CN112462769A - Robot positioning method and device, computer readable storage medium and robot - Google Patents
Robot positioning method and device, computer readable storage medium and robot Download PDFInfo
- Publication number
- CN112462769A CN112462769A CN202011335627.4A CN202011335627A CN112462769A CN 112462769 A CN112462769 A CN 112462769A CN 202011335627 A CN202011335627 A CN 202011335627A CN 112462769 A CN112462769 A CN 112462769A
- Authority
- CN
- China
- Prior art keywords
- pose
- robot
- data
- grid map
- laser data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000004590 computer program Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 21
- 230000006870 function Effects 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000013501 data transformation Methods 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本申请属于机器人技术领域,尤其涉及一种机器人定位方法、装置、计算机可读存储介质及机器人。所述方法获取机器人在上一时刻的第一里程计数据以及在当前时刻的第二里程计数据,并根据所述第一里程计数据和所述第二里程计数据计算所述机器人的位姿增量;获取所述机器人在上一时刻的第一位姿,并根据所述第一位姿和所述位姿增量计算所述机器人在当前时刻的第二位姿;获取所述机器人在当前时刻采集的激光数据,并根据所述第二位姿将所述激光数据变换至栅格地图中,得到变换后的激光数据;根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,得到所述机器人在当前时刻的定位结果,显著提高了定位精度。
The present application belongs to the field of robotics, and in particular, relates to a robot positioning method, a device, a computer-readable storage medium, and a robot. The method acquires the first odometer data of the robot at the previous moment and the second odometer data at the current moment, and calculates the pose of the robot according to the first odometer data and the second odometer data Increment; obtain the first pose of the robot at the previous moment, and calculate the second pose of the robot at the current moment according to the first pose and the pose increment; obtain the robot at the current moment The laser data collected at the current moment is transformed into a grid map according to the second pose to obtain the transformed laser data; according to the transformed laser data and the grid map The second pose is iteratively updated with the obstacle distance information, and the positioning result of the robot at the current moment is obtained, which significantly improves the positioning accuracy.
Description
技术领域technical field
本申请属于机器人技术领域,尤其涉及一种机器人定位方法、装置、计算机可读存储介质及机器人。The present application belongs to the field of robotics, and in particular, relates to a robot positioning method, a device, a computer-readable storage medium, and a robot.
背景技术Background technique
机器人导航定位技术是根据机器人已经建立好的地图基础上,通过传感器获取当前检测到障碍物的激光数据,并根据激光数据与地图上的障碍物匹配定位出机器人的位姿,以便后续机器人移动。但是,在现有的机器人定位方法中,定位结果的精度往往较低,难以适应各种复杂多样的应用环境。The robot navigation and positioning technology is based on the map that the robot has established, obtains the laser data of the currently detected obstacles through the sensor, and locates the robot's pose according to the laser data and the obstacles on the map, so that the subsequent robot can move. However, in the existing robot positioning methods, the accuracy of the positioning results is often low, and it is difficult to adapt to various complex and diverse application environments.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请实施例提供了一种机器人定位方法、装置、计算机可读存储介质及机器人,以解决现有方法中定位结果的精度往往较低,难以适应各种复杂多样的应用环境的问题。In view of this, the embodiments of the present application provide a robot positioning method, device, computer-readable storage medium and robot, in order to solve the problem that the accuracy of the positioning results in the existing methods is often low, and it is difficult to adapt to various complex and diverse application environments. question.
本申请实施例的第一方面提供了一种机器人定位方法,可以包括:A first aspect of the embodiments of the present application provides a method for positioning a robot, which may include:
获取机器人在上一时刻的第一里程计数据以及在当前时刻的第二里程计数据,并根据所述第一里程计数据和所述第二里程计数据计算所述机器人的位姿增量;Obtain the first odometer data of the robot at the previous moment and the second odometer data at the current moment, and calculate the pose increment of the robot according to the first odometer data and the second odometer data;
获取所述机器人在上一时刻的第一位姿,并根据所述第一位姿和所述位姿增量计算所述机器人在当前时刻的第二位姿;Obtain the first pose of the robot at the previous moment, and calculate the second pose of the robot at the current moment according to the first pose and the pose increment;
获取所述机器人在当前时刻采集的激光数据,并根据所述第二位姿将所述激光数据变换至栅格地图中,得到变换后的激光数据;Acquiring the laser data collected by the robot at the current moment, and transforming the laser data into a grid map according to the second pose to obtain the transformed laser data;
根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,得到所述机器人在当前时刻的定位结果。The second pose is iteratively updated according to the transformed laser data and the obstacle distance information in the grid map to obtain the positioning result of the robot at the current moment.
进一步地,所述根据所述第二位姿将所述激光数据变换至栅格地图中,可以包括:Further, the transforming the laser data into a grid map according to the second pose may include:
根据下式将所述激光数据变换至所述栅格地图中:Transform the laser data into the raster map according to:
其中,ξ为所述第二位姿,(px,py)为所述第二位姿中的位置坐标,为所述第二位姿中的姿态角,为第i个激光点的位置坐标,Si(ξ)为第i个激光点变换至所述栅格地图中的位置坐标,i为所述激光数据中的激光点的序号,1≤i≤n,n为所述激光数据中的激光点的数目。Among them, ξ is the second pose, (p x , p y ) is the position coordinate in the second pose, is the attitude angle in the second pose, is the position coordinate of the i-th laser point, S i (ξ) is the position coordinate of the i-th laser point transformed into the grid map, i is the serial number of the laser point in the laser data, 1≤i≤ n, n is the number of laser spots in the laser data.
进一步地,所述根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,可以包括:Further, the iteratively updating the second pose according to the transformed laser data and the obstacle distance information in the grid map may include:
根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息计算位姿更新量;Calculate the pose update amount according to the transformed laser data and the obstacle distance information in the grid map;
根据所述位姿更新量对所述第二位姿进行更新,得到更新后的第二位姿;updating the second pose according to the pose update amount to obtain an updated second pose;
若所述位姿更新量大于预设的阈值,则返回执行所述根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息计算位姿更新量的步骤及其后续步骤,直至所述位姿更新量小于或等于所述阈值为止;If the pose update amount is greater than the preset threshold, return to the step of calculating the pose update amount according to the transformed laser data and the obstacle distance information in the grid map and its subsequent steps, until the pose update amount is less than or equal to the threshold;
若所述位姿更新量小于或等于所述阈值,则将最后一次更新后的第二位姿确定为所述机器人在当前时刻的定位结果。If the pose update amount is less than or equal to the threshold, the second pose after the last update is determined as the positioning result of the robot at the current moment.
进一步地,所述根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息计算位姿更新量,可以包括:Further, the calculation of the pose update amount according to the transformed laser data and the obstacle distance information in the grid map may include:
根据下式计算所述位姿更新量:The pose update amount is calculated according to the following formula:
Δξ=H-1dTrΔξ=H -1 dTr
其中,M(Si(ξ))为关于Si(ξ)距最近障碍物距离的预设函数,Δξ为所述位姿更新量。Wherein, M(S i (ξ)) is a preset function regarding the distance between Si ( ξ) and the nearest obstacle, and Δξ is the pose update amount.
进一步地,所述预设函数可以根据下式进行设置:Further, the preset function can be set according to the following formula:
其中,为与Si(ξ)距离最近的障碍物在所述栅格地图中的位置坐标,λ为预设的系数。in, is the position coordinate of the obstacle closest to S i (ξ) in the grid map, and λ is a preset coefficient.
进一步地,所述根据所述位姿更新量对所述第二位姿进行更新,可以包括:Further, the updating of the second pose according to the pose update amount may include:
根据下式对所述第二位姿进行更新:The second pose is updated according to the following formula:
ξ′=ξ+Δξξ′=ξ+Δξ
其中,ξ为所述第二位姿,Δξ为所述位姿更新量,ξ′为所述更新后的第二位姿。Wherein, ξ is the second pose, Δξ is the pose update amount, and ξ′ is the updated second pose.
进一步地,所述栅格地图中的障碍物距离信息的设置过程可以包括:Further, the setting process of the obstacle distance information in the grid map may include:
使用区域生长法遍历所述栅格地图中的每个栅格,将每个栅格的索引依次插入到预设的优先队列中,确定与该栅格距离最近的障碍物在所述栅格地图中的位置坐标,直至所述优先队列为空为止,得到具有障碍物距离信息的栅格地图。Use the region growing method to traverse each grid in the grid map, insert the index of each grid into the preset priority queue in turn, and determine that the obstacle closest to the grid is in the grid map until the priority queue is empty, a grid map with obstacle distance information is obtained.
本申请实施例的第二方面提供了一种机器人定位装置,可以包括:A second aspect of the embodiments of the present application provides a robot positioning device, which may include:
位姿增量计算模块,用于获取机器人在上一时刻的第一里程计数据以及在当前时刻的第二里程计数据,并根据所述第一里程计数据和所述第二里程计数据计算所述机器人的位姿增量;The pose increment calculation module is used to obtain the first odometer data of the robot at the previous moment and the second odometer data at the current moment, and calculate according to the first odometer data and the second odometer data the pose increment of the robot;
位姿计算模块,用于获取所述机器人在上一时刻的第一位姿,并根据所述第一位姿和所述位姿增量计算所述机器人在当前时刻的第二位姿;a pose calculation module, configured to obtain the first pose of the robot at the previous moment, and calculate the second pose of the robot at the current moment according to the first pose and the pose increment;
数据变换模块,用于获取所述机器人在当前时刻采集的激光数据,并根据所述第二位姿将所述激光数据变换至栅格地图中,得到变换后的激光数据;a data transformation module, configured to acquire the laser data collected by the robot at the current moment, and transform the laser data into a grid map according to the second pose to obtain the transformed laser data;
位姿迭代更新模块,用于根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,得到所述机器人在当前时刻的定位结果。A pose iterative update module is configured to iteratively update the second pose according to the transformed laser data and the obstacle distance information in the grid map, so as to obtain the positioning result of the robot at the current moment.
进一步地,所述数据变换模块具体用于根据下式将所述激光数据变换至所述栅格地图中:Further, the data transformation module is specifically configured to transform the laser data into the grid map according to the following formula:
其中,ξ为所述第二位姿,(px,py)为所述第二位姿中的位置坐标,为所述第二位姿中的姿态角,为第i个激光点的位置坐标,Si(ξ)为第i个激光点变换至所述栅格地图中的位置坐标,i为所述激光数据中的激光点的序号,1≤i≤n,n为所述激光数据中的激光点的数目。Among them, ξ is the second pose, (p x , p y ) is the position coordinate in the second pose, is the attitude angle in the second pose, is the position coordinate of the i-th laser point, S i (ξ) is the position coordinate of the i-th laser point transformed into the grid map, i is the serial number of the laser point in the laser data, 1≤i≤ n, n is the number of laser spots in the laser data.
进一步地,所述位姿迭代更新模块可以包括:Further, the pose iterative update module may include:
位姿更新量计算单元,用于根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息计算位姿更新量;a pose update amount calculation unit, configured to calculate the pose update amount according to the transformed laser data and the obstacle distance information in the grid map;
位姿更新单元,用于根据所述位姿更新量对所述第二位姿进行更新,得到更新后的第二位姿;a pose updating unit, configured to update the second pose according to the pose update amount to obtain an updated second pose;
定位结果确定单元,用于若所述位姿更新量小于或等于所述阈值,则将最后一次更新后的第二位姿确定为所述机器人在当前时刻的定位结果。A positioning result determination unit, configured to determine the second pose after the last update as the positioning result of the robot at the current moment if the update amount of the pose is less than or equal to the threshold.
进一步地,所述位姿更新量计算单元具体用于根据下式计算所述位姿更新量:Further, the pose update amount calculation unit is specifically configured to calculate the pose update amount according to the following formula:
Δξ=H-1dTrΔξ=H -1 dTr
其中,M(Si(ξ))为关于Si(ξ)距最近障碍物距离的预设函数,Δξ为所述位姿更新量。Wherein, M(S i (ξ)) is a preset function regarding the distance between Si ( ξ) and the nearest obstacle, and Δξ is the pose update amount.
所述预设函数可以根据下式进行设置:The preset function can be set according to the following formula:
其中,为与Si(ξ)距离最近的障碍物在所述栅格地图中的位置坐标,λ为预设的系数。in, is the position coordinate of the obstacle closest to S i (ξ) in the grid map, and λ is a preset coefficient.
进一步地,所述位姿更新单元具体用于根据下式对所述第二位姿进行更新:Further, the pose updating unit is specifically configured to update the second pose according to the following formula:
ξ′=ξ+Δξξ′=ξ+Δξ
其中,ξ为所述第二位姿,Δξ为所述位姿更新量,ξ′为所述更新后的第二位姿。Wherein, ξ is the second pose, Δξ is the pose update amount, and ξ′ is the updated second pose.
进一步地,所述机器人定位装置还可以包括:Further, the robot positioning device may also include:
障碍物距离信息设置模块,用于使用区域生长法遍历所述栅格地图中的每个栅格,将每个栅格的索引依次插入到预设的优先队列中,确定与该栅格距离最近的障碍物在所述栅格地图中的位置坐标,直至所述优先队列为空为止,得到具有障碍物距离信息的栅格地图。The obstacle distance information setting module is used to traverse each grid in the grid map by using the region growing method, insert the index of each grid into the preset priority queue in turn, and determine the closest distance to the grid The position coordinates of the obstacles in the grid map are obtained until the priority queue is empty, and a grid map with obstacle distance information is obtained.
本申请实施例的第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种机器人定位方法的步骤。A third aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of any of the foregoing robot positioning methods.
本申请实施例的第四方面提供了一种机器人,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一种机器人定位方法的步骤。A fourth aspect of the embodiments of the present application provides a robot, including a memory, a processor, and a computer program stored in the memory and executable on the processor, and the processor implements the computer program when the processor executes the computer program. The steps of any one of the above robot positioning methods.
本申请实施例的第五方面提供了一种计算机程序产品,当计算机程序产品在机器人上运行时,使得机器人执行上述任一种机器人定位方法的步骤。A fifth aspect of the embodiments of the present application provides a computer program product, which, when the computer program product runs on a robot, causes the robot to perform the steps of any one of the above robot positioning methods.
本申请实施例与现有技术相比存在的有益效果是:本申请实施例获取机器人在上一时刻的第一里程计数据以及在当前时刻的第二里程计数据,并根据所述第一里程计数据和所述第二里程计数据计算所述机器人的位姿增量;获取所述机器人在上一时刻的第一位姿,并根据所述第一位姿和所述位姿增量计算所述机器人在当前时刻的第二位姿;获取所述机器人在当前时刻采集的激光数据,并根据所述第二位姿将所述激光数据变换至栅格地图中,得到变换后的激光数据;根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,得到所述机器人在当前时刻的定位结果。通过本申请实施例,能够显著提高机器人在导航定位时的定位精度,让机器人在各种复杂多样的应用环境中具有更加稳健鲁棒的定位性能。Compared with the prior art, the embodiment of the present application has the following beneficial effects: the embodiment of the present application obtains the first odometer data of the robot at the previous moment and the second odometer data at the current moment, and according to the first odometer data Calculate the pose increment of the robot according to the odometer data and the second odometer data; obtain the first pose of the robot at the last moment, and calculate the pose increment based on the first pose and the pose increment The second pose of the robot at the current moment; obtain the laser data collected by the robot at the current moment, and transform the laser data into a grid map according to the second pose to obtain the transformed laser data ; Iteratively update the second pose according to the transformed laser data and the obstacle distance information in the grid map to obtain the positioning result of the robot at the current moment. Through the embodiments of the present application, the positioning accuracy of the robot during navigation and positioning can be significantly improved, so that the robot has more robust and robust positioning performance in various complex and diverse application environments.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本申请实施例中一种机器人定位方法的一个实施例流程图;FIG. 1 is a flowchart of an embodiment of a robot positioning method in an embodiment of the application;
图2为对机器人的位姿进行迭代更新的示意流程图;Fig. 2 is a schematic flow chart of iteratively updating the pose of the robot;
图3为本申请实施例中一种机器人定位装置的一个实施例结构图;3 is a structural diagram of an embodiment of a robot positioning device in an embodiment of the application;
图4为本申请实施例中一种机器人的示意框图。FIG. 4 is a schematic block diagram of a robot in an embodiment of the present application.
具体实施方式Detailed ways
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In order to make the purpose, features and advantages of the invention of the present application more obvious and understandable, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the following The described embodiments are only some, but not all, embodiments of the present application. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It is to be understood that, when used in this specification and the appended claims, the term "comprising" indicates the presence of the described feature, integer, step, operation, element and/or component, but does not exclude one or more other features , whole, step, operation, element, component and/or the presence or addition of a collection thereof.
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。It should also be understood that the terminology used in the specification of the application herein is for the purpose of describing particular embodiments only and is not intended to limit the application. As used in this specification and the appended claims, the singular forms "a," "an," and "the" are intended to include the plural unless the context clearly dictates otherwise.
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It should also be further understood that, as used in this specification and the appended claims, the term "and/or" refers to and including any and all possible combinations of one or more of the associated listed items .
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。As used in this specification and the appended claims, the term "if" may be contextually interpreted as "when" or "once" or "in response to determining" or "in response to detecting" . Similarly, the phrases "if it is determined" or "if the [described condition or event] is detected" may be interpreted, depending on the context, to mean "once it is determined" or "in response to the determination" or "once the [described condition or event] is detected. ]" or "in response to detection of the [described condition or event]".
另外,在本申请的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, in the description of the present application, the terms "first", "second", "third", etc. are only used to distinguish the description, and cannot be understood as indicating or implying relative importance.
在本申请实施例的一种具体实现中,可以采用相关性匹配或者基于障碍物概率地图梯度的匹配方式进行机器人定位。In a specific implementation of the embodiment of the present application, a correlation matching or a matching method based on the gradient of an obstacle probability map may be used to locate the robot.
相关性匹配定位方法是在机器人初始位姿估计值附近,沿该位姿的各个方向阵列,依次计算在各个阵列位姿下激光点与地图的障碍物的匹配分数,并将计算得到的最高匹配分数对应的位姿作为机器人的当前位姿。该方法类似于穷举遍历法,计算量较大,且定位精度取决于上述各个方向阵列的精度。The correlation matching positioning method is to calculate the matching scores of the laser points and the obstacles on the map under each array pose along the array in each direction of the pose near the initial pose estimate value of the robot, and calculate the highest matching score obtained. The pose corresponding to the score is used as the current pose of the robot. This method is similar to the exhaustive traversal method, with a large amount of calculation, and the positioning accuracy depends on the accuracy of the above-mentioned arrays in each direction.
基于障碍物概率地图梯度的匹配定位方法则是计算激光点所在的地图上的障碍物概率变化梯度,并沿梯度方向迭代移动。由于地图障碍物概率梯度变化只有在靠近障碍物附近的地方才有较大的变化,在离障碍物一定距离之后,地图障碍物概率梯度变化很小,甚至为零,此时该基于地图障碍物梯度变化的定位方法无法输出高精度的定位结果。因此该方法依赖机器人的初始位姿精度,需要使得激光点尽可能地靠近地图障碍物。The matching and positioning method based on the probability map gradient of the obstacle is to calculate the gradient of the probability change of the obstacle on the map where the laser point is located, and iteratively move along the gradient direction. Since the change of the probability gradient of the map obstacle only has a large change near the obstacle, after a certain distance from the obstacle, the change of the probability gradient of the map obstacle is very small or even zero. The localization method of gradient change cannot output high-precision localization results. Therefore, this method relies on the initial pose accuracy of the robot, and it is necessary to make the laser point as close to the map obstacles as possible.
在本申请实施例的另一种具体实现中,可以构建出基于激光点距最近障碍物的距离的残差方程来优化机器人位姿。该机器人位姿优化算法能够进行更高精度的机器人定位,同时相比其它激光定位算法,该方法克服了定位算法对机器人初始位姿敏感的问题和计算量较大的问题,使用定位运行更加稳定高效。在这一过程中,还可以基于优先队列和区域生长法相结合的方法来快速高效地计算出地图中任一位置的最近障碍物信息。In another specific implementation of the embodiment of the present application, a residual equation based on the distance between the laser point and the nearest obstacle may be constructed to optimize the robot pose. The robot pose optimization algorithm can perform higher-precision robot positioning. At the same time, compared with other laser positioning algorithms, this method overcomes the problem that the positioning algorithm is sensitive to the robot's initial pose and the problem of a large amount of calculation, and the positioning operation is more stable. Efficient. In this process, the nearest obstacle information at any position in the map can be quickly and efficiently calculated based on the combination of priority queue and region growing method.
请参阅图1,本申请实施例中一种机器人定位方法的一个实施例可以包括:Referring to FIG. 1, an embodiment of a robot positioning method in the embodiment of the present application may include:
步骤S101、获取机器人在上一时刻的第一里程计数据以及在当前时刻的第二里程计数据,并根据所述第一里程计数据和所述第二里程计数据计算所述机器人的位姿增量。Step S101: Obtain the first odometry data of the robot at the previous moment and the second odometer data at the current moment, and calculate the pose of the robot according to the first odometer data and the second odometer data Increment.
在本申请实施例中所使用的里程计数据可以为所述机器人的轮式里程计测量得到的数据,或所述机器人的惯性测量单元(Inertial Measurement Unit,IMU)测量得到的数据。The odometer data used in the embodiments of the present application may be data measured by a wheeled odometer of the robot, or data measured by an inertial measurement unit (Inertial Measurement Unit, IMU) of the robot.
所述机器人可以每隔一定的时间间隔即执行一次定位结果的更新,此处将进行定位结果更新的时刻依次记为:时刻1、时刻2、…、时刻t-1、时刻t、时刻t+1、…,以此类推。若当前时刻为时刻t,则其上一时刻即为时刻t-1,分别获取所述机器人在上一时刻的里程计数据(记为第一里程计数据)以及在当前时刻的里程计数据(记为第二里程计数据),根据两者之间的差值即可估算得到所述机器人的位姿增量。The robot may perform an update of the positioning result at regular intervals. Here, the timings for updating the positioning result are sequentially recorded as: time 1, time 2, ..., time t-1, time t, time t+ 1, ..., and so on. If the current time is time t, the previous time is time t-1, and the odometer data of the robot at the previous time (denoted as the first odometry data) and the odometer data at the current time ( Denoted as the second odometer data), the pose increment of the robot can be estimated according to the difference between the two.
步骤S102、获取所述机器人在上一时刻的第一位姿,并根据所述第一位姿和所述位姿增量计算所述机器人在当前时刻的第二位姿。Step S102: Obtain the first pose of the robot at the previous moment, and calculate the second pose of the robot at the current moment according to the first pose and the pose increment.
具体地,可以根据下式计算所述第二位姿:Specifically, the second pose can be calculated according to the following formula:
ξt=ξt-1+Δξt-1,t ξ t =ξ t-1 +Δξ t-1,t
其中,ξt-1为所述机器人在上一时刻的位姿,也即所述第一位姿,Δξt-1,t为所述位姿增量,ξt为所述机器人在当前时刻的位姿,也即所述第二位姿。Among them, ξ t-1 is the pose of the robot at the previous moment, that is, the first pose, Δξ t-1, t is the pose increment, and ξ t is the current moment of the robot. pose, that is, the second pose.
需要注意的是,由于传感器误差和机器人位姿误差的存在,这样计算得到的ξt只是一个估算值,并不是一个精确值,需要根据激光数据和栅格地图进行匹配,来进一步优化机器人位姿,得到更加准确的位姿。It should be noted that due to the existence of sensor error and robot pose error, the calculated ξ t is only an estimated value, not an accurate value. It needs to be matched according to the laser data and the raster map to further optimize the robot pose , to get a more accurate pose.
步骤S103、获取所述机器人在当前时刻采集的激光数据,并根据所述第二位姿将所述激光数据变换至栅格地图中,得到变换后的激光数据。Step S103: Acquire the laser data collected by the robot at the current moment, and transform the laser data into a grid map according to the second pose to obtain the transformed laser data.
所述栅格地图是将所述机器人所在的环境划分为一系列的栅格,并在其中记录了各个栅格的状态,所述状态可以包括占据状态(即被障碍物占据)、自由状态(即未被障碍物占据)和未知状态。The grid map divides the environment where the robot is located into a series of grids, and records the states of each grid in them, and the states can include occupied states (that is, occupied by obstacles), free states ( i.e. not occupied by obstacles) and unknown state.
所述机器人可以通过激光雷达来探测周边环境,其工作原理是向目标发射探测信号(激光),然后将接收到的从目标反射回来的信号与探测信号进行比较,作适当处理后,就可获得目标的有关信息,从而对目标进行探测、跟踪和识别。一般地,所述机器人可以按照预先设定的一个数据采集频率来进行激光数据的采集,每隔一定的时间间隔即采集一帧激光数据。具体的数据采集频率可以根据实际情况进行设置,本申请实施例对此不作具体限定。The robot can detect the surrounding environment through lidar, and its working principle is to transmit a detection signal (laser) to the target, and then compare the received signal reflected from the target with the detection signal, and after proper processing, it can be obtained. information about the target, so as to detect, track and identify the target. Generally, the robot can collect laser data according to a preset data collection frequency, and collect a frame of laser data every certain time interval. The specific data collection frequency may be set according to the actual situation, which is not specifically limited in this embodiment of the present application.
在获取所述机器人在当前时刻采集的激光数据之后,可以根据下式将所述激光数据变换至所述栅格地图中:After acquiring the laser data collected by the robot at the current moment, the laser data can be transformed into the grid map according to the following formula:
其中,ξ为所述第二位姿,(px,py)为所述第二位姿中的位置坐标,为所述第二位姿中的姿态角,为第i个激光点的位置坐标,Si(ξ)为第i个激光点变换至所述栅格地图中的位置坐标,i为所述激光数据中的激光点的序号,1≤i≤n,n为所述激光数据中的激光点的数目。根据上式将i从1遍历到n,即可得到所述激光数据中的各个激光点变换至所述栅格地图中的位置坐标,也即所述变换后的激光数据。Among them, ξ is the second pose, (p x , p y ) is the position coordinate in the second pose, is the attitude angle in the second pose, is the position coordinate of the i-th laser point, S i (ξ) is the position coordinate of the i-th laser point transformed into the grid map, i is the serial number of the laser point in the laser data, 1≤i≤ n, n is the number of laser spots in the laser data. Traversing i from 1 to n according to the above formula, can obtain the position coordinates of each laser point in the laser data transformed to the grid map, that is, the transformed laser data.
步骤S104、根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,得到所述机器人在当前时刻的定位结果。Step S104: Iteratively update the second pose according to the transformed laser data and the obstacle distance information in the grid map to obtain the positioning result of the robot at the current moment.
如图2所示,步骤S104具体可以包括如下过程:As shown in FIG. 2, step S104 may specifically include the following processes:
步骤S1041、根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息计算位姿更新量。Step S1041: Calculate the pose update amount according to the transformed laser data and the obstacle distance information in the grid map.
为了更加精确高效地进行激光数据与地图之间的匹配,在本申请实施例中可以构建出基于激光点距最近障碍物的距离的残差方程来优化机器人位姿。在这一过程中,通过高斯牛顿法来迭代计算所述机器人的位姿,使得在当前时刻的位姿下的各个激光点距地图中的该点最近障碍物的距离和最小。当激光数据中的所有激光点均与地图中障碍物重合(即该点距离最近的障碍物距离为0)时,则此时的位姿即为所述机器人的理想位姿。In order to perform matching between the laser data and the map more accurately and efficiently, in this embodiment of the present application, a residual equation based on the distance between the laser point and the nearest obstacle can be constructed to optimize the robot pose. In this process, the pose of the robot is iteratively calculated by the Gauss-Newton method, so that the distance sum of each laser point under the pose at the current moment to the nearest obstacle at the point in the map is the smallest. When all the laser points in the laser data coincide with the obstacles in the map (that is, the distance from the point to the nearest obstacle is 0), the pose at this time is the ideal pose of the robot.
通过上述分析,在本申请实施例中可以构造出如下优化函数,通过对其的迭代求解即可计算出机器人的精确位姿:Through the above analysis, in the embodiment of the present application, the following optimization function can be constructed, and the precise pose of the robot can be calculated by iteratively solving it:
其中,M(Si(ξ))为关于Si(ξ)距最近障碍物距离的预设函数,可以根据下式进行设置:Among them, M(S i (ξ)) is a preset function about the distance between Si ( ξ) and the nearest obstacle, which can be set according to the following formula:
为与Si(ξ)距离最近的障碍物在所述栅格地图中的位置坐标,λ为预设的系数,其具体取值可以根据实际情况进行设置,本申请实施例对此不做具体限定。 is the position coordinate of the obstacle closest to S i (ξ) in the grid map, λ is a preset coefficient, and its specific value can be set according to the actual situation, which is not specified in the embodiment of the present application. limited.
当距离越小,则可以认为激光数据与地图匹配的越好,机器人的位姿就越准确,误差越趋近于0,即:When the distance is smaller, it can be considered that the laser data matches the map better, the pose of the robot is more accurate, and the error is closer to 0, namely:
对其进行一阶泰勒展开,可得:Perform a first-order Taylor expansion on it, we can get:
其中,可以通过对M(Si(ξ))求导得到,可以通过对M(Si(ξ))求导得到。in, It can be obtained by derivation of M(S i (ξ)), It can be obtained by derivation of M(S i (ξ)).
接着,再对上式求导,可得:Then, derivation of the above formula, we can get:
令:make:
那么,则可以根据下式计算得到位姿更新量Δξ:Then, the pose update amount Δξ can be calculated according to the following formula:
Δξ=H-1dTrΔξ=H -1 dTr
步骤S1042、根据所述位姿更新量对所述第二位姿进行更新,得到更新后的第二位姿。Step S1042: Update the second pose according to the pose update amount to obtain an updated second pose.
具体地,可以根据下式对所述第二位姿进行更新:Specifically, the second pose can be updated according to the following formula:
ξ′=ξ+Δξξ′=ξ+Δξ
其中,ξ′为所述更新后的第二位姿。Wherein, ξ′ is the updated second pose.
步骤S1043、判断所述位姿更新量是否大于预设的阈值。Step S1043, judging whether the pose update amount is greater than a preset threshold.
所述阈值的具体取值可以根据实际情况进行设置,本申请实施例对此不做具体限定。若所述位姿更新量大于所述阈值,则返回执行步骤S1041及其后续步骤,即再次计算位姿更新量,需要注意的是,此时计算过程中所使用到的ξ均替换为更新后的ξ′,如此反复地进行迭代计算,直至所述位姿更新量小于或等于所述阈值为止;若所述位姿更新量小于或等于所述阈值,则结束迭代过程,并将最后一次更新后的第二位姿确定为所述机器人在当前时刻的定位结果。The specific value of the threshold may be set according to the actual situation, which is not specifically limited in this embodiment of the present application. If the pose update amount is greater than the threshold, return to step S1041 and its subsequent steps, that is, calculate the pose update amount again. It should be noted that at this time, the ξ used in the calculation process is replaced with the updated ξ′, iterative calculation is performed repeatedly until the pose update amount is less than or equal to the threshold; if the pose update amount is less than or equal to the threshold, the iterative process is ended, and the last update The second pose is determined as the positioning result of the robot at the current moment.
在上述过程中,需要计算与激光点Si(ξ)距离最近的障碍物在所述栅格地图中的位置坐标在本申请实施例中,可以结合采用优先队列和区域生长法来在所述栅格地图中进行障碍物距离信息的设置。即使用区域生长法遍历所述栅格地图中的每个栅格,将每个栅格的索引依次插入到预设的优先队列中,确定与该栅格距离最近的障碍物在所述栅格地图中的位置坐标,直至所述优先队列为空为止,得到具有障碍物距离信息的栅格地图。其中,优先队列会对插入的元素与队列中已有的元素进行比较并排序,并将插入到合适的位置中,本实施例中优先队列的元素即为栅格的索引,对新插入队列的元素,依次比较该元素与列队中已有元素的距最近障碍物的距离。距离越小,该元素在队列中的位置越靠前,越先出队列;距离越大,该元素在队列中的位置越靠后,越后出队列。这样保证从优先队列前端取出的元素是整个队列中距最近障碍物的距离最小的栅格的索引。In the above process, it is necessary to calculate the position coordinates of the obstacle closest to the laser point S i (ξ) in the grid map In this embodiment of the present application, a priority queue and an area growing method can be combined to set the obstacle distance information in the grid map. That is, use the region growing method to traverse each grid in the grid map, insert the index of each grid into the preset priority queue in turn, and determine that the obstacle closest to the grid is in the grid position coordinates in the map, until the priority queue is empty, a grid map with obstacle distance information is obtained. The priority queue compares and sorts the inserted elements with the existing elements in the queue, and inserts them into appropriate positions. In this embodiment, the element of the priority queue is the index of the grid. element, compare the distance of the element to the nearest obstacle in turn with the elements already in the queue. The smaller the distance, the higher the position of the element in the queue, and the first to be dequeued; the larger the distance, the further back the element is in the queue, and the later out of the queue. This ensures that the element taken from the front of the priority queue is the index of the grid with the smallest distance from the nearest obstacle in the entire queue.
所述栅格地图中的障碍物距离信息的具体设置过程为:The specific setting process of the obstacle distance information in the grid map is as follows:
(1)遍历所述栅格地图,将其中所有栅格的距最近障碍物的距离(记为obs_distance)初始化为一固定值(记为max_distance),并将所述栅格地图中被障碍物占据的栅格的索引记为集合:Obs_cells={obs_1,obs_2,…,obs_i,…,obs_n}。(1) Traverse the grid map, initialize the distances (denoted as obs_distance) of all grids to the nearest obstacle (denoted as obs_distance) to a fixed value (denoted as max_distance), and set the grid map occupied by obstacles The index of the grid is denoted as a set: Obs_cells={obs_1, obs_2, ..., obs_i, ..., obs_n}.
(2)依次将Obs_cells中的所有元素的距最近障碍物的距离设置为0,即:obs_i.obs_distance=0,并将这些元素插入优先队列(记为Priority_quene)中。(2) Set the distances of all elements in Obs_cells from the nearest obstacle to 0 in turn, ie: obs_i.obs_distance=0, and insert these elements into the priority queue (denoted as Priority_quene).
(3)判断Priority_quene是否为空;(3) Determine whether Priority_quene is empty;
若为空,则结束设置过程;若不为空,则执行步骤(4)。If it is empty, end the setting process; if it is not empty, execute step (4).
(4)取出Priority_quene最前端元素,并将其作为当前元素(记为Current_cell)。(4) Take out the frontmost element of Priority_quene and use it as the current element (denoted as Current_cell).
(5)依次获取Current_cell在栅格地图中前后左右的元素,记为集合:Neighbor_cells={UpCell,DownCell,LeftCell,RightCell}。(5) The elements of Current_cell in the grid map are obtained in sequence, and recorded as a set: Neighbor_cells={UpCell, DownCell, LeftCell, RightCell}.
(6)判断是否遍历完Neighbor_cells中的各元素;(6) Judge whether each element in Neighbor_cells has been traversed;
若未遍历完,则执行步骤(7);若遍历完,则执行步骤(10)。If the traversal is not completed, step (7) is performed; if the traversal is completed, step (10) is performed.
(7)从Neighbor_cells中选取一个元素,并判断该元素的标志位(记为Neighbor_cell.is_marked)是否已被置为真(true);(7) Select an element from Neighbor_cells, and judge whether the flag bit of the element (denoted as Neighbor_cell.is_marked) has been set to true (true);
若是,则返回执行步骤(6);若否,则执行步骤(8)。If yes, go back to step (6); if not, go to step (8).
(8)根据下式计算该元素的距最近障碍物的距离(记为Neighbor_cell.obs_distance):(8) Calculate the distance of the element from the nearest obstacle according to the following formula (denoted as Neighbor_cell.obs_distance):
Neighbor_cell.obs_distance=||Neighbor_cell.pose-Neighbor_cell.obs_pose||Neighbor_cell.obs_distance=||Neighbor_cell.pose-Neighbor_cell.obs_pose||
其中,Neighbor_cell.pose为该元素在栅格地图中的位置坐标,Neighbor_cell.obs_pose为距该元素最近的障碍物在栅格地图中的位置坐标,在本申请实施例中,可以将距该元素最近的障碍物近似等价为距Current_cell最近的障碍物,则有:Among them, Neighbor_cell.pose is the position coordinate of the element in the grid map, and Neighbor_cell.obs_pose is the position coordinate of the nearest obstacle to the element in the grid map. The obstacle is approximately equivalent to the obstacle closest to Current_cell, then there are:
Neighbor_cell.obs_pose=Current_cell.obs_poseNeighbor_cell.obs_pose=Current_cell.obs_pose
其中,Current_cell.obs_pose即为距Current_cell最近的障碍物在栅格地图中的位置坐标,为一已知量;Among them, Current_cell.obs_pose is the position coordinate of the nearest obstacle to Current_cell in the grid map, which is a known quantity;
综合以上两式,则有:Combining the above two formulas, we have:
Neighbor_cell.obs_distance=||Neighbor_cell.pose-Current_cell.obs_pose||。Neighbor_cell.obs_distance=||Neighbor_cell.pose-Current_cell.obs_pose||.
(9)将该元素的标志位置为真,即:Neighbor_cell.is_marked=true,并将该元素插入到Priority_quene中;然后返回执行步骤(6)。(9) The marked position of the element is true, that is: Neighbor_cell.is_marked=true, and the element is inserted into the Priority_quene; then it returns to step (6).
(10)从Priority_quene中删除Current_cell;然后返回执行步骤(3),直至Priority_quene为空,结束整个设置过程。(10) Delete the Current_cell from the Priority_quene; then return to step (3) until the Priority_quene is empty, ending the entire setting process.
通过本申请实施例,给定地图中任一栅格坐标Si(ξ),即可快速得到该栅格对应的最近障碍物栅格且这一设置过程只在初始化地图时计算一次,后续导航定位过程中地图信息不再更新,故对于地图中任一点,最近障碍物也不会发生变化,导航过程中该信息可直接查询得到,无需进行任何计算,极大提升了定位效率。同时无论机器人提供的初始位姿精度如何,都能得到所有激光点距最近障碍物的距离,并进行匹配优化,对机器人初始优化位姿不存在依赖,解决了基于概率地图梯度匹配算法的问题。并且由于本申请实施例采用了基于指数的最近距离评价函数M(Si(ξ)),机器人的位姿的微小变化即可引起M(Si(ξ))较大的输出变化,因此在迭代过程中可以得到更高的定位精度。Through the embodiment of the present application, given any grid coordinate S i (ξ) in the map, the nearest obstacle grid corresponding to the grid can be quickly obtained And this setting process is only calculated once when the map is initialized, and the map information will not be updated in the subsequent navigation and positioning process, so for any point on the map, the nearest obstacles will not change, and the information can be directly queried during the navigation process. There is no need to perform any calculations, which greatly improves the positioning efficiency. At the same time, regardless of the initial pose accuracy provided by the robot, the distance between all laser points and the nearest obstacle can be obtained, and the matching optimization is carried out. There is no dependence on the initial optimized pose of the robot, which solves the problem based on the probability map gradient matching algorithm. And since the embodiment of this application adopts the index-based closest distance evaluation function M(S i (ξ)), a small change in the pose of the robot can cause a large output change in M(S i (ξ)), so in Higher positioning accuracy can be obtained in the iterative process.
综上所述,本申请实施例获取机器人在上一时刻的第一里程计数据以及在当前时刻的第二里程计数据,并根据所述第一里程计数据和所述第二里程计数据计算所述机器人的位姿增量;获取所述机器人在上一时刻的第一位姿,并根据所述第一位姿和所述位姿增量计算所述机器人在当前时刻的第二位姿;获取所述机器人在当前时刻采集的激光数据,并根据所述第二位姿将所述激光数据变换至栅格地图中,得到变换后的激光数据;根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,得到所述机器人在当前时刻的定位结果。通过本申请实施例,能够显著提高机器人在导航定位时的定位精度,让机器人在各种复杂多样的应用环境中具有更加稳健鲁棒的定位性能。To sum up, the embodiment of the present application obtains the first odometer data of the robot at the previous moment and the second odometer data at the current moment, and calculates according to the first odometer data and the second odometer data The pose increment of the robot; obtain the first pose of the robot at the previous moment, and calculate the second pose of the robot at the current moment according to the first pose and the pose increment ; Acquire the laser data collected by the robot at the current moment, and transform the laser data into a grid map according to the second pose to obtain the transformed laser data; According to the transformed laser data and all The second pose is iteratively updated using the obstacle distance information in the grid map to obtain the positioning result of the robot at the current moment. Through the embodiments of the present application, the positioning accuracy of the robot during navigation and positioning can be significantly improved, so that the robot has more robust and robust positioning performance in various complex and diverse application environments.
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that the size of the sequence numbers of the steps in the above embodiments does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present application.
对应于上文实施例所述的一种机器人定位方法,图3示出了本申请实施例提供的一种机器人定位装置的一个实施例结构图。Corresponding to the robot positioning method described in the above embodiments, FIG. 3 shows a structural diagram of an embodiment of a robot positioning device provided by an embodiment of the present application.
本实施例中,一种机器人定位装置可以包括:In this embodiment, a robot positioning device may include:
位姿增量计算模块301,用于获取机器人在上一时刻的第一里程计数据以及在当前时刻的第二里程计数据,并根据所述第一里程计数据和所述第二里程计数据计算所述机器人的位姿增量;The pose
位姿计算模块302,用于获取所述机器人在上一时刻的第一位姿,并根据所述第一位姿和所述位姿增量计算所述机器人在当前时刻的第二位姿;The
数据变换模块303,用于获取所述机器人在当前时刻采集的激光数据,并根据所述第二位姿将所述激光数据变换至栅格地图中,得到变换后的激光数据;A
位姿迭代更新模块304,用于根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息对所述第二位姿进行迭代更新,得到所述机器人在当前时刻的定位结果。The pose
进一步地,所述数据变换模块具体用于根据下式将所述激光数据变换至所述栅格地图中:Further, the data transformation module is specifically configured to transform the laser data into the grid map according to the following formula:
其中,ξ为所述第二位姿,(px,py)为所述第二位姿中的位置坐标,为所述第二位姿中的姿态角,为第i个激光点的位置坐标,Si(ξ)为第i个激光点变换至所述栅格地图中的位置坐标,i为所述激光数据中的激光点的序号,1≤i≤n,n为所述激光数据中的激光点的数目。Among them, ξ is the second pose, (p x , p y ) is the position coordinate in the second pose, is the attitude angle in the second pose, is the position coordinate of the i-th laser point, S i (ξ) is the position coordinate of the i-th laser point transformed into the grid map, i is the serial number of the laser point in the laser data, 1≤i≤ n, n is the number of laser spots in the laser data.
进一步地,所述位姿迭代更新模块可以包括:Further, the pose iterative update module may include:
位姿更新量计算单元,用于根据所述变换后的激光数据和所述栅格地图中的障碍物距离信息计算位姿更新量;a pose update amount calculation unit, configured to calculate the pose update amount according to the transformed laser data and the obstacle distance information in the grid map;
位姿更新单元,用于根据所述位姿更新量对所述第二位姿进行更新,得到更新后的第二位姿;a pose updating unit, configured to update the second pose according to the pose update amount to obtain an updated second pose;
定位结果确定单元,用于若所述位姿更新量小于或等于所述阈值,则将最后一次更新后的第二位姿确定为所述机器人在当前时刻的定位结果。A positioning result determination unit, configured to determine the second pose after the last update as the positioning result of the robot at the current moment if the update amount of the pose is less than or equal to the threshold.
进一步地,所述位姿更新量计算单元具体用于根据下式计算所述位姿更新量:Further, the pose update amount calculation unit is specifically configured to calculate the pose update amount according to the following formula:
Δξ=H-1dTrΔξ=H -1 dTr
其中,M(Si(ξ))为关于Si(ξ)距最近障碍物距离的预设函数,Δξ为所述位姿更新量。Wherein, M(S i (ξ)) is a preset function regarding the distance between Si ( ξ) and the nearest obstacle, and Δξ is the pose update amount.
所述预设函数可以根据下式进行设置:The preset function can be set according to the following formula:
其中,为与Si(ξ)距离最近的障碍物在所述栅格地图中的位置坐标,λ为预设的系数。in, is the position coordinate of the obstacle closest to S i (ξ) in the grid map, and λ is a preset coefficient.
进一步地,所述位姿更新单元具体用于根据下式对所述第二位姿进行更新:Further, the pose updating unit is specifically configured to update the second pose according to the following formula:
ξ′=ξ+Δξξ′=ξ+Δξ
其中,ξ为所述第二位姿,Δξ为所述位姿更新量,ξ′为所述更新后的第二位姿。Wherein, ξ is the second pose, Δξ is the pose update amount, and ξ′ is the updated second pose.
进一步地,所述机器人定位装置还可以包括:Further, the robot positioning device may also include:
障碍物距离信息设置模块,用于使用区域生长法遍历所述栅格地图中的每个栅格,将每个栅格的索引依次插入到预设的优先队列中,确定与该栅格距离最近的障碍物在所述栅格地图中的位置坐标,直至所述优先队列为空为止,得到具有障碍物距离信息的栅格地图。The obstacle distance information setting module is used to traverse each grid in the grid map by using the region growing method, insert the index of each grid into the preset priority queue in turn, and determine the closest distance to the grid The position coordinates of the obstacles in the grid map are obtained until the priority queue is empty, and a grid map with obstacle distance information is obtained.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the above-described devices, modules and units can be referred to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
图4示出了本申请实施例提供的一种机器人的示意框图,为了便于说明,仅示出了与本申请实施例相关的部分。FIG. 4 shows a schematic block diagram of a robot provided by an embodiment of the present application. For convenience of description, only parts related to the embodiment of the present application are shown.
如图4所示,该实施例的机器人4包括:处理器40、存储器41以及存储在所述存储器41中并可在所述处理器40上运行的计算机程序42。所述处理器40执行所述计算机程序42时实现上述各个机器人定位方法实施例中的步骤,例如图1所示的步骤S101至步骤S104。或者,所述处理器40执行所述计算机程序42时实现上述各装置实施例中各模块/单元的功能,例如图3所示模块301至模块304的功能。As shown in FIG. 4 , the
示例性的,所述计算机程序42可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器41中,并由所述处理器40执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序42在所述机器人4中的执行过程。Exemplarily, the
本领域技术人员可以理解,图4仅仅是机器人4的示例,并不构成对机器人4的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述机器人4还可以包括输入输出设备、网络接入设备、总线等。Those skilled in the art can understand that FIG. 4 is only an example of the
所述处理器40可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The
所述存储器41可以是所述机器人4的内部存储单元,例如机器人4的硬盘或内存。所述存储器41也可以是所述机器人4的外部存储设备,例如所述机器人4上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器41还可以既包括所述机器人4的内部存储单元也包括外部存储设备。所述存储器41用于存储所述计算机程序以及所述机器人4所需的其它程序和数据。所述存储器41还可以用于暂时地存储已经输出或者将要输出的数据。The
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example. Module completion, that is, dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above. Each functional unit and module in the embodiment may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit, and the above-mentioned integrated units may adopt hardware. It can also be realized in the form of software functional units. In addition, the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working process of the units and modules in the above-mentioned system, reference may be made to the corresponding process in the foregoing method embodiments, which will not be repeated here.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
在本申请所提供的实施例中,应该理解到,所揭露的装置/机器人和方法,可以通过其它的方式实现。例如,以上所描述的装置/机器人实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed apparatus/robot and method may be implemented in other ways. For example, the device/robot embodiments described above are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or Components may be combined or may be integrated into another system, or some features may be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不包括电载波信号和电信信号。The integrated modules/units, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the present application can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing the relevant hardware through a computer program. The computer program can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps of the foregoing method embodiments can be implemented. Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like. The computer-readable storage medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) ), random access memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable storage medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer-readable Storage media exclude electrical carrier signals and telecommunications signals.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the above-mentioned embodiments, those of ordinary skill in the art should understand that: it can still be used for the above-mentioned implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the application, and should be included in the within the scope of protection of this application.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011335627.4A CN112462769A (en) | 2020-11-25 | 2020-11-25 | Robot positioning method and device, computer readable storage medium and robot |
PCT/CN2020/139894 WO2022110451A1 (en) | 2020-11-25 | 2020-12-28 | Method and apparatus for positioning robot, computer-readable storage medium, and robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011335627.4A CN112462769A (en) | 2020-11-25 | 2020-11-25 | Robot positioning method and device, computer readable storage medium and robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112462769A true CN112462769A (en) | 2021-03-09 |
Family
ID=74799000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011335627.4A Pending CN112462769A (en) | 2020-11-25 | 2020-11-25 | Robot positioning method and device, computer readable storage medium and robot |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112462769A (en) |
WO (1) | WO2022110451A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113510703A (en) * | 2021-06-25 | 2021-10-19 | 深圳市优必选科技股份有限公司 | Method, device, robot and storage medium for determining robot pose |
CN113671523A (en) * | 2021-08-18 | 2021-11-19 | Oppo广东移动通信有限公司 | Robot positioning method, device, storage medium and robot |
CN114211173A (en) * | 2022-01-27 | 2022-03-22 | 上海电气集团股份有限公司 | Method, device and system for determining welding position |
CN115176127A (en) * | 2022-06-02 | 2022-10-11 | 深圳市正浩创新科技股份有限公司 | Map updating method, computer device, and storage medium |
CN115246118A (en) * | 2021-04-25 | 2022-10-28 | 广东博智林机器人有限公司 | Robot positioning method and device, robot and storage medium |
CN115507836A (en) * | 2021-06-23 | 2022-12-23 | 同方威视技术股份有限公司 | Method for determining the position of a robot and robot |
WO2023197668A1 (en) * | 2022-04-11 | 2023-10-19 | 北京京东乾石科技有限公司 | Obstacle avoidance control method and apparatus for robot |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117420830B (en) * | 2023-10-23 | 2025-05-16 | 浙江大学 | Environmental exploration method, rat robot and storage medium |
CN118913294B (en) * | 2024-10-12 | 2025-03-18 | 青岛港国际股份有限公司 | IGV navigation warning method, system, terminal and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110858076A (en) * | 2018-08-22 | 2020-03-03 | 杭州海康机器人技术有限公司 | Equipment positioning and grid map construction method and mobile robot |
CN111113422A (en) * | 2019-12-30 | 2020-05-08 | 深圳市优必选科技股份有限公司 | Robot positioning method, device, computer-readable storage medium, and robot |
CN111486842A (en) * | 2019-01-29 | 2020-08-04 | 深圳市优必选科技有限公司 | Relocation method and device, robot |
CN111536964A (en) * | 2020-07-09 | 2020-08-14 | 浙江大华技术股份有限公司 | Robot positioning method and device, and storage medium |
CN111708047A (en) * | 2020-06-16 | 2020-09-25 | 浙江大华技术股份有限公司 | Robot positioning evaluation method, robot and computer storage medium |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5686048B2 (en) * | 2011-06-08 | 2015-03-18 | 富士通株式会社 | Position / orientation output device, position / orientation output program, and position / orientation output method |
CN108332758B (en) * | 2018-01-26 | 2021-07-09 | 上海思岚科技有限公司 | Corridor identification method and device for mobile robot |
CN110895408B (en) * | 2018-08-22 | 2023-05-02 | 杭州海康机器人股份有限公司 | Autonomous positioning method and device and mobile robot |
US11331801B2 (en) * | 2018-11-28 | 2022-05-17 | Mitsubishi Electric Research Laboratories, Inc. | System and method for probabilistic multi-robot positioning |
CN110174894B (en) * | 2019-05-27 | 2022-03-15 | 小狗电器互联网科技(北京)股份有限公司 | Robot and repositioning method thereof |
CN110515382A (en) * | 2019-08-28 | 2019-11-29 | 锐捷网络股份有限公司 | A kind of smart machine and its localization method |
CN111190191A (en) * | 2019-12-11 | 2020-05-22 | 杭州电子科技大学 | A Scanning Matching Method Based on Laser SLAM |
-
2020
- 2020-11-25 CN CN202011335627.4A patent/CN112462769A/en active Pending
- 2020-12-28 WO PCT/CN2020/139894 patent/WO2022110451A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110858076A (en) * | 2018-08-22 | 2020-03-03 | 杭州海康机器人技术有限公司 | Equipment positioning and grid map construction method and mobile robot |
CN111486842A (en) * | 2019-01-29 | 2020-08-04 | 深圳市优必选科技有限公司 | Relocation method and device, robot |
CN111113422A (en) * | 2019-12-30 | 2020-05-08 | 深圳市优必选科技股份有限公司 | Robot positioning method, device, computer-readable storage medium, and robot |
CN111708047A (en) * | 2020-06-16 | 2020-09-25 | 浙江大华技术股份有限公司 | Robot positioning evaluation method, robot and computer storage medium |
CN111536964A (en) * | 2020-07-09 | 2020-08-14 | 浙江大华技术股份有限公司 | Robot positioning method and device, and storage medium |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115246118A (en) * | 2021-04-25 | 2022-10-28 | 广东博智林机器人有限公司 | Robot positioning method and device, robot and storage medium |
CN115507836A (en) * | 2021-06-23 | 2022-12-23 | 同方威视技术股份有限公司 | Method for determining the position of a robot and robot |
CN115507836B (en) * | 2021-06-23 | 2024-02-02 | 同方威视技术股份有限公司 | Method for determining the position of a robot and robot |
CN113510703A (en) * | 2021-06-25 | 2021-10-19 | 深圳市优必选科技股份有限公司 | Method, device, robot and storage medium for determining robot pose |
CN113510703B (en) * | 2021-06-25 | 2022-09-16 | 深圳市优必选科技股份有限公司 | Robot posture determining method and device, robot and storage medium |
CN113671523A (en) * | 2021-08-18 | 2021-11-19 | Oppo广东移动通信有限公司 | Robot positioning method, device, storage medium and robot |
CN114211173A (en) * | 2022-01-27 | 2022-03-22 | 上海电气集团股份有限公司 | Method, device and system for determining welding position |
CN114211173B (en) * | 2022-01-27 | 2024-05-31 | 上海电气集团股份有限公司 | Method, device and system for determining welding position |
WO2023197668A1 (en) * | 2022-04-11 | 2023-10-19 | 北京京东乾石科技有限公司 | Obstacle avoidance control method and apparatus for robot |
CN115176127A (en) * | 2022-06-02 | 2022-10-11 | 深圳市正浩创新科技股份有限公司 | Map updating method, computer device, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
WO2022110451A1 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022110451A1 (en) | Method and apparatus for positioning robot, computer-readable storage medium, and robot | |
CN111536964B (en) | Robot positioning method and device, and storage medium | |
CN109345596B (en) | Multi-sensor calibration method, device, computer equipment, medium and vehicle | |
Segal et al. | Generalized-icp. | |
WO2020168685A1 (en) | Three-dimensional scanning viewpoint planning method, device, and computer readable storage medium | |
CN111113422A (en) | Robot positioning method, device, computer-readable storage medium, and robot | |
CN109903330B (en) | A method and apparatus for processing data | |
CN113933818A (en) | Method, device, storage medium and program product for calibration of external parameters of lidar | |
CN111486842A (en) | Relocation method and device, robot | |
CN109583505A (en) | A kind of object correlating method, device, equipment and the medium of multisensor | |
CN111707279B (en) | Matching evaluation method, medium, terminal and device for laser point cloud and map | |
WO2024197815A1 (en) | Engineering machinery mapping method and device, and readable storage medium | |
CN116255992A (en) | Method and device for simultaneously positioning and mapping | |
CN112097772B (en) | Robot and map construction method and device thereof | |
CN111275748A (en) | Lidar-based point cloud registration method in dynamic environment | |
CN111795687A (en) | A robot map update method, device, readable storage medium and robot | |
CN115950356A (en) | Bucket coordinate calibration method and device, update method and device, excavator | |
CN114022552B (en) | A target positioning method and related device integrating laser radar and camera | |
WO2022252482A1 (en) | Robot, and environment map construction method and apparatus therefor | |
CN111474560B (en) | An obstacle positioning method, device and equipment | |
CN115307641A (en) | Robot positioning method, device, robot and storage medium | |
WO2024260255A1 (en) | Mowing robot positioning method and apparatus, and electronic device and readable storage medium | |
CN114814875A (en) | A robot positioning and mapping method, device, readable storage medium and robot | |
CN115049737B (en) | A posture labeling method, device, system and storage medium | |
CN115952248A (en) | Pose processing method, device, equipment, medium and product of terminal equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |