. q ij and q im represent the communication range of the task sender, i represents the task sender, and j and m represent the edge server.
式(9)的值总是大于0,即证明了子模块性;The value of formula (9) is always greater than 0, which proves the sub-modularity;
由于式(10)总是非负状态,因而证明了单调性;Since equation (10) is always in a non-negative state, the monotonicity is proved;
为了证明约束是一个拟阵,考虑集合ν=K×M(即,所有可能的元组{任务,边缘服务器})和其子集的集合不违反处理任务所需的边缘服务器的最大数目,如下所示:To prove that the constraint is a matrod, consider the set ν = K × M (i.e., all possible tuples {tasks, edge servers}) and the set of subsets thereof do not violate the maximum number of edge servers required to process a task, as follows shown:
其中,S表示边缘服务器子集,2ν表示集合v的幂集,C表示处理任务所需的边缘服务器最大数目,M表示边缘服务器数。Among them, S represents the subset of edge servers, 2ν represents the power set of the set v, C represents the maximum number of edge servers required to process the task, and M represents the number of edge servers.
首先,对于所有的集合A和集合E,其认为,如果集合E推荐的边缘服务器个数不会超过任务处理所需的最大边缘服务器数目,然后,对于因为在集合A中每个边缘服务器都必须与集合E中边缘服务器相同或者少于集合E,因此不违反边缘服务器数目问题。其次,对于所有集合A,E∈Γ,满足推荐条件的边缘服务器,|E|>|A|,在集合E中,更多边缘服务器被推荐,在集合A中,边缘服务器数目未达最大值,否则集合E将违反边缘服务器数目约束,即这意味着集合A可以继续推荐至少一个以上的边缘服务器,并且可以从集合E中选择该边缘服务器;First, for all sets A and E, It believes that if The number of edge servers recommended by set E will not exceed the maximum number of edge servers required for task processing. Then, for Since each edge server in set A must be the same as or less than the edge server in set E, the edge server number problem is not violated. Secondly, for all sets A, E∈Γ, edge servers that satisfy the recommendation condition, |E|>|A|, in set E, more edge servers are recommended, in set A, the number of edge servers does not reach the maximum value , otherwise set E will violate the constraint on the number of edge servers, i.e. This means that set A can continue to recommend at least one more edge server, and this edge server can be selected from set E;
对于任意的单调子模函数f,认为有:For any monotone submodular function f, it is considered that:
F(x)≥(1-1/e)f*(x) (12)F(x)≥(1-1/e)f*(x) (12)
其中,f*(x)表示单调子模函数的最优取值。Among them, f * (x) represents the optimal value of the monotone submodular function.
为了最大化受拟阵约束的单调子模函数,Khuller S提出了一种给出(1-1/e)逼近的随机算法,该算法分为两部分。在第一部分中,将组合问题替换为连续问题,并找到了连续问题的近似解。在第二部分中,使用称为Pipage rounding的技术对连续问题的分数解进行四舍五入。尽管该算法提供了更好的性能保证,但当问题中的边缘服务器推荐集合大小等于K×M时,其计算量太大,难以实现。当然,最小化算法复杂度或最佳逼近算法已经超出需要处理的范围。通过一种快速有效的贪心算法Greedy来处理云边协同场景中,大任务高效处理方法。To maximize monotone submodular functions constrained by matroids, Khuller S proposed a stochastic algorithm that gives (1-1/e) approximation, which is divided into two parts. In the first part, the combinatorial problem is replaced by a continuous problem, and approximate solutions to the continuous problem are found. In the second part, fractional solutions to continuous problems are rounded using a technique called Pipage rounding. Although this algorithm provides better performance guarantees, when the size of the recommended set of edge servers in the problem is equal to K × M, it is too computationally expensive to implement. Of course, minimizing algorithmic complexity or best approximation algorithms is beyond the scope of what needs to be dealt with. Greedy, a fast and effective greedy algorithm, is used to process large tasks efficiently in cloud-edge collaboration scenarios.
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,图4中显示了通过直接推荐和推荐+缓存两种情况,随着参数B和D的增加,推荐+缓存的推荐率比直接推荐的要高。图5中显示了不同BFS参数下的TORS算法的推荐率、贪心算法Greedy和Top推荐算法的推荐率性能。对于相同的情况,贪心算法Greedy总是优于TORS算法,Top推荐算法的推荐率性能比贪心算法Greedy高出2倍,图5清楚地显示了结合推荐和缓存的好处。In the edge computing task allocation method of the fusion recommendation system described in the above-mentioned embodiment of the present invention, Fig. 4 shows the recommendation rate of recommendation+cache through two cases of direct recommendation and recommendation+cache, with the increase of parameters B and D higher than the direct recommendation. Figure 5 shows the recommendation rate of the TORS algorithm, the recommendation rate performance of the greedy algorithm Greedy and the Top recommendation algorithm under different BFS parameters. For the same situation, the greedy algorithm Greedy always outperforms the TORS algorithm, and the recommendation rate performance of the Top recommendation algorithm is 2 times higher than that of the greedy algorithm Greedy. Figure 5 clearly shows the benefits of combining recommendation and caching.
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,图6和图7中展示了当边节点数量增加时系统的时间总成本。一般来说,三种方法的总代价随着边节点数量的增加而减少。在图6中,最优的是Top推荐算法,贪心算法Greedy的差很小,TORS算法和贪心算法Greedy都比较稳定。同时,Top推荐算法最优推荐曲线比贪心算法Greedy最优推荐曲线要高,且对单边节点贪婪。但当边缘节点越多,其下降速度就越快。这是因为随着边节点数量的增加,执行时间会减少。图7显示了卸载任务数据大小对系统的总成本影响,其中将边缘节点数量设置为4,随着卸载任务数据大小的增加,三种方法的总代价也随之增加。这是因为数据量越大,卸载的时间和能量消耗就越大。与其他方法相比,TORS算法增长趋势较慢,效果更好。随着数据量的增加,Top推荐算法曲线的增长速度远远快于TORS算法和贪心算法Greedy,说明卸载所需的数据量越大,卸载计算的延迟和能耗也越大。In the edge computing task allocation method for the fusion recommendation system described in the above-mentioned embodiments of the present invention, the total time cost of the system when the number of edge nodes increases is shown in FIG. 6 and FIG. 7 . In general, the total cost of the three methods decreases as the number of edge nodes increases. In Figure 6, the top recommendation algorithm is the best, the greedy algorithm Greedy has a small difference, and both the TORS algorithm and the greedy algorithm Greedy are relatively stable. At the same time, the optimal recommendation curve of the Top recommendation algorithm is higher than that of the Greedy algorithm, and it is greedy for unilateral nodes. But when there are more edge nodes, the faster it declines. This is because the execution time decreases as the number of edge nodes increases. Figure 7 shows the impact of the offload task data size on the total cost of the system, where the number of edge nodes is set to 4, as the offload task data size increases, the total cost of the three methods also increases. This is because the larger the amount of data, the greater the time and energy consumption for offloading. Compared with other methods, the TORS algorithm has a slower growth trend and better effect. As the amount of data increases, the top recommendation algorithm curve grows much faster than the TORS algorithm and the greedy algorithm Greedy, indicating that the larger the amount of data required for offloading, the greater the delay and energy consumption of offloading computation.
本发明的上述实施例所述的融合推荐系统的边缘计算任务分配方法,采用云-边-端融合推荐系统通过对任务发送者的任务请求进行任务特征分析并选择合适的边缘服务器,进而将任务分配到合适的边缘服务器执行。云-边-端融合推荐系统主要包括三个模块:云端模块、边缘服务器模块和移动端(任务发送者)。边缘服务器模块主要推荐处于灵活状态(非缓存)的边缘服务器,根据边缘服务器是否和处于任务发送者通信范围和计算能力足够推荐满足该条件的边缘服务器到云端模块。云端模块将从边缘服务器模块获取到的边缘服务器信息与云端缓存的边缘服务器结合,推荐给任务发送者。云-边-端融合推荐系统是将缓存的边缘服务器与推荐的边缘服务器相结合设计的,具有较高的推荐命中率,并证明了推荐命中率问题是一个单调子模函数和NP-hard问题,提高整个系统的计算机资源利用率、降低时间消耗。The edge computing task allocation method of the fusion recommendation system according to the above-mentioned embodiment of the present invention adopts the cloud-edge-terminal fusion recommendation system to analyze the task characteristics of the task request of the task sender and select an appropriate edge server, and then assign the task to the task request. Assign to the appropriate edge server for execution. The cloud-edge-device fusion recommendation system mainly includes three modules: cloud module, edge server module and mobile terminal (task sender). The edge server module mainly recommends edge servers that are in a flexible state (non-cached), and recommends edge servers that meet this condition to the cloud module according to whether the edge server communicates with the task sender and has sufficient computing power. The cloud module combines the edge server information obtained from the edge server module with the edge server cached in the cloud, and recommends it to the task sender. The cloud-edge-device fusion recommendation system is designed by combining the cached edge server with the recommended edge server, and has a high recommendation hit rate, and it is proved that the recommendation hit rate problem is a monotone submodular function and NP-hard problem , improve the computer resource utilization rate of the whole system and reduce the time consumption.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011617690.7A CN112749010B (en) | 2020-12-31 | 2020-12-31 | Edge computing task allocation method of fusion recommendation system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011617690.7A CN112749010B (en) | 2020-12-31 | 2020-12-31 | Edge computing task allocation method of fusion recommendation system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112749010A true CN112749010A (en) | 2021-05-04 |
| CN112749010B CN112749010B (en) | 2024-03-12 |
Family
ID=75650148
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011617690.7A Active CN112749010B (en) | 2020-12-31 | 2020-12-31 | Edge computing task allocation method of fusion recommendation system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112749010B (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113242319A (en) * | 2021-07-09 | 2021-08-10 | 军事科学院系统工程研究院网络信息研究所 | Cloud edge cooperative work method and system based on video cloud service architecture |
| CN113572857A (en) * | 2021-09-23 | 2021-10-29 | 环球数科集团有限公司 | Resource management system applied to Internet of things edge cloud collaborative computing environment |
| CN113626107A (en) * | 2021-08-20 | 2021-11-09 | 中南大学 | Mobile computing unloading method, system and storage medium |
| CN113722531A (en) * | 2021-09-08 | 2021-11-30 | 北京奇艺世纪科技有限公司 | Data storage method, device, system, equipment and storage medium |
| CN113919512A (en) * | 2021-09-26 | 2022-01-11 | 重庆邮电大学 | A federated learning communication optimization method and system based on logical hierarchy of computing resources |
| CN114327914A (en) * | 2022-03-07 | 2022-04-12 | 中国气象局公共气象服务中心(国家预警信息发布中心) | Mountain scenic spot mountain climbing decision-making method and system based on multi-factor edge calculation |
| CN114329280A (en) * | 2021-12-31 | 2022-04-12 | 中国电信股份有限公司 | Method and device, storage medium and electronic device for resource recommendation |
| CN117971503A (en) * | 2024-03-29 | 2024-05-03 | 杭州远石科技有限公司 | Data caching method and system based on edge calculation |
| CN118708332A (en) * | 2024-06-04 | 2024-09-27 | 中南大学 | A resource optimization method, device, terminal device and medium for cloud gaming system |
| WO2025156793A1 (en) * | 2024-01-26 | 2025-07-31 | 南京邮电大学 | Scheduling optimization method and system for vehicular edge computing |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107612987A (en) * | 2017-09-08 | 2018-01-19 | 浙江大学 | A kind of service provision optimization method based on caching towards edge calculations |
| CN109347924A (en) * | 2018-09-20 | 2019-02-15 | 西北大学 | A recommendation method based on crowd-sensing |
| CN110213627A (en) * | 2019-04-23 | 2019-09-06 | 武汉理工大学 | Flow medium buffer distributor and its working method based on multiple cell user mobility |
| CN111556531A (en) * | 2020-04-28 | 2020-08-18 | 东南大学 | Cooperative cache optimization method in micro-cellular wireless network |
-
2020
- 2020-12-31 CN CN202011617690.7A patent/CN112749010B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107612987A (en) * | 2017-09-08 | 2018-01-19 | 浙江大学 | A kind of service provision optimization method based on caching towards edge calculations |
| CN109347924A (en) * | 2018-09-20 | 2019-02-15 | 西北大学 | A recommendation method based on crowd-sensing |
| CN110213627A (en) * | 2019-04-23 | 2019-09-06 | 武汉理工大学 | Flow medium buffer distributor and its working method based on multiple cell user mobility |
| CN111556531A (en) * | 2020-04-28 | 2020-08-18 | 东南大学 | Cooperative cache optimization method in micro-cellular wireless network |
Non-Patent Citations (9)
| Title |
|---|
| BACCOUR, EMNA, ET AL.: ""Pccp: Proactive video chunks caching and processing in edge networks."", 《FUTURE GENERATION COMPUTER SYSTEMS》 * |
| HOU, TINGTING, ET AL.: ""Proactive content caching by exploiting transfer learning for mobile edge computing."", 《INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS》 * |
| KASTANAKIS S, SERMPEZIS P, KOTRONIS V, ET AL.: ""CABaRet: Leveraging recommendation systems for mobile edge caching"", 《PROCEEDINGS OF THE 2018 WORKSHOP ON MOBILE EDGE COMMUNICATIONS》 * |
| L.WANG, X. DENG, J. GUI, H. ZHANG AND S. YU: ""Computation Placement Orchestrator for Mobile Edge Computing in Heterogeneous Vehicular Networks"", 《IN IEEE INTERNET OF THINGS JOURNAL》 * |
| S.LI, B. LI AND W. ZHAO: ""Joint Optimization of Caching and Computation in Multi-Server NOMA-MEC System via Reinforcement Learning"", 《IN IEEE ACCESS》 * |
| ZENG, YUANYUAN, ET AL.: ""Smart caching based on user behavior for mobile edge computing."", 《INFORMATION SCIENCES》 * |
| 乐光学;戴亚盛;杨晓慧;刘建华;游真旭;朱友康: ""边缘计算可信协同服务策略建模"", 《计算机研究与发展》 * |
| 侯停停: ""移动边缘计算(MEC)架构中高效内容分发技术"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
| 邓晓衡, 关培源, 万志文等.: ""基于综合信任的边缘计算资源协同研究"", 《计算机研究与发展》 * |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113242319A (en) * | 2021-07-09 | 2021-08-10 | 军事科学院系统工程研究院网络信息研究所 | Cloud edge cooperative work method and system based on video cloud service architecture |
| CN113626107A (en) * | 2021-08-20 | 2021-11-09 | 中南大学 | Mobile computing unloading method, system and storage medium |
| CN113626107B (en) * | 2021-08-20 | 2024-03-26 | 中南大学 | Mobile computing unloading method, system and storage medium |
| CN113722531A (en) * | 2021-09-08 | 2021-11-30 | 北京奇艺世纪科技有限公司 | Data storage method, device, system, equipment and storage medium |
| CN113572857A (en) * | 2021-09-23 | 2021-10-29 | 环球数科集团有限公司 | Resource management system applied to Internet of things edge cloud collaborative computing environment |
| CN113919512A (en) * | 2021-09-26 | 2022-01-11 | 重庆邮电大学 | A federated learning communication optimization method and system based on logical hierarchy of computing resources |
| CN114329280A (en) * | 2021-12-31 | 2022-04-12 | 中国电信股份有限公司 | Method and device, storage medium and electronic device for resource recommendation |
| CN114329280B (en) * | 2021-12-31 | 2024-12-31 | 中国电信股份有限公司 | Method and device for resource recommendation, storage medium and electronic device |
| CN114327914B (en) * | 2022-03-07 | 2022-05-06 | 中国气象局公共气象服务中心(国家预警信息发布中心) | Mountain scenic spot mountain climbing decision-making method and system based on multi-factor edge calculation |
| CN114327914A (en) * | 2022-03-07 | 2022-04-12 | 中国气象局公共气象服务中心(国家预警信息发布中心) | Mountain scenic spot mountain climbing decision-making method and system based on multi-factor edge calculation |
| WO2025156793A1 (en) * | 2024-01-26 | 2025-07-31 | 南京邮电大学 | Scheduling optimization method and system for vehicular edge computing |
| CN117971503A (en) * | 2024-03-29 | 2024-05-03 | 杭州远石科技有限公司 | Data caching method and system based on edge calculation |
| CN117971503B (en) * | 2024-03-29 | 2024-06-11 | 杭州远石科技有限公司 | Data caching method and system based on edge calculation |
| CN118708332A (en) * | 2024-06-04 | 2024-09-27 | 中南大学 | A resource optimization method, device, terminal device and medium for cloud gaming system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112749010B (en) | 2024-03-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112749010A (en) | Edge calculation task allocation method for fusion recommendation system | |
| CN110213627B (en) | Streaming media cache allocation method based on multi-cell user mobility | |
| CN111475274B (en) | Cloud collaborative multi-task scheduling method and device | |
| CN113918240B (en) | Task unloading method and device | |
| CN111901145B (en) | A system and method for distributing heterogeneous shared resources in the power Internet of things | |
| CN109194763B (en) | A caching method based on self-organized cooperation of small base stations in ultra-dense networks | |
| CN105407004B (en) | The method and device of content distribution is carried out based on edge hotspot | |
| WO2023116460A1 (en) | Multi-user multi-task computing offloading method and system in mobile edge computing environment | |
| Li et al. | DQN-enabled content caching and quantum ant colony-based computation offloading in MEC | |
| CN111200831B (en) | A cellular network computing offload method integrating mobile edge computing | |
| CN108307446B (en) | Wireless network edge cooperative caching system and method based on software definition | |
| CN114641041B (en) | Internet of vehicles slicing method and device oriented to edge intelligence | |
| CN113709853B (en) | Network content transmission method and device oriented to cloud edge collaboration and storage medium | |
| CN110187964A (en) | Completion time minimization fog computing migration method in IoT scenarios | |
| Li et al. | Dynamic computation offloading based on graph partitioning in mobile edge computing | |
| CN110113761A (en) | Dispositions method and device in edge calculations network are applied in a kind of processing of flow data | |
| CN112540845A (en) | Mobile edge calculation-based collaboration system and method | |
| CN117707797B (en) | Task scheduling method and device based on distributed cloud platform and related equipment | |
| CN114567895A (en) | Method for realizing intelligent cooperation strategy of MEC server cluster | |
| CN113992677A (en) | A MEC calculation offloading method for joint optimization of delay and energy consumption | |
| WO2024119793A1 (en) | Scheduling method, system and device based on cache affinity, and medium | |
| CN118798319A (en) | A cloud-edge-end collaborative federated learning method and system based on computing power network | |
| CN116017570A (en) | Edge computing system resource management method based on block chain | |
| CN115051999A (en) | Energy consumption optimal task unloading method, device and system based on cloud edge cooperation | |
| Li et al. | Priority-mece: a mobile edge cloud ecosystem based on priority tasks offloading |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |