CN111986490A - Road condition prediction method and device, electronic equipment and storage medium - Google Patents
Road condition prediction method and device, electronic equipment and storage medium Download PDFInfo
- Publication number
- CN111986490A CN111986490A CN202010986785.XA CN202010986785A CN111986490A CN 111986490 A CN111986490 A CN 111986490A CN 202010986785 A CN202010986785 A CN 202010986785A CN 111986490 A CN111986490 A CN 111986490A
- Authority
- CN
- China
- Prior art keywords
- predicted
- time period
- historical
- traffic information
- road
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Traffic Control Systems (AREA)
Abstract
本申请公开了一种路况预测方法、装置、电子设备和存储介质,涉及智能交通技术领域。具体实现方案为:确定当前时间段在历史周期中的历史道路交通信息;确定所述当前时间段在当前周期中的实时道路交通信息;确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后;根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。采用上述技术手段能够提高路况预测的准确度,满足用户对于路况预测的需求。
The present application discloses a road condition prediction method, device, electronic device and storage medium, and relates to the technical field of intelligent transportation. The specific implementation scheme is: determine the historical road traffic information of the current time period in the historical period; determine the real-time road traffic information of the current time period in the current period; determine the historical road traffic information of the time period to be predicted in the historical period information; wherein, the time period to be predicted is after the current time period; according to the historical road traffic information and the real-time road traffic information of the current time period, and the historical road traffic information of the time period to be predicted, The real-time road condition information in the current cycle of at least two to-be-predicted moments in the to-be-predicted time period is predicted. The adoption of the above technical means can improve the accuracy of the road condition prediction, and satisfy the user's demand for the road condition prediction.
Description
技术领域technical field
本申请涉及计算机技术领域,尤其涉及智能交通技术领域,具体涉及一种路况预测方法、装置、电子设备和存储介质。The present application relates to the field of computer technology, in particular to the field of intelligent transportation technology, and in particular to a road condition prediction method, device, electronic device and storage medium.
背景技术Background technique
随着全国汽车保有量的持续快速增长,城市道路交通拥堵问题日益严重,人们对于路况预测的重视度和需求度也越来越高。With the continuous and rapid growth of car ownership in the country, the problem of urban road traffic congestion is becoming more and more serious, and people's attention and demand for road condition forecasting are also increasing.
交通管理人员越来越重视交通路况的监控和预测,以便更好的进行交通治理;普通用户越来越重视未来的路况预测,以便更合理的安排出行规划。Traffic managers are paying more and more attention to monitoring and forecasting traffic conditions for better traffic governance; ordinary users are paying more and more attention to forecasting future road conditions in order to make more reasonable travel plans.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种路况预测方法、装置、电子设备和存储介质。The present application provides a road condition prediction method, device, electronic device and storage medium.
根据本申请的第一方面,提供了一种路况预测方法,包括:According to a first aspect of the present application, a road condition prediction method is provided, including:
确定当前时间段在历史周期中的历史道路交通信息;Determine the historical road traffic information of the current time period in the historical period;
确定所述当前时间段在当前周期中的实时道路交通信息;determining the real-time road traffic information of the current time period in the current cycle;
确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后;determining the historical road traffic information of the time period to be predicted in the historical period; wherein the time period to be predicted is after the current time period;
根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。According to the historical road traffic information of the current time period and the real-time road traffic information, and the historical road traffic information of the to-be-predicted time period, it is predicted that at least two to-be-predicted times in the to-be-predicted time period will be in the current Real-time traffic information in cycles.
根据本申请的第二方面,提供了一种路况预测装置,包括:According to a second aspect of the present application, a road condition prediction device is provided, comprising:
当前时间段的历史道路交通信息确定模块,用于确定当前时间段在历史周期中的历史道路交通信息;The historical road traffic information determination module of the current time period is used to determine the historical road traffic information of the current time period in the historical period;
当前时间段的实时道路交通信息确定模块,用于确定所述当前时间段在当前周期中的实时道路交通信息;The real-time road traffic information determination module of the current time period is used to determine the real-time road traffic information of the current time period in the current cycle;
待预测时间段的历史道路交通信息确定模块,用于确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后;A historical road traffic information determination module for the time period to be predicted, for determining the historical road traffic information of the time period to be predicted in the historical period; wherein the time period to be predicted is after the current time period;
实时路况信息预测模块,用于根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。The real-time road condition information prediction module is used to predict at least two of the to-be-predicted time periods according to the historical road traffic information of the current time period and the real-time road traffic information, and the historical road traffic information of the to-be-predicted time period. The real-time road condition information of the time to be predicted in the current cycle.
根据本申请的第三方面,提供了一种电子设备,其中,包括:According to a third aspect of the present application, an electronic device is provided, comprising:
至少一个处理器;以及at least one processor; and
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请中任一项所述的方法。The memory stores instructions executable by the at least one processor to enable the at least one processor to perform the method of any of the present application.
根据本申请的第四方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行本申请中任一项所述的方法。According to a fourth aspect of the present application, there is provided a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to perform the method of any one of the present application.
根据本申请的技术能够提升路况预测的准确度。The technology according to the present application can improve the accuracy of road condition prediction.
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify key or critical features of the embodiments of the application, nor is it intended to limit the scope of the application. Other features of the present application will become readily understood from the following description.
附图说明Description of drawings
附图用于更好地理解本方案,不构成对本申请的限定。其中:The accompanying drawings are used for better understanding of the present solution, and do not constitute a limitation to the present application. in:
图1是根据本申请实施例提供的一种路况预测方法的流程示意图;FIG. 1 is a schematic flowchart of a road condition prediction method provided according to an embodiment of the present application;
图2a是根据本申请实施例提供的另一种路况预测方法的流程示意图;2a is a schematic flowchart of another road condition prediction method provided according to an embodiment of the present application;
图2b是根据本申请实施例提供的一种LSTM的模型框架示意图;2b is a schematic diagram of a model framework of an LSTM provided according to an embodiment of the present application;
图3是根据本申请实施例提供的又一种路况预测方法的流程示意图;3 is a schematic flowchart of another road condition prediction method provided according to an embodiment of the present application;
图4是根据本申请实施例提供的一种路况预测装置的结构示意图;4 is a schematic structural diagram of a road condition prediction device provided according to an embodiment of the present application;
图5是根据本申请实施例提供的路况预测方法的电子设备的框图。FIG. 5 is a block diagram of an electronic device for a road condition prediction method provided according to an embodiment of the present application.
具体实施方式Detailed ways
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present application are described below with reference to the accompanying drawings, which include various details of the embodiments of the present application to facilitate understanding, and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present application. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.
图1是根据本申请实施例提供的路况预测方法的流程示意图。本实施例可适用于预测未来时段的道路的路况的情况。本实施例公开的路况预测方法可以由电子设备执行,具体可以由路况预测装置来执行,该装置可以由软件和/或硬件的方式实现,配置于电子设备中。参见图1,本实施例提供的路况预测方法包括:FIG. 1 is a schematic flowchart of a road condition prediction method provided according to an embodiment of the present application. This embodiment can be applied to a situation in which the road conditions of a road in a future period are predicted. The road condition prediction method disclosed in this embodiment may be executed by an electronic device, and specifically may be executed by a road condition prediction apparatus, which may be implemented by software and/or hardware and configured in the electronic device. Referring to FIG. 1 , the road condition prediction method provided in this embodiment includes:
S110、确定当前时间段在历史周期中的历史道路交通信息。S110. Determine the historical road traffic information in the historical period of the current time period.
本实施例中,单个时间周期中可以包括至少两个时间段,单个时间段中可以包括至少两个路况时刻。可以按天划分时间周期,也可以按周或其他方式划分时间周期,在按天划分时间周期情况下,当天即当前周期,当天之前的各天可以为历史周期,在按周划分时间周期情况下,当前周即当前周期,当前周之前的各周可以为历史周期。单个时间段可以每隔固定时长划分为至少两个路况预测时刻,例如1小时的时间段可以每隔5分钟划分得到12个路况预测时刻。In this embodiment, a single time period may include at least two time periods, and a single time period may include at least two road condition moments. The time period can be divided by days, weeks or other ways. In the case of dividing the time period by days, the current day is the current period, and the days before the current day can be historical periods. In the case of dividing the time period by weeks , the current week is the current cycle, and the weeks before the current week can be historical cycles. A single time period can be divided into at least two road condition prediction moments every fixed time period, for example, a time period of 1 hour can be divided into 12 road condition prediction moments every 5 minutes.
当前时间段是指当前时刻所属的时间段,当前时间段的时长可以为固定值。具体的当前时段的起始时刻与当前时刻之间的时长间隔可以为固定值,当前时段的终止时刻可以为当前时刻。以当前时刻为10点15分,按天划分时间周期,且时间段的时长为1小时为例,当前时间段可以为9点15分至10点15分。The current time period refers to the time period to which the current moment belongs, and the duration of the current time period may be a fixed value. The specific time interval between the start time of the current time period and the current time may be a fixed value, and the end time of the current time period may be the current time. Taking the current time as 10:15, the time period is divided by day, and the duration of the time period is 1 hour, for example, the current time period may be from 9:15 to 10:15.
历史道路交通信息和后续实时道路交通信息中的道路交通信息均是指道路的路况信息,道路交通信息可以包括待预测道路和相邻道路的速度和轨迹。具体的,相邻道路为待预测道路的上游道路或者待预测道路的下游道路,其中,上游道路的数量可以是M,下游道路的数量可以是N,其中,M与N的数值不同。示例性的,M与N的数值均大于或等于3。当前时间段在历史周期中的历史道路交通信息是指在历史周期的当前时间段下,道路的历史道路交通信息,例如在今天之前的9点15分至10点15分时间段下,道路的历史道路交通信息。本实施例中,道路交通信息中不止包括了待预测道路的路况信息,还包括相邻道路的路况信息。因此,能够利用待预测道路与相邻道路之间的关系,更好地刻画了空间拓扑关系对待预测道路的路况的影响。The road traffic information in the historical road traffic information and the subsequent real-time road traffic information both refers to the road condition information of the road, and the road traffic information may include the speed and trajectory of the road to be predicted and the adjacent road. Specifically, the adjacent road is the upstream road of the road to be predicted or the downstream road of the road to be predicted, wherein the number of upstream roads may be M, and the number of downstream roads may be N, wherein M and N have different values. Exemplarily, the values of M and N are both greater than or equal to 3. The historical road traffic information of the current time period in the historical period refers to the historical road traffic information of the road under the current time period of the historical period. For example, in the time period from 9:15 to 10:15 before today, the Historical road traffic information. In this embodiment, the road traffic information includes not only the road condition information of the road to be predicted, but also the road condition information of the adjacent roads. Therefore, the relationship between the road to be predicted and the adjacent road can be used to better describe the influence of the spatial topological relationship on the road condition of the predicted road.
具体的,获取当前时间段在历史周期中至少两个路况时刻的历史道路交通信息。例如可以获取在历史周期中9点15分至10点15分中至少两个路况时刻的历史道路交通信息。Specifically, the historical road traffic information of at least two road condition moments in the historical period of the current time period is acquired. For example, historical road traffic information of at least two road condition moments in the historical period from 9:15 to 10:15 may be acquired.
S120、确定所述当前时间段在当前周期中的实时道路交通信息。S120. Determine the real-time road traffic information of the current time period in the current cycle.
本实施例中,当前时间段在当前周期中的实时道路交通信息是指在当前周期的当前时间段下,道路的实时道路交通信息,例如在今天的9点15分至10点15分时间段下,道路的实时道路交通信息。In this embodiment, the real-time road traffic information of the current time period in the current period refers to the real-time road traffic information of the road under the current time period of the current period, for example, in the time period from 9:15 to 10:15 today Below, the real-time road traffic information of the road.
S130、确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后。S130. Determine the historical road traffic information of the time period to be predicted in the historical period; wherein the time period to be predicted is after the current time period.
本实施例中,待预测时间段是指在当前时间段之后的时间段,待预测时间段的长度与当前时间段的长度相同,均可以为固定值。待预测时间段的起始时刻可以是当前时刻,待预测时间段的终止时刻与当前时刻之间的时长间隔可以是固定值。示例性的,当前时间段是指9点15分至10点15分,待预测时间段可以是10点15分至11点15分。待预测时间段在所述历史周期中的历史道路交通信息是指在历史周期的待预测时间段下,道路的历史道路交通信息。In this embodiment, the to-be-predicted time period refers to a time period after the current time period, and the length of the to-be-predicted time period is the same as the length of the current time period, and both may be fixed values. The start time of the to-be-predicted time period may be the current time, and the time interval between the end time of the to-be-predicted time period and the current time may be a fixed value. Exemplarily, the current time period refers to 9:15 to 10:15, and the to-be-predicted time period may be from 10:15 to 11:15. The historical road traffic information of the to-be-predicted time period in the historical period refers to the historical road traffic information of the road in the to-be-predicted time period of the historical period.
S140、根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。S140. According to the historical road traffic information of the current time period and the real-time road traffic information, and the historical road traffic information of the to-be-predicted time period, predict that at least two to-be-predicted times in the to-be-predicted time period will be The real-time road condition information in the current cycle is described.
本实施例中,待预测时间段中可以包括至少两个路况预测时刻即待预测时刻,例如可以每隔5分钟取一个待预测时刻。仍以待预测时间段是10点15分至11点15分为例,待预测时刻可以是10点20分、10点25、…11点10分和11点15分共12个时刻。In this embodiment, the to-be-predicted time period may include at least two road condition prediction moments, ie, to-be-predicted moments, for example, one to-be-predicted time may be taken every 5 minutes. Taking the time period to be predicted as 10:15 to 11:15 as an example, the time to be predicted can be 10:20, 10:25, ... 11:10 and 11:15, a total of 12 times.
本实施例中,当前时间段既有在历史周期中的历史道路交通信息,又有在当前周期中的实时道路交通信息,通过对该历史道路交通信息和实时道路交通信息进行处理,能够确定当前周期与历史周期之间的路况关系,例如当前周期与历史周期之间的路况情况相似,或者路况情况不同。根据当前周期与历史周期之间的路况关系,以及待预测时间段在历史周期中的历史道路交通信息,确定待预测时间段中待预测时刻在当前周期中的实时路况信息。由于待预测时刻的实时路况信息基于当前周期与历史周期之间的路况关系确定,充分考虑了当前周期与历史周期的道路路况情况,从而结合道路的历史规律和实时特征,能够提升待预测时间段中的待预测时刻在当前周期中的路况的准确,并且由于能够预测待预测时间段中的不同的多个待预测时刻,使得待预测的道路的路况信息更为精细。In this embodiment, the current time period includes both historical road traffic information in the historical period and real-time road traffic information in the current period. By processing the historical road traffic information and the real-time road traffic information, it is possible to determine the current The road condition relationship between the period and the historical period, for example, the road conditions between the current period and the historical period are similar, or the road conditions are different. According to the road condition relationship between the current period and the historical period, and the historical road traffic information of the time period to be predicted in the historical period, the real-time road condition information of the time to be predicted in the time period to be predicted in the current period is determined. Since the real-time road condition information at the moment to be predicted is determined based on the road condition relationship between the current period and the historical period, the road conditions of the current period and the historical period are fully considered, and the historical law and real-time characteristics of the road can be combined to improve the time period to be forecasted. The road conditions of the time to be predicted in the current cycle are accurate, and since multiple different times to be predicted in the time period to be predicted can be predicted, the road condition information of the road to be predicted is more refined.
本申请实施例的技术方案,通过确定当前时间段在历史周期中的历史道路交通信息;确定所述当前时间段在当前周期中的实时道路交通信息;确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后;根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。采用上述技术手段能够提高路况预测的准确度,满足用户对于路况预测的需求。The technical solution of the embodiment of the present application is to determine the historical road traffic information of the current time period in the historical period; determine the real-time road traffic information of the current period of time in the current period; determine that the to-be-predicted time period is in the historical period According to the historical road traffic information of the current time period and the real-time road traffic information, and the history of the to-be-predicted time period Road traffic information, predicting real-time road condition information in the current cycle at at least two to-be-predicted time periods in the to-be-predicted time period. The adoption of the above technical means can improve the accuracy of the road condition prediction, and satisfy the user's demand for the road condition prediction.
图2a是根据本申请实施例提供的一种路况预测方法的流程示意图。本实施例是在上述实施例的基础上提出的一种可选方案。参见图2a,本实施例提供的路况预测方法包括:Fig. 2a is a schematic flowchart of a road condition prediction method provided according to an embodiment of the present application. This embodiment is an optional solution proposed on the basis of the foregoing embodiment. Referring to Fig. 2a, the road condition prediction method provided in this embodiment includes:
S210、确定当前时间段在历史周期中的历史道路交通信息。S210. Determine the historical road traffic information in the historical period of the current time period.
S220、确定所述当前时间段在当前周期中的实时道路交通信息。S220. Determine the real-time road traffic information of the current time period in the current cycle.
S230、确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后。S230. Determine the historical road traffic information of the time period to be predicted in the historical period; wherein the time period to be predicted is after the current time period.
S240、根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,确定所述待预测时间段的历史权重。S240. Determine the historical weight of the to-be-predicted time period according to the historical road traffic information of the current time period and the real-time road traffic information.
本实施例中,待预测时间段的历史权重是用于衡量待预测时间段与当前时间段路况情况的相似程度。历史权重越高,则待预测时间段与当前时间段的路况的相似程度越高。具体的,若当前时间段的历史道路交通信息与实时道路交通信息的相似度比较高,则待预测时间段的历史道路交通信息与待预测时间段的实时道路交通信息相似度高的可能性会较大。因此,相应的,待预测时间段的历史权重会比较高。In this embodiment, the historical weight of the time period to be predicted is used to measure the similarity of the road conditions of the time period to be predicted and the current time period. The higher the historical weight, the higher the similarity of the road conditions between the time period to be predicted and the current time period. Specifically, if the similarity between the historical road traffic information of the current time period and the real-time road traffic information is relatively high, the possibility of high similarity between the historical road traffic information of the to-be-predicted time period and the real-time road traffic information of the to-be-predicted time period will be high. larger. Therefore, correspondingly, the historical weight of the time period to be predicted will be relatively high.
本实施例中,能够动态地计算历史权重,以衡量当前时间段与待预测时间段的相似性。In this embodiment, the historical weight can be dynamically calculated to measure the similarity between the current time period and the to-be-predicted time period.
可选的,所述根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,确定所述待预测时间段的历史权重,包括:Optionally, determining the historical weight of the to-be-predicted time period according to the historical road traffic information of the current time period and the real-time road traffic information, including:
根据所述当前时间段的历史道路交通信息,确定所述当前时间段的历史时序隐特征向量;According to the historical road traffic information of the current time period, determine the historical time series latent feature vector of the current time period;
根据所述当前时间段的实时道路交通信息,确定所述当前时间段的实时时序隐特征向量;According to the real-time road traffic information of the current time period, determine the real-time time series latent feature vector of the current time period;
将所述当前时间段的历史时序隐特征向量与所述实时时序隐特征向量之间的乘积,作为所述待预测时间段的历史权重。The product between the historical time series latent feature vector of the current time period and the real-time time series latent feature vector is used as the historical weight of the to-be-predicted time period.
本实施例中,当前时间段的历史时序隐特征向量是由当前时间段的历史道路交通信息输入至LSTM(Long-Short Term Memory,长短期记忆模型)中得到的。其中,LSTM是一种特殊的RNN(Recurrent Neural Network,循环神经网络)模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RNN中,训练算法使用的是BPTT(Back Propagation TroughTime,基于时间的反向传播),当时间比较长时,需要回传的残差指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆效果,因此需要一个存储单元来存储记忆,因此,LSTM被提出。当前时间段的实时时序隐特征向量是由当前时间段的实时道路交通信息输入至LSTM中得到的。待预测时间段的历史权重可以由当前时间段的历史时序隐特征向量与实时时序隐特征向量进行乘积得到。In this embodiment, the historical time series latent feature vector of the current time period is obtained by inputting the historical road traffic information of the current time period into an LSTM (Long-Short Term Memory, long short-term memory model). Among them, LSTM is a special RNN (Recurrent Neural Network, cyclic neural network) model, which is proposed to solve the problem of gradient dispersion of the RNN model; in the traditional RNN, the training algorithm uses BPTT (Back Propagation TroughTime, Time-based backpropagation), when the time is relatively long, the residual error that needs to be returned decreases exponentially, resulting in a slow update of the network weight, which cannot reflect the long-term memory effect of RNN, so a storage unit is needed to store the memory. Therefore, LSTM Been proposed. The real-time time series latent feature vector of the current time period is obtained by inputting the real-time road traffic information of the current time period into the LSTM. The historical weight of the time period to be predicted can be obtained by multiplying the historical time series latent feature vector of the current time period and the real-time time series latent feature vector.
将采用当前时间段的实时交通特征与历史交通特征作比较得到一个相似度,能够引入历史特征的参考值,使得待预测时间段的路况预测更为准确。Comparing the real-time traffic characteristics of the current time period with the historical traffic characteristics to obtain a similarity, the reference value of the historical characteristics can be introduced, so that the road condition prediction of the to-be-predicted time period is more accurate.
S250、根据所述当前时间段的实时道路交通信息、所述待预测时间段的历史权重和所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。S250, predict at least two to-be-predicted moments in the to-be-predicted time-segment according to the real-time road traffic information of the current time-segment, the historical weight of the to-be-predicted time-segment, and the historical road-traffic information of the to-be-predicted time segment Real-time traffic information in the current period.
本实施例中,根据待预测时间段的历史权重与待预测时间段的历史道路交通信息,能够确定出待预测时间段在当前周期中的实时路况信息是否能够根据待预测时间段的历史道路交通信息进行确定。若待预测时间段的历史权重越低,则当前时间段的实时道路交通信息的权重越高,即待预测时间段与当前时间段的实时道路交通信息的相似度越高。In this embodiment, according to the historical weight of the to-be-predicted time period and the historical road traffic information of the to-be-predicted time period, it can be determined whether the real-time road condition information of the to-be-predicted time period in the current cycle can be determined according to the historical road traffic information of the to-be-predicted time period information to be determined. If the historical weight of the time period to be predicted is lower, the weight of the real-time road traffic information of the current time period is higher, that is, the similarity of the real-time road traffic information of the to-be-predicted time period and the current time period is higher.
具体的,可以参见图2b中示出的一种LSTM的模型框架示意图。其中,可以看到通过当前时间段的历史时序隐特征向量与实时时序隐特征向量能够确定出一个具体的数值,并作为待预测时间段的历史权重。然后再将待预测时间段的历史权重与待预测时间段的历史道路交通信息通过LSTM模型中的聚合进行维度联合,并进行输出。Specifically, please refer to the schematic diagram of the model framework of an LSTM shown in FIG. 2b. Among them, it can be seen that a specific value can be determined by the historical time series latent feature vector of the current time period and the real-time time series latent feature vector, and used as the historical weight of the time period to be predicted. Then, the historical weight of the time period to be predicted and the historical road traffic information of the time period to be predicted are dimensionally combined through aggregation in the LSTM model, and output.
可选的,所述根据所述当前时间段的实时道路交通信息、所述待预测时间段的历史权重和所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息,包括:Optionally, according to the real-time road traffic information of the current time period, the historical weight of the to-be-predicted time period, and the historical road traffic information of the to-be-predicted time period, predict at least two of the to-be-predicted time periods. The real-time road condition information of the time to be predicted in the current cycle, including:
根据所述待预测时间段的历史权重和所述待预测时间段的历史道路交通信息,确定所述待预测时间段的历史修正特征;According to the historical weight of the to-be-predicted time period and the historical road traffic information of the to-be-predicted time period, determine the historical correction feature of the to-be-predicted time period;
对所述当前时间段的实时道路交通信息和所述待预测时间段的历史修正特征进行聚合,得到聚合道路特征;Aggregating the real-time road traffic information of the current time period and the historical correction features of the to-be-predicted time period to obtain aggregated road features;
对所述聚合道路特征进行语义编码,得到所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。Semantic encoding is performed on the aggregated road features to obtain real-time road condition information of at least two to-be-predicted times in the to-be-predicted time period in the current cycle.
本实施例中,待预测时间段的历史修正特征是用于作为待预测时间段的历史道路交通情况的指标,待预测时间段的历史修正特征更能够准确地反映待预测时间段的历史规律。聚合道路特征是指结合了当前时间段的实时道路交通信息的特征和待预测时间段的历史修正特征的综合特征。用聚合道路特征确定待预测时间段的实时路况信息。In this embodiment, the historical correction feature of the time period to be predicted is used as an indicator of historical road traffic conditions of the time period to be predicted, and the historical correction feature of the time period to be predicted can more accurately reflect the historical law of the time period to be predicted. Aggregated road features refer to comprehensive features that combine the features of real-time road traffic information in the current time period and the historical correction features of the time period to be predicted. Use aggregated road features to determine real-time road conditions for the time period to be predicted.
本实施例中,通过使用实时特征和历史特征能够较好的动态刻画交通规律的变化。In this embodiment, by using real-time features and historical features, changes in traffic laws can be better depicted dynamically.
本申请实施例的技术方案,通过根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,确定所述待预测时间段的历史权重,再根据所述当前时间段的实时道路交通信息、所述待预测时间段的历史权重和所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。采用上述技术手段,能够同时使用实时特征和历史规律,能够较好地动态刻画交通规律的变化,既可以及时反应实时交通环境变化导致的路况变化,还可以反应历史路况的周期性规律。The technical solution of the embodiment of the present application determines the historical weight of the to-be-predicted time period according to the historical road traffic information of the current time period and the real-time road traffic information, and then determines the historical weight of the to-be-predicted time period according to the real-time road traffic information of the current time period information, the historical weight of the to-be-predicted time period, and the historical road traffic information of the to-be-predicted time period, to predict the real-time road condition information of at least two to-be-predicted moments in the to-be-predicted time period in the current cycle. By using the above technical means, real-time features and historical laws can be used at the same time, and changes in traffic laws can be better depicted dynamically, which can not only reflect changes in road conditions caused by changes in real-time traffic environments, but also reflect the periodic laws of historical road conditions.
图3是根据本申请实施例提供的一种路况预测方法的流程示意图。本实施例是在上述实施例的基础上提出的一种可选方案。参见图3,本实施例提供的路况预测方法包括:FIG. 3 is a schematic flowchart of a road condition prediction method provided according to an embodiment of the present application. This embodiment is an optional solution proposed on the basis of the foregoing embodiment. Referring to FIG. 3 , the road condition prediction method provided in this embodiment includes:
S310、确定当前时间段在历史周期中的历史道路交通信息。S310. Determine the historical road traffic information in the historical period of the current time period.
S320、确定所述当前时间段在当前周期中的实时道路交通信息。S320. Determine the real-time road traffic information of the current time period in the current cycle.
S330、确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后。S330. Determine the historical road traffic information of the time period to be predicted in the historical period; wherein the time period to be predicted is after the current time period.
S340、确定待预测道路的静态属性信息。S340. Determine the static attribute information of the road to be predicted.
本实施例中,待预测道路的静态属性信息包括所述待预测道路的道路等级和/或车道数量。其中,道路等级是将待预测道路进行分段,每一段都是不同的等级。示例性的,道路等级可以是1级、2级直至N级。将待预测道路的静态属性信息作为参考值后,能够综合待预测道路的静态属性,进而使得分析的数据更为全面,进一步提高路况预测的准确性。In this embodiment, the static attribute information of the road to be predicted includes the road level and/or the number of lanes of the road to be predicted. Among them, the road level is to segment the road to be predicted, and each segment is a different level. Exemplarily, the road class may be class 1, class 2, up to class N. After taking the static attribute information of the road to be predicted as a reference value, the static attributes of the road to be predicted can be synthesized, thereby making the analyzed data more comprehensive and further improving the accuracy of road condition prediction.
S350、根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,所述待预测时间段的历史道路交通信息,以及所述待预测道路的静态属性信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。S350. According to the historical road traffic information of the current time period and the real-time road traffic information, the historical road traffic information of the to-be-predicted time period, and the static attribute information of the to-be-predicted road, predict the to-be-predicted time The real-time road condition information of at least two to-be-predicted moments in the segment in the current cycle.
本实施例中,引入待预测道路的静态属性信息,能够更好地刻画了空间拓扑关系对待预测道路的路况影响。In this embodiment, the static attribute information of the road to be predicted is introduced, which can better describe the influence of the road condition of the road to be predicted by the spatial topological relationship.
可选的,所述根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息,包括:Optionally, according to the historical road traffic information of the current time period and the real-time road traffic information, and the historical road traffic information of the to-be-predicted time period, predict at least two to-be-predicted time periods in the to-be-predicted time period. The real-time road condition information in the current cycle at the predicted time, including:
根据导航请求数据,预测在所述待预测时间段中至少两个待预测时刻的待预测道路的车流量;According to the navigation request data, predict the traffic flow of the road to be predicted at at least two to-be-predicted moments in the to-be-predicted time period;
根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,所述待预测时间段的历史道路交通信息,以及所述待预测时间段中至少两个待预测时刻的待预测道路的车流量,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。According to the historical road traffic information of the current time period and the real-time road traffic information, the historical road traffic information of the to-be-predicted time period, and the to-be-predicted roads of at least two to-be-predicted times in the to-be-predicted time period Traffic flow, and predict the real-time road condition information of at least two to-be-predicted times in the to-be-predicted time period in the current cycle.
本实施例中,导航请求数据是指通过导航搜索引擎发送的导航请求消息。可以获取待预测时间段中的至少两个待预测时刻的待预测道路的车流量。其中,车流量的数据比较准确,但是相对稀疏。本实施例中,通过引入车流量的数据信息,能够进一步提高路况预测的准确度。In this embodiment, the navigation request data refers to a navigation request message sent by a navigation search engine. The traffic flow of the road to be predicted at at least two times to be predicted in the time period to be predicted can be acquired. Among them, the data of traffic flow is relatively accurate, but relatively sparse. In this embodiment, by introducing the data information of the traffic flow, the accuracy of the road condition prediction can be further improved.
可选的,所述根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息,包括:Optionally, according to the historical road traffic information of the current time period and the real-time road traffic information, and the historical road traffic information of the to-be-predicted time period, predict at least two to-be-predicted time periods in the to-be-predicted time period. The real-time road condition information in the current cycle at the predicted time, including:
根据用户设备的定位数据,预测所述待预测时间段中至少两个待预测时刻的待预测道路的车辆密度;According to the positioning data of the user equipment, predict the vehicle density of the road to be predicted at at least two to-be-predicted moments in the to-be-predicted time period;
根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,所述待预测时间段的历史道路交通信息,以及所述待预测时间段中至少两个待预测时刻的待预测道路的车辆密度,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。According to the historical road traffic information of the current time period and the real-time road traffic information, the historical road traffic information of the to-be-predicted time period, and the to-be-predicted roads of at least two to-be-predicted times in the to-be-predicted time period The vehicle density is used to predict the real-time road condition information of at least two to-be-predicted moments in the to-be-predicted time period in the current cycle.
本实施例中,用户设备可以是用户随身携带的智能手机、平板、或者笔记本电脑等。通过用户设备连接网络后,根据用户设备内置的定位对车辆进行定位以获取待预测时间段中至少两个待预测道路的车辆密度。本实施例中,通过引入车辆密度的数据信息,能够通过分析待预测道路的车辆情况,进一步提高路况预测的准确度。In this embodiment, the user equipment may be a smart phone, a tablet, or a notebook computer that is carried by the user. After the user equipment is connected to the network, the vehicle is positioned according to the built-in positioning of the user equipment to obtain vehicle densities of at least two roads to be predicted in the to-be-predicted time period. In this embodiment, by introducing data information of vehicle density, the accuracy of road condition prediction can be further improved by analyzing vehicle conditions on the road to be predicted.
图4是本申请实施例提供的一种路况预测装置的结构示意图,该装置可以配置于电子设备中。参见图4,本申请实施例提供的路况预测装置400可以包括:FIG. 4 is a schematic structural diagram of a road condition prediction apparatus provided by an embodiment of the present application, and the apparatus may be configured in an electronic device. Referring to FIG. 4 , the road
当前时间段的历史道路交通信息确定模块410,用于确定当前时间段在历史周期中的历史道路交通信息;The historical road traffic
当前时间段的实时道路交通信息确定模块420,用于确定所述当前时间段在当前周期中的实时道路交通信息;The real-time road traffic
待预测时间段的历史道路交通信息确定模块430,用于确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后;The historical road traffic
实时路况信息预测模块440,用于根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。The real-time road condition
可选的,所述实时路况信息预测模块440,包括:Optionally, the real-time road condition
历史权重确定子模块,用于根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,确定所述待预测时间段的历史权重;a historical weight determination submodule, configured to determine the historical weight of the to-be-predicted time period according to the historical road traffic information of the current time period and the real-time road traffic information;
实时路况信息预测子模块,用于根据所述当前时间段的实时道路交通信息、所述待预测时间段的历史权重和所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。The real-time road condition information prediction submodule is used to predict the to-be-predicted time period according to the real-time road traffic information of the current time period, the historical weight of the to-be-predicted time period and the historical road traffic information of the to-be-predicted time period The real-time road condition information of at least two to-be-predicted moments in the current cycle.
可选的,所述历史权重确定子模块,用于根据所述当前时间段的历史道路交通信息,确定所述当前时间段的历史时序隐特征向量;Optionally, the historical weight determination submodule is configured to determine the historical time series latent feature vector of the current time period according to the historical road traffic information of the current time period;
根据所述当前时间段的实时道路交通信息,确定所述当前时间段的实时时序隐特征向量;According to the real-time road traffic information of the current time period, determine the real-time time series latent feature vector of the current time period;
将所述当前时间段的历史时序隐特征向量与所述实时时序隐特征向量之间的乘积,作为所述待预测时间段的历史权重。The product between the historical time series latent feature vector of the current time period and the real-time time series latent feature vector is used as the historical weight of the to-be-predicted time period.
可选的,所述实时路况信息预测子模块,用于根据所述待预测时间段的历史权重和所述待预测时间段的历史道路交通信息,确定所述待预测时间段的历史修正特征;Optionally, the real-time road condition information prediction sub-module is configured to determine the historical correction feature of the to-be-predicted time period according to the historical weight of the to-be-predicted time-segment and the historical road traffic information of the to-be-predicted time period;
对所述当前时间段的实时道路交通信息和所述待预测时间段的历史修正特征进行聚合,得到聚合道路特征;Aggregating the real-time road traffic information of the current time period and the historical correction features of the to-be-predicted time period to obtain aggregated road features;
对所述聚合道路特征进行语义编码,得到所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。Semantic encoding is performed on the aggregated road features to obtain real-time road condition information of at least two to-be-predicted times in the to-be-predicted time period in the current cycle.
可选的,其中,所述历史道路交通信息包括待预测道路和相邻道路的历史速度和历史轨迹;所述实时道路交通信息包括待预测道路和相邻道路的实时速度和实时轨迹。Optionally, the historical road traffic information includes the historical speed and historical trajectory of the road to be predicted and the adjacent road; the real-time road traffic information includes the real-time speed and real-time trajectory of the road to be predicted and the adjacent road.
可选的,所述实时路况信息预测模块440,用于确定待预测道路的静态属性信息;Optionally, the real-time road condition
根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,所述待预测时间段的历史道路交通信息,以及所述待预测道路的静态属性信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。According to the historical road traffic information of the current time period and the real-time road traffic information, the historical road traffic information of the to-be-predicted time period, and the static attribute information of the to-be-predicted road, it is predicted that the Real-time road condition information of at least two times to be predicted in the current cycle.
可选的,其中,所述待预测道路的静态属性信息包括所述待预测道路的道路等级和/或车道数量。Optionally, the static attribute information of the road to be predicted includes a road level and/or the number of lanes of the road to be predicted.
可选的,所述实时路况信息预测模块440,用于根据导航请求数据,预测在所述待预测时间段中至少两个待预测时刻的待预测道路的车流量;Optionally, the real-time road condition
根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,所述待预测时间段的历史道路交通信息,以及所述待预测时间段中至少两个待预测时刻的待预测道路的车流量,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。According to the historical road traffic information of the current time period and the real-time road traffic information, the historical road traffic information of the to-be-predicted time period, and the to-be-predicted roads of at least two to-be-predicted times in the to-be-predicted time period Traffic flow, and predict the real-time road condition information of at least two to-be-predicted times in the to-be-predicted time period in the current cycle.
可选的,所述实时路况信息预测模块440,用于根据用户设备的定位数据,预测所述待预测时间段中至少两个待预测时刻的待预测道路的车辆密度;Optionally, the real-time road condition
根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,所述待预测时间段的历史道路交通信息,以及所述待预测时间段中至少两个待预测时刻的待预测道路的车辆密度,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。According to the historical road traffic information of the current time period and the real-time road traffic information, the historical road traffic information of the to-be-predicted time period, and the to-be-predicted roads of at least two to-be-predicted times in the to-be-predicted time period The vehicle density is used to predict the real-time road condition information of at least two to-be-predicted moments in the to-be-predicted time period in the current cycle.
本申请实施例的技术方案,通过确定当前时间段在历史周期中的历史道路交通信息;确定所述当前时间段在当前周期中的实时道路交通信息;确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后;根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。采用上述技术手段能够提高路况预测的准确度,满足用户对于路况预测的需求。The technical solution of the embodiment of the present application is to determine the historical road traffic information of the current time period in the historical period; determine the real-time road traffic information of the current period of time in the current period; determine that the to-be-predicted time period is in the historical period According to the historical road traffic information of the current time period and the real-time road traffic information, and the history of the to-be-predicted time period Road traffic information, predicting real-time road condition information in the current cycle at at least two to-be-predicted time periods in the to-be-predicted time period. The adoption of the above technical means can improve the accuracy of the road condition prediction, and satisfy the user's demand for the road condition prediction.
根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。According to the embodiments of the present application, the present application further provides an electronic device and a readable storage medium.
如图5所示,是根据本申请实施例的路况预测方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。As shown in FIG. 5 , it is a block diagram of an electronic device according to a road condition prediction method according to an embodiment of the present application. Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
如图5所示,该电子设备包括:一个或多个处理器501、存储器502,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图5中以一个处理器501为例。As shown in FIG. 5, the electronic device includes: one or
存储器502即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的路况预测方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的路况预测方法。The
存储器502作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的路况预测方法对应的程序指令/模块(例如,附图4所示的当前时间段的历史道路交通信息确定模块410、当前时间段的实时道路交通信息确定模块420、待预测时间段的历史道路交通信息确定模块430和实时路况信息预测模块440)。处理器501通过运行存储在存储器502中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及路况预测,即实现上述方法实施例中的路况预测方法。As a non-transitory computer-readable storage medium, the
存储器502可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据兴趣点显示的电子设备的使用所创建的数据等。此外,存储器502可以包括高速随机存储存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器502可选包括相对于处理器501远程设置的存储器,这些远程存储器可以通过网络连接至兴趣点显示的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
路况预测方法的电子设备还可以包括:输入装置503和输出装置504。处理器501、存储器502、输入装置503和输出装置504可以通过总线或者其他方式连接,图5中以通过总线连接为例。The electronic device of the road condition prediction method may further include: an
输入装置503可接收输入的数字或字符信息,以及产生与兴趣点显示的电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置504可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。The
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。These computational programs (also referred to as programs, software, software applications, or codes) include machine instructions for programmable processors, and may be implemented using high-level procedural and/or object-oriented programming languages, and/or assembly/machine languages calculation program. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals. The term "machine-readable signal" refers to any signal used to provide machine instructions and/or data to a programmable processor.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。The systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), blockchain networks, and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。A computer system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
本申请实施例的技术方案,通过确定当前时间段在历史周期中的历史道路交通信息;确定所述当前时间段在当前周期中的实时道路交通信息;确定待预测时间段在所述历史周期中的历史道路交通信息;其中,所述待预测时间段在所述当前时间段之后;根据所述当前时间段的历史道路交通信息和所述实时道路交通信息,以及所述待预测时间段的历史道路交通信息,预测所述待预测时间段中至少两个待预测时刻在所述当前周期中的实时路况信息。采用上述技术手段能够提高路况预测的准确度,满足用户对于路况预测的需求。The technical solution of the embodiment of the present application is to determine the historical road traffic information of the current time period in the historical period; determine the real-time road traffic information of the current period of time in the current period; determine that the to-be-predicted time period is in the historical period According to the historical road traffic information of the current time period and the real-time road traffic information, and the history of the to-be-predicted time period Road traffic information, predicting real-time road condition information in the current cycle at at least two to-be-predicted time periods in the to-be-predicted time period. The adoption of the above technical means can improve the accuracy of the road condition prediction, and satisfy the user's demand for the road condition prediction.
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present application. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010986785.XA CN111986490A (en) | 2020-09-18 | 2020-09-18 | Road condition prediction method and device, electronic equipment and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010986785.XA CN111986490A (en) | 2020-09-18 | 2020-09-18 | Road condition prediction method and device, electronic equipment and storage medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111986490A true CN111986490A (en) | 2020-11-24 |
Family
ID=73451004
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010986785.XA Pending CN111986490A (en) | 2020-09-18 | 2020-09-18 | Road condition prediction method and device, electronic equipment and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111986490A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112907958A (en) * | 2021-01-29 | 2021-06-04 | 北京百度网讯科技有限公司 | Road condition information determining method and device, electronic equipment and readable medium |
| CN112990595A (en) * | 2021-03-30 | 2021-06-18 | 北京嘀嘀无限科技发展有限公司 | Travel time prediction method, travel time prediction device, storage medium and electronic equipment |
| CN113160563A (en) * | 2021-03-31 | 2021-07-23 | 西安交通大学 | Short-time road condition prediction method, system and equipment based on historical road conditions |
| CN113257002A (en) * | 2021-05-11 | 2021-08-13 | 青岛海信网络科技股份有限公司 | Peak start time prediction method, device, equipment and medium |
| CN113743444A (en) * | 2021-06-02 | 2021-12-03 | 京东城市(北京)数字科技有限公司 | Crowd anomaly detection method, device, electronic device and storage medium |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102004039283A1 (en) * | 2004-08-13 | 2006-03-02 | Daimlerchrysler Ag | Forecasting journey time in road network, by taking into account time-space associations and/or patterns when selecting proportion of measured data as predicted parameter |
| CN101510357A (en) * | 2009-03-26 | 2009-08-19 | 美慧信息科技(上海)有限公司 | Method for detecting traffic state based on mobile phone signal data |
| CN101694743A (en) * | 2009-08-25 | 2010-04-14 | 北京世纪高通科技有限公司 | Method and device for predicting road conditions |
| CN102110365A (en) * | 2009-12-28 | 2011-06-29 | 日电(中国)有限公司 | Road condition prediction method and road condition prediction system based on space-time relationship |
| CN102460534A (en) * | 2009-04-22 | 2012-05-16 | 因瑞克斯有限公司 | Predicting expected road traffic conditions based on historical and current data |
| CN103247177A (en) * | 2013-05-21 | 2013-08-14 | 清华大学 | Large-scale road network traffic flow real-time dynamic prediction system |
| CN106504534A (en) * | 2016-11-28 | 2017-03-15 | 北京世纪高通科技有限公司 | A kind of method of predicted link road conditions, device and user equipment |
| CN107038478A (en) * | 2017-04-20 | 2017-08-11 | 百度在线网络技术(北京)有限公司 | Road condition predicting method and device, computer equipment and computer-readable recording medium |
| CN107103754A (en) * | 2017-05-10 | 2017-08-29 | 华南师范大学 | A kind of road traffic condition Forecasting Methodology and system |
| CN109300309A (en) * | 2018-10-29 | 2019-02-01 | 讯飞智元信息科技有限公司 | Road condition predicting method and device |
| CN110232820A (en) * | 2019-05-20 | 2019-09-13 | 北京世纪高通科技有限公司 | A kind of method for building up and device of road condition predicting model |
| CN110675621A (en) * | 2019-05-23 | 2020-01-10 | 北京嘀嘀无限科技发展有限公司 | System and method for predicting traffic information |
-
2020
- 2020-09-18 CN CN202010986785.XA patent/CN111986490A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102004039283A1 (en) * | 2004-08-13 | 2006-03-02 | Daimlerchrysler Ag | Forecasting journey time in road network, by taking into account time-space associations and/or patterns when selecting proportion of measured data as predicted parameter |
| CN101510357A (en) * | 2009-03-26 | 2009-08-19 | 美慧信息科技(上海)有限公司 | Method for detecting traffic state based on mobile phone signal data |
| CN102460534A (en) * | 2009-04-22 | 2012-05-16 | 因瑞克斯有限公司 | Predicting expected road traffic conditions based on historical and current data |
| CN101694743A (en) * | 2009-08-25 | 2010-04-14 | 北京世纪高通科技有限公司 | Method and device for predicting road conditions |
| CN102110365A (en) * | 2009-12-28 | 2011-06-29 | 日电(中国)有限公司 | Road condition prediction method and road condition prediction system based on space-time relationship |
| CN103247177A (en) * | 2013-05-21 | 2013-08-14 | 清华大学 | Large-scale road network traffic flow real-time dynamic prediction system |
| CN106504534A (en) * | 2016-11-28 | 2017-03-15 | 北京世纪高通科技有限公司 | A kind of method of predicted link road conditions, device and user equipment |
| CN107038478A (en) * | 2017-04-20 | 2017-08-11 | 百度在线网络技术(北京)有限公司 | Road condition predicting method and device, computer equipment and computer-readable recording medium |
| CN107103754A (en) * | 2017-05-10 | 2017-08-29 | 华南师范大学 | A kind of road traffic condition Forecasting Methodology and system |
| CN109300309A (en) * | 2018-10-29 | 2019-02-01 | 讯飞智元信息科技有限公司 | Road condition predicting method and device |
| CN110232820A (en) * | 2019-05-20 | 2019-09-13 | 北京世纪高通科技有限公司 | A kind of method for building up and device of road condition predicting model |
| CN110675621A (en) * | 2019-05-23 | 2020-01-10 | 北京嘀嘀无限科技发展有限公司 | System and method for predicting traffic information |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112907958A (en) * | 2021-01-29 | 2021-06-04 | 北京百度网讯科技有限公司 | Road condition information determining method and device, electronic equipment and readable medium |
| CN112990595A (en) * | 2021-03-30 | 2021-06-18 | 北京嘀嘀无限科技发展有限公司 | Travel time prediction method, travel time prediction device, storage medium and electronic equipment |
| CN113160563A (en) * | 2021-03-31 | 2021-07-23 | 西安交通大学 | Short-time road condition prediction method, system and equipment based on historical road conditions |
| CN113257002A (en) * | 2021-05-11 | 2021-08-13 | 青岛海信网络科技股份有限公司 | Peak start time prediction method, device, equipment and medium |
| CN113743444A (en) * | 2021-06-02 | 2021-12-03 | 京东城市(北京)数字科技有限公司 | Crowd anomaly detection method, device, electronic device and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7269913B2 (en) | Knowledge graph construction method, device, electronic device, storage medium and computer program | |
| CN111563592B (en) | Hypernetwork-based neural network model generation method and device | |
| CN111144577B (en) | Method, apparatus and electronic device for generating node representation in heterogeneous graph | |
| CN111986490A (en) | Road condition prediction method and device, electronic equipment and storage medium | |
| CN111143686A (en) | Resource recommendation method and device | |
| CN111753914A (en) | Model optimization method and device, electronic device and storage medium | |
| EP3822878A2 (en) | Method and apparatus for forecasting demand for talent, device, storage medium, and computer program product | |
| CN111310449B (en) | Text generation method and device based on semantic representation | |
| CN111325382B (en) | Method and device for predicting free parking space of parking lot, electronic equipment and storage medium | |
| CN110852379B (en) | Method and device for generating training samples for target object recognition | |
| CN111241810B (en) | Punctuation prediction method and device | |
| WO2022088677A1 (en) | Method and apparatus for establishing regional heat prediction model and predicting regional heat | |
| CN111813828B (en) | Entity relation mining method and device, electronic equipment and storage medium | |
| CN112069418A (en) | Function recommendation method and device, electronic equipment and storage medium | |
| CN111506803A (en) | Content recommendation method, device, electronic device and storage medium | |
| CN111461306B (en) | Feature evaluation method and device | |
| CN112419728B (en) | Method, device, device and storage medium for determining road condition information | |
| CN111461343A (en) | Model parameter update method and related equipment | |
| CN111737399A (en) | Method, apparatus, electronic device, and readable storage medium for extending a question and answer set | |
| CN110427436B (en) | Entity similarity calculation method and device | |
| CN111523007A (en) | User interest information determination method, device, equipment and storage medium | |
| CN113902005A (en) | Pre-training method, apparatus, device and storage medium for language model | |
| CN111737636A (en) | Method, device, computer equipment and storage medium for generating path curve | |
| CN111707285A (en) | Method and device for planning a route | |
| CN110930187A (en) | Store visitor crowd mining method, device, equipment and medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |