CN110673206A - A seismic anomaly detection method for satellite magnetic field data based on non-negative matrix decomposition - Google Patents
A seismic anomaly detection method for satellite magnetic field data based on non-negative matrix decomposition Download PDFInfo
- Publication number
- CN110673206A CN110673206A CN201910788471.6A CN201910788471A CN110673206A CN 110673206 A CN110673206 A CN 110673206A CN 201910788471 A CN201910788471 A CN 201910788471A CN 110673206 A CN110673206 A CN 110673206A
- Authority
- CN
- China
- Prior art keywords
- matrix
- data
- magnetic field
- negative
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 231
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 58
- 238000001514 detection method Methods 0.000 title claims abstract description 18
- 230000002159 abnormal effect Effects 0.000 claims abstract description 76
- 230000000694 effects Effects 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000013598 vector Substances 0.000 claims description 29
- 230000001186 cumulative effect Effects 0.000 claims description 26
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 11
- 238000011160 research Methods 0.000 claims description 11
- 230000005856 abnormality Effects 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000011478 gradient descent method Methods 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 claims description 2
- 230000003203 everyday effect Effects 0.000 claims 5
- 230000002354 daily effect Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 5
- 230000000875 corresponding effect Effects 0.000 description 30
- 230000002547 anomalous effect Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 2
- 230000005358 geomagnetic field Effects 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/01—Measuring or predicting earthquakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/081—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明为一种基于非负矩阵分解的卫星磁场数据地震异常检测方法,包括:根据标志位去除无效数据减去CHAOS‑6磁场模型数据,对结果求一阶差分得到差分数据;对差分数据进行短时傅里叶变换构造磁场数据对应的非负时频幅值矩阵;利用非负矩阵分解方法对非负时频幅值矩阵进行分解,将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离;根据能量比选出因地震产生的局部影响分量,通过超限率的方法对该分量进行异常轨道判断;对每日异常轨道个数进行累计,通过其偏离背景拟合直线的程度检测地震异常。本发明可以保留并利用测量得到的所有数据对地震进行研究,同时得到与地震活动更为相关的分量有效的进行地震异常检测。
The present invention is a method for detecting anomalies of satellite magnetic field data based on non-negative matrix decomposition, comprising: removing invalid data and subtracting CHAOS-6 magnetic field model data according to a flag bit, and obtaining a first-order difference of the results to obtain differential data; The short-time Fourier transform is used to construct the non-negative time-frequency amplitude matrix corresponding to the magnetic field data; the non-negative time-frequency amplitude matrix is decomposed by the non-negative matrix decomposition method, and the local influence components caused by earthquakes and the components caused by solar activity and geomagnetic The global influence components generated by the activity are separated; the local influence components caused by the earthquake are selected according to the energy ratio, and the abnormal orbits of the components are judged by the method of the overrun rate; the daily abnormal orbits are accumulated, and the deviation from the background The degree of fitting a straight line detects seismic anomalies. The present invention can retain and utilize all the data obtained by measurement to study the earthquake, and at the same time obtain the components more relevant to the seismic activity to effectively perform seismic anomaly detection.
Description
技术领域technical field
本发明属于地震监测领域,具体地来讲为一种基于非负矩阵分解的卫星磁场数据地震异常检测方法。The invention belongs to the field of earthquake monitoring, in particular to a method for detecting anomalies of satellite magnetic field data based on non-negative matrix decomposition.
背景技术Background technique
地震异常指地震发生前后出现的异常现象,其中包括震源附近的地磁、地电、重力等地球物理异常。研究人员往往通过测量上述物理量,并研究其异常情况实现对进行地震异常的检测。测量方式主要包括地面台站和卫星监测两种,卫星监测方式因其测量范围广,且已被证明可以检测到地震异常现象而被广泛研究。其中卫星测量的磁场数据被大量研究,目前主要通过选用夜间数据同时去除其中太阳活动指数和地磁指数较高的数据排除太阳和地磁活动对数据的影响,并直接使用未剔除数据进行异常检测。Seismic anomalies refer to abnormal phenomena that occur before and after an earthquake, including geophysical anomalies such as geomagnetism, geoelectricity, and gravity near the epicenter. The researchers often realize the detection of earthquake anomalies by measuring the above-mentioned physical quantities and studying their anomalies. Measurement methods mainly include ground stations and satellite monitoring. Satellite monitoring methods have been widely studied because of their wide measurement range and proven ability to detect seismic anomalies. Among them, the magnetic field data measured by satellites has been extensively studied. At present, the influence of solar and geomagnetic activities on the data is excluded by selecting the nighttime data and simultaneously removing the data with higher solar activity index and geomagnetic index, and directly using the unremoved data for abnormal detection.
现提出一种基于非负矩阵分解的卫星磁场数据地震异常检测方法。非负矩阵分解方法可以将任意一高维非负矩阵分解为两个低维的非负矩阵W和H,使得 W与H的乘积近似的逼近原高维矩阵V,其中W称为基矩阵,H称为权重矩阵。基矩阵W可以看成原矩阵V的一组基底,其列向量表征了数据的特征;而权重矩阵H为矩阵V在基向量矩阵空间的投影,其行向量表示基矩阵W对应列向量随时间变化的幅值。其中原始矩阵V中的元素均为非负数,其分解矩阵W和 H中的元素也均为非负数,这使得分解结果具有真实的物理意义。基于该特性将卫星Y分量磁场数据预处理后进行短时傅里叶变换得到的非负时频矩阵作为原始矩阵进行分解,可得到数据的几个时频分布特征及其在时域上的幅值。将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离,不需要去除太阳和地磁活动较强的天的数据,同时可以得到与地震活动更为相关的分量有效的进行地震异常检测。A method for seismic anomaly detection of satellite magnetic field data based on non-negative matrix decomposition is proposed. The non-negative matrix factorization method can decompose any high-dimensional non-negative matrix into two low-dimensional non-negative matrices W and H, so that the product of W and H approximately approximates the original high-dimensional matrix V, where W is called the basis matrix, and H is called is the weight matrix. The basis matrix W can be regarded as a set of basis of the original matrix V, and its column vector represents the characteristics of the data; and the weight matrix H is the projection of the matrix V in the basis vector matrix space, and its row vector represents the corresponding column vector of the basis matrix W with time. magnitude of change. The elements in the original matrix V are all non-negative numbers, and the elements in the decomposition matrices W and H are also non-negative numbers, which makes the decomposition result have real physical meaning. Based on this characteristic, the non-negative time-frequency matrix obtained by short-time Fourier transform after preprocessing the satellite Y-component magnetic field data is decomposed as the original matrix, and several time-frequency distribution characteristics of the data and their amplitudes in the time domain can be obtained. value. Separating the local influence components caused by earthquakes and the global influence components caused by solar activity and geomagnetic activity does not need to remove the data of days with strong solar and geomagnetic activity, and at the same time, the components more related to seismic activity can be obtained. Perform seismic anomaly detection.
CN101793972A公开了一种强地震短临预测卫星热红外亮温异常技术,主要利用极轨卫星、静止气象卫星和卫星星座微波进行观测,得到卫星热红外云图,并通过大气模型进行校正获得实际温度值,根据地形和气团形态排除掉地形、天气因素导致的干扰信息,最后得到地震前兆热红外温度异常特性及其演变规律对地震三要素短临预报的关系。CN101793972A discloses a technology for predicting satellite thermal infrared bright temperature anomalies in the short-term of strong earthquakes. It mainly uses polar orbiting satellites, stationary meteorological satellites and satellite constellation microwaves for observation to obtain satellite thermal infrared cloud images, and corrects through atmospheric models to obtain actual temperature values. , according to the topography and air mass shape, the interference information caused by topography and weather factors is excluded, and finally the relationship between the thermal infrared temperature anomaly characteristics and evolution law of earthquake precursors and the short-term forecast of the three elements of earthquakes is obtained.
泽仁志玛等利用DEMETER卫星记录的变化磁场数据统计研究了2005-2009 年北半球7级以上强震前后空间磁场的扰动特征。根据地震震级和发生时间选取的研究空间和时间范围,选用夜间数据去除太阳的影响,剔除地磁活动较强的卫星观测数据,使用剩余数据对地震进行研究。利用同期观测数据构建背景场,通过磁场在地震时段相对于背景场的扰动幅度观测地震异常。Zeren Zhima et al. used the changing magnetic field data recorded by the DEMETER satellite to statistically study the disturbance characteristics of the space magnetic field before and after the strong earthquake of magnitude 7 or above in the northern hemisphere from 2005 to 2009. According to the research space and time range selected according to the earthquake magnitude and occurrence time, the nighttime data was selected to remove the influence of the sun, the satellite observation data with strong geomagnetic activity was excluded, and the remaining data were used to study the earthquake. The background field is constructed by using the observation data of the same period, and the seismic anomaly is observed by the disturbance amplitude of the magnetic field relative to the background field during the earthquake period.
Mehdi Akhoondzadeh等研究了2016年4月16日的厄瓜多尔地震,研究了2015 年11月1日至2016年4月30日的Swarm卫星群Alpha星的磁场三分量数据,并计算每日数据的中值,通过所有中值的四分位数判断该天是否为异常天,将结果中地磁活动影响较大的天去除,认为剩余异常天可能由地震引起。Mehdi Akhoondzadeh et al. studied the Ecuador earthquake on April 16, 2016, studied the three-component data of the magnetic field of the Swarm satellite group Alpha star from November 1, 2015 to April 30, 2016, and calculated the median value of the daily data , through the quartiles of all median values to judge whether the day is an abnormal day, and remove the days with greater influence of geomagnetic activity in the results, and think that the remaining abnormal days may be caused by earthquakes.
上述技术使用传统的方式去除太阳和地磁活动对数据的影响,需要剔除部分数据并直接对剩余数据进行异常检测.The above technologies use traditional methods to remove the influence of solar and geomagnetic activities on the data, and need to remove some data and directly perform anomaly detection on the remaining data.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于提供一种基于非负矩阵分解的卫星磁场数据地震异常检测方法,可以保留并利用测量得到的所有数据对地震进行研究,同时得到与地震活动更为相关的分量有效的进行地震异常检测。The technical problem to be solved by the present invention is to provide a seismic anomaly detection method of satellite magnetic field data based on non-negative matrix decomposition, which can retain and use all the measured data to study earthquakes, and simultaneously obtain components more relevant to seismic activity. for seismic anomaly detection.
本发明是这样实现的,The present invention is realized in this way,
一种基于非负矩阵分解的卫星磁场数据地震异常检测方法,该方法包括:A method for seismic anomaly detection of satellite magnetic field data based on non-negative matrix decomposition, the method comprising:
a、读取卫星的磁场数据,并根据标志位去除无效数据后作为原始数据;a. Read the magnetic field data of the satellite, and remove the invalid data according to the flag bit as the original data;
b、原始数据减去CHAOS-6磁场模型数据,并对结果求一阶差分得到差分数据;b. Subtract the CHAOS-6 magnetic field model data from the original data, and obtain the differential data by taking the first-order difference of the results;
c、对步骤b的差分数据进行短时傅里叶变换构造磁场数据对应的非负时频幅值矩阵;c. Perform short-time Fourier transform on the differential data of step b to construct a non-negative time-frequency amplitude matrix corresponding to the magnetic field data;
d、利用非负矩阵分解方法对磁场数据的非负时频幅值矩阵进行分解,将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离;d. Use the non-negative matrix decomposition method to decompose the non-negative time-frequency amplitude matrix of the magnetic field data, and separate the local influence components caused by earthquakes and the global influence components caused by solar activity and geomagnetic activity;
e、根据能量比选出因地震产生的局部影响分量,并通过超限率的方法对该分量进行异常轨道判断;e. Select the local influence component caused by the earthquake according to the energy ratio, and judge the abnormal orbit of this component by the method of overrun rate;
f、对每日异常轨道个数进行累计,并通过其偏离背景拟合直线的程度检测地震异常;f. Accumulate the number of abnormal orbits per day, and detect seismic anomalies by their deviation from the background fitting straight line;
g、输出偏离程度指数曲线结果图。g. Output deviation degree index curve result graph.
进一步地,步骤a,读取卫星的磁场数据包括北向X分量Bx,东向Y分量By和垂直Z分量Bz三个分量的数据。进一步地,步骤b,具体为:用原始数据的Y 分量磁场数据减去CHAOS-6磁场模型计算的背景场,得到残差数据,根据研究Y分量磁场数据最容易受到岩石圈变化的影响反映地震异常。此处选择原始数据的Y分量磁场数据。Further, in step a, the magnetic field data of the read satellite includes data of three components of the north X component B x , the east Y component By and the vertical Z component B z . Further, step b, specifically: subtracting the background field calculated by the CHAOS-6 magnetic field model from the Y-component magnetic field data of the original data to obtain residual data, and according to the research, the Y-component magnetic field data is most easily affected by changes in the lithosphere and reflects earthquakes. abnormal. Here, the Y-component magnetic field data of the raw data is selected.
再对残差数据取一阶差分去除剩余小背景值得到磁场的数据的变化量,采用式(1)计算:Then take the first-order difference of the residual data to remove the remaining small background value to obtain the variation of the magnetic field data, which is calculated by formula (1):
i=1,2,3,...L-1i=1,2,3,...L-1
其中By为原始Y分量磁场数据,Bm为CHAOS-6磁场模型计算的背景场, ti为第i个数据对应的时刻,L为每条轨道数据的长度,为减模型求一阶差分后的预处理结果。where By is the original Y -component magnetic field data, B m is the background field calculated by the CHAOS-6 magnetic field model, t i is the time corresponding to the ith data, L is the length of each track data, The preprocessing result after the first-order difference is calculated for the subtractive model.
进一步地,步骤c,对差分数据进行短时傅里叶变换构造磁场数据对应的非负时频幅值矩阵包括:Further, step c, performing short-time Fourier transform on the differential data to construct a non-negative time-frequency amplitude matrix corresponding to the magnetic field data includes:
通过短时傅里叶变换对预处理后的磁场数据进行时频变换得到包括幅值信息和相位信息的时频矩阵;Perform time-frequency transformation on the preprocessed magnetic field data through short-time Fourier transform to obtain a time-frequency matrix including amplitude information and phase information;
取幅值构成的时频幅值矩阵作为后续非负矩阵分解的输入矩阵。The time-frequency amplitude matrix formed by the amplitude values is taken as the input matrix of the subsequent non-negative matrix decomposition.
进一步地,步骤d,具体包括:通过非负矩阵分解方法将任意一高维非负时频幅值矩阵分解为两个低维的非负矩阵W和H,使得W与H的乘积近似的逼近原高维矩阵V,其中W称为基矩阵,H称为权重矩阵,得到数据的时频分布特征矩阵及时频分布特征矩阵在时域上的幅值;Further, step d specifically includes: decomposing any high-dimensional non-negative time-frequency amplitude matrix into two low-dimensional non-negative matrices W and H by a non-negative matrix decomposition method, so that the product of W and H is approximately approximating the original height. The dimension matrix V, where W is called the basis matrix, and H is called the weight matrix, and the time-frequency distribution characteristic matrix of the data and the amplitude of the time-frequency distribution characteristic matrix in the time domain are obtained;
非负矩阵分解方法的数学模型为:The mathematical model of the non-negative matrix factorization method is:
V≈WH (6)V≈WH (6)
其中V∈R≥0为一M×N的非负矩阵,V∈R≥0为一M×R的非负矩阵, V∈R≥0为一R×N的非负矩阵,分解特征个数R的选择满足R<MN/(M+N);where V∈R ≥0 is an M×N non-negative matrix, V∈R ≥0 is an M×R non-negative matrix, V∈R ≥0 is an R×N non-negative matrix, and the number of decomposition features The choice of R satisfies R<MN/(M+N);
基于K-L散度制定非负矩阵分解的目标函数,其中基于K-L散度的目标函数为:The objective function of non-negative matrix factorization is formulated based on K-L divergence, where the objective function based on K-L divergence is:
i=1,2,3...Mi=1,2,3...M
j=1,2,3,...Nj=1,2,3,...N
其中Vij表示矩阵V的第i行、j列元素,[WH]ij表示基矩阵W和权重矩阵 H相乘得到矩阵的第i行、j列元素;Wherein V ij represents the i-th row and j column elements of the matrix V, and [WH] ij represents the base matrix W and the weight matrix H multiplied to obtain the i-th row and j column elements of the matrix;
利用最小行列式准则对权重矩阵H进行约束,通过权重矩阵H的向量张成空间的体积最小进行约束,权重矩阵H的向量张成空间的体积的求解公式为:The weight matrix H is constrained by the minimum determinant criterion, and the volume of the vector stretched space of the weight matrix H is constrained to be the smallest. The solution formula for the volume of the vector stretched space of the weight matrix H is:
则添加最小行列式约束的K-L散度非负矩阵分解目标函数为:Then the K-L divergence non-negative matrix factorization objective function with the minimum determinant constraint added is:
i=1,2,3,...Mi=1,2,3,...M
j=1,2,3,...Nj=1,2,3,...N
其中det表示求矩阵的行列式,α为平衡参数;where det represents the determinant of the matrix, and α is the balance parameter;
对目标函数采用乘性迭代方法进行优化求解,通过交替更新变量求得最优解,利用梯度下降法计算更新公式:The objective function is optimized and solved by the multiplicative iteration method, the optimal solution is obtained by alternately updating the variables, and the update formula is calculated by the gradient descent method:
其中令μw和μh分别为:where μw and μh are respectively:
最终更新迭代公式为:The final update iteration formula is:
其中表示矩阵元素的点乘;in Represents the dot product of matrix elements;
标准化公式为:The normalized formula is:
设置迭代停止条件为目标函数小于设置的阈值Th,同时设置迭代次数的上限为Niter,若迭代Niter次后目标函数的值依旧不小于所设置的阈值则强行停止迭代;The iteration stop condition is set as the objective function is less than the set threshold Th, and the upper limit of the number of iterations is set as Niter . If the value of the objective function is still not less than the set threshold after iteration Niter times, the iteration is forcibly stopped;
得到每条轨道分离得到的基矩阵W为:The basis matrix W obtained by each orbital separation is:
权重矩阵HWeight matrix H
为:for:
进一步地,步骤e,根据能量比选出因地震产生的局部影响分量,通过超限率的方法对该分量进行异常轨道判断,具体为:Further, step e, selects the local influence component due to the earthquake according to the energy ratio, and judges the abnormal orbit of this component by the method of overrun rate, specifically:
通过计算非负时频幅值矩阵分解得到的权重矩阵H的各个行向量中研究区域内能量与整条轨道能量之比,选择能量比最大的分量HH作为因地震产生的局部影响分量;By calculating the ratio of the energy in the study area to the energy of the whole track in each row vector of the weight matrix H obtained by decomposing the non-negative time-frequency amplitude matrix, the component HH with the largest energy ratio is selected as the local influence component caused by the earthquake;
再选用反应数据能量平均水平的均方根作为阈值参数,根据最大的分量 HH的值是否大于整条轨道均方根的k倍进行异常点判断,认为异常点只出现在研究区域内,且对应标志位显示异常点不是由于已知电离层活动引起的轨道为异常轨道。Then, the root mean square of the average energy level of the response data is selected as the threshold parameter, and the abnormal point is judged according to whether the value of the largest component HH is greater than k times the root mean square of the entire track. Orbits where the flag indicates that the anomaly is not due to known ionospheric activity are anomalous.
进一步地,步骤f,对每日异常轨道个数进行累计,并通过其偏离背景拟合直线的程度检测地震异常具体包括:Further, in step f, the number of abnormal orbits per day is accumulated, and the seismic anomaly detected by the degree of its deviation from the background fitting straight line specifically includes:
通过离差标准化对每日异常轨道与每日所有轨道个数进行归一化处理,The daily abnormal orbits and the number of all orbits per day are normalized by dispersion standardization,
计算得到每日异常轨道个数进行累计归一化结果为:The cumulative normalization result of the daily number of abnormal orbits is calculated as:
MNano=[MNano(1),MNano(2),MNano(3),...MNano(d)] (26)MN ano = [MN ano (1), MN ano (2), MN ano (3), ... MN ano (d)] (26)
每日所有轨道累计归一化结果通过最小二乘作直线拟合,得到背景拟合直线;The cumulative normalized results of all orbits in each day are fitted with a straight line by least squares to obtain a background fitting straight line;
计算每日所有轨道个数进行累计归一化结果为:The cumulative normalization result of calculating the number of all tracks per day is:
MNnom=[MNnom(1),MNnom(2),MNnom(3),...MNnom(d)] (27)MN nom = [MN nom (1), MN nom (2), MN nom (3), ... MN nom (d)] (27)
对MNnom进行最小二乘线性拟合,拟合直线为:The least squares linear fitting is performed on MN nom , and the fitted straight line is:
y=a0+a1x (28)y=a 0 +a 1 x (28)
其中参数a0和a1估计求解公式为:The parameters a 0 and a 1 are estimated to be solved by:
其中x为[1,2,3...d],d为天数,xi为x中的第i个元素;y为MNnom,yi为 MNnom中的第i个元素;xiyi为x中的第i个元素与MNnom中的第i个元素相乘;经计算得到直线方程参数和 where x is [1, 2, 3...d], d is the number of days, x i is the i-th element in x; y is MN nom , y i is the i-th element in MN nom ; x i y i is the i-th element in x multiplied by the i-th element in MN nom ; after calculation, the parameters of the equation of the straight line are obtained and
通过每日异常轨道个数累计曲线偏离背景拟合直线的程度来显示地震变化过程,偏离线性拟合程度计算公式为:The seismic change process is displayed by the deviation of the cumulative curve of the number of abnormal orbits per day from the background fitting straight line. The calculation formula of the deviation from the linear fitting degree is:
i=1,2,3,...di=1,2,3,...d
其中Yi为MNano中的第i个元素;where Y i is the i-th element in MN ano ;
ρ是表示每日异常轨道累计曲线偏离背景拟合直线程度的指数,越大表示数据因受地震影响产生的异常越大。ρ is an index indicating the degree of deviation of the daily abnormal orbit cumulative curve from the background fitting straight line.
本发明与现有技术相比,有益效果在于:Compared with the prior art, the present invention has the following beneficial effects:
本发明基于非负矩阵分解的卫星磁场数据地震异常检测方法,通过减去 CHAOS-6磁场模型数据并进行一阶差分,去除磁场数据背景得到磁场数据变化量;利用短时傅里叶变换构造磁场数据对应的非负时频幅值矩阵;通过非负矩阵分解对构造的时频幅值矩阵进行分解,根据数据的时频特性自适应分解出相应的频率分布特征矩阵和权重矩阵,将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离;并通过能量比选取因地震产生的局部影响分量进行研究,使用超限率的方法对该分量进行异常轨道判断;最后对每日异常轨道个数进行累计,并通过其偏离线性拟合的程度检测地震异常。本发明通过非负矩阵分解对数据的非负时频幅值矩阵进行分解,根据磁场数据的时频特性自适应分离出太阳和地磁活动对数据的干扰,得到其频率分布特征和时间变化幅值,其分解结果具有真实物理意义。可以保留并利用测量得到的所有数据对地震进行研究,使用与地震活动更为相关的分量有效的进行地震异常检测,弥补了上述技术去除太阳以及地磁活动较强时的数据,减少数据使用量,并使用内剩余数据直接进行异常检测的不足。The invention is based on the satellite magnetic field data seismic anomaly detection method based on non-negative matrix decomposition. By subtracting the CHAOS-6 magnetic field model data and performing first-order difference, the magnetic field data background is removed to obtain the magnetic field data variation; the short-time Fourier transform is used to construct the magnetic field. The non-negative time-frequency amplitude matrix corresponding to the data; the constructed time-frequency amplitude matrix is decomposed through non-negative matrix decomposition, and the corresponding frequency distribution characteristic matrix and weight matrix are adaptively decomposed according to the time-frequency characteristics of the data. The local influence component generated is separated from the global influence component caused by solar activity and geomagnetic activity; the local influence component caused by earthquake is selected for research through the energy ratio, and the abnormal orbit of this component is judged by the method of overrun rate; finally The daily number of abnormal orbits is accumulated, and the seismic anomaly is detected by the degree of its deviation from the linear fit. The invention decomposes the non-negative time-frequency amplitude matrix of the data through non-negative matrix decomposition, and adaptively separates the interference of the sun and geomagnetic activities on the data according to the time-frequency characteristics of the magnetic field data, and obtains its frequency distribution characteristics and time variation amplitude. , and its decomposition result has real physical meaning. It is possible to retain and use all the measured data for earthquake research, use components more related to seismic activity to effectively detect seismic anomalies, make up for the above technology to remove data when the sun and geomagnetic activity are strong, reduce data usage, And use the remaining data within the insufficiency to directly perform anomaly detection.
附图说明Description of drawings
图1为基于非负矩阵分解的卫星磁场数据地震异常检测方法流程图;Fig. 1 is the flow chart of the seismic anomaly detection method of satellite magnetic field data based on non-negative matrix decomposition;
图2为厄瓜多尔地震震中、影响区域和研究区域示意图;Figure 2 is a schematic diagram of the Ecuador earthquake epicenter, affected area and study area;
图3为卫星磁场Y分量数据原始曲线;Fig. 3 is the original curve of satellite magnetic field Y component data;
图4为卫星磁场Y分量原始数据与CHAOS-6模型数据曲线,残差曲线以及一阶差分曲线;图4(1)中实线为原始数据曲线,点划线为模型数据曲线,由于原始数据幅值较大且模型数据与其相差很小,图4(2)将图4(1)其进行部分放大,图4(3)为原始数据减模型数据得到的残差数据,图4(4)为残差数据的一阶差分数据;Figure 4 shows the original data of the Y component of the satellite magnetic field and the CHAOS-6 model data curve, the residual curve and the first-order difference curve; the solid line in Figure 4(1) is the original data curve, and the dotted line is the model data curve. The amplitude is large and the difference between the model data is very small. Figure 4(2) enlarges the part of Figure 4(1). Figure 4(3) shows the residual data obtained by subtracting the model data from the original data. Figure 4(4) is the first-order difference data of the residual data;
图5为卫星Y分量磁场差分数据短时傅里叶变换时频幅值矩阵结果图;Fig. 5 is a result diagram of short-time Fourier transform time-frequency amplitude matrix of satellite Y-component magnetic field differential data;
图6为非负矩阵分解频率分布特征矩阵W结果图;Fig. 6 is non-negative matrix decomposition frequency distribution characteristic matrix W result graph;
图7为非负矩阵分解权重矩阵H结果图;Fig. 7 is a non-negative matrix decomposition weight matrix H result diagram;
图8为非负矩阵分解结果时域重构结果图,图8(1)为一阶差分数据,在研究区域内外均存在明显奇异值;图8(2)为W1和H1对应的时域分量,只在研究区域内存在明显奇异值;图8(3)为W2和H2对应的时域分量,不存在明显奇异值,在整条轨道内均匀分布;图8(4)为W3和H3对应的时域分量;Figure 8 is the time-domain reconstruction result of the non-negative matrix decomposition result, Figure 8(1) is the first-order difference data, and there are obvious singular values both inside and outside the study area; Figure 8(2) is the time domain components corresponding to W1 and H1 , there are obvious singular values only in the study area; Fig. 8(3) is the time domain component corresponding to W2 and H2, there is no obvious singular value, and it is evenly distributed in the whole orbit; Fig. 8(4) is the corresponding W3 and H3 the time domain component of ;
图9为异常轨道判断结果图,图9(1)为4月9日轨道3,没有点超出阈值,故不被判定为异常轨道;图9(2)为4月10日轨道1,存在超出阈值的点,且仅在研究区域内出现,同时通过检查其标志位没有显示已知电离层活动,可被判定为异常轨道;Figure 9 is the result of abnormal orbit judgment. Figure 9(1) is the
图10为每日异常轨道累计与背景拟合直线结果图;Figure 10 is a graph showing the result of daily abnormal orbit accumulation and background fitting straight line;
图11为每日异常轨道累计曲线偏离背景拟合直线程度指数曲线。Figure 11 is the index curve of the degree of deviation of the daily abnormal orbit cumulative curve from the background fitting straight line.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
参见图1所示,一种基于非负矩阵分解的卫星磁场数据地震异常检测方法,,该方法包括:Referring to Fig. 1, a method for detecting seismic anomalies in satellite magnetic field data based on non-negative matrix decomposition, the method includes:
a、读取卫星的磁场数据,并根据标志位去除无效数据;a. Read the magnetic field data of the satellite, and remove the invalid data according to the flag bit;
b、原始数据是去除无效数据之后的数据减去CHAOS-6磁场模型数据,并对结果求一阶差分;b. The original data is the data after removing the invalid data minus the CHAOS-6 magnetic field model data, and the first-order difference is calculated for the result;
c、对差分数据进行短时傅里叶变换构造磁场数据对应的非负时频幅值矩阵;c. Perform short-time Fourier transform on the differential data to construct a non-negative time-frequency amplitude matrix corresponding to the magnetic field data;
d、利用非负矩阵分解方法对磁场数据的时频幅值矩阵是的是非负时频矩阵进行分解,将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离;d. Use the non-negative matrix decomposition method to decompose the time-frequency amplitude matrix of the magnetic field data is a non-negative time-frequency matrix, and separate the local influence components caused by earthquakes and the global influence components caused by solar activity and geomagnetic activity;
e、根据能量比选出因地震产生的局部影响分量,并通过超限率的方法对该分量进行异常轨道判断;e. Select the local influence component caused by the earthquake according to the energy ratio, and judge the abnormal orbit of this component by the method of overrun rate;
f、对每日异常轨道个数进行累计,并通过其偏离背景拟合直线的程度检测地震异常;f. Accumulate the number of abnormal orbits per day, and detect seismic anomalies by their deviation from the background fitting straight line;
g、输出偏离程度指数曲线结果图。g. Output deviation degree index curve result graph.
步骤a,读取卫星的磁场数据包括北向X分量Bx,东向Y分量By和垂直Z 分量Bz三个分量的数据。In step a, the magnetic field data of the satellite is read, including data of three components of the north X component B x , the east Y component By and the vertical Z component B z .
步骤b,原始数据减去CHAOS-6磁场模型数据,并对结果求一阶差分,是用原始Y分量磁场数据减去CHAOS-6磁场模型计算的背景场,首先利用原始数据减去CHAOS-6磁场模型计算得到的背景场,去除地磁场幅值中较大的背景,得到残差数据,再对残差数据取一阶差分去除剩余较小背景值得到磁场的数据的变化量,其结果可用于短时傅里叶变换等后续操作。Step b, subtract the CHAOS-6 magnetic field model data from the original data, and calculate the first-order difference of the result, which is the background field calculated by subtracting the CHAOS-6 magnetic field model from the original Y-component magnetic field data. First, use the original data to subtract the CHAOS-6 For the background field calculated by the magnetic field model, remove the larger background in the magnitude of the geomagnetic field to obtain the residual data, and then take the first-order difference of the residual data to remove the remaining small background value to obtain the variation of the magnetic field data, and the result can be used For subsequent operations such as short-time Fourier transform.
i=1,2,3,...L-1i=1,2,3,...L-1
其中By为原始Y分量磁场数据,Bm为CHAOS-6磁场模型计算的背景场, ti为第i个数据对应的时刻,L为每条轨道数据的长度,dB为减模型求一阶差分后的预处理结果。where By is the original Y -component magnetic field data, B m is the background field calculated by the CHAOS-6 magnetic field model, t i is the time corresponding to the i-th data, L is the length of each track data, and dB is the first-order subtraction model The preprocessing result after the difference.
步骤c,对差分数据进行短时傅里叶变换构造磁场数据对应的非负时频幅值矩阵包括:Step c, performing short-time Fourier transform on the differential data to construct a non-negative time-frequency amplitude matrix corresponding to the magnetic field data, including:
通过短时傅里叶变换对预处理后的磁场数据进行时频变换得到其时频矩阵;The time-frequency matrix is obtained by performing time-frequency transform on the preprocessed magnetic field data through short-time Fourier transform;
取其幅值构成的时频幅值矩阵作为后续非负矩阵分解的输入矩阵。非负矩阵分解要求输入矩阵中的内每一个元素均为非负值,由于Y分量磁场数据为单通道数据无法构成矩阵,且预处理结果中存在负值,故通过短时傅里叶变换对数据进行时频变换,构造非负时频幅值矩阵,作为非负矩阵分解的输入矩阵。且短时傅里叶变换具有相关的物理意义,其结果反映的是数据的时频特性,即数据频率的幅值和相位分布随时间的变化,此处利用数据频率幅值分布随时间的变化,构成非负矩阵进行分解,后续可根据数据的时频幅值特性进行分解。The time-frequency amplitude matrix formed by its amplitude is taken as the input matrix of the subsequent non-negative matrix decomposition. Non-negative matrix decomposition requires that each element in the input matrix is a non-negative value. Since the Y-component magnetic field data is single-channel data, it cannot form a matrix, and there are negative values in the preprocessing results. The data is time-frequency transformed, and a non-negative time-frequency amplitude matrix is constructed as the input matrix of the non-negative matrix decomposition. And the short-time Fourier transform has relevant physical meaning, and the result reflects the time-frequency characteristics of the data, that is, the change of the amplitude and phase distribution of the data frequency with time. Here, the change of the amplitude distribution of the data frequency with time is used. , forming a non-negative matrix for decomposition, and subsequent decomposition can be performed according to the time-frequency amplitude characteristics of the data.
设预处理后每条轨道数据的时间序列为:Let the time series of each track data after preprocessing be:
X=[x1,x2,x3,x4,...,xL-1] (2)X=[x 1 , x 2 , x 3 , x 4 , ..., x L-1 ] (2)
其中L为每条轨道数据的长度。Where L is the length of each track data.
短时傅里叶变换的离散形式为:The discrete form of the short-time Fourier transform is:
n=0,1,2,3,...N-1n=0,1,2,3,...N-1
k=0,1,2,...L-1k=0,1,2,...L-1
其中X为数据的时间序列,g[l]为窗函数,*表示共轭,窗函数的长度为M,步长为S,N为窗的总个数,L为离散频点总个数,最后得到M×N的复数矩阵为其时频矩阵:Where X is the time series of the data, g[l] is the window function, * is the conjugate, the length of the window function is M, the step size is S, N is the total number of windows, L is the total number of discrete frequency points, Finally, the complex number matrix of M×N is obtained as its time-frequency matrix:
矩阵中的每一个元素为一复数zmn=amn+jbmn,包含幅值信息和相位信息,其幅值为相位为 Each element in the matrix is a complex number z mn =a mn +jb mn , including amplitude information and phase information, and its amplitude is Phase is
取其幅值信息得到M×N的非负时频幅值矩阵为:Take its amplitude information to obtain the M×N non-negative time-frequency amplitude matrix as:
步骤d,利用非负矩阵分解方法对磁场数据的时频幅值矩阵进行分解,为利用非负矩阵分解方法根据数据的时频特性对数据的非负时频幅值矩阵进行自适应分解得到对应的频率分布特征矩阵和频率分布特征矩阵(W矩阵的列向量对应H矩阵行向量)对应的权重矩阵,将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量分离。Step d, using the non-negative matrix decomposition method to decompose the time-frequency amplitude matrix of the magnetic field data, in order to use the non-negative matrix decomposition method to adaptively decompose the non-negative time-frequency amplitude matrix of the data according to the time-frequency characteristics of the data to obtain the corresponding The weight matrix corresponding to the frequency distribution characteristic matrix and the frequency distribution characteristic matrix (the column vector of the W matrix corresponds to the row vector of the H matrix) separates the local influence components caused by earthquakes and the global influence components caused by solar activity and geomagnetic activity.
非负矩阵分解方法可以将任意一高维非负矩阵分解为两个低维的非负矩阵 W和H,使得W与H的乘积近似的逼近原高维矩阵V,其中W称为基矩阵,H称为权重矩阵。基矩阵W可以看成原矩阵V的一组基底,其列向量表征了数据的特征;而权重矩阵H为矩阵V在基向量矩阵空间的投影,权重矩阵的行向量表示基矩阵W对应列向量随时间变化的幅值。其中原始矩阵V中的元素均为非负数,其分解矩阵W和H中的元素也均为非负数,这使得分解结果更具有物理意义。基于该特性可将磁场数据对应的非负时频矩阵作为原始矩阵进行分解,得到数据的几个时频分布特征及其在时域上的幅值。将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离,不需要去除太阳和地磁活动较强的天的数据,同时可以得到与地震活动更为相关的分量。The non-negative matrix factorization method can decompose any high-dimensional non-negative matrix into two low-dimensional non-negative matrices W and H, so that the product of W and H approximately approximates the original high-dimensional matrix V, where W is called the basis matrix, and H is called is the weight matrix. The basis matrix W can be regarded as a set of basis of the original matrix V, and its column vector represents the characteristics of the data; and the weight matrix H is the projection of the matrix V in the basis vector matrix space, and the row vector of the weight matrix represents the column vector corresponding to the basis matrix W. Amplitude over time. The elements in the original matrix V are all non-negative numbers, and the elements in the decomposition matrices W and H are also non-negative numbers, which makes the decomposition result more physical. Based on this characteristic, the non-negative time-frequency matrix corresponding to the magnetic field data can be decomposed as the original matrix, and several time-frequency distribution characteristics of the data and their amplitudes in the time domain can be obtained. By separating the local influence components due to earthquakes and the global influence components due to solar activity and geomagnetic activity, it is not necessary to remove the data of days with strong solar and geomagnetic activity, and at the same time, components more related to seismic activity can be obtained.
非负矩阵分解的数学模型为:The mathematical model of non-negative matrix factorization is:
V≈WH (6)V≈WH (6)
其中V∈R≥0为一M×N的非负矩阵,W∈R≥0为一M×R的非负矩阵, H∈R≥0为一R×N的非负矩阵,分解特征个数R的选择通常应该满足 R<MN/(M+N),可以根据数据的已知信息或者经验信息进行设置。where V∈R ≥0 is an M×N non-negative matrix, W∈R ≥0 is an M×R non-negative matrix, H∈R ≥0 is an R×N non-negative matrix, and the number of decomposition features The selection of R should generally satisfy R<MN/(M+N), which can be set according to the known information or empirical information of the data.
本发明基于K-L散度制定非负矩阵分解的目标函数,同时对权重矩阵H添加行列式约束,使分解结果相对唯一。其中基于广义K-L散度的目标函数为:The present invention formulates the objective function of non-negative matrix decomposition based on K-L divergence, and at the same time adds determinant constraint to the weight matrix H, so that the decomposition result is relatively unique. The objective function based on generalized K-L divergence is:
i=1,2,3...Mi=1,2,3...M
j=1,2,3,...Nj=1,2,3,...N
其中Vij表示矩阵V的第i行、j列元素,[WH]ij表示W矩阵和H矩阵相乘得到矩阵的第i行、j列元素。Wherein V ij represents the i-th row and j column elements of the matrix V, and [WH] ij represents the i-th row and j column elements of the matrix obtained by multiplying the W matrix and the H matrix.
由于V可以分解出无数个W和H,为使分解结果相对唯一,利用最小行列式准则对权重矩阵H进行约束,通过权重矩阵H的向量张成空间的体积最小进行约束。权重矩阵H的向量张成空间的体积的求解公式为:Since V can be decomposed into an infinite number of W and H, in order to make the decomposition result relatively unique, the weight matrix H is constrained by the minimum determinant criterion, and the minimum volume of the space formed by the vector of the weight matrix H is constrained. The formula for solving the volume of the vector spanning space of the weight matrix H is:
则添加最小行列式约束的K-L散度非负矩阵分解目标函数为:Then the K-L divergence non-negative matrix factorization objective function with the minimum determinant constraint added is:
i=1,2,3,...Mi=1,2,3,...M
j=1,2,3,...Nj=1,2,3,...N
其中det表示求矩阵的行列式,α为平衡参数。where det represents the determinant of the matrix, and α is the balance parameter.
对该目标函数采用乘性迭代方法进行优化求解,通过交替更新变量求得最优解。利用梯度下降法计算更新公式:The objective function is optimized by the multiplicative iterative method, and the optimal solution is obtained by alternately updating the variables. The update formula is calculated using the gradient descent method:
其中令μw和μh分别为:where μw and μh are respectively:
最终更新迭代公式为:The final update iteration formula is:
其中表示矩阵元素的点乘。in Represents the dot product of matrix elements.
标准化公式为:The normalized formula is:
由于添加了最小行列式约束不能保证W和H的非负性,故对W和H矩阵中的负值取0,保证其非负性。Since the addition of the minimum determinant constraint cannot guarantee the non-negativity of W and H, the negative values in the W and H matrices are set to 0 to ensure their non-negativity.
上述迭代公式满足迭代次数越多目标函数越收敛。设置迭代停止条件为目标函数小于设置的阈值Th,同时设置迭代次数的上限为Niter,即若迭代Niter次后目标函数的值依旧不小于所设置的阈值则强行停止迭代。由于不同轨道得到的时频幅值矩阵的数值各不相同,故应根据不同轨道的数值设置其阈值Th:The above iteration formula satisfies that the more iterations, the more the objective function converges. The iteration stop condition is set as the objective function is less than the set threshold Th, and the upper limit of the number of iterations is set as Niter , that is, if the value of the objective function is still not less than the set threshold after iteration Niter times, the iteration is forcibly stopped. Since the values of the time-frequency amplitude matrix obtained from different orbits are different, the threshold Th should be set according to the values of different orbits:
其中ε为误差因子。where ε is the error factor.
每条轨道分离得到的W矩阵为:The W matrix obtained from each orbital separation is:
H矩阵为:The H matrix is:
步骤e,根据能量比选出因地震产生的局部影响分量,通过超限率的方法对该分量进行异常轨道判断,是通过计算非负矩阵分解得到的H矩阵的各个行向量中研究区域内能量与整条轨道能量之比,选择能量比最大的分量HH作为因地震产生的局部影响分量,再选用可以反应数据能量平均水平的均方根作为阈值参数,根据HH的值是否大于整条轨道均方根的k倍通过经验选取的进行异常点判断,其中k通过经验选取,认为异常点只出现在研究区域内,且对应标志位显示异常点不是由于已知电离层活动引起的轨道为异常轨道。由于地震事件对数据的影响属于局部影响,故只对轨道中的地震研究区域内的数据产生一定的影响,此时数据能量主要集中在地震影响区域;而太阳活动和地磁活动属于全球影响事件,故会对整条轨道的数据产生影响,此时数据应较为均匀的分布在整条轨道上。所以选取研究区域内能量与整条轨道能量之比最大的分量,该分量数据能量主要集中在地震研究区域内,最有可能反映了地震对局部区域的影响。Step e, select the local influence component caused by the earthquake according to the energy ratio, and judge the abnormal orbit of this component by the method of the overrun rate, which is the energy in the study area in each row vector of the H matrix obtained by calculating the non-negative matrix decomposition Compared with the energy ratio of the entire track, the component HH with the largest energy ratio is selected as the local influence component caused by the earthquake, and the root mean square that can reflect the average level of data energy is selected as the threshold parameter. The k times of the square root are selected by experience to determine the abnormal point, where k is selected by experience, and it is considered that the abnormal point only appears in the study area, and the corresponding sign shows that the abnormal point is not caused by the known ionospheric activity. The orbit is an abnormal orbit . Since the impact of seismic events on data is a local impact, it only has a certain impact on the data in the seismic research area in the orbit. At this time, the data energy is mainly concentrated in the earthquake-affected area; while solar activity and geomagnetic activity are global impact events. Therefore, it will affect the data of the entire track. At this time, the data should be evenly distributed on the entire track. Therefore, the component with the largest ratio of the energy in the study area to the energy of the entire track is selected. The data energy of this component is mainly concentrated in the seismic study area, and most likely reflects the impact of the earthquake on the local area.
其中能量比的计算公式为:The formula for calculating the energy ratio is:
i=1,2,3,...Ri=1,2,3,...R
j=1,2,3,...Nj=1,2,3,...N
其中Ps表示数据在研究区域内的起点位置,Pe表示数据在研究区域内的终点位置。计算可得到R个能量比结果[η1,η2,η3,...ηR],选出最大能量比对应的 H行向量HH。Among them, P s represents the starting position of the data in the study area, and P e represents the end position of the data in the study area. R energy ratio results [η 1 , η 2 , η 3 , ... η R ] can be obtained by calculation, and the H row vector HH corresponding to the maximum energy ratio is selected.
通过超限率法对选择分量HH进行异常轨道判断,选用可以反应数据能量平均水平的均方根作为阈值参数,异常数据应该远远超过该值,且持续一段时间。由于原始数据进行短时傅里叶变换时已经实现了对数据的平滑处理,故可以直接使用HH的值是否大于整条轨道的均方根的k倍进行异常点判断。计算长度为N的时间序列Xi的均方根公式为:The abnormal orbit of the selected component HH is judged by the over-limit rate method, and the root mean square that can reflect the average level of data energy is selected as the threshold parameter. The abnormal data should far exceed this value and last for a period of time. Since the data has been smoothed when the original data is subjected to short-time Fourier transform, whether the value of HH is greater than k times the root mean square of the entire track can be directly used to judge abnormal points. The formula for calculating the root mean square of a time series X i of length N is:
则阈值为kXrms,大于阈值的点为异常点,同时认为异常点只出现在研究区域内,且对应标志位显示该异常不是由于已知电离层活动引起的轨道为异常轨道。Then the threshold is kX rms , and the points larger than the threshold are abnormal points. At the same time, it is considered that abnormal points only appear in the study area, and the corresponding flag position shows that the abnormal orbit is not caused by known ionospheric activities.
步骤f,对每日异常轨道个数进行累计,并通过其偏离背景拟合直线的程度检测地震异常,是首先累计每日异常轨道的个数得到累计结果,再使用每日所有轨道个数的最小二乘直线拟合作为背景,通过每日异常轨道累计结果偏离背景拟合直线的程度来显示地震异常的变化过程。因为对所有符合研究条件的轨道进行异常轨道判断之后,得到的结果无法直观的显示其与地震之间的联系,故对每日异常轨道个数进行累计,并使用每日所有轨道个数的最小二乘直线拟合作为背景,利用每日异常轨道个数累计结果偏离背景直线的程度反映地震对数据的影响,偏离程度越大表示其影响越大。In step f, the number of abnormal orbits per day is accumulated, and the seismic anomaly is detected by the degree of its deviation from the background fitting straight line. The least squares straight line fitting is used as the background, and the variation process of seismic anomalies is displayed by the degree of deviation of the cumulative results of daily anomalous orbits from the background fitting straight line. Because the abnormal orbit judgment of all the orbits that meet the research conditions cannot directly show the connection between the orbit and the earthquake, the daily number of abnormal orbits is accumulated, and the minimum number of all orbits per day is used. The square line fitting is used as the background, and the degree of deviation of the cumulative results of the daily abnormal orbits from the background line is used to reflect the impact of earthquakes on the data. The greater the deviation, the greater the impact.
对每日异常轨道个数进行累计,结果为:The daily number of abnormal orbits is accumulated, and the result is:
Nano=[Nano(1),Nano(2),Nano(3),...Nano(d)] (23) Nano = [ Nano (1), Nano (2), Nano (3), ... Nano (d)] (23)
其中d为所研究的天数。where d is the number of days studied.
再对每日所有轨道个数进行累计,结果为:Then accumulate the number of all tracks per day, and the result is:
Nnom=[Nnom(1),Nnom(2),Nnom(3),...Nnom(d)] (24)N nom = [N nom (1), N nom (2), N nom (3), ... N nom (d)] (24)
由于每日所有轨道个数与每日异常轨道个数相差较多,通过离差标准化对两者进行归一化处理,其中离差标准化公式为:Since the number of all orbits per day is quite different from the number of abnormal orbits per day, the two are normalized by dispersion normalization, where the dispersion normalization formula is:
计算得到每日异常轨道个数进行累计归一化结果为:The cumulative normalization result of the daily number of abnormal orbits is calculated as:
MNano=[MNano(1),MNano(2),MNano(3),...MNano(d)] (26)MN ano = [MN ano (1), MN ano (2), MN ano (3), ... MN ano (d)] (26)
每日所有轨道个数进行累计归一化结果为:The cumulative normalization result of the number of all tracks per day is:
MNnom=[MNnom(1),MNnom(2),MNnom(3),...MNnom(d)] (27)MN nom = [MN nom (1), MN nom (2), MN nom (3), ... MN nom (d)] (27)
对MNnom进行最小二乘线性拟合,设拟合直线为:Least squares linear fitting is performed on MN nom , and the fitting line is set as:
y=a0+a1x (28)y=a 0 +a 1 x (28)
其中参数a0和a1估计求解公式为:The parameters a 0 and a 1 are estimated to be solved by:
其中x为[1,2,3...d],d为天数,xi为x中的第i个元素;y为MNnom,yi为 MNnom中的第i个元素;xiyi为x中的第i个元素与MNnom中的第i个元素相乘;经计算得到直线方程参数和 where x is [1, 2, 3...d], d is the number of days, x i is the i-th element in x; y is MN nom , y i is the i-th element in MN nom ; x i y i is the i-th element in x multiplied by the i-th element in MN nom ; after calculation, the parameters of the equation of the straight line are obtained and
通过每日异常轨道个数累计曲线偏离背景拟合直线的程度来显示地震变化过程,偏离线性拟合程度计算公式为:The seismic change process is displayed by the deviation of the cumulative curve of the number of abnormal orbits per day from the background fitting straight line. The calculation formula of the deviation from the linear fitting degree is:
i=1,2,3,...di=1,2,3,...d
其中Yi为MNano中的第i个元素;where Y i is the i-th element in MN ano ;
ρ是表示每日异常轨道累计曲线偏离背景拟合直线程度的指数,越大表示数据因受地震影响产生的异常越大。ρ is an index indicating the degree of deviation of the daily abnormal orbit cumulative curve from the background fitting straight line.
步骤g,输出偏离程度指数曲线结果图,是将表示每日异常轨道累计结果偏离背景拟合直线程度的指数随时间变化的曲线作为最终地震异常检测结果进行输出。由于ρ是表示每日异常轨道累计曲线偏离背景拟合直线程度的指数,越大表示数据因受地震影响产生的异常越大,故可以表示地震活动的异常变化情况,作为地震异常检测结果进行输出。Step g, outputting the result graph of the deviation degree index curve, is to output the curve representing the index change over time of the degree of deviation of the daily abnormal track cumulative result from the background fitting straight line as the final seismic abnormality detection result. Since ρ is an index indicating the degree of deviation of the daily abnormal track cumulative curve from the background fitting straight line, the larger the data, the greater the abnormality caused by the earthquake. Therefore, it can represent the abnormal change of seismic activity and output it as the seismic abnormality detection result. .
针对2016年4月16日发生的7.8级厄瓜多尔地震,以Swarm卫星群Alpha星的Y 分量磁场数据(1Hz)为例。根据Dobrovilsky′s公式R=100.43M(M为地震的震级)选取厄瓜多尔地震的研究区域,以震中为中心±20°经度和纬度的矩形区域为研究区域,研究时间选取震前60天至震后30天,即2016年2月16日至5月16 日。厄瓜多尔地震震中、地震影响区域以及研究区域如图2所示,其中五角星为震中,圆形区域为地震影响区域,正方形区域为研究区域。For the magnitude 7.8 Ecuador earthquake that occurred on April 16, 2016, the Y-component magnetic field data (1Hz) of the Swarm satellite group Alpha star was taken as an example. According to Dobrovilsky's formula R=10 0.43M (M is the magnitude of the earthquake), the study area of the Ecuador earthquake was selected, and the rectangular area with the epicenter as the center of ±20° longitude and latitude was the study area, and the study time was from 60 days before the earthquake to the earthquake The last 30 days, from February 16 to May 16, 2016. The Ecuador earthquake epicenter, earthquake-affected area, and study area are shown in Figure 2, where the five-pointed star is the epicenter, the circular area is the earthquake-affected area, and the square area is the study area.
a、读取并录入Swarm卫星群Alpha星2016年1月17日至5月16日Y分量磁场数据By(1Hz),并根据数据集中的标志位去除由仪器本身测量有误导致的无效数据。根据卫星数据测量特殊性,即测量值随时间和空间共同变化,以及后续要将因地震产生的局部影响和太阳以及地磁活动导致的全局分量进行分离,故使用地磁纬度在+50°~-50°范围内的且经过地震研究区域的轨道作为研究对象进行数据处理。a. Read and enter the Y -component magnetic field data By (1Hz) of the Swarm satellite group Alpha star from January 17, 2016 to May 16, 2016, and remove the invalid data caused by the wrong measurement of the instrument itself according to the flag bit in the data set . According to the particularity of satellite data measurement, that is, the measurement value changes with time and space, and the local influence caused by earthquakes and the global components caused by the sun and geomagnetic activities must be separated in the future, so the geomagnetic latitude is used in the range of +50°~-50° The orbits within the range of ° and passing through the seismic research area are used as the research object for data processing.
以2016年4月8日轨道2为例,Y分量磁场数据的原始曲线如图3所示,可看出磁场原始数据幅值非常大,无法观察到其变化情况,很难直接对其进行分解或异常提取等处理。Taking
b、利用原始Y分量磁场数据减去CHAOS-6磁场模型计算得到的背景场,去除地磁场中幅值较大的背景,并对其结果取一阶差分,去除剩余较小背景值得到磁场数据的变化量。b. Use the original Y-component magnetic field data to subtract the background field calculated by the CHAOS-6 magnetic field model, remove the background with large amplitude in the geomagnetic field, and take the first-order difference of the result, remove the remaining small background value to obtain the magnetic field data amount of change.
原始数据减去模型磁场并对其进行差分的公式为:The formula for subtracting the model magnetic field from the raw data and differencing it is:
i=1,2,3,...L-1i=1,2,3,...L-1
其中By为原始Y分量磁场数据,Bm为CHAOS-6磁场模型计算的背景场, ti为第i个数据对应的时刻,L为每条轨道数据的长度,dB为减模型求一阶差分后的预处理结果。where By is the original Y -component magnetic field data, B m is the background field calculated by the CHAOS-6 magnetic field model, t i is the time corresponding to the i-th data, L is the length of each track data, and dB is the first-order subtraction model The preprocessing result after the difference.
以2016年4月8日轨道2为例,其原始数据与模型数据曲线,原始数据与模型数据局部放大曲线,原始数据减模型数据的残差数据曲线,一阶差分数据曲线分别如图4中的(1)(2)(3)(4)所示。图4(1)中实线为原始数据曲线,点划线为模型数据曲线,由于原始数据幅值较大且模型数据与其相差很小,故图4(2)将图4(1)其进行部分放大,图4(3)为原始数据减模型数据得到的残差数据,图4(4)为残差数据的一阶差分数据。由结果可看出原始数据幅值非常大,通过减去磁场模型可以去除其幅值较大的背景场,但其残差数据依旧存在一定的背景幅值,需要进一步去除。故对残差数据求一阶差分,去除剩余背景幅值并得到磁场数据的变化量,得到的最终结果背景幅值非常小,且奇异值较为突出。Taking
c、对预处理后的磁场数据进行短时傅里叶变换,得到其时频矩阵,并取其幅值构成非负时频幅值矩阵,作为后续非负矩阵分解的输入矩阵,利用数据的时频幅值特性进行分解。c. Perform short-time Fourier transform on the preprocessed magnetic field data to obtain its time-frequency matrix, and take its amplitude to form a non-negative time-frequency amplitude matrix, which is used as the input matrix for subsequent non-negative matrix decomposition, using the data The time-frequency amplitude characteristics are decomposed.
设预处理后每条轨道数据的时间序列为:Let the time series of each track data after preprocessing be:
X=[x1,x2,x3,x4,...,xL-1] (2)X=[x 1 , x 2 , x 3 , x 4 , ..., x L-1 ] (2)
其中L为每条轨道数据的长度,根据每条轨道长度不同取值不同。Among them, L is the length of each track data, and the value is different according to the length of each track.
短时傅里叶变换的离散形式为:The discrete form of the short-time Fourier transform is:
n=0,1,2,3,...N-1n=0,1,2,3,...N-1
k=0,1,2,...L-1k=0,1,2,...L-1
其中x[l]表示X为数据的时间序列,g[l]为窗函数,为减小频谱泄露选用汉宁窗,*表示共轭,窗函数的长度为M,取M=64,步长为S,取S=16,N为窗的总个数,L为离散频点总个数。最后得到M×N的复数矩阵为其时频矩阵:Where x[l] represents X is the time series of the data, g[l] is the window function, Hanning window is used to reduce the spectral leakage, * represents the conjugate, the length of the window function is M, take M=64, the step size is S, take S=16, N is the total number of windows, and L is the total number of discrete frequency points. Finally, the complex number matrix of M×N is obtained as its time-frequency matrix:
矩阵中的每一个元素为一复数zmn=amn+jbmn,包含幅值信息和相位信息,其幅值为相位为 Each element in the matrix is a complex number z mn =a mn +jb mn , including amplitude information and phase information, and its amplitude is Phase is
取其幅值信息得到M×N的非负时频幅值矩阵为:Take its amplitude information to obtain the M×N non-negative time-frequency amplitude matrix as:
以2016年4月8日轨道2为例,其短时傅里叶变换的时频幅值矩阵结果图如图5所示,其横坐标为地理纬度,纵坐标为频率,灰度表示其幅值大小。由此可见,该步骤可以将单通道磁场数据转变成M×N的矩阵,同时矩阵均为非负数,可作为非负矩阵分解的输入矩阵,并且具有其物理意义反映了信号的时频幅值特性,后续处理可根据该特性进行分解。Taking
d、利用非负矩阵分解方法对磁场数据的时频幅值矩阵进行分解,是利用非负矩阵分解方法根据数据的时频特性对数据的非负时频幅值矩阵进行自适应分解得到对应的频率分布特征矩阵和其对应的权重矩阵,将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量分离。d. Use the non-negative matrix decomposition method to decompose the time-frequency amplitude matrix of the magnetic field data, and use the non-negative matrix decomposition method to adaptively decompose the non-negative time-frequency amplitude matrix of the data according to the time-frequency characteristics of the data to obtain the corresponding The frequency distribution characteristic matrix and its corresponding weight matrix separate the local influence components caused by earthquakes and the global influence components caused by solar activity and geomagnetic activity.
非负矩阵分解方法可以将任意一高维非负矩阵分解为两个低维的非负矩阵 W和H,使得W与H的乘积近似的逼近原高维矩阵V,其中W称为基矩阵,H称为权重矩阵。基矩阵W可以看成原矩阵V的一组基底,其列向量表征了数据的特征;而权重矩阵H为矩阵V在基向量矩阵空间的投影,其行向量表示基矩阵W对应列向量随时间变化的幅值。其中原始矩阵V中的元素均为非负数,其分解矩阵W和H中的元素也均为非负数,这使得分解结果更具有物理意义。基于该特性可将磁场数据对应的非负时频矩阵作为原始矩阵进行分解,得到数据的几个时频分布特征及其在时域上的幅值。将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离,不需要去除太阳和地磁活动较强的天的数据,同时可以得到与地震活动更为相关的分量。The non-negative matrix factorization method can decompose any high-dimensional non-negative matrix into two low-dimensional non-negative matrices W and H, so that the product of W and H approximately approximates the original high-dimensional matrix V, where W is called the basis matrix, and H is called is the weight matrix. The basis matrix W can be regarded as a set of basis of the original matrix V, and its column vector represents the characteristics of the data; and the weight matrix H is the projection of the matrix V in the basis vector matrix space, and its row vector represents the corresponding column vector of the basis matrix W with time. magnitude of change. The elements in the original matrix V are all non-negative numbers, and the elements in the decomposition matrices W and H are also non-negative numbers, which makes the decomposition result more physical. Based on this characteristic, the non-negative time-frequency matrix corresponding to the magnetic field data can be decomposed as the original matrix, and several time-frequency distribution characteristics of the data and their amplitudes in the time domain can be obtained. By separating the local influence components due to earthquakes and the global influence components due to solar activity and geomagnetic activity, it is not necessary to remove the data of days with strong solar and geomagnetic activity, and at the same time, components more related to seismic activity can be obtained.
非负矩阵分解的数学模型为:The mathematical model of non-negative matrix factorization is:
V≈WH (6)V≈WH (6)
其中V∈R≥0为一M×N的非负矩阵,W∈R≥0为一M×R的非负矩阵, H∈R≥0为一R×N的非负矩阵,分解特征个数R的选择通常应该满足R<MN/(M+N),根据经验和已知信息,取R=3。where V∈R ≥0 is an M×N non-negative matrix, W∈R ≥0 is an M×R non-negative matrix, H∈R ≥0 is an R×N non-negative matrix, and the number of decomposition features The selection of R should generally satisfy R<MN/(M+N). According to experience and known information, take R=3.
基于K-L散度制定非负矩阵分解的目标函数,同时对权重矩阵H添加行列式约束,使分离结果相对唯一。其中基于广义K-L散度的目标函数为:The objective function of non-negative matrix decomposition is formulated based on K-L divergence, and the determinant constraint is added to the weight matrix H to make the separation result relatively unique. The objective function based on generalized K-L divergence is:
i=1,2,3...Mi=1,2,3...M
j=1,2,3,...Nj=1,2,3,...N
其中Vij表示矩阵V的第i行、j列元素,[WH]ij表示W矩阵和H矩阵相乘得到矩阵的第i行、j列元素。Wherein V ij represents the i-th row and j column elements of the matrix V, and [WH] ij represents the i-th row and j column elements of the matrix obtained by multiplying the W matrix and the H matrix.
由于V可以分解出无数个W和H,为使分解结果相对唯一,利用最小行列式准则对权重矩阵H进行约束。通过矩阵H的向量张成空间的体积最小进行约束。矩阵H的向量张成空间的体积的求解公式为:Since V can be decomposed into an infinite number of W and H, in order to make the decomposition result relatively unique, the weight matrix H is constrained by the minimum determinant criterion. Constrained by the minimum volume of the space spanned by the vectors of the matrix H. The formula for solving the volume of the vector spanned space of the matrix H is:
则添加最小行列式约束的K-L散度非负矩阵分解目标函数为:Then the K-L divergence non-negative matrix factorization objective function with the minimum determinant constraint added is:
i=1,2,3...Mi=1,2,3...M
j=1,2,3,...Nj=1,2,3,...N
其中det表示求矩阵的行列式,α为平衡参数,取α=0.005。where det represents the determinant of the matrix, α is the balance parameter, and α=0.005.
对该目标函数采用乘性迭代方法进行优化求解,通过交替更新变量求得最优解。利用梯度下降法计算更新公式:The objective function is optimized by the multiplicative iterative method, and the optimal solution is obtained by alternately updating the variables. The update formula is calculated using the gradient descent method:
其中令μw和μh分别为:where μw and μh are respectively:
最终更新迭代公式为:The final update iteration formula is:
其中表示矩阵元素的点乘。in Represents the dot product of matrix elements.
标准化公式为:The normalized formula is:
由于添加了最小行列式约束不能保证W和H的非负性,故对W和H矩阵中的负值取0,保证其非负性。Since the addition of the minimum determinant constraint cannot guarantee the non-negativity of W and H, the negative values in the W and H matrices are set to 0 to ensure their non-negativity.
该迭代公式满足迭代次数越多目标函数越收敛。设置迭代停止条件为目标函数小于设置的阈值Th,同时设置迭代次数的上限为Niter,取Niter=500,即若迭代Niter次后目标函数的值依旧不小于所设置的阈值则强行停止迭代。由于不同轨道得到的时频幅值矩阵的数值各不相同,故应根据不同轨道的数值设置其阈值Th:The iterative formula satisfies that the more the number of iterations, the more the objective function converges. Set the iteration stop condition as the objective function is less than the set threshold Th, and set the upper limit of the number of iterations to N iter , take N iter =500, that is, if the value of the objective function is still not less than the set threshold after iterative N iter times, it will be forced to stop iterate. Since the values of the time-frequency amplitude matrix obtained from different orbits are different, the threshold Th should be set according to the values of different orbits:
其中ε为误差因子,取ε=0.05。Among them, ε is the error factor, which is taken as ε=0.05.
每条轨道分离得到的W矩阵为:The W matrix obtained from each orbital separation is:
H矩阵为:The H matrix is:
以2016年4月8日轨道2为例,其分解结果W矩阵和H矩阵分别如图6和图7所示,其中W1、W2、W3显示的是该轨道的三个频率分布特征,H1、H2、H3为其对应的幅值,H结果图中虚线之间为研究区域内数据。其中H1的较大幅值只出现在研究区域内,能量也主要分布在研究区域内,该分量应为因地震产生影响的局部分量;H2的幅值波动不大,能量均匀分布在整条轨道中,有可能是背景分量;H3的最大幅值出现在研究区域外,且研究区域内也存在幅值较大的值,该分量可能为太阳或地磁活动产生影响的全局分量。为从时域显示其分离效果,将分解结果重构到时域结果如图8所示。其中图8(1)为一阶差分数据,在研究区域内外均存在明显奇异值;图8(2)为W1和H1对应的时域分量,只在研究区域内存在明显奇异值;图8(3)为W2和H2对应的时域分量,不存在明显奇异值,在整条轨道内均匀分布;图8(4)为W3和H3对应的时域分量,最大奇异值出现在研究区域外,研究区域内也存在幅值较小的奇异值。从分解结果可知利用非负矩阵分解方法对数据的非负时频幅值矩阵进行分解,可以得到其频率分布特征和时间变化幅值,将因地震产生的局部影响分量和由于太阳活动以及地磁活动产生的全局影响分量进行分离,并利用与地震活动更为相关的分量进行地震异常检测。Taking
e、计算H矩阵行向量地震研究区域与整条轨道的能量比,选取能量比最大的分量作为因地震产生的局部影响分量,并利用超限率的方法对该分量进行异常轨道判断。e. Calculate the energy ratio between the H-matrix row vector seismic study area and the entire orbit, select the component with the largest energy ratio as the local influence component caused by the earthquake, and use the method of overrun rate to judge the abnormal orbit of this component.
能量比的计算公式为:The formula for calculating the energy ratio is:
i=1,2,3i=1, 2, 3
j=1,2,3,...Nj=1,2,3,...N
其中Ps表示数据在研究区域内的起点位置,Pe表示数据在研究区域内的终点位置。经计算得到3个能量比结果[η1,η2,η3],选出最大能量比对应的H行向量HH。Among them, P s represents the starting position of the data in the study area, and P e represents the end position of the data in the study area. Three energy ratio results [η 1 , η 2 , η 3 ] are obtained by calculation, and the H row vector HH corresponding to the maximum energy ratio is selected.
计算行向量HH的均方根值:Compute the root mean square value of the row vector HH:
取k=5,设其阈值为kHHrms,HH中超过阈值的点可认作异常点,得到异常点之后判断其是否只出现在研究区域内的,且对应标志位显示该异常不是由于已知电离层活动导致的异常,若仅存在满足上述条件的异常点,则该轨道为异常轨道。Take k=5, set its threshold as kHH rms , the points in HH that exceed the threshold can be regarded as abnormal points, and after obtaining the abnormal points, judge whether they only appear in the research area, and the corresponding flag indicates that the abnormality is not due to known Anomalies caused by ionospheric activities. If there are only anomalous points that meet the above conditions, the orbit is an anomalous orbit.
以2016年4月8日轨道2为例,其分解结果H分别如图7所示,经计算其中H1的能量比为0.924;H2的能量比为0.624;H3的能量比为0.4095。根据研究区域数据占总数据的长度之比计算,数据均匀分布时其能量比应该为0.4,故 H1为因地震影响产生的局部分量,H3应为太阳或者地磁活动影响产生的全局分量,H2为背景分量或其他区分量。经统计所有轨道的最大能量比均值为0.57,较平均值增长45%,且所有异常轨道最大能量比均值为0.80;第二大能量比均值为0.39,与平均值0.4基本相同,最小能量比均值为0.23,较平均值下降42%。由此可见非负矩阵分解分解结果H的分量基本可以反应地震影响产生的局部分量,太阳和地磁活动影响产生的全局分量,在一定程度上将地震局部分量与太阳和地磁活动全局分量分离。Taking
以2016年4月9日轨道3和4月10日轨道1为例,异常轨道判断示意图如图9所示,图中实线为HH分量数据,点划线为其阈值,虚线中间为研究区域内数据。图9(1)为4月9日轨道3,没有点超出阈值,故不被判定为异常轨道;图9(2)为4月10日轨道1,存在超出阈值的点,且仅在研究区域内出现,同时通过检查其标志位没有显示已知电离层活动,可被判定为异常轨道。Taking
f、对每日异常轨道个数进行累计,结果为:f. Accumulate the daily number of abnormal orbits, and the result is:
Nano=[Nano(1),Nano(2),Nano(3),...Nano(d)] (23) Nano = [ Nano (1), Nano (2), Nano (3), ... Nano (d)] (23)
其中d为所研究的天数,d=121。where d is the number of days studied and d=121.
再对每日所有轨道个数进行累计,结果为:Then accumulate the number of all tracks per day, and the result is:
Nnom=[Nnom(1),Nnom(2),Nnom(3),...Nnom(d)] (24)N nom = [N nom (1), N nom (2), N nom (3), ... N nom (d)] (24)
对两条曲线进行离差标准化实现归一化处理,利用离差化公式:The dispersion standardization is performed on the two curves to achieve normalization, and the dispersion formula is used:
计算得到每日异常轨道个数进行累计归一化结果为:The cumulative normalization result of the daily number of abnormal orbits is calculated as:
MNano=[MNano(1),MNano(2),MNano(3),...MNano(d)] (26)MN ano = [MN ano (1), MN ano (2), MN ano (3), ... MN ano (d)] (26)
每日所有轨道个数进行累计归一化结果为:The cumulative normalization result of the number of all tracks per day is:
MNnom=[MNnom(1),MNnom(2),MNnom(3),...MNnom(d)] (27)MN nom = [MN nom (1), MN nom (2), MN nom (3), ... MN nom (d)] (27)
对MNnom进行最小二乘线性拟合,设拟合直线为:Least squares linear fitting is performed on MN nom , and the fitting line is set as:
y=a0+a1x (28)y=a 0 +a 1 x (28)
其中参数a0和a1估计求解公式为:The parameters a 0 and a 1 are estimated to be solved by:
其中x为[1,2,3...121],y为MNnom,经计算得到直线方程参数和 where x is [1, 2, 3...121], y is MN nom , the parameters of the straight line equation are obtained by calculation and
其中x为[1,2,3...d],d为天数,xi为x中的第i个元素;y为MNnom,yi为 MNnom中的第i个元素;xiyi为x中的第i个元素与MNnom中的第i个元素相乘;经计算得到直线方程参数和 where x is [1, 2, 3...d], d is the number of days, x i is the i-th element in x; y is MN nom , y i is the i-th element in MN nom ; x i y i is the i-th element in x multiplied by the i-th element in MN nom ; after calculation, the parameters of the equation of the straight line are obtained and
通过每日异常轨道个数累计曲线偏离背景拟合直线的程度来显示地震变化过程,偏离线性拟合程度计算公式为:The seismic change process is displayed by the deviation of the cumulative curve of the number of abnormal orbits per day from the background fitting straight line. The calculation formula of the deviation from the linear fitting degree is:
i=1,2,3,...121i=1, 2, 3, ... 121
其中Yi为MNano中的第i个元素;where Y i is the i-th element in MN ano ;
ρ是表示异常轨道累计曲线偏离背景拟合直线程度的指数,越大表示数据因受地震影响产生的异常越大。ρ is an index indicating the degree to which the cumulative curve of the abnormal orbit deviates from the background fitting straight line.
每日异常轨道累计曲线与背景拟合直线归一化结果如图10所示,其中竖直虚线为4月16日7.8级厄瓜多尔地震。由结果可知从震前一段时间开始每日异常轨道个数累计曲线开始不正常的偏离背景拟合直线,并在地震发生附近达到最大偏离,震后几天开始恢复,最后回归平静。每日异常轨道累计曲线偏离背景拟合直线程度指数曲线如图11所示,其中黑色矩形内为地震前检测到的异常,由图1结果可以更直观的显示数据异常情况与地震的关系,每日异常轨道累计结果在震前20天左右开始出现不正常现象,震前10天开始出现大幅增长,并于震后两天达到最大,之后逐渐减小直至震后20天左右恢复正常水平。该结果显示该方法有效的检测到了目标地震产生的异常及异常随地震活动的变化,包括震前异常的开始,地震两天后异常的顶峰,以及之后的异常恢复。Figure 10 shows the normalized results of the cumulative curve of daily anomalous orbits and the background fitting straight line, where the vertical dotted line is the magnitude 7.8 Ecuador earthquake on April 16. It can be seen from the results that the cumulative curve of the number of abnormal orbits per day began to deviate from the background fitting line abnormally from a period before the earthquake, and reached the maximum deviation near the earthquake. It began to recover a few days after the earthquake, and finally returned to calm. Figure 11 shows the deviation of the daily abnormal track cumulative curve from the background fitting straight line degree index curve, in which the black rectangle is the abnormality detected before the earthquake. The cumulative results of daily anomalous orbits began to appear abnormal about 20 days before the earthquake, began to increase significantly 10 days before the earthquake, reached the maximum two days after the earthquake, and then gradually decreased until it returned to normal levels about 20 days after the earthquake. The results show that the method can effectively detect the anomalies generated by the target earthquake and the changes of anomalies with seismic activity, including the onset of anomalies before the earthquake, the peak of the anomaly two days after the earthquake, and the recovery of the anomaly after the earthquake.
步骤g,将表示每日异常轨道累计结果偏离背景拟合直线程度的指数随时间变化的曲线作为最终地震异常检测结果进行输出。In step g, the curve representing the variation of the index with time indicating the degree of deviation of the daily abnormal track cumulative result from the background fitting straight line is output as the final seismic abnormality detection result.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910788471.6A CN110673206B (en) | 2019-08-26 | 2019-08-26 | A seismic anomaly detection method for satellite magnetic field data based on non-negative matrix decomposition |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910788471.6A CN110673206B (en) | 2019-08-26 | 2019-08-26 | A seismic anomaly detection method for satellite magnetic field data based on non-negative matrix decomposition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110673206A true CN110673206A (en) | 2020-01-10 |
| CN110673206B CN110673206B (en) | 2020-12-29 |
Family
ID=69075788
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910788471.6A Active CN110673206B (en) | 2019-08-26 | 2019-08-26 | A seismic anomaly detection method for satellite magnetic field data based on non-negative matrix decomposition |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110673206B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111650655A (en) * | 2020-06-17 | 2020-09-11 | 桂林电子科技大学 | A Supervised Transient Electromagnetic Signal Noise Reduction Method for Non-negative Matrix Factorization |
| CN111814699A (en) * | 2020-07-13 | 2020-10-23 | 中国地震局地震预测研究所 | A deep learning earthquake prediction method for SWARM electromagnetic satellite data |
| CN112305606A (en) * | 2020-10-16 | 2021-02-02 | 宁夏回族自治区地震局 | Earthquake activity field analysis method based on natural orthogonal function expansion |
| CN112327371A (en) * | 2020-11-06 | 2021-02-05 | 吉林大学 | Satellite magnetic field data time-varying background field establishment method based on variational modal decomposition |
| CN113238282A (en) * | 2021-07-13 | 2021-08-10 | 中南大学 | Method for extracting seismic microwave radiation abnormity by combining multi-source auxiliary data |
| CN113435259A (en) * | 2021-06-07 | 2021-09-24 | 吉林大学 | Tensor decomposition-based satellite magnetic field data fusion seismic anomaly extraction method |
| CN116070784A (en) * | 2023-03-07 | 2023-05-05 | 数字太空(北京)智能技术研究院有限公司 | Method for extracting integral influence factor of solar active area on environmental index |
| CN119414452A (en) * | 2024-09-05 | 2025-02-11 | 吉林大学 | A method for extracting seismic anomalies from satellite magnetic field based on complex non-negative matrix decomposition |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000131449A (en) * | 1998-10-22 | 2000-05-12 | Samii:Kk | Earthquake predicting method using gps satellite |
| WO2003025622A2 (en) * | 2001-09-14 | 2003-03-27 | Stellar Solutions | Satellite and ground system for detection and forecasting of earthquakes |
| US20050015205A1 (en) * | 2000-07-12 | 2005-01-20 | Michael Repucci | Method and system for analyzing multi-variate data using canonical decomposition |
| CN104978573A (en) * | 2015-07-06 | 2015-10-14 | 河海大学 | Non-negative matrix factorization method applied to hyperspectral image processing |
| CN106021710A (en) * | 2016-05-13 | 2016-10-12 | 南京航空航天大学 | Seismic precursor satellite orbit anomaly identification method based on atmosphere ionosphere parameter |
| US20180060758A1 (en) * | 2016-08-30 | 2018-03-01 | Los Alamos National Security, Llc | Source identification by non-negative matrix factorization combined with semi-supervised clustering |
| CN108227001A (en) * | 2017-12-31 | 2018-06-29 | 吉林大学 | Desert low-frequency noise method for reducing based on the separation of SNMF-2D time-frequency spectrums |
| CN108268872A (en) * | 2018-02-28 | 2018-07-10 | 电子科技大学 | A kind of robust non-negative matrix factorization method based on incremental learning |
| US20190107638A1 (en) * | 2014-02-02 | 2019-04-11 | Ertha Space Technologies | Earthquake Forecast Device |
| CN109683196A (en) * | 2018-11-15 | 2019-04-26 | 天津大学青岛海洋技术研究院 | A kind of ionosphere and seismic precursor correlative space-time characterisation analysis method |
| CN109740453A (en) * | 2018-12-19 | 2019-05-10 | 吉林大学 | A method for extracting seismic precursory anomalies from satellite magnetic field data based on wavelet transform |
-
2019
- 2019-08-26 CN CN201910788471.6A patent/CN110673206B/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000131449A (en) * | 1998-10-22 | 2000-05-12 | Samii:Kk | Earthquake predicting method using gps satellite |
| US20050015205A1 (en) * | 2000-07-12 | 2005-01-20 | Michael Repucci | Method and system for analyzing multi-variate data using canonical decomposition |
| WO2003025622A2 (en) * | 2001-09-14 | 2003-03-27 | Stellar Solutions | Satellite and ground system for detection and forecasting of earthquakes |
| US20190107638A1 (en) * | 2014-02-02 | 2019-04-11 | Ertha Space Technologies | Earthquake Forecast Device |
| CN104978573A (en) * | 2015-07-06 | 2015-10-14 | 河海大学 | Non-negative matrix factorization method applied to hyperspectral image processing |
| CN106021710A (en) * | 2016-05-13 | 2016-10-12 | 南京航空航天大学 | Seismic precursor satellite orbit anomaly identification method based on atmosphere ionosphere parameter |
| US20180060758A1 (en) * | 2016-08-30 | 2018-03-01 | Los Alamos National Security, Llc | Source identification by non-negative matrix factorization combined with semi-supervised clustering |
| CN108227001A (en) * | 2017-12-31 | 2018-06-29 | 吉林大学 | Desert low-frequency noise method for reducing based on the separation of SNMF-2D time-frequency spectrums |
| CN108268872A (en) * | 2018-02-28 | 2018-07-10 | 电子科技大学 | A kind of robust non-negative matrix factorization method based on incremental learning |
| CN109683196A (en) * | 2018-11-15 | 2019-04-26 | 天津大学青岛海洋技术研究院 | A kind of ionosphere and seismic precursor correlative space-time characterisation analysis method |
| CN109740453A (en) * | 2018-12-19 | 2019-05-10 | 吉林大学 | A method for extracting seismic precursory anomalies from satellite magnetic field data based on wavelet transform |
Non-Patent Citations (8)
| Title |
|---|
| HABIBEH VALIZADEH ALVAN ET AL.: "Satellite Remote Sensing in Earthquake Prediction. A Review", 《2011 IEEE》 * |
| KAIGUANG ZHU ET AL.: "Precursor Analysis Associated With the Ecuador Earthquake Using Swarm A and C Satellite Magnetic Data Based on PCA", 《IEEE ACCESS》 * |
| MOTOAKI MOURI ET AL.: "Effectiveness of Global Signal Elimination from Environmental Electromagnetic Signals for Earthquake Prediction", 《ISITA2008》 * |
| VYRON CHRISTODOULOU ET AL.: "A tool for Swarm satellite data analysis and anomaly detection", 《PLOS ONE》 * |
| 时洪涛: "基于多源卫星数据的地震异常检测与分析研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
| 曾中超等: "利用DEMETER卫星数据分析汶川地震前的电离层异常", 《地球物理学报》 * |
| 蔡润等: "地震前的电磁异常综述", 《华南地震》 * |
| 薛毅等: "《实用数据分析与MATLAB软件》", 31 August 2015, 北京:北京工业大学出版社 * |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111650655B (en) * | 2020-06-17 | 2022-12-30 | 桂林电子科技大学 | Non-negative matrix factorization supervised transient electromagnetic signal noise reduction method |
| CN111650655A (en) * | 2020-06-17 | 2020-09-11 | 桂林电子科技大学 | A Supervised Transient Electromagnetic Signal Noise Reduction Method for Non-negative Matrix Factorization |
| CN111814699A (en) * | 2020-07-13 | 2020-10-23 | 中国地震局地震预测研究所 | A deep learning earthquake prediction method for SWARM electromagnetic satellite data |
| CN111814699B (en) * | 2020-07-13 | 2023-07-28 | 中国地震局地震预测研究所 | A Deep Learning Earthquake Prediction Method for SWARM Electromagnetic Satellite Data |
| CN112305606A (en) * | 2020-10-16 | 2021-02-02 | 宁夏回族自治区地震局 | Earthquake activity field analysis method based on natural orthogonal function expansion |
| CN112327371A (en) * | 2020-11-06 | 2021-02-05 | 吉林大学 | Satellite magnetic field data time-varying background field establishment method based on variational modal decomposition |
| CN112327371B (en) * | 2020-11-06 | 2021-07-30 | 吉林大学 | A method for establishing a time-varying background field for satellite magnetic field data based on variational mode decomposition |
| CN113435259A (en) * | 2021-06-07 | 2021-09-24 | 吉林大学 | Tensor decomposition-based satellite magnetic field data fusion seismic anomaly extraction method |
| CN113435259B (en) * | 2021-06-07 | 2022-06-03 | 吉林大学 | Tensor decomposition-based satellite magnetic field data fusion earthquake anomaly extraction method |
| CN113238282B (en) * | 2021-07-13 | 2021-09-28 | 中南大学 | A Method of Extracting Seismic Microwave Radiation Anomalies by Combining Multi-source Auxiliary Data |
| CN113238282A (en) * | 2021-07-13 | 2021-08-10 | 中南大学 | Method for extracting seismic microwave radiation abnormity by combining multi-source auxiliary data |
| CN116070784A (en) * | 2023-03-07 | 2023-05-05 | 数字太空(北京)智能技术研究院有限公司 | Method for extracting integral influence factor of solar active area on environmental index |
| CN119414452A (en) * | 2024-09-05 | 2025-02-11 | 吉林大学 | A method for extracting seismic anomalies from satellite magnetic field based on complex non-negative matrix decomposition |
| CN119414452B (en) * | 2024-09-05 | 2025-09-26 | 吉林大学 | A method for extracting seismic anomalies from satellite magnetic fields based on complex non-negative matrix decomposition |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110673206B (en) | 2020-12-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110673206B (en) | A seismic anomaly detection method for satellite magnetic field data based on non-negative matrix decomposition | |
| Li et al. | Accounting for model errors in ensemble data assimilation | |
| US20180175790A1 (en) | Method of forecasting for solar-based power systems | |
| CN114047563B (en) | All-weather assimilation method for infrared hyperspectrum | |
| CN109740453B (en) | Satellite magnetic field data earthquake precursor anomaly extraction method based on wavelet transformation | |
| CN105974495B (en) | A Method of Predicting the Future Average Cloud Coverage of the Target Area Using the Classification Fitting Method | |
| CN113283155B (en) | A near-surface temperature estimation method, system, storage medium and device | |
| KR20140115777A (en) | Method for estimating longwave climate feedback using sea surface temperature | |
| CN114372344B (en) | Quantitative identification method for subsynchronous oscillation damping characteristic influence factors | |
| CN106815659B (en) | A hybrid model-based ultra-short-term solar radiation prediction method and device | |
| CN117452525A (en) | Near space weather forecasting methods and devices | |
| CN117688299A (en) | Water body atmosphere correction method and system based on multilayer stack integrated learning | |
| CN115758876A (en) | Method, system and computer equipment for forecasting accuracy of wind speed and wind direction | |
| CN112528232B (en) | A spatial interpolation method for temperature data based on gradient boosting regression GBR model | |
| CN106447072A (en) | Explicit genetic algorithm and singular spectrum analysis-based meteorological and hydrological element forecast method | |
| CN116148917B (en) | Method and system for forecasting earthquake according to geomagnetic and earth sound data | |
| CN116701371B (en) | Interpolation method and device for missing values of atmospheric temperature data under covariance analysis | |
| Huang et al. | A neural network model to predict spatiotemporal PM2. 5 with FY-4A total precipitable water | |
| CN108776719A (en) | High energy electrical flux hour forecasting model method for building up based on empirical mode decomposition | |
| CN114722909A (en) | Solar flare time sequence classification method based on low-dimensional convolutional neural network | |
| CN119414452B (en) | A method for extracting seismic anomalies from satellite magnetic fields based on complex non-negative matrix decomposition | |
| CN112508262A (en) | Method for predicting ionospheric frequency expansion F occurrence probability by using neural network | |
| CN116381773B (en) | Method and device for normalizing hybrid data in earthquake prediction | |
| Velozo et al. | Modelling categorized levels of precipitation | |
| Lin et al. | On the improvement of ASCAT wind data assimilation in global NWP |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |