CN111062746B - Advertisement flow prediction method and device and electronic equipment - Google Patents
Advertisement flow prediction method and device and electronic equipment Download PDFInfo
- Publication number
- CN111062746B CN111062746B CN201911244871.7A CN201911244871A CN111062746B CN 111062746 B CN111062746 B CN 111062746B CN 201911244871 A CN201911244871 A CN 201911244871A CN 111062746 B CN111062746 B CN 111062746B
- Authority
- CN
- China
- Prior art keywords
- traffic
- estimated
- dimension
- data
- historical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0242—Determining effectiveness of advertisements
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0277—Online advertisement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本申请涉及广告投放技术领域,尤其涉及一种广告流量预估方法、装置及电子设备。The present application relates to the technical field of advertising, and in particular to an advertising traffic estimation method, device and electronic equipment.
背景技术Background technique
随着互联网广告的快速发展,广告出现了各种不同的收费形式,例如,CPM(CostPer Mille,按照千次曝光进行计算收费)、CPA(Cost Per Action,通过推广之后的用户行为进行收费)、ADX(Ad Exchange,互联网广告交易平台)等。其中,以ADX为例,广告流量预估是ADX中不可或缺的关键步骤,涉及广告投放过程中的各个阶段,例如,广告售卖前期广告位流量预估、多种定投条件下的流量预估;又例如,竞价阶段的流量预估等。With the rapid development of Internet advertising, various forms of charging have appeared in advertising, for example, CPM (Cost Per Mille, charging based on thousand impressions), CPA (Cost Per Action, charging based on user behavior after promotion), ADX (Ad Exchange, Internet advertising trading platform), etc. Among them, taking ADX as an example, advertising traffic estimation is an indispensable key step in ADX, involving various stages in the advertising process, for example, advertising space traffic estimation in the early stage of advertising sales, traffic estimation under various fixed investment conditions ; Another example is the traffic forecast in the bidding stage, etc.
目前,相关技术中,主要采用如下方式进行广告流量预估:At present, in related technologies, the following methods are mainly used for advertising traffic estimation:
(1)历史平均值:通过统计已经投放历史数据的各个维度,取近30天的平均值;(1) Historical average: by counting the various dimensions of historical data that have been placed, take the average of the past 30 days;
(2)经验值统计:通过媒体近一段时间的统计数据,作为广告流量参考的经验值;(2) Statistics of experience value: the experience value used as a reference for advertising traffic through the statistical data of the media for a period of time;
(3)流量预估模型:通过单一的流量预估模型模拟未来流量的走势,计算预估流量;(3) Traffic forecasting model: simulate the trend of future traffic through a single traffic forecasting model, and calculate the estimated traffic;
但是,前述的广告流量预估均存在不同程度的局限性,例如,对于第(1)和(2)种,使用历史平均值无法考虑广告投放的周期性和季节性等因素,更无法考虑偶然因素的影响,如,双十一、情人节等,导致预估结果不准确。However, the above-mentioned advertising flow estimations all have different degrees of limitations. For example, for (1) and (2), the use of historical averages cannot take into account factors such as the periodicity and seasonality of advertising, let alone accidental The influence of factors, such as Double Eleven, Valentine's Day, etc., lead to inaccurate estimates.
又例如,对于第(3)种,由于模型参数的学习强依赖于历史数据,单一的时序模型容易受到历史数据的波动影响,无法达到有效抵御偶然因素的波动。For another example, for type (3), since the learning of model parameters is strongly dependent on historical data, a single time series model is easily affected by fluctuations in historical data, and cannot effectively resist fluctuations in accidental factors.
发明内容Contents of the invention
第一方面,本申请实施例提供一种广告流量预估方法,包括:In the first aspect, the embodiment of the present application provides a method for estimating advertising traffic, including:
按照目标定投条件获取预设时长内生产的历史流量数据;Obtain the historical flow data produced within the preset time period according to the target fixed investment conditions;
基于指定合并维度中的各子维度的顺序选取子维度执行如下操作:Selecting subdimensions based on the order of the subdimensions in the specified merged dimension performs the following operations:
基于选取的当前子维度对所述历史流量数据进行合并;Merging the historical traffic data based on the selected current sub-dimension;
如果基于当前子维度合并得到的每两个指定单位时长内的历史流量数据的数据量差值均小于预设值,则根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量,否则返回进入下一子维度;If the data volume difference between the historical traffic data within two specified units of time combined based on the current sub-dimension is less than the preset value, then according to the preset distributed hybrid time series prediction model and the specified unit under the current sub-dimension The historical traffic data within the time period is used for traffic estimation to obtain multiple sets of estimated traffic, otherwise return to the next sub-dimension;
根据各组预估流量的损失值,选取符合预设条件的一组预估流量作为广告流量预估值。According to the loss value of each group of estimated traffic, a group of estimated traffic meeting preset conditions is selected as an estimated advertising traffic value.
进一步,作为一种可选地实现方式,所述分布式混合时序预估模型包括多个不同的分布式时序预估模型;以及Further, as an optional implementation manner, the distributed hybrid timing prediction model includes multiple different distributed timing prediction models; and
所述根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量,包括:According to the preset distributed hybrid time series prediction model and the historical traffic data within the specified unit time period under the current sub-dimension, the traffic is estimated to obtain multiple sets of estimated traffic, including:
基于当前子维度下的指定单位时长内的历史流量数据,分别利用各分布式时序预估模型进行流量预估,得到与各分布式时序预估模型对应的多组预估流量。Based on the historical traffic data within the specified unit time period under the current sub-dimension, each distributed time series prediction model is used to perform traffic prediction respectively, and multiple sets of estimated traffic corresponding to each distributed time series prediction model are obtained.
进一步,作为一种可选地实现方式,Further, as an optional implementation,
如果一组预估流量中包括一个指定单位时长内的预估流量,相应的,选取符合预设条件的一组预估流量作为广告流量预估值包括:选取损失值最小的预估流量作为一个指定单位时长内的广告流量预估值;If a group of estimated traffic includes an estimated traffic within a specified unit duration, correspondingly, selecting a group of estimated traffic that meets the preset conditions as an estimated advertising traffic includes: selecting the estimated traffic with the smallest loss value as a The estimated advertising traffic within the specified unit duration;
如果一组预估流量中包括至少两个指定单位时长内的预估流量,相应的,选取符合预设条件的一组预估流量作为广告流量预估值包括:分别计算每组预估流量中所述至少两个指定单位时长内的预估流量的平均损失值;选取平均损失值最小的一组预估流量作为所述至少两个指定单位时长内的广告流量预估值。If a group of estimated traffic includes estimated traffic within at least two specified unit durations, correspondingly, selecting a group of estimated traffic that meets the preset conditions as an estimated advertising traffic includes: separately calculating each group of estimated traffic The average loss value of the estimated traffic within the at least two specified unit durations; selecting a group of estimated traffic with the smallest average loss value as the estimated advertising traffic within the at least two specified unit durations.
进一步,作为一种可选地实现方式,所述目标定投条件的获取步骤包括:Further, as an optional implementation, the step of obtaining the target fixed investment conditions includes:
展示定投条件选取界面,所述定投条件选取界面上展示有多个定投条件选项卡;Displaying the selection interface of the fixed investment conditions, the selection interface of the fixed investment conditions shows that there are multiple fixed investment condition tabs;
响应广告主基于所述多个定投条件选项卡发起的定投条件选取操作,根据选取结果确定所述目标定投条件。In response to an advertiser's selection of fixed investment conditions based on the plurality of fixed investment condition tabs, the target fixed investment conditions are determined according to the selection result.
进一步,作为一种可选地实现方式,所述方法还包括:Further, as an optional implementation, the method further includes:
在根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量之前,基于预设的高斯平滑模型对当前子维度下的指定单位时长内的历史流量数据进行去噪处理。Before the traffic is estimated according to the preset distributed mixed time series prediction model and the historical traffic data within the specified unit time under the current sub-dimension to obtain multiple sets of estimated traffic, based on the preset Gaussian smoothing model for the current sub-dimension denoises the historical traffic data within the specified unit time period.
进一步,作为一种可选地实现方式,所述历史流量数据至少包括历史点击日志数据、历史展示日志数据、历史请求日志数据中的一种或多种。Further, as an optional implementation manner, the historical traffic data includes at least one or more of historical click log data, historical display log data, and historical request log data.
第二方面,本申请实施例还提供一种广告流量预估装置,包括:In the second aspect, the embodiment of the present application also provides an advertising traffic estimation device, including:
数据获取模块,用于按照目标定投条件获取预设时长内生产的历史流量数据;The data acquisition module is used to acquire the historical traffic data produced within the preset time period according to the target fixed investment conditions;
数据合并模块,用于基于指定合并维度中的各子维度的顺序选取子维度,基于选取的当前子维度对所述历史流量数据进行合并;A data merging module, configured to select sub-dimensions based on the order of each sub-dimension in the specified merging dimension, and merge the historical traffic data based on the selected current sub-dimension;
流量预估模块,用于如果基于当前子维度合并得到的每两个指定单位时长内的历史流量数据的数据量差值均小于预设值,则根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量,否则返回数据合并模块进入下一子维度;The traffic estimation module is used to estimate the data according to the preset distributed hybrid timing model and The historical traffic data within the specified unit time period under the current sub-dimension is estimated to obtain multiple sets of estimated traffic, otherwise return to the data merging module and enter the next sub-dimension;
预估结果确定模块,用于根据各组预估流量的损失值,选取符合预设条件的一组预估流量作为广告流量预估值。The estimation result determination module is configured to select a group of estimated traffic meeting preset conditions as an estimated advertising traffic value according to the loss value of each group of estimated traffic.
进一步,作为一种可选地实现方式,所述分布式混合时序预估模型包括多个不同的分布式时序预估模型,所述流量预估模块还用于基于当前子维度下的指定单位时长内的历史流量数据,分别利用各分布式时序预估模型进行流量预估,得到与各分布式时序预估模型对应的多组预估流量。Further, as an optional implementation, the distributed hybrid timing estimation model includes multiple different distributed timing estimation models, and the traffic estimation module is further configured to Using the historical traffic data in the network, each distributed time series prediction model is used to perform traffic prediction, and multiple groups of estimated traffic corresponding to each distributed time series prediction model are obtained.
第三方面,本申请实施例还提供一种电子设备,包括:In a third aspect, the embodiment of the present application further provides an electronic device, including:
处理器;processor;
用于存储所述处理器可执行指令的存储器;memory for storing said processor-executable instructions;
其中,所述处理器被配置为执行所述指令,以实现上述的广告流量预估方法。Wherein, the processor is configured to execute the instructions, so as to realize the above advertisement traffic estimation method.
第四方面,本申请实施例还提供一种计算机可读存储介质,当所述存储介质中的指令由电子设备中的处理器执行时,使得电子设备能够执行上述的广告流量预估方法。In a fourth aspect, the embodiment of the present application further provides a computer-readable storage medium, and when instructions in the storage medium are executed by a processor in the electronic device, the electronic device can execute the above advertisement traffic estimation method.
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:The above at least one technical solution adopted in the embodiment of the present application can achieve the following beneficial effects:
在根据目标定投条件获取到历史流量数据进行广告流量预估时,可利用分布式混合时序预估模型进行流量预估得到多组预估流量,进而从各组预估流量对应的损失值中选取损失值符合预设条件的的预设流量作为广告流量预估值,以避免由于历史数据波动或偶然因素等对广告预估结果的影响,有效确保了广告流量预估结果的准确性。When the historical traffic data is obtained according to the target fixed investment conditions for advertising traffic forecasting, the distributed hybrid time series forecasting model can be used for traffic forecasting to obtain multiple sets of estimated traffic, and then selected from the loss values corresponding to each group of estimated traffic The preset traffic whose loss value meets the preset conditions is used as the estimated value of advertising traffic to avoid the influence of historical data fluctuations or accidental factors on the advertising estimation results, effectively ensuring the accuracy of the advertising traffic estimation results.
上述说明仅是申请技术方案的概述,为了能够更清楚了解本申请的技术手段,可依照说明书的内容予以实施,并且为了让本申请的上述和其他目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。The above description is only an overview of the technical solution of the application. In order to better understand the technical means of the application, it can be implemented according to the contents of the specification, and in order to make the above and other purposes, features and advantages of the application more obvious and understandable, the following Specific embodiments of the present application are specifically cited.
附图说明Description of drawings
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation to the application. In the attached picture:
图1为根据一示例性实施例提供的广告流量预估方法的应用场景示意图。Fig. 1 is a schematic diagram of an application scenario of a method for estimating advertisement traffic according to an exemplary embodiment.
图2为根据一示例性实施例提供的广告流量预估方法的流程图。Fig. 2 is a flowchart of a method for estimating advertisement traffic according to an exemplary embodiment.
图3为根据一示例性实施例提供的定投条件选取界面的示意图。Fig. 3 is a schematic diagram of an interface for selecting a fixed investment condition according to an exemplary embodiment.
图4为根据一示例性实施例提供的广告排期界面的示意图。Fig. 4 is a schematic diagram of an advertisement scheduling interface provided according to an exemplary embodiment.
图5为根据一示例性实施例提供的广告流量预估装置的框图。Fig. 5 is a block diagram of an advertising traffic estimation device according to an exemplary embodiment.
图6为根据一示例性实施例提供的电子设备的框图。Fig. 6 is a block diagram of an electronic device provided according to an exemplary embodiment.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solution and advantages of the present application clearer, the technical solution of the present application will be clearly and completely described below in conjunction with specific embodiments of the present application and corresponding drawings. Apparently, the described embodiments are only some of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
以下结合附图,详细说明本申请各实施例提供的技术方案。The technical solutions provided by various embodiments of the present application will be described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
如图1所示,为根据一示例性实施例提供的广告流量预估方法的应用场景示意图,该应用场景包括广告管理平台以及多个广告系统,广告管理平台与各广告系统分别连接。在该应用场景中,媒体可以向广告管理平台管理的各广告系统请求广告,称媒体的请求为流量,广告主也可以在广告管理平台中向广告系统下单以购买一定投条件下的流量。由于媒体请求流量受多重因素影响(如节假日、媒体自身因素等),广告系统每天接收到的流量是不断变化的。加之,广告主也会按照地域、人群等定投条件向广告管理平台购买一定量的广告,因此需要通过流量预估技术在广告主购买广告时,告知广告主在其选择的定投条件下,广告系统中有还剩多少流量可以购买。As shown in FIG. 1 , it is a schematic diagram of an application scenario of an advertisement traffic estimation method according to an exemplary embodiment. The application scenario includes an advertisement management platform and multiple advertisement systems, and the advertisement management platform is connected to each advertisement system respectively. In this application scenario, the media can request advertisements from various advertising systems managed by the advertising management platform, which is called traffic. Advertisers can also place orders with the advertising systems in the advertising management platform to purchase traffic under certain investment conditions. Since media request traffic is affected by multiple factors (such as holidays, media factors, etc.), the traffic received by the advertising system is constantly changing every day. In addition, advertisers will also purchase a certain amount of advertisements from the advertising management platform according to the fixed investment conditions such as regions and groups of people. Therefore, it is necessary to use traffic estimation technology to inform advertisers that under the fixed investment conditions they choose, the advertising system will How much traffic is left to buy in .
请结合参阅图2,为根据一示例性实施例提供的广告流量预估方法的流程示意图,该广告流量预估方法中的部分或全部步骤可以由,但不限于图1中所示的广告管理平台执行。参照图2,广告流量管理方法可以包括如下步骤。Please refer to FIG. 2 , which is a flow diagram of a method for estimating advertisement traffic according to an exemplary embodiment. Part or all of the steps in the method for estimating advertisement traffic may be performed by, but not limited to, the advertisement management shown in FIG. 1 platform execution. Referring to Fig. 2, the advertising traffic management method may include the following steps.
S1,按照目标定投条件获取预设时长内生产的历史流量数据。S1. Obtain the historical flow data produced within the preset time period according to the target fixed investment conditions.
其中,目标定投条件是指广告投放时所考虑的各种投放条件,例如,投放对象的性别、职业、年龄段、所在区域(如地区、国家)、所投放的展示平台(如网站、公众号等)等。实际实施时,广告主投放某广告时所设置的各种具体条件为该广告的目标定投条件。历史流量数据可以,但不限于从hadoop集群等处获取,且历史流量数据至少可以包括历史点击日志数据、历史展示日志数据、历史请求日志数据中的一种或多种。预设时长可以根据实际需要进行设定,例如,预设时长可以为半个月、1个月、3个月、一年等。Among them, the targeted delivery conditions refer to the various delivery conditions considered when the advertisement is placed, for example, the gender, occupation, age group, region (such as region, country) of the target, and the display platform (such as website, official account, etc.) etc. In actual implementation, the various specific conditions set by the advertiser when placing an advertisement are the target delivery conditions of the advertisement. The historical traffic data can be obtained, but not limited to, from hadoop clusters, etc., and the historical traffic data can at least include one or more of historical click log data, historical display log data, and historical request log data. The preset duration can be set according to actual needs, for example, the preset duration can be half a month, 1 month, 3 months, or a year.
例如,作为一种可能的实现方式,目标定投条件的获取步骤可以包括:For example, as a possible implementation, the step of obtaining the target fixed investment conditions may include:
S11,展示定投条件选取界面,定投条件选取界面上展示有多个定投条件选项卡;S11, displaying the regular investment condition selection interface, where there are multiple regular investment condition selection tabs displayed;
S12,响应广告主基于多个定投条件选项卡发起的定投条件选取操作,根据选取结果确定目标定投条件。S12. Responding to the selection operation of the fixed investment condition initiated by the advertiser based on the multiple fixed investment condition tabs, and determining the target fixed investment condition according to the selection result.
请结合参阅图3,当广告主需要投放广告时,可通过如图3所示的定投条件选取界面上的定投条件选项卡选取一个或多个定投条件,而广告管理平台根据广告主在定投条件选取界面发起的定投条件选取操作确定得到目标定投条件。需要理解的是,图3所示的定投条件选取界面仅为示意性界面,实际实施时,定投条件选取界面可以为,但不限于图3所示。Please refer to Figure 3. When an advertiser needs to place an advertisement, he or she can select one or more fixed investment conditions through the fixed investment condition tab on the fixed investment condition selection interface as shown in Figure 3. The fixed investment condition selection operation initiated by the selection interface determines the target fixed investment condition. It should be understood that the fixed investment condition selection interface shown in FIG. 3 is only a schematic interface. In actual implementation, the fixed investment condition selection interface may be, but not limited to, that shown in FIG. 3 .
S2,基于指定合并维度中的各子维度的顺序选取子维度,执行S3和S4中的操作S2, select sub-dimensions based on the order of sub-dimensions in the specified merged dimension, and perform operations in S3 and S4
S3,基于选取的当前子维度对所述历史流量数据进行合并。S3. Merge the historical traffic data based on the selected current sub-dimension.
S4,判断基于当前子维度合并得到的每两个指定单位时长内的历史流量数据的数据量差值是否均小于预设值,若是,则执行S5和S6,反之,则返回S2选取下一子维度,并将下一子维度作为当前子维度执行S3中所述的对所述历史流量数据进行合并的步骤。S4, judging whether the data volume difference of the historical flow data in every two specified unit durations based on the combination of the current sub-dimensions is less than the preset value, if so, execute S5 and S6, otherwise, return to S2 to select the next sub-dimension dimension, and use the next sub-dimension as the current sub-dimension to perform the step of merging the historical traffic data described in S3.
其中,指定合并维度可以是时间、地区、职业、年龄等中的一种或多种,假设指定合并维度为时间,那么该指定合并维度中的子维度可以为分、时、天、月等。或者,假设指定合并维度为地区,那么该指定合并维度中的子维度可以为区、市、省、国家等,本实施例在此不做限制。Wherein, the designated merged dimension may be one or more of time, region, occupation, age, etc., assuming that the designated merged dimension is time, then the subdimensions in the designated merged dimension may be minutes, hours, days, months, etc. Alternatively, assuming that the designated merged dimension is region, then the sub-dimensions in the designated merged dimension may be district, city, province, country, etc., which is not limited in this embodiment.
应注意,在进行数据合并得到的合并结果是一按历史流量数据(如历史点击日志数据、历史展示日志数据、历史请求日志数据等)生成的时间先后顺序排列而成的时间序列。It should be noted that the merging result obtained during data merging is a time series arranged in chronological order according to the generation time of historical traffic data (such as historical click log data, historical display log data, historical request log data, etc.).
其中,如S4中所示,指定单位时长可以为指定合并维度中涉及的分、时、天等子维度,也可以是按照需求进行设定的其他子维度(时间单位),本实施例对此不做具体限制。例如,作为一种可能的实现方式,在此以历史流量数据为历史广告点击日志、指定合并维度为时间,各子维度为分、时、天、月为例,对S2至S4中涉及的数据合并过程进行简单介绍。Wherein, as shown in S4, the specified unit duration can be sub-dimensions such as minutes, hours, and days involved in the specified merged dimension, or other sub-dimensions (time units) that are set according to requirements. This embodiment No specific restrictions are made. For example, as a possible implementation, take the historical traffic data as the historical advertisement click log, specify the combined dimension as time, and each sub-dimension as minutes, hours, days, and months as an example. For the data involved in S2 to S4 A brief introduction to the merging process.
首先,可按照“分”这一子维度对历史广告点击日志进行合并,得到每分钟内的点击日志数据量,然后计算每两个一分钟(指定单位时长)内的点击日志数据量之间的差值,当差值均小于预设值时,证明按“分”这一子维度进行数据合并的结果稳定,可基于这一合并结果执行S5和S6;反之,当差值均不小于预设值时,证明按“分”这一子维度进行数据合并的合并结果并不稳定。First of all, historical advertisement click logs can be merged according to the sub-dimension of "minute" to obtain the amount of click log data per minute, and then calculate the difference between the amount of click log data within every two minutes (specified unit duration). Difference, when the difference is less than the preset value, it proves that the result of data merging according to the sub-dimension of "point" is stable, and S5 and S6 can be executed based on this merging result; otherwise, when the difference is not less than the preset value, it proves that the merging result of data merging based on the sub-dimension of "score" is not stable.
那么,需从“分”这一子维度进入下一子维度进行数据合并,也就是说,需基于“分”这一子维度的合并结果,继续按照“时”这一子维度进行数据合并,得到每小时内的点击日志数据量,当每两个一小时(如2点到3点与3点到4点等)内的点击日志数据量之间的差值均不小于预设值时,证明按“时”这一子维度进行数据合并的结果也不稳定;Then, it is necessary to enter the next sub-dimension from the "minute" sub-dimension for data merging, that is to say, based on the merging result of the "minute" sub-dimension, continue to perform data merging according to the "time" sub-dimension. Get the amount of click log data per hour, when the difference between the amount of click log data in every two hours (such as 2 o'clock to 3 o'clock and 3 o'clock to 4 o'clock, etc.) is not less than the preset value, It proves that the result of data merging according to the sub-dimension of "time" is also unstable;
那么,需从“时”这一子维度进入下一子维度进行数据合并,也就是说,需要基于“时”这一子维度的合并结果,继续按照“天”这一子维度进行数据合并,得到每天内的点击日志数据量……,直到在“时间”这一指定合并维度下进行数据合并得到的结果达到稳定。Then, it is necessary to enter the next sub-dimension from the "time" sub-dimension for data merging, that is to say, based on the merging results of the "time" sub-dimension, continue to perform data merging according to the "day" sub-dimension, Get the amount of click log data per day... until the result of data merging under the specified merging dimension of "time" reaches stability.
例如,假设在按照“天”这一子维度进行数据合并,得到每两个一天内(指定单位时长)的点击日志数据量之间的差值均小于预设值,证明按“天”这一子维度进行数据合并的结果稳定,那么可基于该结果执行S5中的广告流量预估的步骤,从而确保预估结果的准确性。For example, assuming that the data is merged according to the sub-dimension of "day", the difference between the amount of click log data in every two days (specified unit time length) is less than the preset value, which proves that the "day" sub-dimension If the result of data merging in the sub-dimensions is stable, then the step of advertising traffic estimation in S5 can be performed based on the result, so as to ensure the accuracy of the estimation result.
需要理解,前述的差值大小可根据需求进行设定,且不同的子维度对应的数据量差值可以不同,也可以相同,本实施例在此不做限制。此外,由于指定合并维度中的各子维度的合并顺序以及S3中的预设值的大小决定了广告流量预估结果的准确性,因此,本实施例在进行数据合并时,可预先将指定合并维度中涉及的各子维度进行排序,进而基于排序结果依次进行广告流量数据的合并,直到合并后的结果达到稳定,反之,则继续基于下一子维度进行合并。It should be understood that the aforementioned difference can be set according to requirements, and the data amount difference corresponding to different sub-dimensions can be different or the same, which is not limited in this embodiment. In addition, since the merging order of the sub-dimensions in the specified merging dimension and the size of the preset value in S3 determine the accuracy of the advertising traffic estimation result, in this embodiment, when data merging is performed, the specified merging The sub-dimensions involved in the dimension are sorted, and then the advertising traffic data is merged sequentially based on the sorting results until the merged result is stable; otherwise, continue to merge based on the next sub-dimension.
S5,根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量。S5. Perform traffic estimation according to the preset distributed hybrid time series estimation model and the historical traffic data within the specified unit time period under the current sub-dimension to obtain multiple sets of estimated traffic.
其中,分布式混合时序预估模型可以为一个基于历史广告数据训练得到的模型,该模型中可融合有多个分布式时序预估模型,也可以包括多个不同的分布式时序预估模型。Wherein, the distributed hybrid time series prediction model may be a model trained based on historical advertisement data, and the model may be fused with multiple distributed time series prediction models, or may include multiple different distributed time series prediction models.
作为一种可能的实现方式,在此以分布式混合时序预估模型包括多个不同的分布式时序预估模型为例,对S5中所述的根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量的过程进行介绍,该过程可以包括:基于当前子维度下的指定单位时长内的历史流量数据,分别利用各分布式时序预估模型进行流量预估,得到与各分布式时序预估模型对应的多组预估流量。As a possible implementation, here, taking the distributed hybrid timing prediction model including multiple different distributed timing prediction models as an example, the distributed hybrid timing prediction model according to the preset described in S5 and The process of obtaining multiple groups of estimated traffic by performing traffic estimation on the historical traffic data within the specified unit time under the current sub-dimension is introduced. This process may include: based on the historical traffic data within the specified unit time under the current sub-dimension, respectively use Each distributed time series prediction model performs traffic prediction to obtain multiple sets of estimated traffic corresponding to each distributed time series prediction model.
可选地,分布式时序预估模型可以为,但不限于一阶指数平滑预测模型、Holt-Winters模型、自回归模型等,下面分别对一阶指数平滑预测模型、Holt-Winters模型、自回归模型模型进行简单说明。Optionally, the distributed time series prediction model can be, but not limited to, the first-order exponential smoothing prediction model, Holt-Winters model, autoregressive model, etc. The model model is briefly explained.
(1)一阶指数平滑预测模型:适用于时间序列无明显趋势或季节性变化的数据预测。当时间序列存在明显趋势变化时,可通过对该时间序列进行多次差分以去除变换趋势,再采用一阶指数平滑预测模型进行预测。其中,一阶指数平滑预测模型可如公式1所示。(1) First-order exponential smoothing forecasting model: suitable for data forecasting with no obvious trend or seasonal change in time series. When there is an obvious trend change in the time series, the time series can be differentiated multiple times to remove the changing trend, and then the first-order exponential smoothing forecasting model is used for forecasting. Wherein, the first-order exponential smoothing prediction model can be shown in Formula 1.
si=α★xi+(1-α)★si-1 公式1s i =α★x i +(1-α)★s i- 1Formula 1
其中,si表示时间步长i上经过平滑后的值(如广告流量预估值),xi是这个时间步长上的时间数据(如历史流量数据),α是0到1之间的任意数值,控制着新旧信息(如预测值与历史流量数据)之间的平衡。Among them, s i represents the smoothed value on time step i (such as the estimated value of advertising traffic), xi is the time data on this time step (such as historical traffic data), and α is between 0 and 1 An arbitrary value that controls the balance between old and new information such as forecasts and historical traffic data.
(2)Holt-Winters模型:适用于具有季节影响的线性增长趋势的时间序列,可分为乘法、加法及无季节性模型。本申请中可使用如下公式2至公式5中的加法模型。(2) Holt-Winters model: suitable for time series of linear growth trends with seasonal effects, which can be divided into multiplicative, additive and non-seasonal models. The additive models in Equation 2 to Equation 5 below may be used in this application.
Lt=α(yt-st-s+(1-α)(Lt-1+bt-1) 公式2L t =α(y t -s ts +(1-α)(L t-1 +b t-1 ) Formula 2
bt=β(Lt--Lt-1)+(1-β)bt-1 公式3b t =β(L t- -L t-1 )+(1-β)b t-1Formula 3
st=γ(yt-Lt)+(1-γ)st-s 公式4s t =γ(y t -L t )+(1-γ)s ts Formula 4
Ft+1=Lt+bt+St+1-s 公式5F t+1 =L t +b t +S t+1-s Formula 5
其中,bt表示趋势,St表示季节,Ft+1表示预测值,α、β、γ为常数。Among them, b t represents the trend, S t represents the season, F t+1 represents the predicted value, and α, β, γ are constants.
(3)自回归模型:适用于描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测。如公式6所示为p阶自回归模型。(3) Autoregressive model: It is suitable for describing the relationship between the current value and the historical value, and using the historical time data of the variable itself to predict itself. As shown in
其中,yt是当前值,μ是常数项,p是阶数,ri是自相关系数,ri大于等于0.5,∈t是误差。Among them, y t is the current value, μ is a constant term, p is the order, ri is the autocorrelation coefficient, ri is greater than or equal to 0.5, and ∈ t is the error.
进一步,作为一种可能的实现方式,在执行S4中所述的广告流量预估步骤之前,可对合并得到的历史流量数据这一时间序列进行去噪处理,以提高流量预估结果的准确性。实际实施过程可以包括:基于预设的高斯平滑模型对当前子维度下的指定单位时长内的历史流量数据进行去噪处理,基于去噪后的指定单位时长内的历史流量数据,执行S4中的根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量的步骤。Further, as a possible implementation, before performing the advertising traffic estimation step described in S4, denoising can be performed on the time series of the merged historical traffic data, so as to improve the accuracy of traffic estimation results . The actual implementation process may include: based on the preset Gaussian smoothing model, denoising the historical traffic data within the specified unit time period under the current sub-dimension, and based on the denoised historical traffic data within the specified unit time period, execute S4 The step of performing traffic forecasting according to the preset distributed hybrid time series forecasting model and the historical traffic data within the specified unit time period under the current sub-dimension to obtain multiple sets of estimated traffic.
可选地,预设的高斯平滑模型是用于消除预估序列中的噪声以得到平滑的预估序列,本实施例中,高斯平滑模型可以如公式7所示。Optionally, the preset Gaussian smoothing model is used to eliminate noise in the estimated sequence to obtain a smooth estimated sequence. In this embodiment, the Gaussian smoothing model may be as shown in formula 7.
其中,σ为历史流量数据这一时间序列的方差,x为时间序列中的各历史流量数据。Among them, σ is the variance of the time series of historical flow data, and x is each historical flow data in the time series.
需要注意的是,在进行数据去噪时,可以采用,但不限于前述的高斯平滑模型。It should be noted that when performing data denoising, the aforementioned Gaussian smoothing model can be used, but not limited to.
S6,根据各组预估流量的损失值,选取符合预设条件的一组预估流量作为广告流量预估值。S6. According to the loss value of each group of estimated traffic, select a group of estimated traffic meeting a preset condition as an estimated advertising traffic value.
需注意,各预估流量的损失值可以采用,但不限于平方损失函数(如最小二乘法等)、绝对值损失函数、对数损失函数(Cross Entropy Loss,Softmax Loss)等计算得到,其中关于损失值的具体计算过程本实施例在此不再赘述。It should be noted that the loss value of each estimated flow can be calculated by using, but not limited to, square loss function (such as least square method, etc.), absolute value loss function, logarithmic loss function (Cross Entropy Loss, Softmax Loss), among which The specific calculation process of the loss value will not be repeated here in this embodiment.
可选地,预设条件可根据实际需求进行设定,例如,可以是预估流量对应的损失值或平均损失值的大小。Optionally, the preset condition may be set according to actual requirements, for example, it may be a loss value or an average loss value corresponding to the estimated flow.
作为一种可选地实现方式,如果一组预估流量中包括一个指定单位时长内的预估流量,相应的,选取符合预设条件的一组预估流量作为广告流量预估值包括:选取损失值最小的预估流量作为一个指定单位时长内的广告流量预估值。As an optional implementation method, if a group of estimated traffic includes an estimated traffic within a specified unit duration, correspondingly, selecting a group of estimated traffic that meets preset conditions as an estimated advertising traffic includes: selecting The estimated traffic with the smallest loss value is used as the estimated advertising traffic within a specified unit duration.
作为另一种可选地实现方式,如果一组预估流量中包括至少两个指定单位时长内的预估流量,相应的,选取符合预设条件的一组预估流量作为广告流量预估值包括:分别计算每组预估流量中所述至少两个指定单位时长内的预估流量的平均损失值;选取平均损失值最小的一组预估流量作为所述至少两个指定单位时长内的广告流量预估值。As another optional implementation method, if a set of estimated traffic includes estimated traffic within at least two specified unit durations, correspondingly, a group of estimated traffic that meets preset conditions is selected as the advertising traffic estimate Including: separately calculating the average loss value of the estimated flow within the at least two specified unit time periods in each group of estimated flow; Advertising traffic estimates.
其中,在前述实现方式中,假设指定单位时长为天,一组预估流量中包括未来3天内的预估流量,那么,需要分别计算每组预估流量在这3天内的平均损失值,进而基于每组预估流量对应平均损失值,选取平均损失值最小的预估流量作为广告流量预估值。Among them, in the aforementioned implementation method, assuming that the specified unit duration is days, and a group of estimated traffic includes estimated traffic in the next 3 days, then it is necessary to calculate the average loss value of each group of estimated traffic in these 3 days, and then Based on the average loss value corresponding to each group of estimated traffic, the estimated traffic with the smallest average loss value is selected as the estimated advertising traffic value.
通过上述S1至S6中给出的广告流量预估方法预估得到的广告流量预估值,既可以用于广告售前的库存查询,以调整当前广告合约的可行性,或者确定广告合约的排期的优先级。需要注意的是,前述的广告合约也可以为竞价广告,本实施例在此不做限制。例如,图4所示为合约广告的广告排期界面的示意图,以用于售前广告排期的制定等。The estimated advertising traffic estimated by the advertising traffic estimation method given in S1 to S6 above can be used for pre-sales inventory query to adjust the feasibility of the current advertising contract, or determine the ranking of the advertising contract. Period priority. It should be noted that the aforementioned advertisement contract may also be a bidding advertisement, which is not limited in this embodiment. For example, FIG. 4 is a schematic diagram of an advertisement scheduling interface for contract advertisements, which is used for making pre-sale advertisement schedules and the like.
进一步,基于对上述S1至S6给出的广告流量预估方法的描述,作为一种可能的实现方法,当广告主基于app或者网页端上展示的如图3所示的定投条件选取界面发起广告请求时,该广告请求可通过SDK(软件开发工具包,Software Development Kit)或者JS(Javascript)转发到广告管理平台中预设的广告引擎,广告引擎查询广告索引模块获取所有满足投放的广告系统(如合约系统、竞价系统等),再通过预设有S1至S6中所述的广告流量预估方法的流量预估模块得出广告流量预估值,根据广告流量预估值确定广告系统的优先级,如果存在满足广告请求中所设定的投放要求的广告系统,那么可通过该广告系统进行广告投放。Further, based on the description of the advertising traffic estimation method given in S1 to S6 above, as a possible implementation method, when the advertiser initiates an advertisement based on the selection interface of the scheduled delivery condition shown in Figure 3 displayed on the app or web page When requesting, the ad request can be forwarded to the preset ad engine in the ad management platform through SDK (Software Development Kit) or JS (Javascript), and the ad engine queries the ad index module to obtain all the ad systems ( Such as contract system, bidding system, etc.), and then obtain the estimated advertising traffic value through the traffic estimation module preset with the advertising traffic estimation method described in S1 to S6, and determine the priority of the advertising system according to the estimated advertising traffic value level, if there is an advertising system that meets the delivery requirements set in the ad request, then the ad can be served through this advertising system.
在本申请实施例给出的广告流量预估方法中,至少具有下述优点:In the advertising traffic estimation method given in the embodiment of the present application, at least the following advantages are provided:
在根据目标定投条件获取到历史流量数据进行广告流量预估时,利用分布式混合时序预估模型进行流量预估得到多组预估流量,从多组预估流量对应的损失值中,选取损失值最小或平均损失值最小的预设流量作为广告流量预估值,以避免由于历史数据波动或偶然因素等对广告预估结果的影响,有效确保了广告流量预估结果的准确性。When the historical traffic data is obtained according to the target fixed investment conditions for advertising traffic estimation, the distributed hybrid time series estimation model is used for traffic estimation to obtain multiple groups of estimated traffic, and the loss value is selected from the loss values corresponding to the multiple groups of estimated traffic The preset traffic with the smallest value or the smallest average loss value is used as the advertising traffic estimation value to avoid the influence of historical data fluctuations or accidental factors on the advertising estimation results, effectively ensuring the accuracy of the advertising traffic estimation results.
实施例二Embodiment two
图5是根据一示例性实施例示出的一种广告流量预估装置100的框图,该广告流量预估装置100可应用于图1所示的广告管理平台。参照图5,该广告流量预估装置100包括数据获取模块110、数据合并模块120、流量预估模块130和预估结果确定模块140。Fig. 5 is a block diagram showing an advertisement
数据获取模块110,用于按照目标定投条件获取预设时长内生产的历史流量数据;可选地,历史流量数据至少包括历史点击日志数据、历史展示日志数据、历史请求日志数据中的一种或多种。The
数据合并模块120,用于基于指定合并维度中的各子维度的顺序选取子维度,基于选取的当前子维度对所述历史流量数据进行合并;The
流量预估模块130,用于如果基于当前子维度合并得到的每两个指定单位时长内的历史流量数据的数据量差值均小于预设值,则根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量,否则返回数据合并模块120进入下一子维度。The
可选地,在分布式混合时序预估模型包括多个不同的分布式时序预估模型时,流量预估模块130可具体用于基于当前子维度下的指定单位时长内的历史流量数据,分别利用各分布式时序预估模型进行流量预估,得到与各分布式时序预估模型对应的多组预估流量。Optionally, when the distributed hybrid time-series prediction model includes multiple different distributed time-series prediction models, the
预估结果确定模块140,用于根据各组预估流量的损失值,选取符合预设条件的一组预估流量作为广告流量预估值。The estimation
可选地,如果一组预估流量中包括一个指定单位时长内的预估流量,相应的,预估结果确定模块140可以用于选取损失值最小的预估流量作为一个指定单位时长内的广告流量预估值;或者,Optionally, if a set of estimated traffic includes an estimated traffic within a specified unit duration, correspondingly, the estimated
如果一组预估流量中包括至少两个指定单位时长内的预估流量,相应的,预估结果确定模块140还可以用于分别计算每组预估流量中所述至少两个指定单位时长内的预估流量的平均损失值;选取平均损失值最小的一组预估流量作为对应数量个指定单位时长内的广告流量预估值。If a group of estimated flows includes estimated flows within at least two specified unit time periods, correspondingly, the estimated
进一步,作为一种可能的实现方式,广告流量预估装置还可包括定投条件获取模块,该定投条件模块包括:Further, as a possible implementation, the advertising traffic estimation device may also include a module for acquiring the conditions of fixed casting, and the module of the conditions of fixed casting includes:
界面展示单元,用于展示定投条件选取界面,定投条件选取界面上展示有多个定投条件选项卡。The interface display unit is used to display the fixed investment condition selection interface, and there are multiple fixed investment condition selection tabs displayed on the fixed investment condition selection interface.
定投条件确定单元,用于响应广告主基于多个定投条件选项卡发起的定投条件选取操作,根据选取结果确定目标定投条件。The fixed investment condition determining unit is used to respond to the selected operation of the fixed investment condition initiated by the advertiser based on multiple fixed investment condition tabs, and determine the target fixed investment condition according to the selection result.
进一步,作为又一种可能的实现方式,装置还可包括:Further, as yet another possible implementation, the device may further include:
数据去噪模块,用于基于预设的高斯平滑模型对当前子维度下的指定单位时长内的历史流量数据进行去噪处理;以及基于去噪后的指定单位时长内的所述历史流量数据调用流量预估模块130执行根据预设的分布式混合时序预估模型以及当前子维度下的指定单位时长内的历史流量数据进行流量预估得到多组预估流量,否则进入下一子维度的步骤。The data denoising module is used to denoise the historical traffic data within the specified unit time period under the current sub-dimension based on the preset Gaussian smoothing model; and call based on the historical traffic data within the specified unit time period after denoising The
关于本实施例中的广告流量预估装置100,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。With regard to the advertising
实施例三Embodiment three
请参阅图6,为根据一示例性实施例提供的一种电子设备10的框图,该电子设备10可至少包括处理器11,用于存储处理器11可执行指令的存储器12。其中,处理器11被配置为执行指令,以实现如上述实施例中的信息交互方法的全部步骤或部分步骤。Please refer to FIG. 6 , which is a block diagram of an
处理器11、存储器12之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。The
其中,处理器11用于读/写存储器中存储的数据或程序,并执行相应地功能。Wherein, the
存储器12用于存储程序或者数据,如存储处理器11可执行指令。该存储器12可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read OnlyMemory,ROM),可编程只读存储器(Programmable Read-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)等。The
进一步,作为一种可能的实现方式,电子设备10还可包括电源组件、多媒体组件、音频组件、输入/输出(I/O)接口、传感器组件以及通信组件等。Further, as a possible implementation manner, the
电源组件为电子设备10的各种组件提供电力。电源组件可以包括电源管理系统,一个或多个电源、以及其他与为电子设备10生成、管理和分配电力相关联的组件。The power supply component provides power to various components of the
多媒体组件包括在电子设备10和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件包括一个前置摄像头和/或后置摄像头。当电子设备10处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。The multimedia component includes a screen that provides an output interface between the
音频组件被配置为输出和/或输入音频信号。例如,音频组件包括一个麦克风(MIC),当电子设备10处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器12或经由通信组件发送。在一些实施例中,音频组件还包括一个扬声器,用于输出音频信号。The audio component is configured to output and/or input audio signals. For example, the audio component includes a microphone (MIC), which is configured to receive external audio signals when the
I/O接口为处理组件和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。The I/O interface provides an interface between the processing component and the peripheral interface module, and the above peripheral interface module can be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
传感器组件包括一个或多个传感器,用于为电子设备10提供各个方面的状态评估。例如,传感器组件可以检测到电子设备10的打开/关闭状态,组件的相对定位,例如组件为电子设备10的显示器和小键盘,传感器组件还可以检测电子设备10或电子设备10一个组件的位置改变,用户与电子设备10接触的存在或不存在电子设备10方位或加速/减速和电子设备10的温度变化。传感器组件可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。The sensor assembly includes one or more sensors for providing various aspects of status assessment for
通信组件被配置为便于电子设备10和其他设备之间有线或无线方式的通信。电子设备10可以接入基于通信标准的无线网络,如WiFi,运营商网络(如2G、3G、4G或5G),或它们的组合。在一个示例性实施例中,通信组件经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。The communication component is configured to facilitate wired or wireless communication between
在示例性实施例中,电子设备10可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。In an exemplary embodiment,
应当理解的是,图6所示的结构仅为电子设备10的结构示意图,该电子设备10还可包括比图6中所示更多或者更少的组件,或者具有与图6所示不同的配置。图6中所示的各组件可以采用硬件、软件或其组合实现。It should be understood that the structure shown in FIG. 6 is only a schematic structural diagram of the
实施例四Embodiment four
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器12,上述指令可由电子设备10的处理器11执行以完成上述页面处理方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。In an exemplary embodiment, there is also provided a non-transitory computer-readable storage medium including instructions, such as the
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。It should be noted that the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes none other elements specifically listed, or also include elements inherent in the process, method, commodity, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above descriptions are only examples of the present application, and are not intended to limit the present application. For those skilled in the art, various modifications and changes may occur in this application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included within the scope of the claims of the present application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911244871.7A CN111062746B (en) | 2019-12-06 | 2019-12-06 | Advertisement flow prediction method and device and electronic equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911244871.7A CN111062746B (en) | 2019-12-06 | 2019-12-06 | Advertisement flow prediction method and device and electronic equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111062746A CN111062746A (en) | 2020-04-24 |
| CN111062746B true CN111062746B (en) | 2023-06-23 |
Family
ID=70299941
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911244871.7A Active CN111062746B (en) | 2019-12-06 | 2019-12-06 | Advertisement flow prediction method and device and electronic equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111062746B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112258207B (en) * | 2020-06-16 | 2024-07-19 | 北京沃东天骏信息技术有限公司 | Advertisement flow determination method, device, equipment and storage medium |
| CN112380273B (en) * | 2020-11-11 | 2024-12-03 | 北京达佳互联信息技术有限公司 | Data estimation method and device |
| CN113761018A (en) * | 2021-02-24 | 2021-12-07 | 北京沃东天骏信息技术有限公司 | Data processing method, apparatus, equipment and storage medium |
| CN113781090A (en) * | 2021-02-24 | 2021-12-10 | 北京沃东天骏信息技术有限公司 | Flow estimation method and device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2012203001A1 (en) * | 2007-01-29 | 2012-06-14 | Google, Inc. | Determining and communicating excess advertiser demand information to users, such as publishers participating in, or expected to participate in, an advertising network |
| CA2930158A1 (en) * | 2015-05-18 | 2016-11-18 | Interactive Data Pricing And Reference Data Llc | Data conversion and distribution systems |
| CN108681920A (en) * | 2018-05-14 | 2018-10-19 | 微梦创科网络科技(中国)有限公司 | The method and system launched based on advertising creative optimization advertisement |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7702615B1 (en) * | 2005-11-04 | 2010-04-20 | M-Factor, Inc. | Creation and aggregation of predicted data |
| US10510012B2 (en) * | 2014-04-28 | 2019-12-17 | Microsoft Technology Licensing Llc | Real time interactive prediction |
| CN109214841B (en) * | 2017-06-30 | 2021-10-22 | 北京金山安全软件有限公司 | Method and device for obtaining advertisement predicted value and terminal |
| CN110517479B (en) * | 2018-05-22 | 2020-11-03 | 杭州海康威视系统技术有限公司 | Urban road traffic prediction method and device and electronic equipment |
| CN109509012A (en) * | 2018-07-24 | 2019-03-22 | 百度在线网络技术(北京)有限公司 | Ad traffic predictor method and device |
| CN109283456B (en) * | 2018-09-14 | 2021-02-09 | 西安空间无线电技术研究所 | Single-particle functional interruption section evaluation method based on particle filter model |
| CN110009429B (en) * | 2019-04-10 | 2021-04-16 | 金瓜子科技发展(北京)有限公司 | Method and device for predicting flow data and computer equipment |
-
2019
- 2019-12-06 CN CN201911244871.7A patent/CN111062746B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2012203001A1 (en) * | 2007-01-29 | 2012-06-14 | Google, Inc. | Determining and communicating excess advertiser demand information to users, such as publishers participating in, or expected to participate in, an advertising network |
| CA2930158A1 (en) * | 2015-05-18 | 2016-11-18 | Interactive Data Pricing And Reference Data Llc | Data conversion and distribution systems |
| CN108681920A (en) * | 2018-05-14 | 2018-10-19 | 微梦创科网络科技(中国)有限公司 | The method and system launched based on advertising creative optimization advertisement |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111062746A (en) | 2020-04-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111062746B (en) | Advertisement flow prediction method and device and electronic equipment | |
| Yao et al. | Determining consumers’ discount rates with field studies | |
| US20160078491A1 (en) | System and method of marketing of reminders | |
| US20120324008A1 (en) | System and method of tracking user interaction with content | |
| US20110231239A1 (en) | Method and system for attributing an online conversion to multiple influencers | |
| CN110070424B (en) | Order generation method, device, server and storage medium | |
| US20130325589A1 (en) | Using advertising campaign allocation optimization results to calculate bids | |
| CN110956505B (en) | Advertisement inventory estimation method and related device | |
| KR102382405B1 (en) | Method and system for providing advertising | |
| CN113095887A (en) | Product sales prediction method, device, storage medium and computer equipment | |
| EP3806017A1 (en) | Methods, platforms and systems for paying persons for use of their personal intelligence profile data | |
| US20140379460A1 (en) | Real-time updates to digital marketing forecast models | |
| CN111476613A (en) | Shopping guide auxiliary method and device based on passenger flow analysis, server and storage medium | |
| TW202336672A (en) | Lead generating systems and methods based on predicted conversions for a social media program | |
| CN111831896A (en) | An information push method, device, electronic device and storage medium | |
| JP5836407B2 (en) | Advertisement display control method, advertisement display control apparatus, and program | |
| CN111506643B (en) | Method, device and system for generating information | |
| CN111210274A (en) | Method and system for recommending advertisements | |
| Collis | Consumer welfare in the digital economy | |
| Reithinger et al. | Modelling price paths in on-line auctions: smoothing sparse and unevenly sampled curves by using semiparametric mixed models | |
| CN114756777A (en) | Recommendation information delivery method and device, electronic equipment and storage medium | |
| CN115204922A (en) | Data prediction method and device of promotion content, electronic equipment and storage medium | |
| CN114723468A (en) | Information push method, device, computer equipment and storage medium | |
| CN117196734B (en) | A value assessment method, system, equipment and storage medium for crowdsourcing tasks | |
| CN114116809B (en) | Data indicator generation method, device, electronic device and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |