CN111857976A - A computational migration method for multi-objective optimization based on decomposition - Google Patents
A computational migration method for multi-objective optimization based on decomposition Download PDFInfo
- Publication number
- CN111857976A CN111857976A CN202010790128.8A CN202010790128A CN111857976A CN 111857976 A CN111857976 A CN 111857976A CN 202010790128 A CN202010790128 A CN 202010790128A CN 111857976 A CN111857976 A CN 111857976A
- Authority
- CN
- China
- Prior art keywords
- individual
- population
- cloud service
- end user
- edge cloud
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/51—Discovery or management thereof, e.g. service location protocol [SLP] or web services
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/4557—Distribution of virtual machine instances; Migration and load balancing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Evolutionary Biology (AREA)
- Artificial Intelligence (AREA)
- Genetics & Genomics (AREA)
- Physiology (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了计算机领域的一种基于分解的多目标优化的计算迁移方法,包括如下步骤:步骤S10、基于终端用户的满意度以及边缘云服务提供商的收益创建一目标模型;步骤S20、利用遗传算法以及多目标优化算法对所述目标模型进行迭代进化;步骤S30、利用多准则决策、加权法以及迭代进化后的所述目标模型进行计算迁移。本发明的优点在于:综合考虑终端用户的满意度以及边缘云服务提供商的收益的同时,极大的提升了计算迁移的速度。
The present invention provides a computing migration method based on decomposition and multi-objective optimization in the computer field, comprising the following steps: step S10, creating a target model based on the satisfaction of the end user and the profit of the edge cloud service provider; step S20, using The genetic algorithm and the multi-objective optimization algorithm are used to iteratively evolve the target model; in step S30, the multi-criteria decision-making, the weighting method, and the iteratively evolved target model are used to calculate and migrate. The advantage of the present invention is that the speed of computing migration is greatly improved while comprehensively considering the satisfaction of end users and the benefits of edge cloud service providers.
Description
技术领域technical field
本发明涉及计算机领域,特别指一种基于分解的多目标优化的计算迁移方法。The invention relates to the field of computers, in particular to a calculation migration method based on decomposition and multi-objective optimization.
背景技术Background technique
近年来物联网技术得到大力发展,但物联网设备的计算能力是有限的,因此大量的计算密集型任务无法在本地的物联网设备进行计算。为了延长物联网设备的电池寿命并满足计算需求,移动云计算(MCC,Mobile Cloud Computing)应运而生,通过将部分计算密集型的任务请求计算迁移到云端进行处理。尽管MCC可以有效地降低物联网设备的计算开销和功耗,但与此同时MCC也面临着一些新的挑战。一方面,随着物联网设备的激增,越来越多的任务请求显著增加了云端的计算负担;另一方面,由于云端与物联网设备之间的地理距离非常遥远,会导致部分应用的请求时延和传输时延变大,进而影响用户体验,甚至导致有一些严格时间约束的任务执行失败。In recent years, IoT technology has been vigorously developed, but the computing power of IoT devices is limited, so a large number of computing-intensive tasks cannot be calculated on local IoT devices. In order to prolong the battery life of IoT devices and meet the computing needs, Mobile Cloud Computing (MCC, Mobile Cloud Computing) came into being, by migrating part of the computing-intensive task request computing to the cloud for processing. Although MCC can effectively reduce the computing overhead and power consumption of IoT devices, at the same time, MCC also faces some new challenges. On the one hand, with the proliferation of IoT devices, more and more task requests significantly increase the computing burden on the cloud; The delay and transmission delay increase, which affects the user experience, and even causes some tasks with strict time constraints to fail.
移动边缘计算(MEC,Mobile Edge Computing)能够有效缓解以上挑战,MEC利用接近终端用户及边缘侧的网络设备的计算与存储功能辅佐用户,将任务请求迁移到距离终端用户更近的边缘服务器上执行,可以为终端用户提供效率更高、时延更低的计算服务、存储服务以及通信服务,进而提升终端用户的服务质量(Quality of Service,QoS)。Mobile Edge Computing (MEC, Mobile Edge Computing) can effectively alleviate the above challenges. MEC uses the computing and storage functions of network devices close to end users and edge side to assist users, and migrates task requests to edge servers closer to end users for execution. , which can provide end users with computing services, storage services and communication services with higher efficiency and lower delay, thereby improving the quality of service (QoS) of end users.
典型的MEC环境包括公有云服务提供商、边缘云服务提供商和终端用户,如图2所示。公有云服务提供商用于提供软硬件资源,完成对服务器集群的搭建和维护,通过资源池化生成统一资源池,向终端用户提供计算、存储和带宽等资源。边缘云服务提供商从公有云服务提供商租赁服务器资源,根据自身的服务类型构建好服务环境向终端用户提供诸如图像处理、科学计算、视频编解码等服务。终端用户向可以为其提供所需服务的边缘云服务提供商发送服务请求,根据服务等级协议(Service-Level Agreement,SLA)和边缘服务器的最终返回结果缴纳费用。A typical MEC environment includes public cloud service providers, edge cloud service providers, and end users, as shown in Figure 2. Public cloud service providers are used to provide hardware and software resources, complete the construction and maintenance of server clusters, generate a unified resource pool through resource pooling, and provide end users with resources such as computing, storage, and bandwidth. Edge cloud service providers lease server resources from public cloud service providers, and build a service environment according to their own service types to provide end users with services such as image processing, scientific computing, and video encoding and decoding. The end user sends a service request to the edge cloud service provider that can provide the required service, and pays the fee according to the service level agreement (Service-Level Agreement, SLA) and the final return result of the edge server.
Ghamkhar等人在文献“Energy and Performance Management of Green DataCenters:A Profit Maximization Approach.2013”中考虑了数据中心及其客户之间当前存在的服务级别协议(SLA)以及数据中心工作负载的随机性等因素,提出了一种新的基于优化的数据中心利润最大化策略。李梦在文献“面向云计算资源的收益优化模型与任务分配算法的研究.2015”中提出的云计算收益优化模型,在考虑服务商的收益的同时兼顾SLA协议,利用排队理论估计服务请求的响应时间,并计算请求的处理时间,提出面向云资源收益模型的PAO-ACO算法对模型进行求解,证明了该算法能够动态寻找最优解,且在种群规模较大时,并行求解能节省运算的时间,提高执行效率。邵高原在文献“云计算环境中利润最大化的最优服务定价与多服务器系统配置研究.2017”中在云计算环境中以利润最大化为目标研究云服务的最优定价以及多服务器最优配置问题,他的定价模式可以在符合市场环境中用户需求定律的前提下,根据服务价格的变化提出一个Monetary Reward返现奖励模型,设计出一个基于服务请求响应时间的低服务质量费用补偿算法。张锋辉等人在文献“基于马尔科夫博弈的云代理与微云收益优化.2018”中建立马尔科夫博弈模型对云服务器和微云进行分析,通过反向迭代算法求得纳什均衡策略,最后证明了采用马尔科夫博弈可以明显提高系统收益。In the paper "Energy and Performance Management of Green DataCenters: A Profit Maximization Approach. 2013", Ghamkhar et al. consider factors such as the service level agreements (SLAs) that currently exist between data centers and their customers, and the randomness of data center workloads. , a new optimization-based strategy for data center profit maximization is proposed. The cloud computing revenue optimization model proposed by Li Meng in the document "Research on Cloud Computing Resource-Oriented Revenue Optimization Model and Task Allocation Algorithm. 2015" takes into account the service provider's revenue while taking into account the SLA agreement, and uses queuing theory to estimate the service request. The response time, and the processing time of the request are calculated, and the PAO-ACO algorithm for the cloud resource revenue model is proposed to solve the model, which proves that the algorithm can dynamically find the optimal solution, and when the population size is large, parallel solution can save computation time and improve execution efficiency. Shao Gaoyuan studied the optimal pricing of cloud services and multi-server optimal pricing in the cloud computing environment with the goal of profit maximization in the document "Research on Optimal Service Pricing and Multi-Server System Configuration for Profit Maximization in Cloud Computing Environment. 2017" Regarding the configuration problem, his pricing model can propose a Monetary Reward reward model according to the change of service price under the premise of conforming to the law of user demand in the market environment, and design a low service quality fee compensation algorithm based on service request response time. Zhang Fenghui and others established a Markov game model in the document "Markov Game-Based Cloud Agent and Micro-Cloud Revenue Optimization. 2018" to analyze cloud servers and micro-clouds, and obtained the Nash equilibrium strategy through a reverse iterative algorithm. Finally, It is proved that the use of Markov game can significantly improve the system revenue.
上述文献都是针对云计算环境中收益的优化,然而随着MEC的发展,部分学者开始研究MEC服务提供商收益的最大化。如黄冬艳等人在文献“计算资源受限的MEC服务器收益优化策略.2020”中针对计算资源受限的MEC服务器的收益优化问题,以MEC服务器收益最大化为优化目标,提出了一种基于分支定界法的算法,以获得最优的接入策略和任务执行次序,该算法在重负载网络中能够有效提高MEC服务器的平均收益。The above literatures are all aimed at optimizing the revenue in the cloud computing environment. However, with the development of MEC, some scholars have begun to study the maximization of the revenue of MEC service providers. For example, Huang Dongyan et al. in the document "Revenue optimization strategy for MEC servers with limited computing resources. 2020", aiming at the revenue optimization problem of MEC servers with limited computing resources, with the optimization goal of maximizing the revenue of MEC servers, a branch-based method is proposed. The algorithm of the delimitation method is used to obtain the optimal access strategy and task execution order. This algorithm can effectively improve the average revenue of the MEC server in the heavy load network.
上述文献所记载的方法均存在计算迁移速度慢,且忽略了终端用户的满意度的问题。因此,如何提供一种基于多目标优化(MOEA/D)的计算迁移方法,实现综合考虑终端用户的满意度以及边缘云服务提供商的收益的同时,提升计算迁移的速度,成为一个亟待解决的问题。The methods described in the above-mentioned documents all have the problems of slow computational migration speed and neglect of the satisfaction of end users. Therefore, how to provide a computing migration method based on multi-objective optimization (MOEA/D), which comprehensively considers the satisfaction of end users and the benefits of edge cloud service providers, while improving the speed of computing migration, has become an urgent problem to be solved. question.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题,在于提供一种基于分解的多目标优化的计算迁移方法,实现综合考虑终端用户的满意度以及边缘云服务提供商的收益的同时,提升计算迁移的速度。The technical problem to be solved by the present invention is to provide a computing migration method based on decomposition and multi-objective optimization, which can improve the speed of computing migration while comprehensively considering the satisfaction of end users and the benefits of edge cloud service providers.
本发明是这样实现的:一种基于分解的多目标优化的计算迁移方法,包括如下步骤:The present invention is achieved in this way: a computational migration method based on decomposition of multi-objective optimization, comprising the following steps:
步骤S10、基于终端用户的满意度以及边缘云服务提供商的收益创建一目标模型;Step S10, creating a target model based on the satisfaction of the end user and the income of the edge cloud service provider;
步骤S20、利用遗传算法以及多目标优化算法对所述目标模型进行迭代进化;Step S20, using genetic algorithm and multi-objective optimization algorithm to iteratively evolve the target model;
步骤S30、利用多准则决策、加权法以及迭代进化后的所述目标模型进行计算迁移。Step S30, using multi-criteria decision-making, weighting method and the target model after iterative evolution to perform calculation migration.
进一步地,所述步骤S10具体为:Further, the step S10 is specifically:
创建终端用户满意度模型:Create an end-user satisfaction model:
其中,表示终端用户的满意度;Smax表示最大的用户满意度;Tu表示用户期望完成的时间;TDDL表示服务请求的截至时间;ti,j(τp,q)表示第i个边缘服务器中第j个虚拟机的平均响应时间;τp,q表示终端用户p的第q个服务请求在边缘服务器的完成时间;M表示虚拟机的总数量;ui,j表示第i个边缘服务器中第j个虚拟机的任务处理速率;λi,j表示第i个边缘服务器中第j个虚拟机的任务到达速率;U表示终端用户的总数量;Vp表示服务请求的总数量;wp,q表示τp,q的指令数;B是一个布尔函数,B=0表示终端用户p的第q个服务请求没有迁移到第i个边缘服务器的第j个虚拟机中,B=1表示终端用户p的第q个服务请求迁移到第i个边缘服务器的第j个虚拟机中;i、j、M、p、q、U、Vp均为正整数;in, Represents the end user's satisfaction; S max represents the maximum user satisfaction; Tu represents the user's expected completion time; T DDL represents the service request deadline; t i,j (τ p,q ) represents the ith edge server The average response time of the jth virtual machine in τ p,q represents the completion time of the qth service request of end user p at the edge server; M represents the total number of virtual machines; u i,j represents the ith edge server The task processing rate of the jth virtual machine in the ith edge server; λ i,j represents the task arrival rate of the jth virtual machine in the ith edge server; U represents the total number of end users; V p represents the total number of service requests; w p,q represents the number of instructions of τ p,q ; B is a Boolean function, B=0 means the qth service request of end user p is not migrated to the jth virtual machine of the ith edge server, B=1 Indicates that the qth service request of end user p is migrated to the jth virtual machine of the ith edge server; i, j, M, p, q, U, and Vp are all positive integers;
边缘云服务提供商的总收益的计算公式如下:The formula for calculating the total revenue of edge cloud service providers is as follows:
其中R表示边缘云服务提供商的总收益;R(τp,q,ti,j(τp,q))表示边缘服务器处理终端用户p的第q个服务请求的收费;pm表示每条服务请求的价格;where R represents the total revenue of the edge cloud service provider; R(τ p,q ,t i,j (τ p,q )) represents the charge of the edge server for processing the qth service request of the end user p; p m represents each the price of the service request;
边缘云服务提供商的成本的计算公式如下:The formula for calculating the cost of edge cloud service providers is as follows:
其中C表示边缘云服务提供商的成本;cm表示每条服务请求的成本;where C represents the cost of the edge cloud service provider; cm represents the cost of each service request;
将终端用户的满意度以及边缘云服务提供商的收益的两个目标定义为:The two goals of end-user satisfaction and the benefits of edge cloud service providers are defined as:
s.t.op,q∈{0,1,...,N+1};stop p, q∈{0,1,...,N+1};
其中op,q表示终端用户p的第q个服务请求所分配的迁移策略。where o p,q represents the migration strategy assigned to the qth service request of end user p.
进一步地,所述步骤S20具体包括:Further, the step S20 specifically includes:
步骤S21、基于所述目标模型,在可行域Ω内随机产生一个规模为Qp的种群G0:Step S21, based on the target model, randomly generate a population G 0 with a scale of Q p in the feasible region Ω:
其中表示种群G0中第Qp个的个体;Qp为正整数;in Represents the Q p -th individual in the population G 0 ; Q p is a positive integer;
步骤S22、创建Qp个权重向量σj:Step S22, creating Q p weight vectors σ j :
其中j为正整数,且j=1,2,...,Qp;k为正整数;where j is a positive integer, and j=1, 2, ..., Q p ; k is a positive integer;
步骤S23、计算各所述权重向量σj两两之间的欧氏距离di,j,基于所述欧氏距离di,j生成距离矩阵d;Step S23, calculating the Euclidean distances d i,j between the weight vectors σ j in pairs, and generating a distance matrix d based on the Euclidean distances d i,j ;
基于所述距离矩阵d选取Qnei个最近个体Xi(i=1,2,...,Qp),组成邻居集合:Based on the distance matrix d, select Q nei nearest individuals X i (i=1, 2,...,Q p ) to form a neighbor set:
对于每隔最近个体,令则权重向量σj最近的Qnei个权重向量为: For every nearest individual, let Then the nearest Q nei weight vectors of the weight vector σ j are:
步骤S24、计算各个体Xi(i=1,2,...,Qp)的目标函数值:Step S24, calculate the objective function value of each individual X i (i=1, 2,...,Q p ):
f1(Xi),f2(Xi),...,fk(Xi),;f 1 (X i ), f 2 (X i ),...,f k (X i ),;
设所述目标函数值的理想点为:Let the ideal point of the objective function value be:
其中i为正整数;in i is a positive integer;
步骤S25、设外部种群O*=Φ,种群迭代次数为t,t为正整数,对各个体进行迭代进化:Step S25, set the external population O * =Φ, the population iteration number is t, and t is a positive integer, and perform iterative evolution for each individual:
随机从所述邻居集合Ci中选取两个个体生成新个体将所述新个体添加到种群Gt中,即 Randomly select two individuals from the neighbor set C i to generate new individuals the new individual added to the population G t , i.e.
更新理想点y*:若则 Update ideal point y * : if but
更新各个体的邻居集合Ci:Update the neighbor set C i of each individual:
令σi,l表示个体Xi的邻居集合Ci中各元素的权重向量,l=1,2,...,Qp,Let σ i,l denote the weight vector of each element in the neighbor set C i of the individual X i , l=1,2,...,Q p ,
若则Xi,l=Xi;like Then X i,l =X i ;
其中Xi,l表示邻居集合Ci中的各元素;表示切比雪夫值;F(Xi)表示Xi个体对应的适应度函数值;where X i,l represents each element in the neighbor set C i ; represents the Chebyshev value; F(X i ) represents the fitness function value corresponding to the individual X i ;
更新外部种群O*:Update the outer population O * :
判断外部种群O*中是否存在被新个体支配的解,若存在,则剔除外部种群O*中被新个体支配的解;若不存在,则将新个体加入外部种群O*中;Determine whether there is a new individual in the outer population O * The dominant solution, if it exists, remove the new individual from the outer population O * the dominant solution; if it does not exist, the new individual join the outer population O * ;
步骤S26、对种群G0进行选择、交叉以及变异生成新种群,判断种群迭代次数t是否小于预设的最大迭代次数,若是,则进入步骤S24;若否,则进入步骤S30。Step S26, select, cross and mutate the population G 0 to generate a new population, and determine whether the population iteration number t is less than the preset maximum iteration number, if so, go to step S24; if not, go to step S30.
进一步地,所述步骤S30具体为:Further, the step S30 is specifically:
设终端用户的满意度的实用价值为:Let the practical value of end-user satisfaction be:
边缘云服务提供商的收益的实用价值为:The practical value of the benefits of edge cloud service providers is:
种群G0中各个体的实用价值为:The practical value of each individual in population G 0 is:
实用价值最大的个体为:The individuals with the greatest practical value are:
其中Smin表示终端用户满意度的最小值;Smax表示终端用户满意度的最大值;S(Xi)表示个体Xi的终端用户满意度;Rmin表示边缘云服务提供商收益的最小值;Rmax表示边缘云服务提供商收益的最大值;R(Xi)表示个体Xi的边缘云服务提供商收益;w1表示终端用户满意度的权值,w2表示边缘云服务提供商收益的权值,w1+w2=1。where S min represents the minimum value of the end user satisfaction; S max represents the maximum value of the end user satisfaction; S(X i ) represents the end user satisfaction of the individual Xi; R min represents the minimum value of the edge cloud service provider's revenue ; R max represents the maximum value of the edge cloud service provider's revenue; R(X i ) represents the edge cloud service provider revenue of the individual Xi; w 1 represents the weight of the end user satisfaction, w 2 represents the edge cloud service provider The weight of income, w 1 +w 2 =1.
本发明的优点在于:The advantages of the present invention are:
通过终端用户的满意度以及边缘云服务提供商的收益创建目标模型,再利用遗传算法以及多目标优化算法对目标模型进行迭代进化,最终利用多准则决策、加权法以及迭代进化后的目标模型进行计算迁移,即找出实用价值最大的个体,使得终端用户满意度和边缘云服务提供商收益均最大,即实现综合考虑终端用户的满意度以及边缘云服务提供商的收益,且由于采用多目标优化算法,时间复杂度更低,时间开销成本低,收敛迅速,可靠性高,极大的提升了计算迁移的速度。Create a target model based on the satisfaction of end users and the income of edge cloud service providers, and then use genetic algorithm and multi-objective optimization algorithm to iteratively evolve the target model, and finally use multi-criteria decision-making, weighting method and the target model after iterative evolution. Computational migration, that is, to find the individual with the greatest practical value, so that both the end-user satisfaction and the edge cloud service provider's benefit are maximized, that is, to comprehensively consider the end-user's satisfaction and the benefit of the edge cloud service provider, and due to the use of multi-objective The optimization algorithm has lower time complexity, lower time overhead cost, rapid convergence, and high reliability, which greatly improves the speed of computing migration.
附图说明Description of drawings
下面参照附图结合实施例对本发明作进一步的说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
图1是本发明一种基于分解的多目标优化的计算迁移方法的流程图。FIG. 1 is a flow chart of a computational migration method for multi-objective optimization based on decomposition of the present invention.
图2是本发明移动边缘计算网络体系架构图。FIG. 2 is a schematic diagram of the mobile edge computing network architecture of the present invention.
图3是本发明迁移策略编码示意图。FIG. 3 is a schematic diagram of the coding of the migration strategy of the present invention.
图4是本发明最小化问题示意图。Figure 4 is a schematic diagram of the minimization problem of the present invention.
图5是本发明策略编码交叉示意图。FIG. 5 is a schematic diagram of the strategy coding crossover according to the present invention.
具体实施方式Detailed ways
请参照图1至图5所示,本发明一种基于分解的多目标优化的计算迁移方法的实施例之一,包括如下步骤:Please refer to FIG. 1 to FIG. 5 , one of the embodiments of a decomposition-based multi-objective optimization computational migration method of the present invention includes the following steps:
步骤S10、基于终端用户的满意度以及边缘云服务提供商的收益创建一目标模型;Step S10, creating a target model based on the satisfaction of the end user and the income of the edge cloud service provider;
步骤S20、利用遗传算法以及多目标优化算法对所述目标模型进行迭代进化;Step S20, using genetic algorithm and multi-objective optimization algorithm to iteratively evolve the target model;
步骤S30、利用多准则决策、加权法以及迭代进化后的所述目标模型进行计算迁移。Step S30, using multi-criteria decision-making, weighting method and the target model after iterative evolution to perform calculation migration.
在步骤S10之前,需要搭建MEC网络架构,设定MEC网络架构中移动设备、边缘服务器以及云端服务器的处理器性能、虚拟机数量以及工作功率。Before step S10, an MEC network architecture needs to be built, and the processor performance, the number of virtual machines, and the working power of the mobile devices, edge servers, and cloud servers in the MEC network architecture are set.
本发明采取整数编码的方式,令每个染色体中的每个基因都是一个整数,把终端用户的满意度以及边缘云服务提供商的收益作为优化目标,将每组的迁移策略视为一个由多个基因组成的染色体,当平台上有N个边缘服务器时,将迁移策略编码为0,1,...,N+1。迁移策略编码如图3所示,数字0代表任务不迁移,在本地设备执行计算;数字1至N表示任务将被迁移到指定的边缘服务器上执行;数字N+1表示任务将被迁移到云端服务器上执行。在遗传算法开始之前,需要确定种群规模Qp、权重向量σj、邻居集合的大小Qnei、最大迭代次数Gmax、交叉概率pc等参数。种群中的第i条染色体可以表示为Xi={op,q|p=1,2,...,U;q=1,2,...,V}。在种群中挑选出一部分个体用于之后的交叉和变异操作,以个体的适应度评估为基础,由此形成适应度较好的新种群。The present invention adopts an integer coding method, so that each gene in each chromosome is an integer, takes the satisfaction of the end user and the profit of the edge cloud service provider as the optimization goal, and regards the migration strategy of each group as a For chromosomes composed of multiple genes, when there are N edge servers on the platform, the migration strategy is encoded as 0,1,...,N+1. The migration strategy code is shown in Figure 3. The
所述步骤S10具体为:The step S10 is specifically:
创建终端用户满意度模型:Create an end-user satisfaction model:
其中,表示终端用户的满意度;Smax表示最大的用户满意度;Tu表示用户期望完成的时间;TDDL表示服务请求的截至时间;ti,j(τp,q)表示第i个边缘服务器中第j个虚拟机的平均响应时间;τp,q表示终端用户p的第q个服务请求在边缘服务器的完成时间;M表示虚拟机的总数量;ui,j表示第i个边缘服务器中第j个虚拟机的任务处理速率;λi,j表示第i个边缘服务器中第j个虚拟机的任务到达速率,即j层子请求上每秒钟达到多少MIPS指令;U表示终端用户的总数量;Vp表示服务请求的总数量;wp,q表示τp,q的指令数;B是一个布尔函数,B=0表示终端用户p的第q个服务请求没有迁移到第i个边缘服务器的第j个虚拟机中,B=1表示终端用户p的第q个服务请求迁移到第i个边缘服务器的第j个虚拟机中;i、j、M、p、q、U、Vp均为正整数;in, Represents the end user's satisfaction; S max represents the maximum user satisfaction; Tu represents the user's expected completion time; T DDL represents the service request deadline; t i,j (τ p,q ) represents the ith edge server The average response time of the jth virtual machine in τ p,q represents the completion time of the qth service request of end user p at the edge server; M represents the total number of virtual machines; u i,j represents the ith edge server the task processing rate of the jth virtual machine in V p represents the total number of service requests; w p,q represents the number of instructions of τ p,q ; B is a Boolean function, B=0 indicates that the qth service request of end user p is not migrated to the ith In the jth virtual machine of the edge server, B=1 indicates that the qth service request of end user p is migrated to the jth virtual machine of the ith edge server; i, j, M, p, q, U , V p are positive integers;
边缘云服务提供商的总收益的计算公式如下:The formula for calculating the total revenue of edge cloud service providers is as follows:
其中R表示边缘云服务提供商的总收益;R(τp,q,ti,j(τp,q))表示边缘服务器处理终端用户p的第q个服务请求的收费;pm表示每条服务请求的价格;where R represents the total revenue of the edge cloud service provider; R(τ p,q ,t i,j (τ p,q )) represents the charge of the edge server for processing the qth service request of the end user p; p m represents each the price of the service request;
边缘云服务提供商的成本的计算公式如下:The formula for calculating the cost of edge cloud service providers is as follows:
其中C表示边缘云服务提供商的成本;cm表示每条服务请求的成本;边缘云服务提供商的收益等于总输入减去成本;where C represents the cost of the edge cloud service provider; cm represents the cost of each service request; the benefit of the edge cloud service provider is equal to the total input minus the cost;
将终端用户的满意度以及边缘云服务提供商的收益的两个目标定义为:The two goals of end-user satisfaction and the benefits of edge cloud service providers are defined as:
s.t.op,q∈{0,1,...,N+1};stop p, q∈{0,1,...,N+1};
其中op,q表示终端用户p的第q个服务请求所分配的迁移策略。where o p,q represents the migration strategy assigned to the qth service request of end user p.
所述步骤S20具体包括:The step S20 specifically includes:
步骤S21、基于所述目标模型,在可行域Ω内随机产生一个规模为Qp的种群G0:Step S21, based on the target model, randomly generate a population G 0 with a scale of Q p in the feasible region Ω:
其中表示种群G0中第Qp个的个体;Qp为正整数;in Represents the Q p -th individual in the population G 0 ; Q p is a positive integer;
步骤S22、创建Qp个权重向量σj:Step S22, creating Q p weight vectors σ j :
其中j为正整数,且j=1,2,...,Qp;k为正整数;where j is a positive integer, and j=1, 2, ..., Q p ; k is a positive integer;
步骤S23、计算各所述权重向量σj两两之间的欧氏距离di,j,基于所述欧氏距离di,j生成距离矩阵d;Step S23, calculating the Euclidean distances d i,j between the weight vectors σ j in pairs, and generating a distance matrix d based on the Euclidean distances d i,j ;
基于所述距离矩阵d选取Qnei个最近个体Xi(i=1,2,...,Qp),组成邻居集合:Based on the distance matrix d, select Q nei nearest individuals X i (i=1, 2,...,Q p ) to form a neighbor set:
Qnei代表Ci的规模大小; Q nei represents the scale of C i ;
对于每隔最近个体,令则权重向量σj最近的Qnei个权重向量为: For every nearest individual, let Then the nearest Q nei weight vectors of the weight vector σ j are:
步骤S24、计算各个体Xi(i=1,2,...,Qp)的目标函数值:Step S24, calculate the objective function value of each individual X i (i=1, 2,...,Q p ):
f1(Xi),f2(Xi),...,fk(Xi),;f 1 (X i ), f 2 (X i ),...,f k (X i ),;
设所述目标函数值的理想点为:Let the ideal point of the objective function value be:
其中i为正整数;过程如图4所示;in i is a positive integer; the process is shown in Figure 4;
步骤S25、设外部种群O*=Φ,种群迭代次数为t,t为正整数,对各个体进行迭代进化:Step S25, set the external population O * =Φ, the population iteration number is t, and t is a positive integer, and perform iterative evolution for each individual:
随机从所述邻居集合Ci中选取两个个体生成新个体将所述新个体添加到种群Gt中,即 Randomly select two individuals from the neighbor set C i to generate new individuals the new individual added to the population G t , i.e.
例如从B(i)中随机选取两个序号a和b,利用遗传算子Xa和Xb产生新个体Xc,再对Xc运用基于测试问题的修复和改进启发产生 For example, randomly select two serial numbers a and b from B(i), use the genetic operators X a and X b to generate a new individual X c , and then use the repair and improvement inspiration based on the test problem to generate a new individual X c .
更新理想点y*:若则 Update ideal point y * : if but
更新各个体的邻居集合Ci:Update the neighbor set C i of each individual:
令σi,l表示个体Xi的邻居集合Ci中各元素的权重向量,l=1,2,...,Qp,Let σ i,l denote the weight vector of each element in the neighbor set C i of the individual X i , l=1,2,...,Q p ,
若则Xi,l=Xi;like Then X i,l =X i ;
其中Xi,l表示邻居集合Ci中的各元素;表示切比雪夫值;F(Xi)表示Xi个体对应的适应度函数值;where X i,l represents each element in the neighbor set C i ; represents the Chebyshev value; F(X i ) represents the fitness function value corresponding to the individual X i ;
更新外部种群O*:Update the outer population O * :
判断外部种群O*中是否存在被新个体支配的解,若存在,则剔除外部种群O*中被新个体支配的解;若不存在,则将新个体加入外部种群O*中;Determine whether there is a new individual in the outer population O * The dominant solution, if it exists, remove the new individual from the outer population O * the dominant solution; if it does not exist, the new individual join the outer population O * ;
步骤S26、对种群G0进行选择、交叉以及变异生成新种群,如图3和图5所示,判断种群迭代次数t是否小于预设的最大迭代次数,若是,则进入步骤S24;若否,则进入步骤S30。Step S26, select, cross and mutate the population G 0 to generate a new population, as shown in Figure 3 and Figure 5, determine whether the population iteration number t is less than the preset maximum iteration number, if so, go to step S24; if not, go to step S24; Then go to step S30.
所述步骤S30具体为:The step S30 is specifically:
设终端用户的满意度的实用价值为:Let the practical value of end-user satisfaction be:
边缘云服务提供商的收益的实用价值为:The practical value of the benefits of edge cloud service providers is:
种群G0中各个体的实用价值为:The practical value of each individual in population G 0 is:
实用价值最大的个体为:The individuals with the greatest practical value are:
其中Smin表示终端用户满意度的最小值;Smax表示终端用户满意度的最大值;S(Xi)表示个体Xi的终端用户满意度;Rmin表示边缘云服务提供商收益的最小值;Rmax表示边缘云服务提供商收益的最大值;R(Xi)表示个体Xi的边缘云服务提供商收益;w1表示终端用户满意度的权值,w2表示边缘云服务提供商收益的权值,w1+w2=1。where S min represents the minimum value of the end user satisfaction; S max represents the maximum value of the end user satisfaction; S(X i ) represents the end user satisfaction of the individual Xi; R min represents the minimum value of the edge cloud service provider's revenue ; R max represents the maximum value of the edge cloud service provider's revenue; R(X i ) represents the edge cloud service provider revenue of the individual Xi; w 1 represents the weight of the end user satisfaction, w 2 represents the edge cloud service provider The weight of income, w 1 +w 2 =1.
本发明一种基于分解的多目标优化的计算迁移方法的实施例之二,假设MEC网络架构中存在4个边缘服务器,和1个云端服务器,考虑终端用户部分任务请求在本地执行的情况。The second embodiment of the decomposition-based multi-objective optimization computing migration method of the present invention assumes that there are 4 edge servers and 1 cloud server in the MEC network architecture, and considers the situation that some task requests of end users are executed locally.
假设移动用户的集合U={u1,1,u1,2,…,u1,q,u2,1,u2,2,…,u2,q,…,up,1,up,2,…,up,q},其中up,q代表第p个用户的第q个应用;op,q表示为第p个用户的第q个请求所分配的迁移策略,op,q=1,2,…,N表示应用迁移到边缘服务器中进行,op,q=N+1表示应用迁移到云端执行;τp,q表示用户p的第q个服务请求;t(τp,q)表示为用户p的第q个服务请求的完成时间;R(τp,q,t(τp,q))表示为用户p的第q个服务请求的收费;N表示为系统中边缘服务器个数集合;M表示为系统中边缘服务器虚拟机的个数;wp,q表示为τp,q的指令数;pm表示为每个指令条数的价格;cm表示为每个指令条数的成本;Tu表示为用户希望的完成时间;TDDL表示为服务请求的截止时间;Sτp,q表示为τp,q的用户满意度;u表示为任务处理速率;λ表示为任务到达速率;Smax表示为最大的用户满意度。Suppose a set of mobile users U={u 1,1 ,u 1,2 ,…,u 1,q ,u 2,1 ,u 2,2 ,…,u 2,q ,…,up ,1 ,u p,2 ,…,up p,q }, where up p,q represents the qth application of the pth user; o p,q represents the migration strategy assigned to the qth request of the pth user, o p,q =1,2,...,N indicates that the application is migrated to the edge server for execution, o p,q =N+1 indicates that the application is migrated to the cloud for execution; τ p,q indicates the qth service request of user p; t (τ p,q ) represents the completion time of the qth service request of user p; R(τ p,q ,t(τ p,q )) represents the charge of the qth service request of user p; N represents is the set of edge servers in the system; M is the number of edge server virtual machines in the system; w p,q is the number of instructions of τ p,q ; p m is the price of each instruction; c m Represented as the cost of each instruction; Tu represents the completion time expected by the user; T DDL represents the deadline for service requests; S τp,q represents the user satisfaction of τ p,q ; u represents the task processing rate; λ is the task arrival rate; S max is the maximum user satisfaction.
假设任务请求不迁移的情况标记为up,q=0,迁移到第1个至第4个边缘服务器的情况标记为up,q=1,up,q=2,up,q=3和up,q=4,迁移到云端的情况标记为up,q=5。正如图3的迁移策略编码所示,每个迁移情况标记为一个染色体里的基因,大量的基因转化为一条染色体,在后续进化过程中进行交叉和编译的操作。Suppose that the case where the task request is not migrated is marked as up , q = 0, and the case of migration to the 1st to 4th edge servers is marked as up , q = 1, up , q = 2, up , q = 3 and up ,q =4, the case of migration to the cloud is marked as up ,q =5. As shown in the migration strategy code in Figure 3, each migration situation is marked as a gene in a chromosome, and a large number of genes are converted into a chromosome, and the operations of crossover and compilation are performed in the subsequent evolution process.
根据排队论,计算处理时间模型,τp,q在第i个服务器中的第j个虚拟机中的平均响应时间为: According to queuing theory, calculating the processing time model, the average response time of τ p,q in the jth virtual machine in the ith server is:
其中,ui,j为第i个边缘服务器中的第j个虚拟机的任务处理速率;λi,j为第i个边缘服务器中的第j个虚拟机的任务到达速率,即j层子请求上每秒钟到达多少MIPS指令,其计算公式为: Among them, u i,j is the task processing rate of the j-th virtual machine in the i-th edge server; λ i,j is the task arrival rate of the j-th virtual machine in the i-th edge server, i.e. How many MIPS instructions are reached per second on the request, the calculation formula is:
其中,B是一个布尔函数,B=0表示用户p的第q个服务子请求没有迁移到第i个服务器的第j个虚拟机中;B=1表示用户p的第q个服务子请求迁移到第i个服务器的第j个虚拟机中。Among them, B is a Boolean function, B=0 means that the qth service subrequest of user p is not migrated to the jth virtual machine of the ith server; B=1 means that the qth service subrequest of user p is migrated to the jth virtual machine of the ith server.
因此,用户p的第q个服务请求在第i个服务器中的完成时间为:Therefore, the completion time of the qth service request of user p in the ith server is:
由上式的处理时间计算模型,用描述用户p的第q个服务请求,可求得在不同的服务请求完成时间内所对应的满意度。其计算公式如下:From the processing time calculation model of the above formula, use Describing the qth service request of user p, the satisfaction corresponding to different service request completion times can be obtained. Its calculation formula is as follows:
用R(τp,q,t(τp,q))表示边缘服务器处理用户p的第q个服务请求的收费,那么边缘服务器提供商的总收益R为: Let R(τ p,q ,t(τ p,q )) denote the charge of the edge server for processing the qth service request of user p, then the total revenue R of the edge server provider is:
而R(τp,q,t(τp,q))的计算公式为:And the calculation formula of R(τ p,q ,t(τ p,q )) is:
边缘服务器的成本用C来表示,边缘云服务提供商的收益由边缘服务器的收入减去成本所得,将其简化计算为: The cost of the edge server is denoted by C, and the revenue of the edge cloud service provider is obtained by subtracting the cost from the revenue of the edge server, which is simplified and calculated as:
总而言之,本发明所研究的计算迁移的总目标是在满足移动用户的任务需求的同时,将用户满意度最大化以及边缘云服务提供商的收益最大化,其中多目标优化问题可以定义为:All in all, the overall goal of computing migration studied in the present invention is to maximize user satisfaction and maximize the benefits of edge cloud service providers while meeting the task requirements of mobile users, where the multi-objective optimization problem can be defined as:
s.t.op,q∈{0,1,2,3,4,5};stop p, q∈{0,1,2,3,4,5};
每条染色体包含每个用户的任务请求的迁移情况,将迁移编码策略代入到上式的用户满意度和边缘云服务提供商收益的关系式中获得适应值,并进行进化操作。Each chromosome contains the migration situation of each user's task request, and the migration coding strategy is substituted into the relationship between the user satisfaction and the edge cloud service provider's income in the above formula to obtain the fitness value, and the evolution operation is performed.
当进化代数达到最大时,种群Ptmax存在种群规模Qp的个体,每一个个体代表最优解的计算迁移策略,将染色体的基因值带入上述建立的模型中,会得到最优解的目标值,但最优解中会出现部分个体不相同的情况,此时需要用多准则决策和简单加权法从中挑选最优解,Xi表示最优解种群中第i个个体,其实用价值的定义为:When the evolutionary algebra reaches the maximum, there are individuals with population size Q p in the population P tmax , each individual represents the calculation migration strategy of the optimal solution, and the gene value of the chromosome is brought into the model established above, and the goal of the optimal solution will be obtained. value, but some individuals may be different in the optimal solution. In this case, multi-criteria decision-making and simple weighting method should be used to select the optimal solution. X i represents the ith individual in the optimal solution population, and its practical value is defined as:
LBmax和LBmin表示为最优解种群中用户满意度的目标值最大值和最小值。LB max and LB min are expressed as the maximum and minimum target values of user satisfaction in the optimal solution population.
Tmax和Tmin表示为最优解种群中边缘服务器收益的最大值和最小值。 Tmax and Tmin are denoted as the maximum and minimum benefits of edge servers in the optimal solution population.
最优解种群中的每个个体实用价值的满意度由权值w计算,其中w1+w2=1:The satisfaction of the practical value of each individual in the optimal solution population is calculated by the weight w, where w 1 +w 2 =1:
求出每个个体的实用价值后,需要从种群中挑选最大实用价值的个体,实用价值最大的个体即是所求的最优解个体: After finding the practical value of each individual, it is necessary to select the individual with the greatest practical value from the population, and the individual with the greatest practical value is the optimal solution individual:
综上所述,本发明的优点在于:To sum up, the advantages of the present invention are:
通过终端用户的满意度以及边缘云服务提供商的收益创建目标模型,再利用遗传算法以及多目标优化算法对目标模型进行迭代进化,最终利用多准则决策、加权法以及迭代进化后的目标模型进行计算迁移,即找出实用价值最大的个体,使得终端用户满意度和边缘云服务提供商收益均最大,即实现综合考虑终端用户的满意度以及边缘云服务提供商的收益,且由于采用多目标优化算法,时间复杂度更低,时间开销成本低,收敛迅速,可靠性高,极大的提升了计算迁移的速度。Create a target model based on the satisfaction of end users and the income of edge cloud service providers, and then use genetic algorithm and multi-objective optimization algorithm to iteratively evolve the target model, and finally use multi-criteria decision-making, weighting method and the target model after iterative evolution. Computational migration, that is, to find the individual with the greatest practical value, so that both the end-user satisfaction and the edge cloud service provider's benefit are maximized, that is, to comprehensively consider the end-user's satisfaction and the benefit of the edge cloud service provider, and due to the use of multi-objective The optimization algorithm has lower time complexity, lower time overhead cost, rapid convergence, and high reliability, which greatly improves the speed of computing migration.
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。Although the specific embodiments of the present invention are described above, those skilled in the art should understand that the specific embodiments we describe are only illustrative, rather than used to limit the scope of the present invention. Equivalent modifications and changes made by a skilled person in accordance with the spirit of the present invention should be included within the scope of protection of the claims of the present invention.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010790128.8A CN111857976B (en) | 2020-08-07 | 2020-08-07 | A Computational Migration Method Based on Decomposition-Based Multi-objective Optimization |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010790128.8A CN111857976B (en) | 2020-08-07 | 2020-08-07 | A Computational Migration Method Based on Decomposition-Based Multi-objective Optimization |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111857976A true CN111857976A (en) | 2020-10-30 |
| CN111857976B CN111857976B (en) | 2023-06-02 |
Family
ID=72971189
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010790128.8A Active CN111857976B (en) | 2020-08-07 | 2020-08-07 | A Computational Migration Method Based on Decomposition-Based Multi-objective Optimization |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111857976B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113094973A (en) * | 2021-03-18 | 2021-07-09 | 西北工业大学 | Civil aircraft demand optimization method based on multi-objective optimization algorithm |
| CN113112143A (en) * | 2021-04-08 | 2021-07-13 | 杭州电子科技大学 | Multi-level manufacturer collaborative production task allocation method and system under cloud manufacturing environment |
| CN113139639A (en) * | 2021-05-17 | 2021-07-20 | 华侨大学 | MOMBI-based smart city application-oriented multi-target calculation migration method and device |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100153299A1 (en) * | 2008-12-16 | 2010-06-17 | Sean Coleman Keenan | Methods and systems for generating transition probability matrices through an optimization framework |
| CN102984137A (en) * | 2012-11-14 | 2013-03-20 | 江苏南开之星软件技术有限公司 | Multi-target server scheduling method based on multi-target genetic algorithm |
| CN107734558A (en) * | 2017-10-26 | 2018-02-23 | 北京邮电大学 | A kind of control of mobile edge calculations and resource regulating method based on multiserver |
| CN108984307A (en) * | 2018-07-19 | 2018-12-11 | 中国联合网络通信集团有限公司 | Calculating task moving method and calculating task transference apparatus |
| CN109413676A (en) * | 2018-12-11 | 2019-03-01 | 西北大学 | Combine the edge calculations moving method of lower uplink in a kind of ultra dense heterogeneous network |
| CN109710374A (en) * | 2018-12-05 | 2019-05-03 | 重庆邮电大学 | VM migration strategy to minimize task offload cost in mobile edge computing environment |
| CN110069319A (en) * | 2019-04-15 | 2019-07-30 | 南京信息工程大学 | A kind of multiple target dispatching method of virtual machine and system towards cloudlet resource management |
| CN110839075A (en) * | 2019-11-08 | 2020-02-25 | 重庆大学 | Service migration method based on particle swarm in edge computing environment |
-
2020
- 2020-08-07 CN CN202010790128.8A patent/CN111857976B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100153299A1 (en) * | 2008-12-16 | 2010-06-17 | Sean Coleman Keenan | Methods and systems for generating transition probability matrices through an optimization framework |
| CN102984137A (en) * | 2012-11-14 | 2013-03-20 | 江苏南开之星软件技术有限公司 | Multi-target server scheduling method based on multi-target genetic algorithm |
| CN107734558A (en) * | 2017-10-26 | 2018-02-23 | 北京邮电大学 | A kind of control of mobile edge calculations and resource regulating method based on multiserver |
| CN108984307A (en) * | 2018-07-19 | 2018-12-11 | 中国联合网络通信集团有限公司 | Calculating task moving method and calculating task transference apparatus |
| CN109710374A (en) * | 2018-12-05 | 2019-05-03 | 重庆邮电大学 | VM migration strategy to minimize task offload cost in mobile edge computing environment |
| CN109413676A (en) * | 2018-12-11 | 2019-03-01 | 西北大学 | Combine the edge calculations moving method of lower uplink in a kind of ultra dense heterogeneous network |
| CN110069319A (en) * | 2019-04-15 | 2019-07-30 | 南京信息工程大学 | A kind of multiple target dispatching method of virtual machine and system towards cloudlet resource management |
| CN110839075A (en) * | 2019-11-08 | 2020-02-25 | 重庆大学 | Service migration method based on particle swarm in edge computing environment |
Non-Patent Citations (6)
| Title |
|---|
| 伏舒存;付章杰;邢国稳;刘庆祥;许小龙;: "移动边缘环境下面向工作流管理的计算迁移方法", 计算机应用 * |
| 廖大强;: "面向多目标的云计算资源调度算法", 计算机系统应用 * |
| 朱友康;乐光学;杨晓慧;刘建生;: "边缘计算迁移研究综述", 电信科学 * |
| 郭棉;李绮琦;: "面向延迟敏感型物联网应用的计算迁移策略", 计算机应用 * |
| 陈臣;马晓亭;: "云计算环境下数字图书馆云服务平台与云服务模式研究", 情报资料工作 * |
| 颉斌;杨扬;旷毅;: "基于多目标遗传算法的云服务部署优化方法", 华中科技大学学报(自然科学版) * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113094973A (en) * | 2021-03-18 | 2021-07-09 | 西北工业大学 | Civil aircraft demand optimization method based on multi-objective optimization algorithm |
| CN113112143A (en) * | 2021-04-08 | 2021-07-13 | 杭州电子科技大学 | Multi-level manufacturer collaborative production task allocation method and system under cloud manufacturing environment |
| CN113112143B (en) * | 2021-04-08 | 2024-04-23 | 杭州电子科技大学 | Multi-level manufacturer collaborative production task allocation method and system in cloud manufacturing environment |
| CN113139639A (en) * | 2021-05-17 | 2021-07-20 | 华侨大学 | MOMBI-based smart city application-oriented multi-target calculation migration method and device |
| CN113139639B (en) * | 2021-05-17 | 2023-05-30 | 华侨大学 | MOMBI-oriented smart city application multi-target computing migration method and device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111857976B (en) | 2023-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Chen et al. | A multi-objective optimization for resource allocation of emergent demands in cloud computing | |
| Ebadifard et al. | A dynamic task scheduling algorithm improved by load balancing in cloud computing | |
| CN111857976B (en) | A Computational Migration Method Based on Decomposition-Based Multi-objective Optimization | |
| CN112052092B (en) | Risk-aware edge computing task allocation method | |
| CN111813506A (en) | A resource-aware computing migration method, device and medium based on particle swarm optimization | |
| Dong et al. | A high-efficient joint’cloud-edge’aware strategy for task deployment and load balancing | |
| CN112492032B (en) | Workflow cooperative scheduling method under mobile edge environment | |
| CN112165721B (en) | Multi-service task unloading and service migration method based on edge computing | |
| CN109255513A (en) | A kind of power telecom network scene work order dispatching method | |
| CN113419867B (en) | Energy-saving service supply method in edge-oriented cloud collaborative computing environment | |
| Zhao et al. | A location selection policy of live virtual machine migration for power saving and load balancing | |
| CN113132471B (en) | Cloud service budget optimization scheduling method, device, equipment and storage medium | |
| Li et al. | Computation offloading and service allocation in mobile edge computing | |
| CN114116183A (en) | Data center service load scheduling method and system based on deep reinforcement learning | |
| CN113900779A (en) | Task execution method, device, electronic device and storage medium | |
| Kalai Arasan et al. | Energy‐efficient task scheduling and resource management in a cloud environment using optimized hybrid technology | |
| More et al. | Energy-aware VM migration using dragonfly–crow optimization and support vector regression model in Cloud | |
| Ye et al. | A framework for QoS and power management in a service cloud environment with mobile devices | |
| Huang et al. | Computation offloading for multimedia workflows with deadline constraints in cloudlet-based mobile cloud | |
| CN113139639A (en) | MOMBI-based smart city application-oriented multi-target calculation migration method and device | |
| Yuan et al. | A DRL-Based Container Placement Scheme with Auxiliary Tasks. | |
| Rawat et al. | Performance evaluation of an adopted model based on big-bang big-crunch and artificial neural network for cloud applications | |
| Lu et al. | Towards dynamic request updating with elastic scheduling for multi-tenant cloud-based data center network | |
| Shi et al. | Research on multi-objective optimization method of edge cloud computing virtual machine placement | |
| CN115174681A (en) | Method, equipment and storage medium for scheduling edge computing service request |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |