CN111293138A - Three-dimensional MRAM storage structure and fabrication method thereof - Google Patents
Three-dimensional MRAM storage structure and fabrication method thereof Download PDFInfo
- Publication number
- CN111293138A CN111293138A CN201811495212.6A CN201811495212A CN111293138A CN 111293138 A CN111293138 A CN 111293138A CN 201811495212 A CN201811495212 A CN 201811495212A CN 111293138 A CN111293138 A CN 111293138A
- Authority
- CN
- China
- Prior art keywords
- layer
- line metal
- metal layer
- cmos circuit
- tunnel junction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000010410 layer Substances 0.000 claims abstract description 483
- 239000002184 metal Substances 0.000 claims abstract description 159
- 229910052751 metal Inorganic materials 0.000 claims abstract description 159
- 230000005291 magnetic effect Effects 0.000 claims abstract description 112
- 239000000758 substrate Substances 0.000 claims abstract description 73
- 239000000463 material Substances 0.000 claims abstract description 55
- 230000015654 memory Effects 0.000 claims abstract description 30
- 239000004065 semiconductor Substances 0.000 claims abstract description 30
- 230000005641 tunneling Effects 0.000 claims abstract description 22
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 239000010703 silicon Substances 0.000 claims abstract description 11
- -1 polydimethylsiloxane Polymers 0.000 claims description 31
- 239000003302 ferromagnetic material Substances 0.000 claims description 27
- 230000007704 transition Effects 0.000 claims description 15
- 239000011810 insulating material Substances 0.000 claims description 13
- 229910019236 CoFeB Inorganic materials 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910021389 graphene Inorganic materials 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 10
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 10
- 239000011229 interlayer Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- 229910052582 BN Inorganic materials 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 6
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 238000000231 atomic layer deposition Methods 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 4
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims 2
- 239000011112 polyethylene naphthalate Substances 0.000 claims 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 25
- 239000002356 single layer Substances 0.000 abstract description 4
- 238000000227 grinding Methods 0.000 abstract description 3
- 238000003466 welding Methods 0.000 abstract description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 9
- 230000005415 magnetization Effects 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052961 molybdenite Inorganic materials 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
Landscapes
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体集成电路设计及制造领域,特别是涉及一种三维MRAM存储结构及其制作方法。The invention belongs to the field of semiconductor integrated circuit design and manufacture, and in particular relates to a three-dimensional MRAM storage structure and a manufacturing method thereof.
背景技术Background technique
随着便携式计算器件和无线通信器件使用的增长,存储器件可能需要更高的密度、更低的功耗和/或非易失性。磁性存储器件可以能够满足上述的技术要求。As the use of portable computing devices and wireless communication devices increases, memory devices may require higher density, lower power consumption, and/or non-volatility. The magnetic memory device may be able to meet the above-mentioned technical requirements.
许多电子器件都包含电子存储器。电子存储器可以是易失性存储器或非易失性存储器。非易失性存储器能够在失电时储存数据,然而易失性存储器不能在失电时储存数据。由于磁阻式随机存取存储器(MRAM)优于目前的电子存储器的优势,所以该MRAM是下一代电子存储器的一种有前景的候选者。与目前的诸如闪速随机存取存储器的非易失性存储器相比,MRAM通常更快并且具有更好的耐用性。与目前的诸如动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)的易失性存储器相比,MRAM通常具有类似的性能和密度,但是MRAM具有更低的功耗。由于MTJ器件具有高运行速度和低功耗并且被用于替代DRAM的电容器,可以将MTJ器件应用于具有低功耗和高速度的图像设备和移动设备。Many electronic devices contain electronic memory. Electronic storage can be volatile or non-volatile. Non-volatile memory can store data when power is lost, whereas volatile memory cannot store data when power is lost. Magnetoresistive random access memory (MRAM) is a promising candidate for the next generation of electronic memory due to its advantages over current electronic memory. MRAM is generally faster and has better endurance than current non-volatile memories such as flash random access memory. Compared to current volatile memories such as dynamic random access memory (DRAM) and static random access memory (SRAM), MRAM typically has similar performance and density, but MRAM has lower power consumption. Since MTJ devices have high operating speed and low power consumption and are used to replace capacitors of DRAMs, MTJ devices can be applied to image devices and mobile devices having low power consumption and high speed.
当两个磁层的自旋方向(即磁通量的方向)彼此相同时磁电阻器件具有低电阻,而当自旋方向彼此相反时具有高电阻。这样,可以使用依赖于磁层磁化状态而改变的单元电阻改变将位数据写入磁电阻存储器件。将通过例子描述具有MTJ结构的磁电阻存储器。在具有由铁磁层/绝缘层/铁磁层组成的结构的MTJ存储单元中,当穿过了第一铁磁层的电子穿过用作隧穿阻挡(tunneling barrier)的绝缘层时,隧穿几率依赖于第二铁磁层的磁化方向而改变。也就是,当两个铁磁层的磁化方向平行时,隧穿电流被最大化,而当它们反平行时,隧穿电流被最小化。例如,可以认为,当电阻高时,写入数据“1”,而当电阻低时,写入数据“0”。电流流过磁性层时,电流将被极化,形成自旋极化电流。自旋电子将自旋动量传递给自由磁层的磁矩,使自旋磁性层的磁矩获得自旋动量后改变方向,这个过程称为自旋传输矩,因此,STT-MRAM是通过自旋电流实现信息写入的。The magnetoresistive device has low resistance when the spin directions (ie, the directions of the magnetic fluxes) of the two magnetic layers are the same as each other, and has high resistance when the spin directions are opposite to each other. In this way, bit data can be written into a magnetoresistive memory device using a change in cell resistance that is dependent on the magnetization state of the magnetic layer. A magnetoresistive memory having an MTJ structure will be described by way of example. In an MTJ memory cell having a structure composed of a ferromagnetic layer/insulating layer/ferromagnetic layer, when electrons passing through the first ferromagnetic layer pass through the insulating layer serving as a tunneling barrier, tunneling The penetration probability varies depending on the magnetization direction of the second ferromagnetic layer. That is, when the magnetization directions of the two ferromagnetic layers are parallel, the tunneling current is maximized, and when they are antiparallel, the tunneling current is minimized. For example, it can be considered that when the resistance is high, data "1" is written, and when the resistance is low, data "0" is written. When current flows through the magnetic layer, the current will be polarized, forming a spin-polarized current. The spin electron transfers the spin momentum to the magnetic moment of the free magnetic layer, so that the magnetic moment of the spin magnetic layer changes direction after acquiring the spin momentum. This process is called spin transfer torque. The current realizes the writing of information.
STT-MRAM存储单元的核心仍然是一个MTJ,由两层不同厚度的铁磁层及一层几个纳米厚的非磁性隔离层组成。通过外部电路,电流可以从垂直于MJT表面的方向通过MTJ。电流通过较厚的铁磁层(称为固定磁层)时,电子被自旋极化,其自旋方向为固定磁层的磁矩方向。如果中间非磁性隔离层的厚度足够的小,以确保高度的极化,自旋极化电子能够将其自旋角动量转移给较薄的铁磁层(称为自由磁层),改变自由磁层的磁化平衡状态。扮演“极化层”角色的固定磁层一般较厚(几十个纳米),其饱和磁化强度很大,它的平衡状态是不会发生变化的。相反,要受到自旋矩效应的自由磁层,一般很薄,其饱和磁化强度较小,因此,它的磁矩矢量能根据自旋电流中自旋电子的极化方向自由地变化取向。STT-MRAM存储单元的结构简单,它省略了带磁性外壳的附加写信息线,最大限度地减少了制备工艺程序,并使存储单元的横截面积减小、存储密度高、存储速度快,满足高性能计算机系统的设计要求。The core of the STT-MRAM memory cell is still an MTJ, which consists of two ferromagnetic layers of different thicknesses and a non-magnetic isolation layer several nanometers thick. With external circuitry, current can flow through the MTJ in a direction perpendicular to the MJT surface. When an electric current passes through a thicker ferromagnetic layer (called a pinned magnetic layer), the electrons are spin-polarized in the direction of the magnetic moment of the pinned magnetic layer. If the thickness of the intermediate nonmagnetic spacer is small enough to ensure a high degree of polarization, the spin-polarized electrons are able to transfer their spin angular momentum to the thinner ferromagnetic layer (called the free magnetic layer), changing the free magnetic The magnetization equilibrium state of the layer. The fixed magnetic layer that plays the role of "polarization layer" is generally thick (tens of nanometers), its saturation magnetization is very large, and its equilibrium state will not change. On the contrary, the free magnetic layer to be affected by the spin moment effect is generally very thin, and its saturation magnetization is small, so its magnetic moment vector can freely change its orientation according to the polarization direction of the spin electrons in the spin current. The structure of the STT-MRAM memory cell is simple, it omits the additional write information line with a magnetic shell, minimizes the preparation process, and reduces the cross-sectional area of the memory cell, high storage density, and fast storage speed. Design requirements for high performance computer systems.
随着摩尔定律的逐渐终结,通过器件微缩来提高存储芯片的存储密度变得越来越困难。目前所有的投入生产的MRAM存储芯片都是单层存储芯片,通过多层存储电路的有效堆叠,可以显著提高芯片的存储密度,扩展MRAM存储芯片的应用范围。As Moore's Law comes to an end, it becomes increasingly difficult to increase the storage density of memory chips through device scaling. All MRAM memory chips currently put into production are single-layer memory chips. Through the effective stacking of multi-layer memory circuits, the memory density of the chip can be significantly improved and the application scope of the MRAM memory chip can be expanded.
目前已提出的3D堆叠技术大多是通过TSV(硅通孔)技术来完成的。该技术方案中进行堆叠的存储层衬底需要从背部减薄到100um以下,工艺难度较大;TSV通孔占用面积较大,限制了存储位元密度;每层存储芯片进行焊接时需要制备焊盘,并保证精准焊接,这限制了工艺良率;存储层与层之间的互联线较长,增加了寄生电容/电感。Most of the proposed 3D stacking technologies are accomplished through TSV (Through Silicon Via) technology. In this technical solution, the stacked memory layer substrate needs to be thinned from the back to less than 100um, which is difficult to process; the TSV through hole occupies a large area, which limits the storage bit density; each layer of memory chips needs to be soldered when soldering. Pad and ensure precise soldering, which limits process yield; interconnect lines between memory layers are long, increasing parasitic capacitance/inductance.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种三维MRAM存储结构及其制作方法,用于解决现有技术中3D堆叠需要通过硅通孔实现,工艺难度较大且限制了存储位元密度的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a three-dimensional MRAM storage structure and a manufacturing method thereof, which are used to solve the problem that in the prior art, 3D stacking needs to be realized through silicon vias, which is difficult and restricts the process. The problem of storage bit density.
为实现上述目的及其他相关目的,本发明提供一种三维MRAM存储结构的制作方法,所述制作方法包括步骤:1)提供一CMOS电路基底,于所述CMOS电路基底上形成磁性隧穿结器件,所述磁性隧穿结器件的第一端与所述CMOS电路基底的MOS管的漏极相连;2)制备源线金属层、字线金属层以及位线金属层,所述源线金属层、字线金属层以及位线金属层之间藉由层间介质层隔离,所述源线金属层、字线金属层及位线金属层分别通过通孔与所述MOS管的源极、所述MOS管的栅极以及所述磁性隧穿结器件的第二端相连,以形成第一存储层;3)于所述第一存储层上制备第一连接电路层,所述第一连接电路层用以提供存储层的读写信号,并提供相邻两存储层之间的信号连接通路;4)于所述第一连接电路层上形成半导体材料层,基于所述半导体材料层制作CMOS电路层并在所述CMOS电路层上制作磁性隧穿结器件,然后重复进行步骤2)以形成第二存储层,接着重复进行步骤3)以在所述第二存储层上形成第二连接电路层;5)重复进行步骤4)多次以形成三维MRAM存储结构。In order to achieve the above object and other related objects, the present invention provides a method for fabricating a three-dimensional MRAM storage structure. The fabrication method includes the steps of: 1) providing a CMOS circuit substrate, and forming a magnetic tunnel junction device on the CMOS circuit substrate , the first end of the magnetic tunnel junction device is connected to the drain of the MOS transistor of the CMOS circuit substrate; 2) prepare a source line metal layer, a word line metal layer and a bit line metal layer, the source line metal layer , The word line metal layer and the bit line metal layer are separated by an interlayer dielectric layer, and the source line metal layer, the word line metal layer and the bit line metal layer are connected to the source electrode of the MOS transistor, the connecting the gate of the MOS transistor and the second end of the magnetic tunnel junction device to form a first storage layer; 3) preparing a first connection circuit layer on the first storage layer, the first connection circuit 4) A semiconductor material layer is formed on the first connection circuit layer, and a CMOS circuit is fabricated based on the semiconductor material layer layer and fabricate a magnetic tunnel junction device on the CMOS circuit layer, then repeat step 2) to form a second storage layer, and then repeat step 3) to form a second connection circuit layer on the second storage layer 5) Repeat step 4) multiple times to form a three-dimensional MRAM storage structure.
优选地,所述CMOS电路基底包括基于SOI衬底的CMOS电路基底以及基于柔性衬底的CMOS电路基底中的一种。Preferably, the CMOS circuit substrate includes one of a CMOS circuit substrate based on an SOI substrate and a CMOS circuit substrate based on a flexible substrate.
优选地,所述柔性衬底包括聚二甲基硅氧烷、聚酰亚胺、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯及聚对萘二甲酸乙二醇酯中的一种。Preferably, the flexible substrate comprises one of polydimethylsiloxane, polyimide, polyethylene, polypropylene, polyethylene terephthalate and polyethylene terephthalate kind.
优选地,步骤2)包括:2-1)形成覆盖所述CMOS电路基底及磁性隧穿结器件的第一介质层,于所述第一介质层中形成第一通孔,所述第一通孔连通所述MOS管的源极,于所述第一介质层上及所述第一通孔中形成第一电极层,并图形化所述第一电极层以形成所述源线金属层;2-2)形成覆盖所述源线金属层的第二介质层,于所述第二介质层及所述第一介质层中形成第二通孔,所述第二通孔连通所述MOS管的栅极,于所述第二介质层上及所述第二通孔中形成第二电极层,并图形化所述第二电极层以形成所述字线金属层;2-3)形成覆盖所述字线金属层层的第三介质层,于所述第三介质层、第二介质层及所述第一介质层中形成第三通孔,所述第三通孔连通所述磁性隧穿结器件的第二端,于所述第三介质层上及所述第三通孔中形成第三电极层,并图形化所述第三电极层以形成所述位线金属层。Preferably, step 2) includes: 2-1) forming a first dielectric layer covering the CMOS circuit substrate and the magnetic tunnel junction device, and forming a first through hole in the first dielectric layer, and the first through hole is formed in the first dielectric layer. A hole is connected to the source of the MOS transistor, a first electrode layer is formed on the first dielectric layer and in the first through hole, and the first electrode layer is patterned to form the source line metal layer; 2-2) Form a second dielectric layer covering the source line metal layer, and form a second through hole in the second dielectric layer and the first dielectric layer, and the second through hole communicates with the MOS transistor , forming a second electrode layer on the second dielectric layer and in the second through hole, and patterning the second electrode layer to form the word line metal layer; 2-3) forming a cover a third dielectric layer of the word line metal layer, a third through hole is formed in the third dielectric layer, the second dielectric layer and the first dielectric layer, and the third through hole communicates with the magnetic tunnel At the second end of the through-junction device, a third electrode layer is formed on the third dielectric layer and in the third through hole, and the third electrode layer is patterned to form the bit line metal layer.
优选地,步骤4)采用化学气相沉积法或原子层沉积法于所述第一连接电路层上形成半导体材料层,所述半导体材料层的材质包括硅、锗、锗硅、碳化硅以及Ⅲ-Ⅴ族化合物中的一种。Preferably, step 4) adopts chemical vapor deposition method or atomic layer deposition method to form a semiconductor material layer on the first connection circuit layer, and the material of the semiconductor material layer includes silicon, germanium, silicon germanium, silicon carbide and III- One of the Group V compounds.
优选地,所述磁性隧穿结器件包括依次层叠的第一金属连接层、第一金属过渡层、固定磁层、隧穿层、自由磁层、第二金属过渡层以及第二金属连接层,所述第一金属连接层与所述CMOS电路的MOS管的漏极连接。Preferably, the magnetic tunnel junction device comprises a first metal connection layer, a first metal transition layer, a fixed magnetic layer, a tunneling layer, a free magnetic layer, a second metal transition layer and a second metal connection layer stacked in sequence, The first metal connection layer is connected to the drain of the MOS transistor of the CMOS circuit.
优选地,所述固定磁层的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种,所述自由磁层的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种。Preferably, the material of the fixed magnetic layer includes one of CoFeB, elemental ferromagnetic material and alloy ferromagnetic material, and the material of the free magnetic layer includes one of CoFeB, elemental ferromagnetic material and alloy ferromagnetic material .
优选地,所述隧穿层为单晶结构的二维绝缘材料层,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。Preferably, the tunneling layer is a two-dimensional insulating material layer with a single crystal structure, and the two-dimensional insulating material layer includes one of two-dimensional boron nitride, graphene fluoride and graphene oxide.
本发明还提供一种三维MRAM存储结构,包括:第一存储层,包括CMOS电路基底、磁性隧穿结器件、源线金属层、字线金属层以及位线金属层,所述磁性隧穿结器件形成于所述CMOS电路基底上,所述磁性隧穿结器件的第一端与所述CMOS电路基底的MOS管的漏极相连,所述源线金属层、字线金属层以及位线金属层之间藉由层间介质层隔离,所述源线金属层、字线金属层及位线金属层分别通过通孔与所述MOS管的源极、所述MOS管的栅极以及所述磁性隧穿结器件的第二端相连;第一连接电路层,形成于所述第一存储层上,用以提供存储层的读写信号,并提供相邻两存储层之间的信号连接通路;若干个第二存储层,所述第二存储层包括CMOS电路层、磁性隧穿结器件、源线金属层、字线金属层以及位线金属层,所述磁性隧穿结器件位于所述CMOS电路层上,所述磁性隧穿结器件的第一端与所述CMOS电路层的MOS管的漏极相连,所述源线金属层、字线金属层以及位线金属层之间藉由层间介质层隔离,所述源线金属层、字线金属层及位线金属层分别通过通孔与所述MOS管的源极、所述MOS管的栅极以及所述磁性隧穿结器件的第二端相连;若干个第二连接电路层,位于相邻的第二存储层之间,用以提供存储层的读写信号,并提供相邻两存储层之间的信号连接通路。The present invention also provides a three-dimensional MRAM storage structure, comprising: a first storage layer including a CMOS circuit substrate, a magnetic tunnel junction device, a source line metal layer, a word line metal layer and a bit line metal layer, the magnetic tunnel junction The device is formed on the CMOS circuit substrate, the first end of the magnetic tunnel junction device is connected to the drain of the MOS transistor of the CMOS circuit substrate, the source line metal layer, the word line metal layer and the bit line metal layer The layers are separated by an interlayer dielectric layer, the source line metal layer, word line metal layer and bit line metal layer are respectively connected to the source of the MOS transistor, the gate of the MOS transistor and the The second end of the magnetic tunnel junction device is connected; the first connection circuit layer is formed on the first storage layer and used to provide read and write signals of the storage layer and to provide a signal connection path between two adjacent storage layers a plurality of second storage layers, the second storage layers include a CMOS circuit layer, a magnetic tunnel junction device, a source line metal layer, a word line metal layer and a bit line metal layer, the magnetic tunnel junction devices are located in the On the CMOS circuit layer, the first end of the magnetic tunnel junction device is connected to the drain of the MOS transistor of the CMOS circuit layer, and the source line metal layer, the word line metal layer and the bit line metal layer are connected by The interlayer dielectric layer is isolated, the source line metal layer, word line metal layer and bit line metal layer are respectively connected to the source of the MOS transistor, the gate of the MOS transistor and the magnetic tunnel junction device through through holes A plurality of second connection circuit layers are located between adjacent second storage layers to provide read and write signals of the storage layers and to provide signal connection paths between two adjacent storage layers.
优选地,所述CMOS电路基底包括基于SOI衬底的CMOS电路基底以及基于柔性衬底的CMOS电路基底中的一种。Preferably, the CMOS circuit substrate includes one of a CMOS circuit substrate based on an SOI substrate and a CMOS circuit substrate based on a flexible substrate.
优选地,所述柔性衬底包括聚二甲基硅氧烷、聚酰亚胺、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯及聚对萘二甲酸乙二醇酯中的一种。Preferably, the flexible substrate comprises one of polydimethylsiloxane, polyimide, polyethylene, polypropylene, polyethylene terephthalate and polyethylene terephthalate kind.
优选地,所述CMOS电路层为基于半导体材料层的CMOS电路层,所述半导体材料层的材质包括硅、锗、锗硅、碳化硅以及Ⅲ-Ⅴ族化合物中的一种。Preferably, the CMOS circuit layer is a CMOS circuit layer based on a semiconductor material layer, and the material of the semiconductor material layer includes one of silicon, germanium, silicon germanium, silicon carbide and III-V compounds.
优选地,所述磁性隧穿结器件包括依次层叠的第一金属连接层、第一金属过渡层、固定磁层、隧穿层、自由磁层、第二金属过渡层以及第二金属连接层,所述第一金属连接层与所述CMOS电路的MOS管的漏极连接。Preferably, the magnetic tunnel junction device comprises a first metal connection layer, a first metal transition layer, a fixed magnetic layer, a tunneling layer, a free magnetic layer, a second metal transition layer and a second metal connection layer stacked in sequence, The first metal connection layer is connected to the drain of the MOS transistor of the CMOS circuit.
优选地,所述固定磁层的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种,所述自由磁层的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种。Preferably, the material of the fixed magnetic layer includes one of CoFeB, elemental ferromagnetic material and alloy ferromagnetic material, and the material of the free magnetic layer includes one of CoFeB, elemental ferromagnetic material and alloy ferromagnetic material .
优选地,所述隧穿层为单晶结构的二维绝缘材料层,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。Preferably, the tunneling layer is a two-dimensional insulating material layer with a single crystal structure, and the two-dimensional insulating material layer includes one of two-dimensional boron nitride, graphene fluoride and graphene oxide.
如上所述,本发明的三维MRAM存储结构及其制作方法,具有以下有益效果:As mentioned above, the three-dimensional MRAM storage structure of the present invention and the manufacturing method thereof have the following beneficial effects:
本发明与传统工艺相比,不需要硅穿孔(TSV)工艺中先对单层芯片流片、研磨减薄以及对准焊接等步骤,而是直接将多层存储电路通过半导体材料及金属布线层有序的堆叠制备在同一衬底上,其制作工艺与CMOS工艺兼容。Compared with the traditional process, the present invention does not require the steps of tape-out, grinding and thinning, and alignment welding of the single-layer chip in the TSV process, but directly passes the multi-layer storage circuit through the semiconductor material and the metal wiring layer. The ordered stack is fabricated on the same substrate, and its fabrication process is compatible with the CMOS process.
附图说明Description of drawings
图1~图14显示为本发明的三维MRAM存储结构的制作方法各步骤所呈现的结构示意图。1 to 14 are schematic structural diagrams showing the steps of the manufacturing method of the three-dimensional MRAM memory structure of the present invention.
元件标号说明Component label description
10 CMOS电路基底10 CMOS circuit substrate
101 CMOS电路层101 CMOS circuit layer
102 漏极102 Drain
103 源极103 Source
104 栅极104 grid
201 第一金属连接层201 The first metal connection layer
202 第一金属过渡层202 The first metal transition layer
203 固定磁层203 Fixed magnetic layer
204 隧穿层204 Tunneling layer
205 自由磁层205 Free magnetic layer
206 第二金属过渡层206 The second metal transition layer
207 第二金属连接层207 Second metal connection layer
208 介质层208 dielectric layer
301 第一介质层301 first dielectric layer
302 第一通孔302 first through hole
303 源线金属层303 Source line metal layer
304 第二介质层304 Second dielectric layer
305 第二通孔305 Second through hole
306 字线金属层306 word line metal layer
307 第三介质层307 Third dielectric layer
308 第三通孔308 Third through hole
309 位线金属层309-bit line metal layer
401 第一连接电路层401 The first connection circuit layer
501 CMOS电路层501 CMOS circuit layer
601 第二连接电路层601 Second connection circuit layer
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1~图14。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figure 1 to Figure 14. It should be noted that the diagrams provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the diagrams only show the components related to the present invention rather than the number, shape and the number of components in the actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
如图1~图14所示,本实施例提供一种三维MRAM存储结构的制作方法,所述制作方法包括步骤:As shown in FIG. 1 to FIG. 14 , this embodiment provides a method for fabricating a three-dimensional MRAM storage structure, and the fabrication method includes the steps:
如图1~图2所示,首先进行步骤1),提供一CMOS电路基底,于所述CMOS电路基底上形成磁性隧穿结器件,所述磁性隧穿结器件的第一端与所述CMOS电路基底的MOS管的漏极102相连。As shown in FIG. 1 to FIG. 2 , step 1) is first performed, a CMOS circuit substrate is provided, a magnetic tunnel junction device is formed on the CMOS circuit substrate, and the first end of the magnetic tunnel junction device is connected to the CMOS The
所述CMOS电路基底包括基于SOI衬底的CMOS电路基底以及基于柔性衬底的CMOS电路基底中的一种。The CMOS circuit substrate includes one of a CMOS circuit substrate based on an SOI substrate and a CMOS circuit substrate based on a flexible substrate.
在一实施例中,所述CMOS电路基底10可包括基于SOI衬底的CMOS电路层102以及覆盖所述CMOS电路层102的平坦化的介质层208。In one embodiment, the
在另一实施例中,所述CMOS电路基底也可以包括柔性衬底、位于所述柔性衬底上的CMOS电路层以及覆盖于所述CMOS电路层的柔性介质层,其中,所述柔性介质层的表面粗糙度小于0.2nm。例如,所述柔性衬底包括聚二甲基硅氧烷、聚酰亚胺、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯及聚对萘二甲酸乙二醇酯中的一种。本发明采用柔性衬底,所形成的磁性隧穿结器件相比现有的固体铁磁材料的磁性隧穿结器件更为轻薄,形成的MRAM适合柔性电路的应用,并且对柔性衬底的宏观形貌基本没有要求,例如,所述柔性衬底可以为圆形、椭圆形、多边形或其他的任意所需形状,所述柔性衬底的加工工艺较为简单,相比于现有的固体铁磁材料的磁性隧穿结器件具有更大的优势。In another embodiment, the CMOS circuit substrate may also include a flexible substrate, a CMOS circuit layer on the flexible substrate, and a flexible dielectric layer covering the CMOS circuit layer, wherein the flexible dielectric layer The surface roughness is less than 0.2nm. For example, the flexible substrate includes one of polydimethylsiloxane, polyimide, polyethylene, polypropylene, polyethylene terephthalate, and polyethylene terephthalate . The present invention adopts a flexible substrate, the formed magnetic tunnel junction device is lighter and thinner than the magnetic tunnel junction device of the existing solid ferromagnetic material, the formed MRAM is suitable for the application of flexible circuit, and the macroscopic view of the flexible substrate is There is basically no requirement for the topography. For example, the flexible substrate can be a circle, an ellipse, a polygon or any other desired shape. The processing technology of the flexible substrate is relatively simple, compared with the existing solid ferromagnetic Magnetic tunnel junction devices of materials have greater advantages.
所述磁性隧穿结器件包括依次层叠的第一金属连接层201、第一金属过渡层202、固定磁层203、隧穿层204、自由磁层205、第二金属过渡层206以及第二金属连接层207,所述第一金属连接层201与所述CMOS电路的MOS管的漏极102连接。The magnetic tunnel junction device includes a first
所述第一金属连接层201的材质可以为W、Cu及Al中的一种。The material of the first
本实施例的第一金属连接层201形成于一平坦的柔性介质层上,可以对所述第一金属连接层201进行平坦化处理,获得表面平整的第一金属连接层201,以提高后续第一金属过渡层202的平坦度。The first
在一实施例中,所述固定磁层203的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种,所述自由磁层205的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种。In one embodiment, the material of the fixed
在另一实施例中,所述固定磁层203可以为二维磁性材料,所述固定磁层203的材质包括CrGeTe3及CrI3中的一种,本发明的固定磁层203采用二维磁性材料,可以获得较为轻薄的磁性隧穿结器件。In another embodiment, the fixed
所述自由磁层205可以为二维铁磁材料层,所述自由磁层205的材质可以为CrGeTe3及CrI3中的一种。本发明的自由磁层205为二维铁磁材料层,其厚度较薄,一方面可以提高磁性隧穿结器件的磁化取向速度,另一方面可以获得较为轻薄的磁性隧穿结器件。The free
所述隧穿层204为单晶结构的二维绝缘材料层,例如,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。本实施例的隧穿层204选用厚度非常薄的二维绝缘材料层,隧穿层204的一致性非常好,可在保证隧穿层204的质量及功能的同时,大大提高隧穿几率。The
如图3~图11所示,然后进行步骤2),制备源线金属层303、字线金属层306以及位线金属层309,所述源线金属层303、字线金属层306以及位线金属层309之间藉由层间介质层隔离,所述源线金属层303、字线金属层306及位线金属层309分别通过通孔与所述MOS管的源极103、所述MOS管的栅极104以及所述磁性隧穿结器件的第二端相连,以形成第一存储层。需要说明的是,在存储芯片中,除了存储单元外,在存储单元外围还有相应的信号读写电路,如比较器、放大器等,本实施例中并未图示。As shown in FIGS. 3 to 11 , then step 2) is performed to prepare a source
具体地,步骤2)包括:Specifically, step 2) includes:
如图3~图5所示,首先进行步骤2-1),形成覆盖所述CMOS电路基底及磁性隧穿结器件的第一介质层301,所述第一介质层301可以为二氧化硅(SiO2)、氮化硅(Si3N4)或者氮氧化硅(SiOxNy)等,采用光刻工艺及刻蚀工艺于所述第一介质层301中形成第一通孔302,所述第一通孔302连通所述MOS管的源极103,于所述第一介质层301上及所述第一通孔302中形成第一电极层,如采用金属沉积工艺等,并图形化刻蚀所述第一电极层以形成所述源线金属层303。当然,也可以采用如金属剥离工艺(lift-off)等制作所述源线金属层303。即先制作图形化的光刻胶,然后沉积金属层,接着将所述光刻胶以及其上表面的金属层去除。同时,下述的第二介质层304、字线金属层306、第三介质层307、位线金属层309等也可以采用上述工艺制作。As shown in FIGS. 3 to 5 , step 2-1) is first performed to form a first
如图6~图8所示,然后进行步骤2-2),形成覆盖所述源线金属层303的第二介质层304,于所述第二介质层304及所述第一介质层301中形成第二通孔305,所述第二通孔305连通所述MOS管的栅极104,于所述第二介质层304上及所述第二通孔305中形成第二电极层,并图形化所述第二电极层以形成所述字线金属层306。As shown in FIG. 6 to FIG. 8 , then step 2-2) is performed to form a
如图9~图11所示,接着进行步骤2-3),形成覆盖所述字线金属层306层的第三介质层307,于所述第三介质层307、第二介质层304及所述第一介质层301中形成第三通孔308,所述第三通孔308连通所述磁性隧穿结器件的第二端,于所述第三介质层307上及所述第三通孔308中形成第三电极层,并图形化所述第三电极层以形成所述位线金属层309。As shown in FIG. 9 to FIG. 11 , step 2-3) is performed next, and a third
如图12所示,接着进行步骤3),于所述第一存储层上制备第一连接电路层401,所述第一连接电路层401用以提供存储层的读写信号,并提供相邻两存储层之间的信号连接通路。As shown in FIG. 12 , step 3) is performed next, and a first
如图13所示,接着进行步骤4),于所述第一连接电路层401上形成半导体材料层,然后,基于所述半导体材料层制作CMOS电路层501并在所述CMOS电路层上制作磁性隧穿结器件,然后重复进行步骤2)以形成第二存储层,包括:As shown in FIG. 13 , step 4) is performed next, a semiconductor material layer is formed on the first
首先,形成覆盖所述CMOS电路层501及磁性隧穿结器件的第一介质层301,所述第一介质层301可以为二氧化硅(SiO2)、氮化硅(Si3N4)或者氮氧化硅(SiOxNy)等,采用光刻工艺及刻蚀工艺于所述第一介质层301中形成第一通孔302,所述第一通孔302连通所述MOS管的源极103,于所述第一介质层301上及所述第一通孔302中形成第一电极层,如采用金属沉积工艺等,并图形化刻蚀所述第一电极层以形成所述源线金属层303。当然,也可以采用如金属剥离工艺(lift-off)等制作所述源线金属层303。即先制作图形化的光刻胶,然后沉积金属层,接着将所述光刻胶以及其上表面的金属层去除。同时,下述的第二介质层304、字线金属层306、第三介质层307、位线金属层309等也可以采用上述工艺制作。First, a first
然后,形成覆盖所述源线金属层303的第二介质层304,于所述第二介质层304及所述第一介质层301中形成第二通孔305,所述第二通孔305连通所述MOS管的栅极104,于所述第二介质层304上及所述第二通孔305中形成第二电极层,并图形化所述第二电极层以形成所述字线金属层306。Then, a
接着,形成覆盖所述字线金属层306层的第三介质层307,于所述第三介质层307、第二介质层304及所述第一介质层301中形成第三通孔308,所述第三通孔308连通所述磁性隧穿结器件的第二端,于所述第三介质层307上及所述第三通孔308中形成第三电极层,并图形化所述第三电极层以形成所述位线金属层309。Next, a third
接着,重复进行步骤3)以在所述第二存储层上形成第二连接电路层601。所述第二连接电路层601用以提供存储层的读写信号,并提供相邻两存储层之间的信号连接通路。Next, step 3) is repeated to form a second connection circuit layer 601 on the second storage layer. The second connection circuit layer 601 is used to provide read and write signals of the storage layer, and to provide a signal connection path between two adjacent storage layers.
在一实施例中,可以采用化学气相沉积法或原子层沉积法于所述第一连接电路层401上形成半导体材料层,所述半导体材料层的材质包括硅、锗、锗硅、碳化硅以及Ⅲ-Ⅴ族化合物中的一种。In one embodiment, a chemical vapor deposition method or an atomic layer deposition method can be used to form a semiconductor material layer on the first
在另一实施例中,所述半导体材料层为二维半导体材料层,所述二维半导体材料层的材料可以为如MoS2、WS2、黑磷等,其可以采用如化学气相沉积法或原子层沉积法制备,优选为原子层沉积法,该示例采用二维半导体材料层,使得所述CMOS电路层501的制备过程中,仅需在低于400~500℃的温度下进行,而无须400~500℃以上高温处理,不会对下方已完成制作的磁性隧穿结器件结构造成损伤,大大提高了磁性隧穿结器件的性能的稳定性,提高了生产良率。In another embodiment, the semiconductor material layer is a two-dimensional semiconductor material layer, and the material of the two-dimensional semiconductor material layer may be, for example, MoS2, WS2, black phosphorus, etc., which may adopt chemical vapor deposition or atomic layer Preparation by deposition method, preferably atomic layer deposition method, in this example, a two-dimensional semiconductor material layer is used, so that the preparation process of the
如图14所示,最后进行步骤5),重复进行步骤4)多次以形成三维MRAM存储结构,如图14所示。As shown in FIG. 14 , step 5) is finally performed, and step 4) is repeated several times to form a three-dimensional MRAM storage structure, as shown in FIG. 14 .
如图14所示,本实施例还提供一种三维MRAM存储结构,包括:第一存储层,包括CMOS电路基底、磁性隧穿结器件、源线金属层303、字线金属层306以及位线金属层309,所述磁性隧穿结器件形成于所述CMOS电路基底上,所述磁性隧穿结器件的第一端与所述CMOS电路基底的MOS管的漏极102相连,所述源线金属层303、字线金属层306以及位线金属层309之间藉由层间介质层隔离,所述源线金属层303、字线金属层306及位线金属层309分别通过通孔与所述MOS管的源极103、所述MOS管的栅极104以及所述磁性隧穿结器件的第二端相连;第一连接电路层401,形成于所述第一存储层上,用以提供存储层的读写信号,并提供相邻两存储层之间的信号连接通路;若干个第二存储层,所述第二存储层包括CMOS电路层501、磁性隧穿结器件、源线金属层303、字线金属层306以及位线金属层309,所述磁性隧穿结器件位于所述CMOS电路层501上,所述磁性隧穿结器件的第一端与所述CMOS电路层501的MOS管的漏极102相连,所述源线金属层303、字线金属层306以及位线金属层309之间藉由层间介质层隔离,所述源线金属层303、字线金属层306及位线金属层309分别通过通孔与所述MOS管的源极103、所述MOS管的栅极104以及所述磁性隧穿结器件的第二端相连;若干个第二连接电路层601,位于相邻的第二存储层之间,用以提供存储层的读写信号,并提供相邻两存储层之间的信号连接通路。As shown in FIG. 14 , this embodiment further provides a three-dimensional MRAM storage structure, including: a first storage layer, including a CMOS circuit substrate, a magnetic tunnel junction device, a source
所述CMOS电路基底包括基于SOI衬底的CMOS电路基底以及基于柔性衬底的CMOS电路基底中的一种。例如,所述柔性衬底包括聚二甲基硅氧烷、聚酰亚胺、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯及聚对萘二甲酸乙二醇酯中的一种。The CMOS circuit substrate includes one of a CMOS circuit substrate based on an SOI substrate and a CMOS circuit substrate based on a flexible substrate. For example, the flexible substrate includes one of polydimethylsiloxane, polyimide, polyethylene, polypropylene, polyethylene terephthalate, and polyethylene terephthalate .
在一实施例中,所述CMOS电路层501为基于半导体材料层的CMOS电路层,所述半导体材料层的材质包括硅、锗、锗硅、碳化硅以及Ⅲ-Ⅴ族化合物中的一种。In one embodiment, the
在另一实施例中,所述半导体材料层为二维半导体材料层,所述二维半导体材料层的材料可以为如MoS2、WS2、黑磷等,其可以采用如化学气相沉积法或原子层沉积法制备,优选为原子层沉积法,该示例采用二维半导体材料层,使得所述CMOS器件层的制备过程中,仅需在低于400~500℃的温度下进行,而无须400~500℃以上高温处理,不会对下方已完成制作的磁性隧穿结器件结构造成损伤,大大提高了磁性隧穿结器件的性能的稳定性,提高了生产良率。In another embodiment, the semiconductor material layer is a two-dimensional semiconductor material layer, and the material of the two-dimensional semiconductor material layer may be, for example, MoS2, WS2, black phosphorus, etc., which may adopt chemical vapor deposition or atomic layer Preparation by deposition method, preferably atomic layer deposition method, in this example, a two-dimensional semiconductor material layer is used, so that the preparation process of the CMOS device layer only needs to be performed at a temperature lower than 400-500 ° C, instead of 400-500 ° C. The high temperature treatment above ℃ will not cause damage to the magnetic tunnel junction device structure that has been fabricated below, thus greatly improving the performance stability of the magnetic tunnel junction device and improving the production yield.
所述磁性隧穿结器件包括依次层叠的第一金属连接层201、第一金属过渡层202、固定磁层203、隧穿层204、自由磁层205、第二金属过渡层206以及第二金属连接层207,所述第一金属连接层201与所述CMOS电路的MOS管的漏极102连接。The magnetic tunnel junction device includes a first
所述固定磁层203的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种,所述自由磁层205的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种。The material of the fixed
所述隧穿层204为单晶结构的二维绝缘材料层,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。The
如上所述,本发明的三维MRAM存储结构及其制作方法,具有以下有益效果:As mentioned above, the three-dimensional MRAM storage structure of the present invention and the manufacturing method thereof have the following beneficial effects:
本发明与传统工艺相比,不需要硅穿孔(TSV)工艺中先对单层芯片流片、研磨减薄以及对准焊接等步骤,而是直接将多层存储电路通过半导体材料及金属布线层有序的堆叠制备在同一衬底上,其制作工艺与CMOS工艺兼容。Compared with the traditional process, the present invention does not require the steps of tape-out, grinding and thinning, and alignment welding of the single-layer chip in the TSV process, but directly passes the multi-layer storage circuit through the semiconductor material and the metal wiring layer. The ordered stack is fabricated on the same substrate, and its fabrication process is compatible with the CMOS process.
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811495212.6A CN111293138A (en) | 2018-12-07 | 2018-12-07 | Three-dimensional MRAM storage structure and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811495212.6A CN111293138A (en) | 2018-12-07 | 2018-12-07 | Three-dimensional MRAM storage structure and fabrication method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111293138A true CN111293138A (en) | 2020-06-16 |
Family
ID=71026444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811495212.6A Pending CN111293138A (en) | 2018-12-07 | 2018-12-07 | Three-dimensional MRAM storage structure and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111293138A (en) |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040175887A1 (en) * | 2003-03-03 | 2004-09-09 | Hynix Semiconductor Inc. | Magnetoresistive random access memory, and manufacturing method thereof |
US20050087785A1 (en) * | 2003-10-22 | 2005-04-28 | International Business Machines Corporation | Magnetic random access memory cell |
US20060104110A1 (en) * | 2004-11-18 | 2006-05-18 | International Business Machines Corporation | Spin-current switchable magnetic memory element and method of fabricating the memory element |
CN1938780A (en) * | 2004-02-25 | 2007-03-28 | 弘世科技公司 | Perpendicular magnetization magnetic element utilizing spin transfer |
US20070210394A1 (en) * | 2006-03-07 | 2007-09-13 | International Business Machines Corporation | Method and structure for improved alignment in MRAM integration |
US20080164547A1 (en) * | 2005-12-01 | 2008-07-10 | Yutaka Higo | Storage element and memory |
US20090231909A1 (en) * | 2005-10-14 | 2009-09-17 | Commissariat A L'energie Atomique | Magnetoresistive Tunnel Junction Magnetic Device and Its Application to MRAM |
US20120043621A1 (en) * | 2010-08-23 | 2012-02-23 | Crossbar, Inc. | Stackable non-volatile resistive switching memory device and method |
US20140103471A1 (en) * | 2012-09-10 | 2014-04-17 | James John Lupino | Low Cost High Density Nonvolatile Memory Array Device Employing Thin Film Transistors and Back to Back Schottky Diodes |
US20140353662A1 (en) * | 2013-05-30 | 2014-12-04 | Alexander Mikhailovich Shukh | High Density Nonvolatile Memory |
US20150249096A1 (en) * | 2012-09-10 | 2015-09-03 | James John Lupino | Three dimension integrated circuits employing thin film transistors |
US20150249053A1 (en) * | 2009-10-12 | 2015-09-03 | Monolithic 3D Inc. | Novel 3d semiconductor device and structure |
US20160268336A1 (en) * | 2015-03-12 | 2016-09-15 | Globalfoundries Singapore Pte. Ltd. | Integrated magnetic random access memory with logic device having low-k interconnects |
US20160293268A1 (en) * | 2015-04-03 | 2016-10-06 | Headway Technologies, Inc. | Implementation of a One Time Programmable Memory Using a MRAM Stack Design |
CN106229004A (en) * | 2016-07-11 | 2016-12-14 | 北京航空航天大学 | A kind of non-volatile magnetic memory of light write |
US20170025601A1 (en) * | 2015-07-23 | 2017-01-26 | Globalfoundries Singapore Pte. Ltd. | 3d mram with through silicon vias or through silicon trenches magnetic shielding |
CN106711323A (en) * | 2016-12-20 | 2017-05-24 | 清华大学 | Magnetic heterostructure magnetic tunnel junction adopting two-dimensional material |
CN106783862A (en) * | 2016-12-22 | 2017-05-31 | 西安交通大学 | A kind of STT mram memory cells |
US20170287978A1 (en) * | 2016-04-05 | 2017-10-05 | Globalfoundries Singapore Pte. Ltd. | Domain wall magnetic memory |
CN107611256A (en) * | 2016-07-12 | 2018-01-19 | 三星电子株式会社 | magnetic device |
-
2018
- 2018-12-07 CN CN201811495212.6A patent/CN111293138A/en active Pending
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040175887A1 (en) * | 2003-03-03 | 2004-09-09 | Hynix Semiconductor Inc. | Magnetoresistive random access memory, and manufacturing method thereof |
US20050087785A1 (en) * | 2003-10-22 | 2005-04-28 | International Business Machines Corporation | Magnetic random access memory cell |
CN1938780A (en) * | 2004-02-25 | 2007-03-28 | 弘世科技公司 | Perpendicular magnetization magnetic element utilizing spin transfer |
US20060104110A1 (en) * | 2004-11-18 | 2006-05-18 | International Business Machines Corporation | Spin-current switchable magnetic memory element and method of fabricating the memory element |
US20090231909A1 (en) * | 2005-10-14 | 2009-09-17 | Commissariat A L'energie Atomique | Magnetoresistive Tunnel Junction Magnetic Device and Its Application to MRAM |
US20080164547A1 (en) * | 2005-12-01 | 2008-07-10 | Yutaka Higo | Storage element and memory |
US20070210394A1 (en) * | 2006-03-07 | 2007-09-13 | International Business Machines Corporation | Method and structure for improved alignment in MRAM integration |
US20150249053A1 (en) * | 2009-10-12 | 2015-09-03 | Monolithic 3D Inc. | Novel 3d semiconductor device and structure |
US20120043621A1 (en) * | 2010-08-23 | 2012-02-23 | Crossbar, Inc. | Stackable non-volatile resistive switching memory device and method |
US20150249096A1 (en) * | 2012-09-10 | 2015-09-03 | James John Lupino | Three dimension integrated circuits employing thin film transistors |
US20140103471A1 (en) * | 2012-09-10 | 2014-04-17 | James John Lupino | Low Cost High Density Nonvolatile Memory Array Device Employing Thin Film Transistors and Back to Back Schottky Diodes |
US20140353662A1 (en) * | 2013-05-30 | 2014-12-04 | Alexander Mikhailovich Shukh | High Density Nonvolatile Memory |
US20160268336A1 (en) * | 2015-03-12 | 2016-09-15 | Globalfoundries Singapore Pte. Ltd. | Integrated magnetic random access memory with logic device having low-k interconnects |
US20160293268A1 (en) * | 2015-04-03 | 2016-10-06 | Headway Technologies, Inc. | Implementation of a One Time Programmable Memory Using a MRAM Stack Design |
US20170025601A1 (en) * | 2015-07-23 | 2017-01-26 | Globalfoundries Singapore Pte. Ltd. | 3d mram with through silicon vias or through silicon trenches magnetic shielding |
US20170287978A1 (en) * | 2016-04-05 | 2017-10-05 | Globalfoundries Singapore Pte. Ltd. | Domain wall magnetic memory |
CN106229004A (en) * | 2016-07-11 | 2016-12-14 | 北京航空航天大学 | A kind of non-volatile magnetic memory of light write |
CN107611256A (en) * | 2016-07-12 | 2018-01-19 | 三星电子株式会社 | magnetic device |
CN106711323A (en) * | 2016-12-20 | 2017-05-24 | 清华大学 | Magnetic heterostructure magnetic tunnel junction adopting two-dimensional material |
CN106783862A (en) * | 2016-12-22 | 2017-05-31 | 西安交通大学 | A kind of STT mram memory cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9312476B2 (en) | Magnetic memory | |
TWI706582B (en) | APPROACHES FOR STRAIN ENGINEERING OF PERPENDICULAR MAGNETIC TUNNEL JUNCTIONS (pMTJs) AND THE RESULTING STRUCTURES | |
US20200105940A1 (en) | Ferroelectric field effect transistors (fefets) having band-engineered interface layer | |
CN108713261A (en) | For the method and obtained structure that Hall MTJ device is embedded in logic processor that will spin | |
US20200144293A1 (en) | Ferroelectric field effect transistors (fefets) having ambipolar channels | |
CN106104830A (en) | The replacement conductive hard mask etched for multi-step MTJ (MTJ) | |
US20120139069A1 (en) | Storage nodes, magnetic memory devices, and methods of manufacturing the same | |
CN110323247A (en) | MRAM device and its manufacturing method and electronic equipment including MRAM | |
JP2005294848A (en) | Magnetic memory cell array and its manufacturing method | |
CN116615033A (en) | Magnetic random access memory, manufacturing method thereof and electronic equipment | |
JP2003133533A (en) | Magnetic RAM | |
TW202401817A (en) | Semiconductor device and method for forming the same | |
CN111293215A (en) | Magnetic tunnel junction device based on two-dimensional free magnetic layer and its fabrication method | |
CN110890458B (en) | A method for improving writing efficiency of magnetic random access memory | |
JP2024531579A (en) | Magnetic tunnel junction devices with minimal stray magnetic fields | |
CN111293214A (en) | Magnetic tunneling junction device based on flexible substrate and its fabrication method | |
CN111293212B (en) | Magnetic tunneling junction device based on tunneling isolation layer and manufacturing method thereof | |
CN111293138A (en) | Three-dimensional MRAM storage structure and fabrication method thereof | |
JP4303932B2 (en) | Method of operating magnetic RAM using bipolar junction transistor | |
KR101774937B1 (en) | Storage node comprising free magnetic layer of in-plane magnetic anisotropy material, magnetic memory device comprising the same and method of manufacturing the same | |
CN111293137A (en) | Three-dimensional MRAM storage structure based on two-dimensional CMOS and manufacturing method thereof | |
CN111293136A (en) | Three-dimensional MRAM storage structure based on two-dimensional device and manufacturing method thereof | |
WO2023065596A1 (en) | Mram and manufacturing method therefor | |
US20020109167A1 (en) | Memory device and method of fabrication thereof | |
CN111293213A (en) | Magnetic tunneling junction device based on two-dimensional material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200616 |
|
WD01 | Invention patent application deemed withdrawn after publication |