+

CN111596682A - A navigation mobile three-dimensional command link control system - Google Patents

A navigation mobile three-dimensional command link control system Download PDF

Info

Publication number
CN111596682A
CN111596682A CN202010549671.9A CN202010549671A CN111596682A CN 111596682 A CN111596682 A CN 111596682A CN 202010549671 A CN202010549671 A CN 202010549671A CN 111596682 A CN111596682 A CN 111596682A
Authority
CN
China
Prior art keywords
data
signal
voltage
control
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010549671.9A
Other languages
Chinese (zh)
Inventor
邳志刚
卫隆哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010549671.9A priority Critical patent/CN111596682A/en
Publication of CN111596682A publication Critical patent/CN111596682A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

一种通航移动立体指挥链接控制系统,它涉及立体指挥链接控制系统技术领域,具体涉及一种通航移动立体指挥链接控制系统。它包含地面站工控机、地面站显示面板、工控机数据转换、数据融合处理器A、第一数据链路电台、第二数据链路电台、900M切换电子开关、中央控制器、告警反馈、快速开伞启动无线信标、备份遥控发射、手动遥控数据、控制设备信号编码、视频监测面板、图像接收电台、24V车载电源、中央协调控制器、旋翼电机信号发生器。采用上述技术方案后,本发明有益效果为:它使用了故障投票机制,当出现故障之后,随即报告故障码,之后根据各方面状态对故障的容忍级别来选择处理方式,这是一种互相制约的可达到最优处理结果的机制。A navigation mobile three-dimensional command and link control system relates to the technical field of three-dimensional command and link control systems, in particular to a navigation and mobile three-dimensional command and link control system. It includes ground station industrial computer, ground station display panel, industrial computer data conversion, data fusion processor A, first data link radio, second data link radio, 900M switching electronic switch, central controller, alarm feedback, fast Open the umbrella to start the wireless beacon, backup remote control transmission, manual remote control data, control equipment signal coding, video monitoring panel, image receiving radio, 24V vehicle power supply, central coordination controller, rotor motor signal generator. After adopting the above technical scheme, the beneficial effect of the present invention is: it uses a fault voting mechanism, when a fault occurs, the fault code is reported immediately, and then the processing method is selected according to the tolerance level of various states to the fault, which is a mutual restriction mechanism to achieve optimal processing results.

Description

一种通航移动立体指挥链接控制系统A navigation mobile three-dimensional command link control system

技术领域technical field

本发明涉及立体指挥链接控制系统技术领域,具体涉及一种通航移动立体指挥链接控制系统。The invention relates to the technical field of a three-dimensional command link control system, in particular to a navigable mobile three-dimensional command link control system.

背景技术Background technique

本专利旨在解决为部署移动立体指挥链接控制系统的需求而设计。本系统以现有的成熟技术为基础,重新设计系统结构框架,整合以安全稳定为主导的设计理念,加入众多安全保护机制,包括双核心系统协调工作,飞行状态监测与故障投票处理机制等等,飞控核心系统永不掉线。在链路方面,本系统采用了更为先进的扩频抗窄带干扰技术,其在保证高抗干扰前提下,使设备以更低的功率达到更远的通讯距离。This patent is designed to address the need for deploying a mobile stereo command link control system. Based on the existing mature technology, this system redesigns the system structure framework, integrates the design concept dominated by safety and stability, and adds many safety protection mechanisms, including dual-core system coordination, flight status monitoring and fault voting processing mechanism, etc. , the flight control core system will never drop. In terms of link, the system adopts the more advanced spread spectrum anti-narrowband interference technology, which enables the device to reach a longer communication distance with lower power under the premise of ensuring high anti-interference.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于针对现有技术的缺陷和不足,提供一种通航移动立体指挥链接控制系统,它具有以下优点:The purpose of the present invention is to aim at the defects and deficiencies of the prior art, to provide a navigable mobile three-dimensional command link control system, which has the following advantages:

1、加入双飞行核心且可自动判断故障并切换;1. Add dual flight core and can automatically judge the fault and switch;

2、使用了故障投票机制,当出现故障之后,随即报告故障码,之后根据各方面状态对故障的容忍级别来选择处理方式,这是一种互相制约的可达到最优处理结果的机制;2. The fault voting mechanism is used. When a fault occurs, the fault code is immediately reported, and then the processing method is selected according to the tolerance level of the fault in various aspects. This is a mutually restrictive mechanism that can achieve the optimal processing result;

3、失效处理系统完善,一旦出现主机备机均故障下线(几率极低)的情况,最底层的自带简易重力传感器的电路将接管并控制舵面使飞机全油门并大角度爬升10秒,之后则保持平稳的舵面状态,让飞行器处于小幅下滑的最有利姿态,关闭动力并发出红色告警信息,10秒钟后如地面无操作,则启动无线信标以及保持舵面为螺旋下降姿态原地下坠后开伞;3. The failure handling system is perfect. Once the main and standby aircraft fail to go offline (the probability is extremely low), the bottom circuit with its own simple gravity sensor will take over and control the rudder surface to make the aircraft full throttle and climb at a large angle for 10 seconds , and then maintain a stable rudder state, keep the aircraft in the most favorable attitude for a slight glide, turn off the power and issue a red warning message, if there is no operation on the ground after 10 seconds, activate the wireless beacon and keep the rudder in the spiral descent attitude Open the umbrella after the original fall;

4、使用更先进的链路通讯技术,已达到更稳定,距离更远的操控范围;4. Using more advanced link communication technology, it has achieved a more stable and farther control range;

5、可将该系统的地面控制端方便快速的整合到车、船、甚至有人驾驶飞行器中,以达到灵活和快速反应的使用效果。5. The ground control terminal of the system can be easily and quickly integrated into vehicles, ships, and even manned aerial vehicles, so as to achieve the effect of flexible and rapid response.

为实现上述目的,本发明采用以下技术方案是:它包含地面站工控机1、地面站显示面板2、工控机数据转换3、数据融合处理器A4、第一数据链路电台5、第二数据链路电台6、900M切换电子开关7、中央控制器8、告警反馈9、快速开伞启动无线信标10、备份遥控发射11、手动遥控数据12、控制设备信号编码13、视频监测面板14、图像接收电台15、24V车载电源16、中央协调控制器17、旋翼电机信号发生器19、摄像机控制与图像融合处理模块20、云台控制器21、数据融合处理器B22、失效检测/故障处理中心23、I/O信号隔离器24、飞行控制处主机25、飞行控制处理备机26、GPS/传感器/空速失效协调切换模块27、MS801协处理器28、云台29、纳米锂聚合物动力电池30,所述的地面站工控机1与工控机数据转换3双向传输数据信号,工控机数据转换3与数据融合处理器A4的遥测数据编码双向传输数据信号,数据融合处理器A4的遥测数据编码与数据融合处理器A4的数据编码打包双向传输数据信号,数据融合处理器A4的数据编码打包接收手动遥控数据编码的信号,数据融合处理器A4与第一数据链路电台5、第二数据链路电台6三相交换数据,900M电子开关7由中央控制器8控制,地面站工控机1向地面站显示面板2传输信号,地面站工控机1与中央控制器8双向传输信号,地面站工控机1接收V PC800的信号,中央控制器8向告警反馈9传输信号,中央控制器8控制备份遥控发射11,中央控制器8接收快速开伞启动无线信标10,中央控制器8向手动遥控数据12发射信号,手动遥控数据12向手动遥控数据编码发射信号,备份遥控发射11向315M18dbi天线发送信号,中央控制器8与控制设备信号编码13双向传输信号,中央控制器8的内置5V稳压供电给控制设备信号编码13,视频监测面板14接收图像接收电台15,图像接收电台15接收V RX90与510M高增益玻璃钢天线的信号,中央协调控制器17控制旋翼电机信号发生器18、翼面伺服信号发生器19、摄像机控制与图像融合处理模块20、云台控制器21,摄像机控制与图像融合处理模块20叠加控制图像/飞行信息叠加器(叠加控制是中央协调控制器叠加控制的),摄像机控制与图像融合处理模块20接收主摄像机、摄像头A与摄像B的图片/画面信号,主摄像机接收V VIDEO的信号,摄像头A与摄像头B接收V Camera的信号,摄像机控制与图像融合处理模块20、图像/飞行信息叠加器与图像传送电台均接收V S-00的信号,图像/飞行信息叠加器向图像传送电台发送信号,图像传送电台通过912M鞭状天线发送信号,云台控制器21控制云台29并接收V PF的信号;中央协调控制器17接收数据融合处理器B22的手动遥控数据分离与V MS800的信号,中央协调控制器8与数据融合处理器B22的遥测数据分离、I/O信号隔离器24的数据隔离输出端、失效检测/故障处理中心23双向传输信号,中央协调控制器8的内置5V稳压给MS801协处理器28、翼面伺服信号发生器19供电,数据融合处理器B22的遥测数据分离与数据融合处理器B22的数据解码与打包双向传输数据,数据解码与打包向数据融合处理器B22的手动遥控数据分离传输数据,数据融合处理器B22接收数据链路电台的信号,数据融合处理器B22与数据链路电台双向传输信号,数据链路电台接收V P845R的信号,数据链路电台与912M微带天线(天线配合数据链路电台收发链路数据)双向传输信号,I/O信号隔离器24的数据隔离输出端与I/O信号隔离器24的数据隔离飞控端双向传输信号,I/O信号隔离器24使用V IO-OUT(数据隔离输出端供电端口)电压,I/O信号隔离器24的数据隔离飞控端接收飞行控制处主机25的内置3.3V稳压的供电,I/O信号隔离器24与飞行控制处主机5、飞行控制处主机备机26双向传输信号,飞行控制处主机25与飞行控制处主机备机26均使用V MS71(飞行控制处理主机、备机共用供电端口)的电压,飞行控制处主机25、飞行控制处主机备机26均与GPS/传感器/空速失效协调切换模块27双向传输信息,失效检测/故障处理中心23传输信号给告警提醒、无线信标与开伞系统,失效检测/故障处理中心23与备用链路电台、备份遥控链路双向传输信号,备用链路电台与900M微带天线(配合链路电台收发信号用)双向传输信号,备份遥控链路与315M微带天线(配合链路电台收发信号用)双向传输信号,失效检测/故障处理中心23传输信号接收后备电源的供电,24V车载电源16、纳米锂聚合物动力电池30提供总电源。In order to achieve the above object, the present invention adopts the following technical solutions: it comprises a ground station industrial computer 1, a ground station display panel 2, an industrial computer data conversion 3, a data fusion processor A4, a first data link radio 5, a second data Link radio 6, 900M electronic switch 7, central controller 8, alarm feedback 9, quick parachute start wireless beacon 10, backup remote control transmission 11, manual remote control data 12, control equipment signal coding 13, video monitoring panel 14, Image receiving station 15, 24V vehicle power supply 16, central coordination controller 17, rotor motor signal generator 19, camera control and image fusion processing module 20, PTZ controller 21, data fusion processor B22, failure detection/fault processing center 23. I/O signal isolator 24, flight control host 25, flight control processing standby 26, GPS/sensor/airspeed failure coordination switching module 27, MS801 co-processor 28, PTZ 29, nano-lithium polymer power The battery 30, the ground station industrial computer 1 and the industrial computer data conversion 3 transmit data signals bidirectionally, the industrial computer data conversion 3 and the telemetry data encoding of the data fusion processor A4 transmit the data signal bidirectionally, and the telemetry data of the data fusion processor A4 The encoding and data encoding of the data fusion processor A4 are packaged to transmit data signals in both directions, the data encoding of the data fusion processor A4 is packaged to receive the signal encoded by the manual remote control data, the data fusion processor A4 and the first data link station 5, the second data The link radio 6 exchanges data in three phases, the 900M electronic switch 7 is controlled by the central controller 8, the ground station industrial computer 1 transmits signals to the ground station display panel 2, the ground station industrial computer 1 and the central controller 8 transmit signals in both directions, the ground station The industrial computer 1 receives the signal of the V PC800, the central controller 8 transmits the signal to the alarm feedback 9, the central controller 8 controls the backup remote control transmission 11, the central controller 8 receives the wireless beacon 10 for quick parachute opening, and the central controller 8 sends the manual Remote control data 12 transmits signal, manual remote control data 12 transmits signal to manual remote control data code, backup remote control transmit 11 transmits signal to 315M18dbi antenna, central controller 8 and control equipment signal code 13 transmit signal bidirectionally, the built-in 5V stabilizer of central controller 8 Piezoelectric power supply to control equipment signal coding 13, video monitoring panel 14 receives image receiving radio 15, image receiving radio 15 receives V RX90 and 510M high-gain FRP antenna signals, central coordination controller 17 controls rotor motor signal generator 18, airfoil Servo signal generator 19, camera control and image fusion processing module 20, PTZ controller 21, camera control and image fusion processing module 20 superimpose control image/flight information stacker (superposition control is superimposed by the central coordination controller), The camera control and image fusion processing module 20 receives the picture/picture signal of the main camera, camera A and camera B, the main camera receives the signal of V VIDEO, the camera A and camera B receive the signal of V Camera, the camera control The control and image fusion processing module 20, the image/flight information stacker and the image transmission station all receive the V S-00 signal, the image/flight information stacker sends signals to the image transmission station, and the image transmission station sends signals through the 912M whip antenna , the pan-tilt controller 21 controls the pan-tilt 29 and receives the signal of VPF; the central coordination controller 17 receives the manual remote control data separation of the data fusion processor B22 and the signal of the VMS800, the central coordination controller 8 and the data fusion processor B22 Telemetry data separation, data isolation output terminal of I/O signal isolator 24, failure detection/fault processing center 23 bidirectional transmission of signals, built-in 5V voltage regulator of central coordination controller 8 to MS801 co-processor 28, airfoil servo signal The generator 19 is powered, the telemetry data of the data fusion processor B22 is separated and the data is decoded and packaged by the data fusion processor B22 to transmit data bidirectionally, the data is decoded and packaged to the manual remote control data of the data fusion processor B22 The data is separated and transmitted, and the data fusion process The processor B22 receives the signal of the data link radio, the data fusion processor B22 transmits the signal bidirectionally with the data link radio, the data link radio receives the signal of the V P845R, the data link radio and the 912M microstrip antenna (the antenna cooperates with the data link radio) Send and receive link data) bidirectional transmission signals, the data isolation output terminal of the I/O signal isolator 24 and the data isolation flight control terminal of the I/O signal isolator 24 transmit signals in both directions, and the I/O signal isolator 24 uses V IO- OUT (data isolation output terminal power supply port) voltage, the data isolation flight control terminal of the I/O signal isolator 24 receives the built-in 3.3V regulated power supply of the flight control host 25, and the I/O signal isolator 24 is connected to the flight control The main engine 5 and the main and standby machines 26 in the flight control place transmit signals in both directions. The main machine 25 in the flight control place and the main and standby machines 26 in the flight control place use the voltage of V MS71 (the main power supply port for the flight control processing main machine and the standby machine). 25. The main and backup aircraft 26 of the flight control department both transmit information bidirectionally with the GPS/sensor/airspeed failure coordination switching module 27, and the failure detection/fault processing center 23 transmits signals to the alarm reminder, wireless beacon and parachute opening system, and failure detection/ The fault handling center 23 transmits signals in both directions with the backup link radio and the backup remote control link. Cooperate with the link radio to send and receive signals) two-way signal transmission, the failure detection/fault processing center 23 transmits the signal to receive the power supply of the backup power supply, and the 24V vehicle power supply 16 and the nano-lithium polymer power battery 30 provide the total power supply.

所述的控制设备信号编码13接收遥杆控制、飞行状态切换、摄像头切换、叠加状态切换、机能调节旋钮、与云台控制组件(包括云台俯仰、倾斜、方向调整用摇杆,以及云台跟踪模式切换开关和正投切换开关)。The control device signal code 13 receives joystick control, flight status switching, camera switching, overlay status switching, function adjustment knobs, and pan/tilt control components (including pan/tilt, tilt, direction adjustment joysticks, and pan/tilt). Tracking mode toggle switch and forward cast toggle switch).

所述的24V车载电源16分别向24to 19-100W(24V转19V 100W转换模块)、24to 12-120W(标24V转12V 120W转换模块)、24to 5-隔离AW(24V转5V 20W隔离转换模块)、24to 5-隔离BW(24V转19V 100W隔离转换模块)、24to 12-隔离W(24V转12V 20W隔离转换模块)与24to 12-40W(24V转12V40W转换模块)输送电压,24to 19-100W向V PC800(地面站工控机1供电端口)输送电压,24to 12-120W向V DIS PC(地面站显示面板2供电端口)与V DIS S(地面站视频检测面板14供电端口)输送电压,24to 5-隔离AW向V P845TX(第一数据链路电台5/第二数据链路电台6供电端口)输送电压,24to 5-隔离BW向V DCK TX(数据融合处理器A4供电端口)输送电压,24to 12-隔离W向V RX90(图像接收电台15供电端口)输送电压,24to12-40W向V MS801(中央处理器8供电端口)与V315R(备份遥控发射11供电端口)输送电压。The 24V vehicle power supply 16 is respectively connected to 24to 19-100W (24V to 19V 100W conversion module), 24to 12-120W (standard 24V to 12V 120W conversion module), 24to 5-isolation AW (24V to 5V 20W isolation conversion module) , 24to 5-isolation BW (24V to 19V 100W isolation conversion module), 24to 12-isolation W (24V to 12V 20W isolation conversion module) and 24to 12-40W (24V to 12V40W conversion module) transmission voltage, 24to 19-100W to V PC800 (ground station industrial computer 1 power supply port) delivers voltage, 24to 12-120W to V DIS PC (ground station display panel 2 power supply port) and V DIS S (ground station video detection panel 14 Power supply port) delivers voltage, 24to 5 -Isolation AW sends voltage to V P845TX (first data link radio 5/second data link radio 6 power supply port), 24to 5-isolated BW sends voltage to V DCK TX (data fusion processor A4 power supply port), 24to 12-Isolation W supplies voltage to V RX90 (15 power supply port of image receiving station), 24to12-40W supplies voltage to V MS801 (8 power supply port of CPU) and V315R (11 power supply port of backup remote control transmitter).

所述的旋翼电机信号发生器18(用于将中央协调控制器的电机转速编码解码成多个电机控制器的速度信息)控制旋翼电机控制器A、旋翼电机控制器B、旋翼电机控制器C、旋翼电机控制器D与水平动力电机,旋翼电机控制器A、旋翼电机控制器B、旋翼电机控制器C、旋翼电机控制器D与水平动力电机均接收V motor的信号。The described rotor motor signal generator 18 (for decoding the motor speed code of the central coordination controller into the speed information of multiple motor controllers) controls the rotor motor controller A, the rotor motor controller B, and the rotor motor controller C. , Rotor motor controller D and horizontal power motor, rotor motor controller A, rotor motor controller B, rotor motor controller C, rotor motor controller D and horizontal power motor all receive the signal of V motor.

所述的翼面伺服信号发生器19(用于将飞机舵面角度的总线编码,解码成多个舵面的角度命令)控制翼面伺服器A、翼面伺服器B、翼面伺服器C、翼面伺服器D、翼面伺服器E与翼面伺服器F,控制翼面伺服器A、翼面伺服器B、翼面伺服器C、翼面伺服器D、翼面伺服器E与翼面伺服器F均接收V Sever的信号。Described airfoil servo signal generator 19 (for the bus coding of the angle of the aircraft rudder, decoded into the angle commands of a plurality of rudder surfaces) controls the airfoil servo A, the airfoil servo B, the airfoil servo C , wing server D, wing server E and wing server F, control wing server A, wing server B, wing server C, wing server D, wing server E and The airfoil servos F all receive the signal of V Sever.

所述的GPS/传感器/空速失效协调切换模块27接收TCK-31三轴陀螺仪传感器、TCK-32三轴陀螺仪传感器、TCK-33三轴陀螺仪传感器、TCK-41三轴加速度传感器、TCK-42三轴加速度传感器、TCK-43三轴加速度传感器、GPS接收器A、GPS接收器B、空速模块A与空速模块B的信号,所述的TCK-31三轴陀螺仪传感器、TCK-32三轴陀螺仪传感器、TCK-33三轴陀螺仪传感器、TCK-41三轴加速度传感器、TCK-42三轴加速度传感器、TCK-43三轴加速度传感器均接收V TCK的信号,所述的GPS接收器A、GPS接收器B均接收V GCK的信号,所述的空速模块A、空速模块B均使用V KCK(空速模块供电端口)的电压。The GPS/sensor/airspeed failure coordination switching module 27 receives TCK-31 three-axis gyro sensor, TCK-32 three-axis gyro sensor, TCK-33 three-axis gyro sensor, TCK-41 three-axis acceleration sensor, Signals of TCK-42 three-axis acceleration sensor, TCK-43 three-axis acceleration sensor, GPS receiver A, GPS receiver B, airspeed module A and airspeed module B, the TCK-31 three-axis gyroscope sensor, TCK-32 three-axis gyro sensor, TCK-33 three-axis gyro sensor, TCK-41 three-axis acceleration sensor, TCK-42 three-axis acceleration sensor, TCK-43 three-axis acceleration sensor all receive the signal of V TCK, the said The GPS receiver A and the GPS receiver B both receive the signal of V GCK, and the airspeed module A and the airspeed module B both use the voltage of V KCK (airspeed module power supply port).

所述的纳米锂聚合动力电池30向24to 12-80W(24V转12V 80W转换模块)、24to12-隔离30W(24V转12V 30W隔离转换模块)、24to 7-隔离200W(24V转7V 200W隔离转换模块)、24to 12-200W(24V转12V 200W转换模块)、24to7.4-200W(24V转7.4V 200W转换模块)、24to 12-30W(24V转12V 30W转换模块、V PF、与V motor输送电压,24to 12-30W向12to5-5W隔离(12V转5V 5W转换模块)与12to 5-5W12V转5V5W转换模块)与V MS800输送电压,24to12-80W向V Camera与V VIDEO输送电压,24to 12-隔离30W向V S-00输送电压,24to 7-隔离200W向V MS71与7to5-20W输送电压,7to5-20W向5to5隔离、V RCK、V KCK、V GCK、V TCK输送电压,所述的5to5隔离向V DCK RX输送电压,24to 12-200W向后备电源(B)输送电压,所述的24to 7.4-200W向V Sever输送电压,12to5-5W隔离向V P845R输送电压,12to 5-5W向VIO-OUT输送电压。The nano lithium polymer power battery 30 to 24to 12-80W (24V to 12V 80W conversion module), 24to12-isolated 30W (24V to 12V 30W isolated conversion module), 24to 7-isolated 200W (24V to 7V 200W isolated conversion module) ), 24to 12-200W (24V to 12V 200W conversion module), 24to7.4-200W (24V to 7.4V 200W conversion module), 24to 12-30W (24V to 12V 30W conversion module, V PF, and V motor transmission voltage , 24to 12-30W to 12to5-5W isolation (12V to 5V 5W conversion module) and 12to 5-5W12V to 5V5W conversion module) and V MS800 transmission voltage, 24to12-80W to V Camera and V VIDEO transmission voltage, 24to 12-isolation 30W transmits voltage to V S-00, 24to 7-isolation 200W transmits voltage to V MS71 and 7to5-20W, 7to5-20W transmits voltage to 5to5 isolation, V RCK, V KCK, V GCK, V TCK, the 5to5 isolation Supply voltage to V DCK RX, 24to 12-200W supply voltage to backup power supply (B), said 24to 7.4-200W supply voltage to V Sever, 12to5-5W isolation supply voltage to V P845R, 12to 5-5W supply voltage to VIO- OUT delivers voltage.

本发明的工作原理:1、中央协调控制器根据从数据链路得到的控制数据中判断飞行模式,并且飞控的舵面伺服机和旋翼、水平动力电机信息都将通过中央协调控制器统一发送;如当前为手动状态,则响应手动遥控数据的实时操作,并叠加飞控处理器输出的辅助增稳控制信息;如当前为任务飞行模式,则将航线航点和各航点的动作信息(如拍照摄像和测量)传送给飞行控制器,并监测飞行控制器的实时执行情况;2、任何模式下,协调控制器都会将实时飞行数据通过数据链路传送给地面用以操作员观测状态,飞行摄像头也会实时拍摄第一人称视角的图像,然后通过视频叠加系统将十几个重要飞行数据叠加后,通过视频传送链路发回地面,以期让操作员观看飞行图像的同时直接掌握重要飞行数据;3、翼面伺服信号发生器,负责将各舵面的位置信息解码并分别传送给各舵面伺服器,旋翼电机信号发生器则负责将旋翼电机与水平动力电机的转速信息解码后传送给各个电子调速器;4、飞行控制器,主要负责飞机的增稳控制或自动航线飞行与动作控制,它执行来自中央协调控制器的飞行指令,如果收到手动命令,则输出稳定舵面辅助信息,如收到航线飞行指令,则按航路规划和执行动作数据,自主完成航测与拍摄任务;如当前为手动垂起过程,则执行四旋翼GPS飞行模式,只接收方位飞行信息;飞行控制器的三轴陀螺仪传感器和三轴加速度传感器均为三冗余设计,空速传感器则为二冗余设计,而飞行控制器本体则分为主机和备机二冗余设计,当任意传感器出现故障,则失效协调切换模块将自动切换到其他状态正常的传感器,并告知主备机,失效的传感器编号,通知中央协调控制器发送故障信息传回地面,而当主机一旦出现故障,则备机会立即切换主机为下线状态,接续主机的任务立刻继续执行接下来的动作并通过协调控制器向地面发送橙色告警;5、故障处理中心,主要负责故障的检测和判断故障等级,通过各机能的状态检测来投票选择处理方法,列如当发现主机备机均故障下线,则处理中心会发出红色告警给地面,并关闭动力输出,保持舵面状态为飞机下滑最有利姿态,等待地面切换手动飞行或者开伞动作,如果10秒内未收到命令,则立即开伞并启动无线信标,(可选配使用GPRS信号发生器,由便携式地面APP软件查看迫降地点)如果数据链路故障,则转换备用链路执行任务并通知地面;6、云台控制器,图像融合处理模块,控制器响应协调处理器发来的主摄像机投射角度信息可跟随,可定向,可手动控制,图像融合处理模块可根据协调控制器的要求切换两个摄像头与主摄像机的图像传送地面,或者进行画中画显示,如果地面要求叠加飞行信息则发送前叠加航向、高度、秒速、位置、离家距离、动力电压等关键信息;7、电源,电源采用30AH22.2V G5锂聚合物动力电池,根据系统中各个模块的使用电压和需要隔离的程度以及功率大小,集成十个电源模块供给。The working principle of the present invention: 1. The central coordination controller judges the flight mode according to the control data obtained from the data link, and the information of the rudder surface servo, rotor and horizontal power motor of the flight controller will be sent uniformly through the central coordination controller. ; If it is currently in the manual state, it will respond to the real-time operation of the manual remote control data, and superimpose the auxiliary stabilization control information output by the flight control processor; if it is currently in the mission flight mode, the route waypoint and the action information of each waypoint ( 2. In any mode, the coordination controller will transmit the real-time flight data to the ground through the data link for the operator to observe the status, The flight camera also captures images from the first-person perspective in real time, and then superimposes more than a dozen important flight data through the video overlay system, and sends it back to the ground through the video transmission link, so that the operator can watch the flight images and directly grasp the important flight data. 3. The airfoil servo signal generator is responsible for decoding the position information of each rudder surface and transmitting it to each rudder surface servo, while the rotor motor signal generator is responsible for decoding the rotational speed information of the rotor motor and the horizontal power motor and transmitting it to Each electronic governor; 4. The flight controller is mainly responsible for the stabilization control of the aircraft or the automatic flight and action control. It executes the flight instructions from the central coordination controller. If it receives a manual command, it outputs the stabilized rudder surface assistance. If the flight command is received, it will plan and execute the action data according to the route, and complete the aerial survey and shooting tasks autonomously; if the current is in the manual hoisting process, the quadrotor GPS flight mode will be executed, and only the azimuth flight information will be received; the flight controller The three-axis gyroscope sensor and the three-axis acceleration sensor are all three-redundant design, the airspeed sensor is two-redundant design, and the flight controller body is divided into two-redundant design of main machine and standby machine, when any sensor fails , the fail-coordination switching module will automatically switch to other sensors in normal state, and inform the master and standby machines of the failed sensor number, and notify the central coordination controller to send the fault information back to the ground, and when the host fails, the standby machine will immediately Switch the host to the offline state, continue the task of the host and continue to perform the next action immediately and send an orange alarm to the ground through the coordination controller; 5. The fault processing center is mainly responsible for fault detection and judging the fault level, through the status of each function Check and vote to choose the processing method. For example, when it is found that the main and standby aircraft are all faulty and offline, the processing center will issue a red alarm to the ground, and turn off the power output, keep the control surface state as the most favorable attitude for the aircraft to slide down, and wait for the ground to switch to manual flight. Or open the parachute, if no command is received within 10 seconds, immediately open the parachute and start the wireless beacon, (optionally use a GPRS signal generator, and check the forced landing site by the portable ground APP software) If the data link fails, then Convert the backup link to perform tasks and notify the ground; 6. PTZ controller, image fusion processing module, the controller can follow, orient, and manually control the image fusion processing in response to the projection angle information of the main camera sent by the coordination processor The module can switch the images of the two cameras and the main camera to transmit the ground according to the requirements of the coordination controller, or perform picture-in-picture display. If the ground requires superimposing flight information, it will send the superimposed heading, altitude, speed per second, position, distance from home, power Voltage and other key information; 7. Power supply, the power supply adopts 30AH22.2V G5 lithium polymer power battery, and ten power supply modules are integrated according to the operating voltage of each module in the system, the degree of isolation required and the power level.

采用上述技术方案后,本发明有益效果为:它具有以下优点:After adopting the above-mentioned technical scheme, the beneficial effect of the present invention is as follows: it has the following advantages:

1、加入双飞行核心且可自动判断故障并切换;1. Add dual flight core and can automatically judge the fault and switch;

2、使用了故障投票机制,当出现故障之后,随即报告故障码,之后根据各方面状态对故障的容忍级别来选择处理方式,这是一种互相制约的可达到最优处理结果的机制;2. The fault voting mechanism is used. When a fault occurs, the fault code is immediately reported, and then the processing method is selected according to the tolerance level of the fault in various aspects. This is a mutually restrictive mechanism that can achieve the optimal processing result;

3、失效处理系统完善。一旦出现主机备机均故障下线(几率极低)的情况,最底层的自带简易重力传感器的电路将接管并控制舵面使飞机全油门并大角度爬升10秒,之后则保持平稳的舵面状态,让飞行器处于小幅下滑的最有利姿态,关闭动力并发出红色告警信息,10秒钟后如地面无操作,则启动无线信标以及保持舵面为螺旋下降姿态原地下坠后开伞;3. The failure handling system is perfect. In the event that both the main and standby aircraft fail to go offline (the probability is extremely low), the circuit with its own simple gravity sensor at the bottom will take over and control the rudder surface to make the aircraft full throttle and climb at a large angle for 10 seconds, and then maintain a stable rudder If the ground is inactive after 10 seconds, activate the wireless beacon and keep the rudder in the spiral descent attitude and open the parachute after falling in place;

4、使用更先进的链路通讯技术,已达到更稳定,距离更远的操控范围;4. Using more advanced link communication technology, it has achieved a more stable and farther control range;

5、可将该系统的地面控制端方便快速的整合到车、船、甚至有人驾驶飞行器中,以达到灵活和快速反应的使用效果。5. The ground control terminal of the system can be easily and quickly integrated into vehicles, ships, and even manned aerial vehicles, so as to achieve the effect of flexible and rapid response.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.

图1是本发明中重起无人机与地面站框图;Fig. 1 is the block diagram of re-lifting unmanned aerial vehicle and ground station in the present invention;

图2是本发明的结构示意框图;Fig. 2 is the structural schematic block diagram of the present invention;

图3是本发明中24V车载电源16的结构示意图;3 is a schematic structural diagram of the 24V vehicle-mounted power supply 16 in the present invention;

图4是本发明中纳米锂聚合物动力电池30的结构示意图。FIG. 4 is a schematic structural diagram of the nano-lithium polymer power battery 30 in the present invention.

附图标记说明:地面站工控机1、地面站显示面板2、工控机数据转换3、数据融合处理器A4、第一数据链路电台5、第二数据链路电台6、900M切换电子开关7、中央控制器8、告警反馈9、快速开伞启动无线信标10、备份遥控发射11、手动遥控数据12、控制设备信号编码13、视频监测面板14、图像接收电台15、24V车载电源16、中央协调控制器17、旋翼电机信号发生器19、摄像机控制与图像融合处理模块20、云台控制器21、数据融合处理器B22、失效检测/故障处理中心23、I/O信号隔离器24、飞行控制处主机25、飞行控制处理备机26、GPS/传感器/空速失效协调切换模块27、MS801协处理器28、云台29、纳米锂聚合物动力电池30。Reference numeral description: ground station industrial computer 1, ground station display panel 2, industrial computer data conversion 3, data fusion processor A4, first data link radio 5, second data link radio 6, 900M switching electronic switch 7 , central controller 8, alarm feedback 9, quick umbrella start wireless beacon 10, backup remote control transmission 11, manual remote control data 12, control equipment signal coding 13, video monitoring panel 14, image receiving radio 15, 24V vehicle power supply 16, Central coordination controller 17, rotor motor signal generator 19, camera control and image fusion processing module 20, PTZ controller 21, data fusion processor B22, failure detection/fault processing center 23, I/O signal isolator 24, The flight control main unit 25 , the flight control processing standby unit 26 , the GPS/sensor/airspeed failure coordination switching module 27 , the MS801 co-processor 28 , the gimbal 29 , and the nano-lithium polymer power battery 30 .

具体实施方式Detailed ways

参看图1-图4所示,本具体实施方式采用的技术方案是它包含地面站工控机1、地面站显示面板2、工控机数据转换3、数据融合处理器A4、第一数据链路电台5、第二数据链路电台6、900M切换电子开关7、中央控制器8、告警反馈9、快速开伞启动无线信标10、备份遥控发射11、手动遥控数据12、控制设备信号编码13、视频监测面板14、图像接收电台15、24V车载电源16、中央协调控制器17、旋翼电机信号发生器19、摄像机控制与图像融合处理模块20、云台控制器21、数据融合处理器B22、失效检测/故障处理中心23、I/O信号隔离器24、飞行控制处主机25、飞行控制处理备机26、GPS/传感器/空速失效协调切换模块27、MS801协处理器28、云台29、纳米锂聚合物动力电池30,地面站工控机1为PC-CTRL800地面站工控机,地面站显示面板2为DISPALY-PC地面站显示面板,数据融合处理器A4为DCK-11TX数据融合处理器,第一数据链路电台5为P845-TX(A)数据链路电台A,第二数据链路电台6为P845-TX(B)数据链路电台B,中央控制器8为CEN-MS801中央控制器,备份遥控发射11为P315T 315m备份遥控发射,视频监测面板14为DISPLAY-S视频监测面板,图像接收电台15为S-RX90510m图像接收电台,中央协调控制器17为CEN-MS800中央协调控制器,摄像机控制与图像融合处理模块20为S-CTRL03摄像机控制与图像融合处理模块,云台控制器21为PF332云台控制器,数据融合处理器B22为DCK-11RX数据融合处理器,失效检测/故障处理中心23为MS811失效检测/故障处理中心,I/O信号隔离器24为CL-MS707 I/O信号隔离器,飞行控制处主机25为CL-MS711飞行控制处主机,飞行控制处理备机26为MS-712飞行控制处理备机,GPS/传感器/空速失效协调切换模块27为RCK-221A GPS/传感器/空速失效协调切换模块。1-4, the technical solution adopted in this specific embodiment is that it includes a ground station industrial computer 1, a ground station display panel 2, an industrial computer data conversion 3, a data fusion processor A4, and a first data link radio station. 5. The second data link radio station 6, 900M switching electronic switch 7, central controller 8, alarm feedback 9, quick parachute start wireless beacon 10, backup remote control transmission 11, manual remote control data 12, control equipment signal coding 13, Video monitoring panel 14, image receiving station 15, 24V vehicle power supply 16, central coordination controller 17, rotor motor signal generator 19, camera control and image fusion processing module 20, PTZ controller 21, data fusion processor B22, failure Detection/fault processing center 23, I/O signal isolator 24, flight control host 25, flight control processing standby 26, GPS/sensor/airspeed failure coordination switching module 27, MS801 co-processor 28, PTZ 29, Nano lithium polymer power battery 30, ground station industrial computer 1 is PC-CTRL800 ground station industrial computer, ground station display panel 2 is DISPALY-PC ground station display panel, data fusion processor A4 is DCK-11TX data fusion processor, The first data link station 5 is the P845-TX(A) data link station A, the second data link station 6 is the P845-TX(B) data link station B, and the central controller 8 is the CEN-MS801 central control The backup remote control transmitter 11 is the P315T 315m backup remote control transmitter, the video monitoring panel 14 is the DISPLAY-S video monitoring panel, the image receiving station 15 is the S-RX90510m image receiving station, and the central coordination controller 17 is the CEN-MS800 central coordination controller. , camera control and image fusion processing module 20 is S-CTRL03 camera control and image fusion processing module, PTZ controller 21 is PF332 PTZ controller, data fusion processor B22 is DCK-11RX data fusion processor, failure detection/ The fault processing center 23 is the MS811 failure detection/fault processing center, the I/O signal isolator 24 is the CL-MS707 I/O signal isolator, the flight control host 25 is the CL-MS711 flight control host, and the flight control processing standby machine 26 is the MS-712 flight control processing standby machine, and the GPS/sensor/airspeed failover coordination switch module 27 is the RCK-221A GPS/sensor/airspeed failover coordination switchover module.

所述的地面站显示面板2由V DIS PC(显示面板供电接口)的供电。The ground station display panel 2 is powered by VDIS PC (display panel power supply interface).

所述的数据融合处理器A4使用V DCK TX(数据融合处理器DCK11 TX供电接口)的供电。The data fusion processor A4 uses the power supply of V DCK TX (the data fusion processor DCK11 TX power supply interface).

所述的第一数据链路电台5、第二数据链路电台6通过V P845TX(链路电台A,B的供电接口)供电。The first data link radio 5 and the second data link radio 6 are powered by V P845TX (power supply interface of link radio A, B).

所述的900M切换电子开关7向912M高增益玻璃钢天线发送信号。The 900M switching electronic switch 7 sends signals to the 912M high-gain FRP antenna.

所述的中央控制器8由V MS801(中央处理器供电接口)的供电。The central controller 8 is powered by V MS801 (central processing unit power supply interface).

所述的备份遥控发射11由V 315R(315M模块供电接口)的供电。The backup remote control transmitter 11 is powered by V 315R (315M module power supply interface).

所述的视频监测面板14使用V DIS S(视频检测面板供电接口)的供电。The video monitoring panel 14 is powered by VDISS (video detection panel power supply interface).

以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其它修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。The above is only used to illustrate the technical solution of the present invention and not to limit it. Other modifications or equivalent replacements made by those of ordinary skill in the art to the technical solution of the present invention, as long as they do not depart from the spirit and scope of the technical solution of the present invention, should be Included within the scope of the claims of the present invention.

Claims (7)

1.一种通航移动立体指挥链接控制系统,其特征在于:它包含地面站工控机(1)、地面站显示面板(2)、工控机数据转换(3)、数据融合处理器A(4)、第一数据链路电台(5)、第二数据链路电台(6)、900M切换电子开关(7)、中央控制器(8)、告警反馈(9)、快速开伞启动无线信标(10)、备份遥控发射(11)、手动遥控数据(12)、控制设备信号编码(13)、视频监测面板(14)、图像接收电台(15)、24V车载电源(16)、中央协调控制器(17)、旋翼电机信号发生器(19)、摄像机控制与图像融合处理模块(20)、云台控制器(21)、数据融合处理器B(22)、失效检测/故障处理中心(23)、I/O信号隔离器(24)、飞行控制处主机(25)、飞行控制处理备机(26)、GPS/传感器/空速失效协调切换模块(27)、MS(801)协处理器(28)、云台(29)、纳米锂聚合物动力电池(30),所述的地面站工控机(1)与工控机数据转换(3)双向传输数据信号,工控机数据转换(3)与数据融合处理器A(4)的遥测数据编码双向传输数据信号,数据融合处理器A(4)的遥测数据编码与数据融合处理器A(4)的数据编码打包双向传输数据信号,数据融合处理器A(4)的数据编码打包接收手动遥控数据编码的信号,数据融合处理器A(4)与第一数据链路电台(5)、第二数据链路电台(6)三相交换数据,900M电子开关(7)由中央控制器(8)控制,地面站工控机(1)向地面站显示面板(2)传输信号,地面站工控机(1)与中央控制器(8)双向传输信号,地面站工控机(1)接收V PC800的信号,中央控制器(8)向告警反馈(9)传输信号,中央控制器(8)控制备份遥控发射(11),中央控制器(8)接收快速开伞启动无线信标(10),中央控制器(8)向手动遥控数据(12)发射信号,手动遥控数据(12)向手动遥控数据编码发射信号,备份遥控发射(11)向315M18dbi天线发送信号,中央控制器(8)与控制设备信号编码(13)双向传输信号,中央控制器(8)的内置5V稳压供电给控制设备信号编码(13),视频监测面板(14)接收图像接收电台(15),图像接收电台(15)接收V RX90与510M高增益玻璃钢天线的信号,中央协调控制器(17)控制旋翼电机信号发生器(18)、翼面伺服信号发生器(19)、摄像机控制与图像融合处理模块(20)、云台控制器(21),摄像机控制与图像融合处理模块(20)叠加控制图像/飞行信息叠加器,摄像机控制与图像融合处理模块(20)接收主摄像机、摄像头A与摄像B的图片/画面信号,主摄像机接收V VIDEO的信号,摄像头A与摄像头B接收V Camera的信号,摄像机控制与图像融合处理模块(20)、图像/飞行信息叠加器与图像传送电台均接收V S-00的信号,图像/飞行信息叠加器向图像传送电台发送信号,图像传送电台通过912M鞭状天线发送信号,云台控制器(21)控制云台(29)并接收V PF的信号;中央协调控制器(17)接收数据融合处理器B(22)的手动遥控数据分离与V MS800的信号,中央协调控制器(8)与数据融合处理器B(22)的遥测数据分离、I/O信号隔离器(24)的数据隔离输出端、失效检测/故障处理中心(23)双向传输信号,中央协调控制器(8)的内置5V稳压给协处理器(28)、翼面伺服信号发生器(19)供电,数据融合处理器B(22)的遥测数据分离与数据融合处理器B(22)的数据解码与打包双向传输数据,数据解码与打包向数据融合处理器B(22)的手动遥控数据分离传输数据,数据融合处理器B(22)接收数据链路电台的信号,数据融合处理器B(22)与数据链路电台双向传输信号,数据链路电台接收V P845R的信号,数据链路电台与912M微带天线双向传输信号,I/O信号隔离器(24)的数据隔离输出端与I/O信号隔离器(24)的数据隔离飞控端双向传输信号,I/O信号隔离器(24)使用V IO-OUT电压,I/O信号隔离器(24)的数据隔离飞控端接收飞行控制处主机(25)的内置3.3V稳压的供电,I/O信号隔离器(24)与飞行控制处主机(5)、飞行控制处主机备机(26)双向传输信号,飞行控制处主机(25)与飞行控制处主机备机(26)均使用V MS71的电压,飞行控制处主机(25)、飞行控制处主机备机(26)均与GPS/传感器/空速失效协调切换模块(27)双向传输信息,失效检测/故障处理中心(23)传输信号给告警提醒、无线信标与开伞系统,失效检测/故障处理中心(23)与备用链路电台、备份遥控链路双向传输信号,备用链路电台与900M微带天线双向传输信号,备份遥控链路与315M微带天线双向传输信号,失效检测/故障处理中心(23)传输信号接收后备电源的供电,24V车载电源(16)、纳米锂聚合物动力电池(30)提供总电源。1. A navigation mobile three-dimensional command link control system, characterized in that: it comprises a ground station industrial computer (1), a ground station display panel (2), an industrial computer data conversion (3), and a data fusion processor A (4) , the first data link radio station (5), the second data link radio station (6), the 900M switch electronic switch (7), the central controller (8), the alarm feedback (9), the quick parachute start wireless beacon ( 10), backup remote control transmission (11), manual remote control data (12), control equipment signal coding (13), video monitoring panel (14), image receiving radio station (15), 24V vehicle power supply (16), central coordination controller (17), rotor motor signal generator (19), camera control and image fusion processing module (20), PTZ controller (21), data fusion processor B (22), failure detection/fault processing center (23) , I/O signal isolator (24), flight control host (25), flight control processing standby (26), GPS/sensor/airspeed failover coordination switching module (27), MS (801) coprocessor ( 28), PTZ (29), nano-lithium polymer power battery (30), said ground station industrial computer (1) and industrial computer data conversion (3) two-way transmission of data signals, industrial computer data conversion (3) and The telemetry data encoding of the data fusion processor A (4) transmits the data signal bidirectionally, the telemetry data encoding of the data fusion processor A (4) and the data encoding of the data fusion processor A (4) are packaged to transmit the data signal bidirectionally, and the data fusion processing The data encoding package of the processor A (4) receives the signal encoded by the manual remote control data, and the data fusion processor A (4) exchanges data with the first data link station (5) and the second data link station (6) three-phase data, The 900M electronic switch (7) is controlled by the central controller (8), the ground station industrial computer (1) transmits signals to the ground station display panel (2), and the ground station industrial computer (1) and the central controller (8) transmit signals in both directions , the ground station industrial computer (1) receives the signal of the V PC800, the central controller (8) transmits the signal to the alarm feedback (9), the central controller (8) controls the backup remote control transmission (11), and the central controller (8) receives Quickly open the umbrella to start the wireless beacon (10), the central controller (8) transmits signals to the manual remote control data (12), the manual remote control data (12) transmits signals to the manual remote control data encoding, and the backup remote control transmits (11) to the 315M18dbi antenna Sending signals, the central controller (8) and the control equipment signal encoding (13) transmit signals bidirectionally, the built-in 5V regulated power supply of the central controller (8) supplies the control equipment signal encoding (13), and the video monitoring panel (14) receives images The receiving station (15) and the image receiving station (15) receive the signals of the V RX90 and 510M high-gain FRP antennas, and the central coordination controller (17) controls the rotor motor signal generator (18) and the wing servo signal generator (19) , camera control and image fusion processing module (20), PTZ The controller (21), the camera control and image fusion processing module (20) superimposes the control image/flight information stacker, the camera control and image fusion processing module (20) receives the picture/picture signals of the main camera, the camera A and the camera B, The main camera receives the V VIDEO signal, camera A and camera B receive the V Camera signal, the camera control and image fusion processing module (20), the image/flight information stacker and the image transmission station all receive the V S-00 signal, and the image / The flight information stacker sends a signal to the image transmission station, the image transmission station sends a signal through the 912M whip antenna, the gimbal controller (21) controls the gimbal (29) and receives the signal of the V PF; the central coordination controller (17) Receive the manual remote control data separation of the data fusion processor B (22) and the signal of the V MS800, the central coordination controller (8) and the telemetry data separation of the data fusion processor B (22), I/O signal isolator (24) The data isolation output terminal of the UPS, the failure detection/fault processing center (23) transmits signals bidirectionally, and the built-in 5V voltage regulator of the central coordination controller (8) supplies power to the coprocessor (28) and the airfoil servo signal generator (19), The telemetry data separation of the data fusion processor B (22) and the data decoding and packaging of the data fusion processor B (22) two-way transmission data, data decoding and packaging to the manual remote control data of the data fusion processor B (22) Separate transmission data , the data fusion processor B (22) receives the signal of the data link station, the data fusion processor B (22) and the data link station transmit signals in both directions, the data link station receives the signal of the VP845R, and the data link station communicates with the 912M The microstrip antenna transmits signals bidirectionally, the data isolation output terminal of the I/O signal isolator (24) and the data isolation flight control terminal of the I/O signal isolator (24) transmit signals bidirectionally, the I/O signal isolator (24) Using the V IO-OUT voltage, the data isolation flight control terminal of the I/O signal isolator (24) receives the built-in 3.3V regulated power supply of the flight control host (25), and the I/O signal isolator (24) is connected to the flight control terminal (25). The main control unit (5) and the flight control unit main unit (26) transmit signals bidirectionally. The flight control unit main unit (25) and the flight control unit main unit (26) both use the voltage of V MS71. The flight control unit main unit (25) ), the main and standby aircraft (26) of the flight control department both transmit information bidirectionally with the GPS/sensor/airspeed failure coordination switching module (27), and the failure detection/fault processing center (23) transmits signals to alarm reminders, wireless beacons and Umbrella system, the failure detection/fault handling center (23) transmits signals in both directions with the backup link radio and the backup remote control link, the backup link radio and the 900M microstrip antenna transmit signals in both directions, and the backup remote control link and the 315M microstrip antenna transmit in both directions Signal, the failure detection/fault handling center (23) transmits the signal to receive the power supply of the backup power supply, the 24V vehicle power supply (16), the nano-lithium polymer power supply The pool (30) provides the total power. 2.根据权利要求1所述的一种通航移动立体指挥链接控制系统,其特征在于:所述的控制设备信号编码(13)接收遥杆控制、飞行状态切换、摄像头切换、叠加状态切换、机能调节旋钮、与云台控制组件。2. A navigation mobile three-dimensional command link control system according to claim 1, characterized in that: the control device signal coding (13) receives joystick control, flight state switching, camera switching, superimposing state switching, function Adjustment knob, and PTZ control components. 3.根据权利要求1所述的一种通航移动立体指挥链接控制系统,其特征在于:所述的24V车载电源(16)分别向24to 19-100W(24V转19V 100W转换模块)、24to 12-120W(标24V转12V 120W转换模块)、24to 5-隔离AW(24V转5V 20W隔离转换模块)、24to 5-隔离BW(24V转19V 100W隔离转换模块)、24to 12-隔离W(24V转12V 20W隔离转换模块)与24to 12-40W(24V转12V40W转换模块)输送电压,24to 19-100W向V PC800(地面站工控机1供电端口)输送电压,24to 12-120W向V DIS PC(地面站显示面板2供电端口)与V DIS S(地面站视频检测面板14供电端口)输送电压,24to 5-隔离AW向V P845TX(第一数据链路电台5/第二数据链路电台6供电端口)输送电压,24to 5-隔离BW向V DCK TX(数据融合处理器A4供电端口)输送电压,24to 12-隔离W向V RX90(图像接收电台15供电端口)输送电压,24to 12-40W向VMS801(中央处理器8供电端口)与V315R(备份遥控发射11供电端口)输送电压。3. a kind of navigation mobile three-dimensional command link control system according to claim 1, is characterized in that: described 24V vehicle-mounted power supply (16) is respectively to 24to 19-100W (24V turns 19V 100W conversion module), 24to 12- 120W (standard 24V to 12V 120W conversion module), 24to 5-isolation AW (24V to 5V 20W isolation conversion module), 24to 5-isolation BW (24V to 19V 100W isolation conversion module), 24to 12-isolation W (24V to 12V 20W isolation conversion module) and 24to 12-40W (24V to 12V40W conversion module) to deliver voltage, 24to 19-100W to deliver voltage to V PC800 (ground station IPC 1 power supply port), 24to 12-120W to V DIS PC (ground station Display panel 2 power supply port) and V DIS S (ground station video detection panel 14 power supply port) supply voltage, 24to 5-isolated AW to V P845TX (first data link radio 5/second data link radio 6 power supply port) Transmitting voltage, 24to 5-isolated BW transmits voltage to V DCK TX (data fusion processor A4 power supply port), 24to 12-isolated W transmits voltage to V RX90 (image receiving station 15 power supply port), 24to 12-40W transmits voltage to VMS801 ( 8 power supply ports for the central processing unit) and V315R (11 power supply ports for backup remote control transmitters) to deliver voltage. 4.根据权利要求1所述的一种通航移动立体指挥链接控制系统,其特征在于:所述的旋翼电机信号发生器(18)控制旋翼电机控制器A、旋翼电机控制器B、旋翼电机控制器C、旋翼电机控制器D与水平动力电机,旋翼电机控制器A、旋翼电机控制器B、旋翼电机控制器C、旋翼电机控制器D与水平动力电机均接收V motor的信号。4. a kind of navigation mobile three-dimensional command link control system according to claim 1, is characterized in that: described rotor motor signal generator (18) controls rotor motor controller A, rotor motor controller B, rotor motor control The controller C, the rotor motor controller D and the horizontal power motor, the rotor motor controller A, the rotor motor controller B, the rotor motor controller C, the rotor motor controller D and the horizontal power motor all receive the signal of V motor. 5.根据权利要求1所述的一种通航移动立体指挥链接控制系统,其特征在于:所述的翼面伺服信号发生器(19)控制翼面伺服器A、翼面伺服器B、翼面伺服器C、翼面伺服器D、翼面伺服器E与翼面伺服器F,控制翼面伺服器A、翼面伺服器B、翼面伺服器C、翼面伺服器D、翼面伺服器E与翼面伺服器F均接收V Sever的信号。5. A navigation mobile three-dimensional command link control system according to claim 1, characterized in that: the airfoil servo signal generator (19) controls the airfoil servo A, the airfoil servo B, the airfoil Server C, Wing Servo D, Wing Servo E and Wing Servo F, control Wing Servo A, Wing Servo B, Wing Servo C, Wing Servo D, Wing Servo Both the V Sever and the airfoil servo F receive the signal of V Sever. 6.根据权利要求1所述的一种通航移动立体指挥链接控制系统,其特征在于:所述的GPS/传感器/空速失效协调切换模块(27)接收TCK-31三轴陀螺仪传感器、TCK-32三轴陀螺仪传感器、TCK-33三轴陀螺仪传感器、TCK-41三轴加速度传感器、TCK-42三轴加速度传感器、TCK-43三轴加速度传感器、GPS接收器A、GPS接收器B、空速模块A与空速模块B的信号,所述的TCK-31三轴陀螺仪传感器、TCK-32三轴陀螺仪传感器、TCK-33三轴陀螺仪传感器、TCK-41三轴加速度传感器、TCK-42三轴加速度传感器、TCK-43三轴加速度传感器均接收V TCK的信号,所述的GPS接收器A、GPS接收器B均接收V GCK的信号,所述的空速模块A、空速模块B均使用V KCK(空速模块供电端口)的电压。6. a kind of navigation mobile three-dimensional command link control system according to claim 1 is characterized in that: described GPS/sensor/airspeed failure coordination switching module (27) receives TCK-31 three-axis gyro sensor, TCK -32 triaxial gyro sensor, TCK-33 triaxial gyro sensor, TCK-41 triaxial acceleration sensor, TCK-42 triaxial acceleration sensor, TCK-43 triaxial acceleration sensor, GPS receiver A, GPS receiver B , the signal of airspeed module A and airspeed module B, the TCK-31 three-axis gyro sensor, TCK-32 three-axis gyro sensor, TCK-33 three-axis gyro sensor, TCK-41 three-axis acceleration sensor , TCK-42 three-axis acceleration sensor, TCK-43 three-axis acceleration sensor all receive the signal of V TCK, the GPS receiver A, GPS receiver B all receive the signal of V GCK, the airspeed module A, Airspeed module B all use the voltage of V KCK (airspeed module power supply port). 7.根据权利要求1所述的一种通航移动立体指挥链接控制系统,其特征在于:所述的纳米锂聚合动力电池(30)向24to 12-80W(24V转12V 80W转换模块)、24to 12-隔离30W(24V转12V 30W隔离转换模块)、24to 7-隔离200W(24V转7V 200W隔离转换模块)、24to 12-200W(24V转12V 200W转换模块)、24to7.4-200W(24V转7.4V 200W转换模块)、24to 12-30W(24V转12V 30W转换模块、V PF、与V motor输送电压,24to 12-30W向12to5-5W隔离(12V转5V 5W转换模块)与12to 5-5W12V转5V5W转换模块)与V MS800输送电压,24to 12-80W向V Camera与V VIDEO输送电压,24to 12-隔离30W向V S-00输送电压,24to 7-隔离200W向V MS71与7to5-20W输送电压,7to5-20W向5to5隔离、V RCK、V KCK、V GCK、V TCK输送电压,所述的5to5隔离向V DCK RX输送电压,24to 12-200W向后备电源B输送电压,所述的24to 7.4-200W向V Sever输送电压,12to5-5W隔离向V P845R输送电压,12to 5-5W向V IO-OUT输送电压。7. A kind of navigation mobile three-dimensional command link control system according to claim 1, it is characterized in that: described nanometer lithium polymer power battery (30) to 24to 12-80W (24V turns 12V 80W conversion module), 24to 12 -Isolation 30W (24V to 12V 30W isolation conversion module), 24to 7-isolation 200W (24V to 7V 200W isolation conversion module), 24to 12-200W (24V to 12V 200W conversion module), 24to7.4-200W (24V to 7.4 V 200W conversion module), 24to 12-30W (24V to 12V 30W conversion module, V PF, and V motor transmission voltage, 24to 12-30W to 12to5-5W isolation (12V to 5V 5W conversion module) and 12to 5-5W12V to 5V5W conversion module) and V MS800 to transmit voltage, 24to 12-80W to transmit voltage to V Camera and V VIDEO, 24to 12-isolation 30W to transmit voltage to V S-00, 24to 7-isolation 200W to transmit voltage to V MS71 and 7to5-20W , 7to5-20W transmits voltage to 5to5 isolation, V RCK, V KCK, V GCK, V TCK, said 5to5 isolation transmits voltage to V DCK RX, 24to 12-200W transmits voltage to backup power supply B, said 24to 7.4 -200W delivers voltage to V Sever, 12to5-5W isolation delivers voltage to VP845R, 12to 5-5W delivers voltage to V IO-OUT.
CN202010549671.9A 2020-06-16 2020-06-16 A navigation mobile three-dimensional command link control system Pending CN111596682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010549671.9A CN111596682A (en) 2020-06-16 2020-06-16 A navigation mobile three-dimensional command link control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010549671.9A CN111596682A (en) 2020-06-16 2020-06-16 A navigation mobile three-dimensional command link control system

Publications (1)

Publication Number Publication Date
CN111596682A true CN111596682A (en) 2020-08-28

Family

ID=72184214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010549671.9A Pending CN111596682A (en) 2020-06-16 2020-06-16 A navigation mobile three-dimensional command link control system

Country Status (1)

Country Link
CN (1) CN111596682A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550736A (en) * 1993-04-27 1996-08-27 Honeywell Inc. Fail-operational fault tolerant flight critical computer architecture and monitoring method
JPH1069448A (en) * 1996-07-22 1998-03-10 Raytheon Co Deterministic network protocol
CN1358649A (en) * 2002-01-29 2002-07-17 北京航空航天大学 Self-check test for test-control and electronic system of axle-shared double-rotary wing pilotless helicopter
CN103838230A (en) * 2014-03-11 2014-06-04 南京景曜智能科技有限公司 Digital steering engine control system with scalable redundancy and shaft number and breakdown switching method
DE102017212716A1 (en) * 2016-08-09 2018-02-15 China Aviation Marine Equipment (Yantai) Technology Co., Ltd. Unmanned aircraft
CN109213118A (en) * 2017-06-29 2019-01-15 波音公司 Failure for multiple failures in redundant system covers
CN110262466A (en) * 2019-07-11 2019-09-20 电子科技大学 A kind of winged control fault detection and diagnosis method based on random forest
CN110597287A (en) * 2019-09-29 2019-12-20 中电莱斯信息系统有限公司 Multi-functional portable unmanned aerial vehicle ground satellite station
CN212694289U (en) * 2020-06-16 2021-03-12 邳志刚 A navigation mobile three-dimensional command link control system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550736A (en) * 1993-04-27 1996-08-27 Honeywell Inc. Fail-operational fault tolerant flight critical computer architecture and monitoring method
JPH1069448A (en) * 1996-07-22 1998-03-10 Raytheon Co Deterministic network protocol
CN1358649A (en) * 2002-01-29 2002-07-17 北京航空航天大学 Self-check test for test-control and electronic system of axle-shared double-rotary wing pilotless helicopter
CN103838230A (en) * 2014-03-11 2014-06-04 南京景曜智能科技有限公司 Digital steering engine control system with scalable redundancy and shaft number and breakdown switching method
DE102017212716A1 (en) * 2016-08-09 2018-02-15 China Aviation Marine Equipment (Yantai) Technology Co., Ltd. Unmanned aircraft
CN109213118A (en) * 2017-06-29 2019-01-15 波音公司 Failure for multiple failures in redundant system covers
CN110262466A (en) * 2019-07-11 2019-09-20 电子科技大学 A kind of winged control fault detection and diagnosis method based on random forest
CN110597287A (en) * 2019-09-29 2019-12-20 中电莱斯信息系统有限公司 Multi-functional portable unmanned aerial vehicle ground satellite station
CN212694289U (en) * 2020-06-16 2021-03-12 邳志刚 A navigation mobile three-dimensional command link control system

Similar Documents

Publication Publication Date Title
CN203786564U (en) Dual-redundancy flight control system
CN110647145B (en) Security-based ground mobile robot and unmanned aerial vehicle collaborative operation system and method
KR101116831B1 (en) Intelligent Unmaned and Small-Sized Flying Body Robot Steering System
CN200976108Y (en) Small-size unmanned helicopter is flight control system independently
US20180362168A1 (en) Unmanned aerial vehicle recovery system
CN105388907B (en) Multiple no-manned plane low latitude monitoring system based on mobile communications network
US11017681B2 (en) Unmanned aerial vehicle avoiding obstacles
CN102915038B (en) Dual-redundancy autonomous flight control system for micro-miniature unmanned helicopters
CN205193562U (en) Unmanned aerial vehicle flight control based on ethernet exchange bus
CN113778132B (en) Integrated parallel control platform for sea-air collaborative heterogeneous unmanned system
US20180046177A1 (en) Motion Sensing Flight Control System Based on Smart Terminal and Terminal Equipment
CN110333735B (en) A system and method for realizing secondary positioning of unmanned aerial vehicle in water and land
CN106054903A (en) Multi-rotor unmanned aerial vehicle self-adaptive landing method and system
JP2006082774A (en) Unmanned air vehicle and unmanned air vehicle control method
CN102799175B (en) Rapid detection device and detection method for unmanned aircraft system
CN206532142U (en) A kind of rotor wing unmanned aerial vehicle tenacious tracking of view-based access control model moves the control system of target
CN108965124A (en) A kind of unmanned aerial vehicle control system
CN112114593A (en) Control system
US20240199220A1 (en) Systems and methods for aircraft propulsion
CN107807668A (en) A kind of multi-rotor unmanned aerial vehicle autocontrol method
CN113268075A (en) Unmanned aerial vehicle control method and system
WO2023226485A1 (en) Autonomous navigation control system for unmanned ship
CN116166041A (en) EVTOL aircraft avionics control system
CN107942348A (en) A kind of road enforcement system based on unmanned plane and robot technology
Arnold The uav ground control station: Types, components, safety, redundancy, and future applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载