+

CN111767338A - Distributed data storage method and system for online ultra-real-time simulation of power system - Google Patents

Distributed data storage method and system for online ultra-real-time simulation of power system Download PDF

Info

Publication number
CN111767338A
CN111767338A CN202010083967.6A CN202010083967A CN111767338A CN 111767338 A CN111767338 A CN 111767338A CN 202010083967 A CN202010083967 A CN 202010083967A CN 111767338 A CN111767338 A CN 111767338A
Authority
CN
China
Prior art keywords
data
data storage
real
simulation
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010083967.6A
Other languages
Chinese (zh)
Inventor
唐宏伟
刘文林
袁雨馨
赵晓芳
谭文婷
潘志伟
王晖
刘延嘉
王成瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Computing Technology of CAS
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Original Assignee
Institute of Computing Technology of CAS
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Computing Technology of CAS, Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd filed Critical Institute of Computing Technology of CAS
Priority to CN202010083967.6A priority Critical patent/CN111767338A/en
Publication of CN111767338A publication Critical patent/CN111767338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2477Temporal data queries
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/546Message passing systems or structures, e.g. queues

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Fuzzy Systems (AREA)
  • Computing Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明提出一种电力系统在线超实时仿真的分布式数据存储方法及系统,包括:构建包括元数据节点和数据存储节点的分布式电力系统在线超实时仿真系统;根据仿真任务的存储资源调度请求和各数据存储节点的可用存储空间,元数据节点分配两个相互独立的数据存储节点分别作为原始存储节点和汇总存储节点;从电网持续周期性采集电网运行的状态数据,并将状态数据发送至原始数据存储节点和数据存储节点,各数据存储节点根据仿真任务和状态数据运行电力系统在线超实时仿真,得到局部超实时仿真结果;汇总各数据存储节点的局部仿真结果至汇总存储节点,得到电网的完整超实时仿真结果。本发明可在运行电力系统仿真的同时为仿真提供数据存储管理。

Figure 202010083967

The present invention provides a distributed data storage method and system for power system online ultra-real-time simulation, including: constructing a distributed power system online ultra-real-time simulation system including metadata nodes and data storage nodes; scheduling requests for storage resources according to simulation tasks and the available storage space of each data storage node, the metadata node allocates two independent data storage nodes as the original storage node and the summary storage node; continuously and periodically collects the status data of the power grid operation from the power grid, and sends the status data to The original data storage node and data storage node, each data storage node runs the online ultra-real-time simulation of the power system according to the simulation task and state data, and obtains local ultra-real-time simulation results; summarizes the local simulation results of each data storage node to the summary storage node, and obtains the power grid. full hyperreal-time simulation results. The present invention can provide data storage management for simulation while running power system simulation.

Figure 202010083967

Description

电力系统在线超实时仿真的分布式数据存储方法与系统Distributed data storage method and system for online ultra-real-time simulation of power system

技术领域technical field

本发明涉及系统仿真中的电力系统在线超实时仿真领域,并特别涉及一种基于分布式数据的电力系统在线超实时仿真方法与系统。The invention relates to the field of on-line super-real-time simulation of power systems in system simulation, and particularly relates to a method and system for on-line super-real-time simulation of power systems based on distributed data.

背景技术Background technique

电力系统在线超实时仿真是指通过SCADA、RTU等在线量测设备从互联大电网持续周期性(以10秒钟为周期)采集电网运行状态数据,通过高速互联网络传输回数据中心,再通过电力系统仿真软件系统对在线量测数据进行快速计算与分析,进而判断互联大电网当前运行状态的稳定性与安全性,以及对未来一段较短时间(几秒钟内)的运行状态进行精准预测。一般区域性骨干电网每个量测周期产生数百兆字节的量测数据,经过电力系统仿真软件系统计算和分析将生成吉字节的计算结果数据,而这些数据对互联大电网的分析和管理具有重要的价值,因此需要对这些数据进行高效的存储管理。目前,在电力系统在线超实时仿真大数据的存储方面多采用磁盘阵列的方式,而磁盘阵列一般价格较高,且扩展性受限;市场上现有的分布式存储系统虽热在本领域有少量的应用,但在存储I/O效率方面存在较大的瓶颈,且通用商用产品一般性价比较低。Online ultra-real-time simulation of power system refers to the continuous periodic (10-second cycle) collection of power grid operating status data from the interconnected large power grid through SCADA, RTU and other online measurement equipment, and transmitted back to the data center through high-speed interconnection network, and then through the power grid. The system simulation software system quickly calculates and analyzes the online measurement data, and then judges the stability and safety of the current operating state of the interconnected large power grid, and accurately predicts the operating state for a short period of time (within a few seconds) in the future. Generally, the regional backbone power grid generates hundreds of megabytes of measurement data in each measurement cycle. The calculation and analysis of the power system simulation software will generate gigabytes of calculation result data. There is significant value in management, so efficient storage management of this data is required. At present, disk arrays are mostly used in the storage of online ultra-real-time simulation big data of power systems, and disk arrays are generally expensive and have limited scalability. Although the existing distributed storage systems on the market are hot, there are A small number of applications, but there is a big bottleneck in storage I/O efficiency, and general-purpose commercial products are generally less cost-effective.

面对海量、快速增长的电力系统仿真数据,数据存储的规模与成本是需要重点解决的问题之一。传统的分布式存储系统为了解决可靠性问题一般通过数据冗余(如多副本、纠删码等技术)来提高数据的存储可靠性,这进一步导致了存储空间效率的降低和存储成本的提高。在电力系统在线超实时仿真环境下,除了对存储I/O性能有较高的要求外,在存储空间效率方面也需要重点考虑。在仿真输入、输出数据中包含成千上万个文件,每个文件中存储的数据的内容和价值不尽相同,如有的文件中存储的是相对静态的配置信息,有的文件中存储的是周期性生成的电压、电流、功率等在线量测数据,有的文件中存储的数据需要长时间保存以供后续的分析挖掘,有的文件中存储的数据的可以通过仿真计算重复生成。因此,一般要求对历史数据能够根据不同的价值等级保存不同的时间,如三个月或半年,甚至一年不等。此外,为了使得电力系统在线超实时仿真能够持续长期稳定运行,在出现单台服务器故障、单个磁盘故障或磁盘存储空间满等情况下,系统能够具备故障隔离和自愈能力,从而确保系统能够持续在线运行而不受影响。In the face of massive and rapidly growing power system simulation data, the scale and cost of data storage is one of the key issues to be solved. In order to solve reliability problems, traditional distributed storage systems generally improve data storage reliability through data redundancy (such as multiple copies, erasure codes, etc.), which further reduces storage space efficiency and increases storage costs. In the online ultra-real-time simulation environment of the power system, in addition to the higher requirements for the storage I/O performance, the storage space efficiency also needs to be considered. There are thousands of files in the simulation input and output data. The content and value of the data stored in each file are different. For example, some files store relatively static configuration information, and some files store relatively static configuration information. It is periodically generated online measurement data such as voltage, current, power, etc. The data stored in some files needs to be stored for a long time for subsequent analysis and mining, and the data stored in some files can be repeatedly generated through simulation calculations. Therefore, it is generally required that historical data can be stored for different periods of time according to different value levels, such as three months or six months, or even one year. In addition, in order to make the online ultra-real-time simulation of the power system run stably for a long time, in the event of a single server failure, single disk failure or full disk storage space, the system can have fault isolation and self-healing capabilities to ensure that the system can continue to Runs online without being affected.

市场上现有的分布式存储系统在电力系统仿真领域的应用较少,一方面是由于其造价较高,维护门槛高;另一方面是因为其I/O吞吐能力难以满足在线超实时仿真的性能要求,往往成为仿真计算的性能瓶颈。这是因为,在电力系统仿真软件系统计算过程中,会产生大量的中间结果和最终计算结果,而这些数据往往在同一时间段输出,即在短时间内产生较高的I/O负载,现有的分布式存储系统一般难以应对这样的应用挑战。此外,独立的分布式存储集群占用大量的机房空间,大幅度增加了机房的能耗。因此,在实际生产中一般很少采用。The existing distributed storage systems on the market are rarely used in the field of power system simulation. On the one hand, it is due to its high cost and high maintenance threshold; on the other hand, its I/O throughput is difficult to meet the requirements of online ultra-real-time simulation. Performance requirements often become the performance bottleneck of simulation computing. This is because, during the calculation process of the power system simulation software system, a large number of intermediate results and final calculation results will be generated, and these data are often output in the same time period, that is, a high I/O load is generated in a short period of time. Some distributed storage systems are generally difficult to deal with such application challenges. In addition, the independent distributed storage cluster occupies a large amount of computer room space, which greatly increases the energy consumption of the computer room. Therefore, it is generally rarely used in actual production.

发明内容SUMMARY OF THE INVENTION

本发明的目的是解决上述现有分布式存储技术在电力系统仿真领域中存在的I/O性能问题和成本代价高问题,提出了一种基于计算-存储耦合架构电力系统在线超实时仿真大数据分布式存储和管理的方法及系统。The purpose of the present invention is to solve the problems of I/O performance and high cost in the field of power system simulation with the above-mentioned existing distributed storage technology, and proposes an online ultra-real-time simulation big data based on computing-storage coupling architecture power system A method and system for distributed storage and management.

针对现有技术的不足,本发明提出一种电力系统在线超实时仿真的分布式数据存储方法,其中包括:In view of the deficiencies of the prior art, the present invention proposes a distributed data storage method for on-line ultra-real-time simulation of power systems, including:

步骤1、构建包括一个元数据节点和多个数据存储节点的分布式电力系统在线超实时仿真系统;Step 1. Build a distributed power system online ultra-real-time simulation system including a metadata node and multiple data storage nodes;

步骤2、根据仿真任务的存储资源调度请求和各数据存储节点的可用存储空间,该元数据节点分配两个相互独立的数据存储节点分别作为原始存储节点和汇总存储节点;Step 2. According to the storage resource scheduling request of the simulation task and the available storage space of each data storage node, the metadata node allocates two mutually independent data storage nodes as the original storage node and the summary storage node respectively;

步骤3、通过在线量测设备从电网持续周期性采集电网运行的状态数据,并将该状态数据发送至该原始数据存储节点和该数据存储节点,各数据存储节点根据该仿真任务和该状态数据运行电力系统在线超实时仿真,得到局部超实时仿真结果;Step 3. Continuously and periodically collect the status data of the power grid operation from the power grid through the online measurement equipment, and send the status data to the original data storage node and the data storage node. Each data storage node is based on the simulation task and the status data. Run the online ultra-real-time simulation of the power system to obtain local ultra-real-time simulation results;

步骤4、汇总各数据存储节点的局部仿真结果至该汇总存储节点,得到电网的完整超实时仿真结果。Step 4: Aggregate the local simulation results of each data storage node to the aggregated storage node to obtain a complete ultra-real-time simulation result of the power grid.

所述的电力系统在线超实时仿真的分布式数据存储方法,其中该数据存储节点采用分布式消息队列实现对实时性数据的实时传送,采用基于中心化结构的分布式存储系统完成对非实时性数据的持久化存储和访问功能。The distributed data storage method for online ultra-real-time simulation of the power system, wherein the data storage node uses distributed message queues to realize real-time transmission of real-time data, and uses a distributed storage system based on a centralized structure to complete non-real-time data storage. Persistent storage and access of data.

所述的电力系统在线超实时仿真的分布式数据存储方法,其中该数据存储节点间采用TCP协议进行数据交换。In the distributed data storage method for on-line ultra-real-time simulation of power systems, the data storage nodes use TCP protocol to exchange data.

所述的电力系统在线超实时仿真的分布式数据存储方法,其中该元数据节点包括元数据管理模块,用于磁盘中数据的淘汰管理和内存中数据的淘汰管理。In the distributed data storage method for online ultra-real-time simulation of power systems, the metadata node includes a metadata management module, which is used for the elimination management of data in the disk and the elimination of data in the memory.

所述的电力系统在线超实时仿真的分布式数据存储方法,其中该元数据管理模块在收到数据持久化完成的信号后,会更新数据库中相应磁盘的使用空间,当该使用空间大于预设值时,查询数据库表,找出存储时间最早的数据;发送信号给最早数据所在的数据存储节点;数据存储节点收到信号后,按照指令删除相关的数据,并向元数据管理模块发送删除成功指令。The distributed data storage method for online ultra-real-time simulation of power systems, wherein the metadata management module will update the used space of the corresponding disk in the database after receiving the signal that data persistence is completed, and when the used space is larger than a preset When the value is set, query the database table to find the data with the earliest storage time; send a signal to the data storage node where the earliest data is located; after receiving the signal, the data storage node deletes the relevant data according to the instruction, and sends a successful deletion to the metadata management module instruction.

本发明还提出了一种电力系统在线超实时仿真的分布式数据存储系统,其中包括:The present invention also proposes a distributed data storage system for online ultra-real-time simulation of power systems, including:

模块1、构建包括一个元数据节点和多个数据存储节点的分布式电力系统在线超实时仿真系统;Module 1. Build a distributed power system online ultra-real-time simulation system including a metadata node and multiple data storage nodes;

模块2、根据仿真任务的存储资源调度请求和各数据存储节点的可用存储空间,该元数据节点分配两个相互独立的数据存储节点分别作为原始存储节点和汇总存储节点;Module 2. According to the storage resource scheduling request of the simulation task and the available storage space of each data storage node, the metadata node allocates two mutually independent data storage nodes as the original storage node and the summary storage node respectively;

模块3、通过在线量测设备从电网持续周期性采集电网运行的状态数据,并将该状态数据发送至该原始数据存储节点和该数据存储节点,各数据存储节点根据该仿真任务和该状态数据运行电力系统在线超实时仿真,得到局部超实时仿真结果;Module 3. Continuously and periodically collect the status data of the power grid operation from the power grid through the online measurement equipment, and send the status data to the original data storage node and the data storage node, and each data storage node is based on the simulation task and the status data. Run the online ultra-real-time simulation of the power system to obtain local ultra-real-time simulation results;

模块4、汇总各数据存储节点的局部仿真结果至该汇总存储节点,得到电网的完整超实时仿真结果。Module 4: Aggregate local simulation results of each data storage node to the aggregated storage node to obtain a complete ultra-real-time simulation result of the power grid.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该数据存储节点采用分布式消息队列实现对实时性数据的实时传送,采用基于中心化结构的分布式存储系统完成对非实时性数据的持久化存储和访问功能。The distributed data storage system for the online ultra-real-time simulation of the power system, wherein the data storage node uses distributed message queues to realize real-time transmission of real-time data, and uses a distributed storage system based on a centralized structure to complete non-real-time data. Persistent storage and access of data.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该数据存储节点间采用TCP协议进行数据交换。In the distributed data storage system for online super-real-time simulation of the power system, the data storage nodes use the TCP protocol to exchange data.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该元数据节点包括元数据管理模块,用于磁盘中数据的淘汰管理和内存中数据的淘汰管理。In the distributed data storage system for the online ultra-real-time simulation of the power system, the metadata node includes a metadata management module, which is used for the elimination management of the data in the disk and the elimination management of the data in the memory.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该元数据管理模块在收到数据持久化完成的信号后,会更新数据库中相应磁盘的使用空间,当该使用空间大于预设值时,查询数据库表,找出存储时间最早的数据;发送信号给最早数据所在的数据存储节点;数据存储节点收到信号后,按照指令删除相关的数据,并向元数据管理模块发送删除成功指令。The distributed data storage system for the online super-real-time simulation of the power system, wherein the metadata management module will update the used space of the corresponding disk in the database after receiving the signal that the data persistence is completed. When the used space is larger than the preset When the value is set, query the database table to find the data with the earliest storage time; send a signal to the data storage node where the earliest data is located; after receiving the signal, the data storage node deletes the relevant data according to the instruction, and sends a successful deletion to the metadata management module instruction.

由以上方案可知,本发明的优点在于:As can be seen from the above scheme, the advantages of the present invention are:

第一,能够充分利用服务器的计算和存储能力,在运行电力系统仿真计算的同时为仿真提供海量数据的存储管理,节约机房空间,降低能源消耗。第二,能够利用内存缓存和局部性原理,大量减少仿真程序运行过程中的存储I/O负载,缩短存储I/O路径,提升仿真程序运行效率。第三,能够按照数据的价值等级定制文件粒度的存储可靠性策略,合理有效利用存储空间,综合考虑数据的价值等级、副本数量、产生时间等指标,动态计算数据淘汰优先级,保证存储系统中的数据能够按照合理的规则自动淘汰以提供可用的存储容量,保障电力系统仿真的持续在线运行能力。First, it can make full use of the computing and storage capabilities of the server, provide storage management of massive data for the simulation while running the power system simulation calculation, save the computer room space, and reduce energy consumption. Second, the memory cache and the principle of locality can be used to greatly reduce the storage I/O load during the running of the emulator, shorten the storage I/O path, and improve the running efficiency of the emulator. Third, it is possible to customize the storage reliability strategy of file granularity according to the value level of the data, utilize the storage space reasonably and effectively, comprehensively consider the value level of the data, the number of copies, the generation time and other indicators, and dynamically calculate the data elimination priority to ensure the storage system. The data can be automatically eliminated according to reasonable rules to provide usable storage capacity and ensure the continuous online operation of power system simulation.

附图说明Description of drawings

图1为存储系统软件架构图;Figure 1 is a software architecture diagram of a storage system;

图2为电力系统仿真数据组成图;Fig. 2 is the composition diagram of power system simulation data;

图3为分布式存储系统部署逻辑图;Fig. 3 is the logical diagram of distributed storage system deployment;

图4为数据存储操作工作流程图;Fig. 4 is the working flow chart of data storage operation;

图5为原始数据存储工作流程图;Fig. 5 is the original data storage work flow chart;

图6为汇总数据存储工作流程图;Fig. 6 is the summary data storage work flow chart;

图7为汇总数据存储节点上数据存储状态变化图;Fig. 7 is the data storage state change diagram on the summary data storage node;

图8为非汇总数据存储节点上数据存储状态变化图。FIG. 8 is a diagram of data storage state changes on a non-aggregated data storage node.

具体实施方式Detailed ways

为了实现上述技术效果本发明包括以下三个关键点:In order to realize the above-mentioned technical effect, the present invention includes the following three key points:

关键点1,电力系统仿真计算与存储服务共生与资源协同调度技术。技术效果:能够在同一套高性能服务器集群上同时进行仿真计算与数据存储管理,每一台服务器上既运行仿真计算程序,同时又运行存储服务程序。由此能够带来两方面的优势:在经济性方面,能够充分利用服务器的计算和存储能力,减小服务器集群规模,减少机房空间占用和能源消耗;在性能方面,能够提高仿真数据存储I/O的局部性,缩短数据移动路径,提升I/O性能,同时,通过计算与存储资源的协同调度,将仿真程序中负责存储I/O输入/输出功能的进程分散调度到不同的计算节点上运行,分摊每台服务器的I/O负载,避免在少数的服务器上造成I/O热点,影响仿真I/O性能;Key point 1, power system simulation computing and storage service symbiosis and resource coordinated scheduling technology. Technical effect: Simultaneous calculation and data storage management can be performed on the same high-performance server cluster, and each server runs both the simulation calculation program and the storage service program. This can bring two advantages: in terms of economy, it can make full use of the computing and storage capabilities of the server, reduce the scale of server clusters, and reduce the space occupation and energy consumption of the computer room; in terms of performance, it can improve the simulation data storage I// The locality of O shortens the data movement path and improves the I/O performance. At the same time, through the coordinated scheduling of computing and storage resources, the processes responsible for the storage I/O input/output function in the simulation program are distributed to different computing nodes. Run, distribute the I/O load of each server, avoid I/O hotspots on a few servers, and affect the simulated I/O performance;

关键点2,基于内存的存储I/O加速技术;技术效果:在电力系统仿真程序周期性运行过程中,需要周期性地执行读取原始输入数据、配置信息、交换中间结果数据、输出结果数据等磁盘I/O密集型操作,在仿真程序运行时间中占据较大的比例,对仿真程序的性能带来了不可忽视的影响,为了解决这一问题,本方案利用内存文件系统作为输入、输出数据的中转缓存层,将原始输入数据和配置信息等临时存储在内存文件系统中,供仿真程序调用,仿真程序运行过程中产生的中间结果数据以及计算结果数据等也被写入到内存文件系统中,由存储服务异步地将需要持久化的数据写出到本地或其它服务器的磁盘上,从而避免I/O称为仿真程序计算过程的瓶颈。为了保证仿真程序的运行安全和性能,为内存文件系统设定了内存占用上限,存储服务负责监控内存文件系统的空间占用情况,及时将数据写出到磁盘上,在必要的情况下(如因数据写出到磁盘的延迟较大而导致内存文件系统即将达到内存占用的上限时),将通过一定的策略计算出可以丢弃的数据,从而释放内存空间,确保电力系统在线超实时仿真程序的持续稳定运行;Key point 2, memory-based storage I/O acceleration technology; technical effect: During the periodic operation of the power system simulation program, it is necessary to periodically read the original input data, configuration information, exchange intermediate result data, and output result data. I/O-intensive operations such as disk I/O occupy a large proportion of the running time of the simulation program, which has a non-negligible impact on the performance of the simulation program. In order to solve this problem, this scheme uses the memory file system as input and output. The data transfer cache layer temporarily stores the original input data and configuration information in the memory file system for the simulation program to call. The intermediate result data and calculation result data generated during the running of the simulation program are also written to the memory file system. In , the storage service asynchronously writes the data that needs to be persisted to the disk of the local or other servers, thereby avoiding I/O, which is called the bottleneck of the simulation program computing process. In order to ensure the running safety and performance of the emulator, the upper limit of memory usage is set for the memory file system. When the delay of data writing to the disk is large and the memory file system is about to reach the upper limit of memory usage), the data that can be discarded will be calculated through a certain strategy, thereby freeing up memory space and ensuring the continuity of the power system online ultra-real-time simulation program. Stable operation;

关键点3,以文件为单位的细颗粒度混合可靠性策略与数据淘汰动态优先级机制;技术效果:可以根据电力系统仿真数据自身的价值等级设计不同的可靠性保障策略,而这些不同的可靠性保障策略在同一个数据存储管理系统中共存,并且可以按需设置和调整。例如,对于仿真原始输入数据,其价值等级较高,为了保障其可靠性,可以采用3副本的方式进行存储,对于仿真计算结果数据,由于其可以根据对应的原始输入数据计算得出,因此,对存储的可靠性要求较低,可以采用单副本的方式进行存储。对于一套特定的电力系统仿真平台来说,由于服务器集群的存储空间容量是有限的,能够存储的数据也是有限的,为了能够始终保证较新的仿真数据能够及时、可靠地存储下来,势必需要对系统中存储的旧数据进行淘汰。然而,由于不同数据的价值等级、使用需求、使用方式不同,相应的淘汰优先级也不同,例如,仿真输入数据的价值等级较高,在淘汰旧数据以释放更多可用存储空间的时候应尽量保留此类数据,1天内产生的数据由于被访问的概率较高应尽可能保存,等等。为此,通过综合考虑数据的价值等级、副本数量、产生时间三个维度的指标,计算数据淘汰的动态优先级,根据优先级对数据进行淘汰。Key point 3, the fine-grained hybrid reliability strategy and data elimination dynamic priority mechanism based on files; technical effect: different reliability guarantee strategies can be designed according to the value level of the power system simulation data itself, and these different reliability Sexual assurance policies coexist in the same data storage management system and can be set and adjusted as needed. For example, for the simulation original input data, its value level is high, in order to ensure its reliability, it can be stored in three copies. For the simulation calculation result data, since it can be calculated according to the corresponding original input data, therefore, The reliability requirements for storage are low, and a single copy can be used for storage. For a specific power system simulation platform, since the storage space capacity of the server cluster is limited, the data that can be stored is also limited. In order to always ensure that the newer simulation data can be stored in a timely and reliable manner, it is necessary to Eliminate old data stored in the system. However, due to the different value levels, usage requirements, and usage methods of different data, the corresponding elimination priorities are also different. For example, the value level of the simulation input data is higher, and the old data should be eliminated as much as possible to release more available storage space. Retain such data, data generated within 1 day should be saved as much as possible due to the high probability of being accessed, and so on. To this end, the dynamic priority of data elimination is calculated by comprehensively considering the indicators of the three dimensions of data value level, number of copies, and generation time, and the data is eliminated according to the priority.

为让本发明的上述特征和效果能阐述的更明确易懂,下文特举实施例,并配合说明书附图作详细说明如下。In order to make the above-mentioned features and effects of the present invention more clearly and comprehensible, embodiments are given below, and detailed descriptions are given below in conjunction with the accompanying drawings.

在线超实时电力系统仿真数据分布式存储管理系统主要分为三个部分:数据存储层,通信服务层和接口层,如图1所示。The online ultra-real-time power system simulation data distributed storage management system is mainly divided into three parts: data storage layer, communication service layer and interface layer, as shown in Figure 1.

(1)数据存储层(1) Data storage layer

由于需要存储的数据分为两种类型,实时性数据和非实时性数据,因此将对应于两种不同的数据存储服务。对于实时性消息,将采用消息队列实现数据的实时传送,消息队列可以是基于多个存储节点内存的分布式消息队列;对于非实时性消息,将采用基于中心化结构的分布式存储系统完成对数据的持久化存储和访问功能。Since the data to be stored is divided into two types, real-time data and non-real-time data, it will correspond to two different data storage services. For real-time messages, a message queue will be used to realize real-time data transmission, and the message queue can be a distributed message queue based on the memory of multiple storage nodes; for non-real-time messages, a distributed storage system based on a centralized structure will be used to complete the Persistent storage and access of data.

(2)通信服务层(2) Communication service layer

为保证数据的可靠性,采用TCP协议进行数据之间的交换。In order to ensure the reliability of the data, the TCP protocol is used for data exchange.

(3)接口层(3) Interface layer

为了方便人机交互端读取数据,将提供一系列数据存取的接口。In order to facilitate the human-computer interaction terminal to read data, a series of data access interfaces will be provided.

一个电力系统仿真作业会包含多个计算任务,记为N个计算任务,计算结果将形成N份简单摘要,N份详细结果,N份最终摘要,N份差异文件,此外,N个任务共享相同的输入数据,如图2所示。A power system simulation job will include multiple computing tasks, denoted as N computing tasks, and the calculation results will form N simple summaries, N detailed results, N final summaries, and N difference files. In addition, N tasks share the same input data, as shown in Figure 2.

分布式存储系统部署逻辑如图3所示,系统包括元数据节点和存储节点两部分,元数据的存储基于关系型数据库,如MySQL,为了保证元数据存储管理的可靠性,对元数据存储可采用HA架构,存储节点同时也作为仿真程序运行的计算节点,即存储管理系统与仿真计算系统运行在同一台物理计算节点上。元数据节点记录的是数据所在存储节点、所在存储节点的磁盘(或存储路径)等元数据信息,同时,也负责调度存储请求,即,元数据节点来决定将数据存储在哪台存储节点上。The deployment logic of the distributed storage system is shown in Figure 3. The system includes two parts: metadata nodes and storage nodes. The storage of metadata is based on relational databases, such as MySQL. In order to ensure the reliability of metadata storage management, metadata storage can be Using the HA architecture, the storage node also acts as a computing node running the simulation program, that is, the storage management system and the simulation computing system run on the same physical computing node. The metadata node records metadata information such as the storage node where the data is located, the disk (or storage path) of the storage node, and is also responsible for scheduling storage requests, that is, the metadata node decides which storage node to store the data on. .

分布式存储系统的数据存储操作工作流程主要分为以下几个步骤:The data storage operation workflow of the distributed storage system is mainly divided into the following steps:

1)请求存储资源1) Request storage resources

仿真计算调度节点向元数据节点发送存储资源调度请求,请求元数据节点为本次仿真计算的数据分配存储空间。元数据节点对存储资源的管理以磁盘为单位,根据存储集群中可用磁盘的当前状态和可用存储空间情况,选择可用空间最多的磁盘。元数据节点在分配存储资源时,要分配两个相互独立的磁盘,一块用于存储汇总数据包,另一块用于存储原始数据包。在选择完成后,元数据管理模块将<汇总数据磁盘ID,任务ID>发送给汇总数据存储节点,同时将<原始数据磁盘ID,任务ID>发送给原始数据存储节点,相关节点收到通知之后,确认自己的角色,并根据磁盘ID确认数据最终持久化的路径,随后进入数据汇总阶段。The simulation calculation scheduling node sends a storage resource scheduling request to the metadata node, and requests the metadata node to allocate storage space for the data of this simulation calculation. The metadata node manages storage resources in units of disks, and selects the disk with the most free space according to the current status of the available disks in the storage cluster and the available storage space. When the metadata node allocates storage resources, it needs to allocate two independent disks, one for storing summary data packets and the other for storing original data packets. After the selection is completed, the metadata management module sends the <summary data disk ID, task ID> to the summary data storage node, and simultaneously sends the <original data disk ID, task ID> to the original data storage node. After the relevant nodes receive the notification , confirm your role, and confirm the final persistent path of the data according to the disk ID, and then enter the data aggregation stage.

2)数据包汇总2) Packet summary

由于每个计算节点的内存文件系统中都缓存了原始数据的副本,故无需汇总。原始数据存储节点收到通知<汇总数据磁盘ID,任务ID>之后,向主数据节点的元数据管理模块发送确认消息,元数据管理模块将该任务数据在数据表中读取状态设置为ramfs可用状态,之后元数据管理模块同步更新从元数据节点的数据库表。原始数据存储工作流程如图5所示。Since a copy of the original data is cached in the in-memory file system of each compute node, no aggregation is required. After receiving the notification <summary data disk ID, task ID>, the original data storage node sends a confirmation message to the metadata management module of the primary data node, and the metadata management module sets the read status of the task data in the data table to ramfs available state, after which the metadata management module synchronously updates the database tables from the metadata node. The raw data storage workflow is shown in Figure 5.

汇总数据包的汇总过程如下,如图6所示:The summary process of the summary data packet is as follows, as shown in Figure 6:

(1)汇总存储节点收到元数据管理模块下发的汇总命令之后,向IO进程所在存储节点发送收集数据包指令;(1) After the summary storage node receives the summary command issued by the metadata management module, it sends a collection data packet instruction to the storage node where the IO process is located;

(2)汇总节点等待回收数据,IO进程所在存储节点发送数据给汇总节点;(2) The summary node waits to recycle the data, and the storage node where the IO process is located sends the data to the summary node;

(3)汇总节点回收完毕,并向主元数据节点上的元数据管理模块发送汇总完成信号;(3) The collection of the summary node is completed, and a summary completion signal is sent to the metadata management module on the main metadata node;

(4)元数据管理模块更新该数据为ramfs可用状态,同时同步数据至从元数据节点。(4) The metadata management module updates the data to the available state of ramfs, and synchronizes the data to the slave metadata node.

3)数据持久化。3) Data persistence.

汇总数据存储节点和原始数据存储节点被持久化至指定磁盘目录后,存储节点向主元数据节点更新数据包的可用状态(数据在磁盘中可访问),同时更新相应磁盘的已使用空间。After the summary data storage node and the original data storage node are persisted to the specified disk directory, the storage node updates the available status of the data package (the data is accessible in the disk) to the primary metadata node, and at the same time updates the used space of the corresponding disk.

为了能够自动维护存储空间的可用性,系统提供数据淘汰功能,涉及到两个方面:磁盘中数据的淘汰管理和内存中数据的淘汰管理。为了实现汇总数据的自动合理淘汰,对汇总数据的存储状态进行管理,如图7所示。图8给出了在非汇总数据存储节点上,相关汇总数据的状态变化情况(主要涉及到内存空间的数据淘汰管理)。In order to automatically maintain the availability of storage space, the system provides a data elimination function, which involves two aspects: elimination management of data in disk and elimination management of data in memory. In order to realize the automatic and reasonable elimination of the aggregated data, the storage state of the aggregated data is managed, as shown in Figure 7. Figure 8 shows the status changes of related aggregated data on the non-aggregated data storage node (mainly related to the data elimination management of the memory space).

磁盘上存储的数据的自动淘汰过程如下:The automatic retirement process for data stored on disk is as follows:

在数据库中记录了每台节点的磁盘个数,磁盘空间,磁盘已用容量等详细信息。磁盘空间的清理将由元数据管理模块发起。触发元数据管理模块发起数据清理的条件有如下几种策略:Details such as the number of disks, disk space, and used disk capacity of each node are recorded in the database. The cleanup of disk space will be initiated by the metadata management module. The conditions for triggering the metadata management module to initiate data cleaning include the following strategies:

(1)计算每个磁盘的空间利用率,当所有节点磁盘利用率的平均值超过配置的阈值时;(1) Calculate the space utilization of each disk, when the average value of the disk utilization of all nodes exceeds the configured threshold;

(2)把所有磁盘作为整体,计算整体的磁盘利用率,当利用率超过配置的阈值时;(2) Take all disks as a whole and calculate the overall disk utilization, when the utilization exceeds the configured threshold;

元数据管理模块在收到数据持久化完成的信号之后,会更新数据库中相应磁盘的使用空间。如果发现达到触发条件,则会依次执行如下步骤:After receiving the signal that data persistence is complete, the metadata management module will update the used space of the corresponding disk in the database. If it is found that the trigger condition is met, the following steps will be performed in sequence:

(1)查询数据库表,找出全局最老N(可配)条数据。(1) Query the database table to find out the global oldest N (configurable) pieces of data.

(2)元数据管理模块发送信号给最老数据所在的节点。该信号为<要删除的任务数据ID列表>。(2) The metadata management module sends a signal to the node where the oldest data is located. This signal is <task data ID list to delete>.

(3)相关节点收到信号后,按照指令删除相关的数据,并向元数据管理模块发送删除成功指令。(3) After the relevant node receives the signal, it deletes the relevant data according to the instruction, and sends a successful deletion instruction to the metadata management module.

(4)元数据管理模块更新数据库表:设置该数据为清理状态,并更新相关磁盘利用率。(4) The metadata management module updates the database table: set the data to a clean state, and update the related disk utilization.

(5)同步数据至从元数据节点。(5) Synchronize data to the slave metadata node.

内存中缓存的数据的自动淘汰过程如下:The automatic elimination process of data cached in memory is as follows:

考虑到系统的正常运行,内存文件系统的挂载空间占用物理空间的比例将根据配置文件中的配置选项来配置。同时,会有内存文件系统清理模块对相关数据进行清理,清理周期为8s(可配)。Taking into account the normal operation of the system, the proportion of the physical space occupied by the mounting space of the memory file system will be configured according to the configuration options in the configuration file. At the same time, there will be a memory file system cleaning module to clean up related data, and the cleaning cycle is 8s (optional).

内存文件系统清理模块的主要功能如下:The main functions of the memory file system cleaning module are as follows:

(1)记录所有在内存文件系统中数据的状态。汇总数据有三种状态:汇总数据接收中、汇总数据持久化中和汇总数据磁盘可用;原始数据有三种状态:原始数据接收中、在RAMFS中、原始数据持久化中和原始数据磁盘可用。(在存储节点上会为每一份数据单独维护一个文件,该文件中保存了相应数据的状态。对该文件进行修改即对数据进行修改/删除操作的时候,需要先对该文件进行加锁,保证修改操作是原子的。)(1) Record the status of all data in the memory file system. Summary data has three states: summary data receiving, summary data persisting, and summary data disk available; raw data has three states: original data receiving, in RAMFS, original data persistence, and original data disk available. (A separate file is maintained for each piece of data on the storage node, and the state of the corresponding data is saved in the file. When modifying the file, that is, modifying/deleting the data, you need to lock the file first. , which guarantees that the modification operation is atomic.)

(2)该模块会对内存文件系统空间进行检测,保证内存文件系统的使用率(已用空间/总空间)不超过75%(该项可配)。(2) This module will detect the memory file system space to ensure that the usage rate (used space/total space) of the memory file system does not exceed 75% (this item can be configured).

(3)达到阈值之后,会将最老的汇总数据(已经汇总的数据一定比还未汇总的输出数据老)、最老的原始数据和最老的输出数据直接删除。(3) After reaching the threshold, the oldest aggregated data (the aggregated data must be older than the output data that has not been aggregated), the oldest original data and the oldest output data will be deleted directly.

以下为与上述方法实施例对应的系统实施例,本实施方式可与上述实施方式互相配合实施。上述实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上述实施方式中。The following are system embodiments corresponding to the foregoing method embodiments, and this implementation manner may be implemented in cooperation with the foregoing implementation manners. The related technical details mentioned in the foregoing embodiment are still valid in this embodiment, and are not repeated here in order to reduce repetition. Correspondingly, the relevant technical details mentioned in this embodiment can also be applied to the above-mentioned embodiments.

本发明还提出了一种电力系统在线超实时仿真的分布式数据存储系统,其中包括:The present invention also proposes a distributed data storage system for online ultra-real-time simulation of power systems, including:

模块1、构建包括一个元数据节点和多个数据存储节点的分布式电力系统在线超实时仿真系统;Module 1. Build a distributed power system online ultra-real-time simulation system including a metadata node and multiple data storage nodes;

模块2、根据仿真任务的存储资源调度请求和各数据存储节点的可用存储空间,该元数据节点分配两个相互独立的数据存储节点分别作为原始存储节点和汇总存储节点;Module 2. According to the storage resource scheduling request of the simulation task and the available storage space of each data storage node, the metadata node allocates two mutually independent data storage nodes as the original storage node and the summary storage node respectively;

模块3、通过在线量测设备从电网持续周期性采集电网运行的状态数据,并将该状态数据发送至该原始数据存储节点和该数据存储节点,各数据存储节点根据该仿真任务和该状态数据运行电力系统在线超实时仿真,得到局部超实时仿真结果;Module 3. Continuously and periodically collect the status data of the power grid operation from the power grid through the online measurement equipment, and send the status data to the original data storage node and the data storage node, and each data storage node is based on the simulation task and the status data. Run the online ultra-real-time simulation of the power system to obtain local ultra-real-time simulation results;

模块4、汇总各数据存储节点的局部仿真结果至该汇总存储节点,得到电网的完整超实时仿真结果。Module 4: Aggregate local simulation results of each data storage node to the aggregated storage node to obtain a complete ultra-real-time simulation result of the power grid.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该数据存储节点采用分布式消息队列实现对实时性数据的实时传送,采用基于中心化结构的分布式存储系统完成对非实时性数据的持久化存储和访问功能。The distributed data storage system for the online ultra-real-time simulation of the power system, wherein the data storage node uses distributed message queues to realize real-time transmission of real-time data, and uses a distributed storage system based on a centralized structure to complete non-real-time data. Persistent storage and access of data.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该数据存储节点间采用TCP协议进行数据交换。In the distributed data storage system for online super-real-time simulation of the power system, the data storage nodes use the TCP protocol to exchange data.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该元数据节点包括元数据管理模块,用于磁盘中数据的淘汰管理和内存中数据的淘汰管理。In the distributed data storage system for on-line ultra-real-time simulation of the power system, the metadata node includes a metadata management module, which is used for the elimination management of data in the disk and the elimination of data in the memory.

所述的电力系统在线超实时仿真的分布式数据存储系统,其中该元数据管理模块在收到数据持久化完成的信号后,会更新数据库中相应磁盘的使用空间,当该使用空间大于预设值时,查询数据库表,找出存储时间最早的数据;发送信号给最早数据所在的数据存储节点;数据存储节点收到信号后,按照指令删除相关的数据,并向元数据管理模块发送删除成功指令。The distributed data storage system for the online super-real-time simulation of the power system, wherein the metadata management module will update the used space of the corresponding disk in the database after receiving the signal that the data persistence is completed. When the used space is larger than the preset When the value is set, query the database table to find the data with the earliest storage time; send a signal to the data storage node where the earliest data is located; after receiving the signal, the data storage node deletes the relevant data according to the instruction, and sends a successful deletion to the metadata management module instruction.

Claims (10)

1.一种电力系统在线超实时仿真的分布式数据存储方法,其特征在于,包括:1. a distributed data storage method of power system online ultra-real-time simulation, is characterized in that, comprises: 步骤1、构建包括一个元数据节点和多个数据存储节点的分布式电力系统在线超实时仿真系统;Step 1. Build a distributed power system online ultra-real-time simulation system including a metadata node and multiple data storage nodes; 步骤2、根据仿真任务的存储资源调度请求和各数据存储节点的可用存储空间,该元数据节点分配两个相互独立的数据存储节点分别作为原始存储节点和汇总存储节点;Step 2. According to the storage resource scheduling request of the simulation task and the available storage space of each data storage node, the metadata node allocates two mutually independent data storage nodes as the original storage node and the summary storage node respectively; 步骤3、通过在线量测设备从电网持续周期性采集电网运行的状态数据,并将该状态数据发送至该原始数据存储节点和该数据存储节点,各数据存储节点根据该仿真任务和该状态数据运行电力系统在线超实时仿真,得到局部超实时仿真结果;Step 3. Continuously and periodically collect the status data of the power grid operation from the power grid through the online measurement equipment, and send the status data to the original data storage node and the data storage node. Each data storage node is based on the simulation task and the status data. Run the online ultra-real-time simulation of the power system to obtain local ultra-real-time simulation results; 步骤4、汇总各数据存储节点的局部仿真结果至该汇总存储节点,得到电网的完整超实时仿真结果。Step 4: Aggregate the local simulation results of each data storage node to the aggregated storage node to obtain a complete ultra-real-time simulation result of the power grid. 2.如权利要求1所述的电力系统在线超实时仿真的分布式数据存储方法,其特征在于,该数据存储节点采用分布式消息队列实现对实时性数据的实时传送,采用基于中心化结构的分布式存储系统完成对非实时性数据的持久化存储和访问功能。2. The distributed data storage method of power system online ultra-real-time simulation as claimed in claim 1, is characterized in that, this data storage node adopts distributed message queue to realize real-time transmission to real-time data, adopts centralized structure-based The distributed storage system completes the persistent storage and access functions for non-real-time data. 3.如权利要求1所述的电力系统在线超实时仿真的分布式数据存储方法,其特征在于,该数据存储节点间采用TCP协议进行数据交换。3 . The distributed data storage method for on-line ultra-real-time simulation of a power system according to claim 1 , wherein the data storage nodes adopt TCP protocol to exchange data. 4 . 4.如权利要求1所述的电力系统在线超实时仿真的分布式数据存储方法,其特征在于,该元数据节点包括元数据管理模块,用于磁盘中数据的淘汰管理和内存中数据的淘汰管理。4. The distributed data storage method of power system online ultra-real-time simulation as claimed in claim 1, it is characterized in that, this metadata node comprises metadata management module, is used for the elimination management of data in disk and the elimination of data in memory manage. 5.如权利要求4所述的电力系统在线超实时仿真的分布式数据存储方法,其特征在于,该元数据管理模块在收到数据持久化完成的信号后,会更新数据库中相应磁盘的使用空间,当该使用空间大于预设值时,查询数据库表,找出存储时间最早的数据;发送信号给最早数据所在的数据存储节点;数据存储节点收到信号后,按照指令删除相关的数据,并向元数据管理模块发送删除成功指令。5. The distributed data storage method of power system online ultra-real-time simulation as claimed in claim 4, it is characterized in that, this metadata management module can update the use of corresponding disk in database after receiving the signal that data persistence is completed space, when the used space is greater than the preset value, query the database table to find the data with the earliest storage time; send a signal to the data storage node where the earliest data is located; after the data storage node receives the signal, delete the relevant data according to the instructions, And send a deletion success instruction to the metadata management module. 6.一种电力系统在线超实时仿真的分布式数据存储系统,其特征在于,包括:6. A distributed data storage system of power system online ultra-real-time simulation, is characterized in that, comprises: 模块1、构建包括一个元数据节点和多个数据存储节点的分布式电力系统在线超实时仿真系统;Module 1. Build a distributed power system online ultra-real-time simulation system including a metadata node and multiple data storage nodes; 模块2、根据仿真任务的存储资源调度请求和各数据存储节点的可用存储空间,该元数据节点分配两个相互独立的数据存储节点分别作为原始存储节点和汇总存储节点;Module 2. According to the storage resource scheduling request of the simulation task and the available storage space of each data storage node, the metadata node allocates two mutually independent data storage nodes as the original storage node and the summary storage node respectively; 模块3、通过在线量测设备从电网持续周期性采集电网运行的状态数据,并将该状态数据发送至该原始数据存储节点和该数据存储节点,各数据存储节点根据该仿真任务和该状态数据运行电力系统在线超实时仿真,得到局部超实时仿真结果;Module 3. Continuously and periodically collect the status data of the power grid operation from the power grid through the online measurement equipment, and send the status data to the original data storage node and the data storage node, and each data storage node is based on the simulation task and the status data. Run the online ultra-real-time simulation of the power system to obtain local ultra-real-time simulation results; 模块4、汇总各数据存储节点的局部仿真结果至该汇总存储节点,得到电网的完整超实时仿真结果。Module 4: Aggregate local simulation results of each data storage node to the aggregated storage node to obtain a complete ultra-real-time simulation result of the power grid. 7.如权利要求6所述的电力系统在线超实时仿真的分布式数据存储系统,其特征在于,该数据存储节点采用分布式消息队列实现对实时性数据的实时传送,采用基于中心化结构的分布式存储系统完成对非实时性数据的持久化存储和访问功能。7. The distributed data storage system of power system online ultra-real-time simulation as claimed in claim 6, is characterized in that, this data storage node adopts distributed message queue to realize real-time transmission of real-time data, adopts centralized structure-based The distributed storage system completes the persistent storage and access functions for non-real-time data. 8.如权利要求6所述的电力系统在线超实时仿真的分布式数据存储系统,其特征在于,该数据存储节点间采用TCP协议进行数据交换。8 . The distributed data storage system for on-line ultra-real-time simulation of power systems according to claim 6 , wherein the data storage nodes use TCP protocol to exchange data. 9 . 9.如权利要求6所述的电力系统在线超实时仿真的分布式数据存储系统,其特征在于,该元数据节点包括元数据管理模块,用于磁盘中数据的淘汰管理和内存中数据的淘汰管理。9. The distributed data storage system of power system on-line ultra-real-time simulation as claimed in claim 6, it is characterized in that, this metadata node comprises metadata management module, is used for the elimination management of data in disk and the elimination of data in memory manage. 10.如权利要求9所述的电力系统在线超实时仿真的分布式数据存储系统,其特征在于,该元数据管理模块在收到数据持久化完成的信号后,会更新数据库中相应磁盘的使用空间,当该使用空间大于预设值时,查询数据库表,找出存储时间最早的数据;发送信号给最早数据所在的数据存储节点;数据存储节点收到信号后,按照指令删除相关的数据,并向元数据管理模块发送删除成功指令。10. The distributed data storage system for online ultra-real-time simulation of power systems as claimed in claim 9, wherein the metadata management module updates the usage of the corresponding disks in the database after receiving the signal that data persistence is completed. space, when the used space is greater than the preset value, query the database table to find the data with the earliest storage time; send a signal to the data storage node where the earliest data is located; after the data storage node receives the signal, delete the relevant data according to the instructions, And send a deletion success instruction to the metadata management module.
CN202010083967.6A 2020-02-10 2020-02-10 Distributed data storage method and system for online ultra-real-time simulation of power system Pending CN111767338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010083967.6A CN111767338A (en) 2020-02-10 2020-02-10 Distributed data storage method and system for online ultra-real-time simulation of power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010083967.6A CN111767338A (en) 2020-02-10 2020-02-10 Distributed data storage method and system for online ultra-real-time simulation of power system

Publications (1)

Publication Number Publication Date
CN111767338A true CN111767338A (en) 2020-10-13

Family

ID=72719045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010083967.6A Pending CN111767338A (en) 2020-02-10 2020-02-10 Distributed data storage method and system for online ultra-real-time simulation of power system

Country Status (1)

Country Link
CN (1) CN111767338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933972A (en) * 2022-11-24 2023-04-07 中国华能集团清洁能源技术研究院有限公司 Distributed data storage method and system for multi-professional simulation platform
CN119336269A (en) * 2024-10-17 2025-01-21 南方电网科学研究院有限责任公司 A system and method for efficient storage and security enhancement of power grid data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178528A1 (en) * 2012-06-01 2013-12-05 Thomson Licensing Method of data storing and data synchronization in a distributed data storage system
CN104516967A (en) * 2014-12-25 2015-04-15 国家电网公司 Electric power system mass data management system and use method thereof
CN108256263A (en) * 2018-02-07 2018-07-06 中国电力科学研究院有限公司 A kind of electric system hybrid simulation concurrent computational system and its method for scheduling task
CN109815002A (en) * 2017-11-21 2019-05-28 中国电力科学研究院有限公司 A distributed parallel computing platform and method based on online simulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178528A1 (en) * 2012-06-01 2013-12-05 Thomson Licensing Method of data storing and data synchronization in a distributed data storage system
CN104516967A (en) * 2014-12-25 2015-04-15 国家电网公司 Electric power system mass data management system and use method thereof
CN109815002A (en) * 2017-11-21 2019-05-28 中国电力科学研究院有限公司 A distributed parallel computing platform and method based on online simulation
CN108256263A (en) * 2018-02-07 2018-07-06 中国电力科学研究院有限公司 A kind of electric system hybrid simulation concurrent computational system and its method for scheduling task

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADNB34G: "大数据分布式存储的部署模式:分离式or超融合", 《HTTP://T.CSDN.CN/UBDWX》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933972A (en) * 2022-11-24 2023-04-07 中国华能集团清洁能源技术研究院有限公司 Distributed data storage method and system for multi-professional simulation platform
CN115933972B (en) * 2022-11-24 2024-05-31 中国华能集团清洁能源技术研究院有限公司 Distributed data storage method and system for multi-professional simulation platform
CN119336269A (en) * 2024-10-17 2025-01-21 南方电网科学研究院有限责任公司 A system and method for efficient storage and security enhancement of power grid data

Similar Documents

Publication Publication Date Title
Li et al. More than capacity: Performance-oriented evolution of pangu in alibaba
CN113553346B (en) Large-scale real-time data stream integrated processing, forwarding and storing method and system
CN111427844B (en) A data migration system and method for file hierarchical storage
Rao et al. Performance issues of heterogeneous hadoop clusters in cloud computing
CN103139302A (en) Real-time copy scheduling method considering load balancing
CN105373347B (en) A kind of hot spot data identification of storage system and dispatching method and system
CN102227121A (en) Method and system for adaptive switching of distributed cache strategy based on machine learning
CN102932424B (en) Method and system for synchronizing data caching of distributed parallel file system
CN111787055A (en) A Redis-based, transaction-oriented and multi-data center data distribution method and system
CN112286903B (en) A container-based relational database optimization method and device
CN105740352A (en) Historical data service system used for smart power grid dispatching control system
CN101770412A (en) Continuous data caching system and data caching method thereof
CN112579528B (en) Method for efficiently accessing files at server side of embedded network file system
CN109901948A (en) Shared-nothing database cluster strange land dual-active disaster tolerance system
CN113377868A (en) Offline storage system based on distributed KV database
CN111767338A (en) Distributed data storage method and system for online ultra-real-time simulation of power system
CN101894163B (en) Database operating and scheduling method and device for performance data acquisition system
CN109918450A (en) Distributed parallel database and storage method based on analysis scenarios
CN115168042A (en) Management method and device for monitoring cluster, computer storage medium, and electronic device
CN116389591A (en) Cross-domain-based distributed processing system and scheduling optimization method
CN117667447A (en) A multi-log high-concurrency message queue processing method and system
CN120492491A (en) Cache optimization method, device, computer equipment, readable storage medium and program product for power data system
CN111367880A (en) Universal real-time data storage management system and implementation method thereof
CN106708624B (en) An adaptive adjustment method for multi-work domain computing resources
CN107436904B (en) Data acquisition method, data acquisition device, and computer-readable storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201013

RJ01 Rejection of invention patent application after publication
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载