CN110536207A - Bone-conduction device - Google Patents
Bone-conduction device Download PDFInfo
- Publication number
- CN110536207A CN110536207A CN201910819275.0A CN201910819275A CN110536207A CN 110536207 A CN110536207 A CN 110536207A CN 201910819275 A CN201910819275 A CN 201910819275A CN 110536207 A CN110536207 A CN 110536207A
- Authority
- CN
- China
- Prior art keywords
- bone conduction
- amorphous alloy
- conduction device
- metal material
- bone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 126
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims abstract description 66
- 239000007769 metal material Substances 0.000 claims abstract description 38
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims description 47
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 229910052726 zirconium Inorganic materials 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 241000282414 Homo sapiens Species 0.000 claims description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 20
- 238000013461 design Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 6
- 238000010276 construction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 210000003027 ear inner Anatomy 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 210000004880 lymph fluid Anatomy 0.000 description 6
- 210000003625 skull Anatomy 0.000 description 6
- 210000003477 cochlea Anatomy 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 210000002469 basement membrane Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000002985 organ of corti Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- ZLIBICFPKPWGIZ-UHFFFAOYSA-N pyrimethanil Chemical compound CC1=CC(C)=NC(NC=2C=CC=CC=2)=N1 ZLIBICFPKPWGIZ-UHFFFAOYSA-N 0.000 description 2
- 210000001079 scala tympani Anatomy 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 210000000721 basilar membrane Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 210000001050 stape Anatomy 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C11/00—Non-optical adjuncts; Attachment thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/08—Mouthpieces; Microphones; Attachments therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
- H04R1/1091—Details not provided for in groups H04R1/1008 - H04R1/1083
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2460/00—Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
- H04R2460/13—Hearing devices using bone conduction transducers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Ophthalmology & Optometry (AREA)
- Optics & Photonics (AREA)
- Prostheses (AREA)
- Headphones And Earphones (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种骨传导装置。The invention relates to a bone conduction device.
背景技术Background technique
听觉系统是人类接收外界信号的重要感觉器官。正常情况下,由声源振动产生的声波,经两条途径传入内耳:其一,通过外耳道、鼓膜和由三块听小骨组成的听骨链传递至内耳,即声波的空气传导,该方式为正常听觉的主要传导途径;其二,直接通过颅骨传递至内耳,即骨传导,该方式在正常的生理状态下作用甚微。The auditory system is an important sensory organ for human beings to receive external signals. Under normal circumstances, the sound wave generated by the vibration of the sound source is transmitted to the inner ear through two channels: one is transmitted to the inner ear through the external auditory canal, the tympanic membrane and the ossicle chain composed of three ossicles, that is, the air conduction of the sound wave. It is the main conduction path of normal hearing; the second is to transmit directly to the inner ear through the skull, that is, bone conduction, which has little effect under normal physiological conditions.
骨传导方式传递声音的主要途径是声音经颅骨使耳蜗壁发生振动,主要传导模式有以下两种:The main way of bone conduction to transmit sound is that the sound passes through the skull to vibrate the cochlea wall. There are two main conduction modes:
其一,压缩骨导(Compression Bone Conduction),是指振动经颅骨传到耳蜗,使耳蜗壁随着声波疏密相的变化膨大与缩小,从而使体积可压缩性很小的内耳淋巴液向蜗窗和前庭窗移动。因前庭阶和鼓阶中的淋巴液之比为5:3,且蜗窗膜的活动性大于镫骨板,所欲在声波疏相骨壁被压缩时,前庭阶中淋巴液流向鼓阶,基底膜下移;声波疏相骨壁膨大时,淋巴液回流,基底膜上移。由此反复较低引起基底膜振动,有效地刺激了内耳螺旋器;First, compression bone conduction (Compression Bone Conduction) refers to the transmission of vibration to the cochlea through the skull, so that the cochlear wall expands and shrinks with the change of the sound wave density phase, so that the inner ear lymph fluid with small compressibility flows to the cochlea. Windows and vestibule windows move. Because the ratio of lymph fluid in the scala vestibule and scala tympani is 5:3, and the cochlear window membrane is more mobile than the stapes plate, when the bone wall is compressed by sound waves, the lymph fluid in the scala vestibule flows to the scala tympani. The basement membrane moves down; when the bone wall expands with the ultrasonic wave, the lymph fluid flows back and the basement membrane moves up. This repeatedly lowers the basilar membrane to vibrate, effectively stimulating the spiral organ of the inner ear;
其二,移动式骨导(Expansion Bone Conduction),是指声波作用于颅骨时,整个头颅包括耳蜗均在振动。因为淋巴液存在惰性,所以当耳蜗壁移位时,内耳淋巴液的唯一总是稍落后于前者,并且呈反向运动,从而引起基底膜振动,刺激内耳螺旋器。The second is mobile bone conduction (Expansion Bone Conduction), which means that when sound waves act on the skull, the entire skull, including the cochlea, vibrates. Because of the inertia of the lymph fluid, when the cochlear wall is displaced, the only part of the inner ear lymph fluid is always slightly behind the former, and moves in the opposite direction, which causes the basement membrane to vibrate and stimulate the inner ear spiral organ.
现有技术中,骨传导技术集中应用于骨传导助听器、骨传导麦克风、骨传导手机、骨传导耳机等骨传导装置中,尤其是骨传导耳机,近年来在民用领域得到了一定的推广。在近年来的调查中,许多研究机构发现传统入耳式耳机的使用对使用人群听力造成持续性的损伤,尤其是长期使用入耳式耳机的人群听力受损情况更加严重,使用骨传导技术的耳机由于声音传导的方式不同,不会对耳朵造成损伤,是现有入耳式耳机的良好替代物。随着骨传导技术应用领域逐渐扩大,针对骨传导技术的研究也越来越深入以及细分,例如针对骨传导扬声器结构、分布应用等的研究在耳机、眼镜等领域已然具有一定的基础。随着骨传导产品的推广应用,相关技术会得到更进一步的研究开发。In the prior art, bone conduction technology is concentratedly used in bone conduction devices such as bone conduction hearing aids, bone conduction microphones, bone conduction mobile phones, bone conduction earphones, etc., especially bone conduction earphones, which have been promoted in the civilian field in recent years. In surveys in recent years, many research institutions have found that the use of traditional in-ear headphones has caused continuous hearing damage to the users, especially those who have used in-ear headphones for a long time. The way of sound conduction is different, it will not cause damage to the ears, and it is a good replacement for existing in-ear headphones. With the gradual expansion of the application field of bone conduction technology, the research on bone conduction technology has become more and more in-depth and subdivided. For example, the research on the structure and distribution application of bone conduction speakers has already established a certain foundation in the fields of earphones and glasses. With the popularization and application of bone conduction products, related technologies will be further researched and developed.
由于骨传导技术民用化并未大范围进行推广,故市场上现有骨传导装置往往停留在“能够使用”的阶段,即能够保证使用即可,虽然有一些企业针对其使用品质也进行长期的研发,但是能够商用转化的技术主要集中于骨传导装置的结构设计和新产品的开发上,并未有跳跃式的发展。骨传导装置中的常用材料为橡胶、塑料及常规的金属材料或者其他的复合材料等通用性材料,上述通用性材料性能有限,应用于骨传导装置中难以产生优良的声学效果,使骨传导装置在声学效果上与其他现有装置差距甚远,尤其是骨传导装置传递的声音中,更具饱和度的频段缺失,造成声音单调,使用效果欠佳,难以冲击更高端的发声器市场,这样的缺陷是无法通过结构设计的方法来改善的。Since the civilian use of bone conduction technology has not been promoted on a large scale, the existing bone conduction devices on the market often stay at the stage of "usable", that is, they can be guaranteed to be used. Research and development, but the technology that can be commercially transformed is mainly focused on the structural design of bone conduction devices and the development of new products, and there has been no leapfrog development. Commonly used materials in bone conduction devices are general-purpose materials such as rubber, plastic, conventional metal materials, or other composite materials. The performance of the above-mentioned general-purpose materials is limited, and it is difficult to produce excellent acoustic effects when applied to bone conduction devices. The acoustic effect is far from other existing devices, especially in the sound transmitted by the bone conduction device, the more saturated frequency band is missing, resulting in monotonous sound, poor use effect, and it is difficult to hit the higher-end sound generator market. The defects cannot be improved by the method of structural design.
骨传导装置中金属材料的部分对声波的传导起到了非常关键的作用,现有技术中骨传导装置中的金属材料通常优选采用钢铁材质。选择钢铁材质一方面是因为钢铁材料便宜易得,而且加工工艺成熟,成型性能也非常优异,另一方面钢铁材质坚硬,使用寿命长,相比起塑胶材料能够耐受更严苛的使用环境。但是在实际使用过程中发现,钢铁材料由于防锈抗蚀性能着实一般,尤其是骨传导装置在使用过程中接触人体皮肤部分(长期被汗水、油脂侵蚀的环境)非常容易生锈,而且由于密度高以及本身的特性,在音质传导上难以让人满意,尤其是为了追求更好的音质,从而将传导声音的传振片等部件设计的更加长、体积更大。传振片在振子发生震动时根据振子释放的频率传导不同的振幅,钢铁材料由于自身弹性极限的限制并且弹性模量较高,往往在需要传振片达到较大的力时才能产生所需要的变形量,这使得骨传导装置的电池容量和电控能力都需要增强,才能达到预期的音质效果,增加了能源的消耗(更高音质需要更大的电池),使骨传导装置的重量居高不下,不仅增加了加工成本,而且使得骨传导装置整体结构变得笨重,与当下流行的轻薄化电子产品的趋势背道而驰,自然无法在消费者市场上立足。The part of the metal material in the bone conduction device plays a very critical role in the conduction of sound waves. In the prior art, the metal material in the bone conduction device is usually preferably made of steel. On the one hand, the steel material is chosen because it is cheap and easy to obtain, and the processing technology is mature, and the formability is also very good. On the other hand, the steel material is hard and has a long service life. Compared with plastic materials, it can withstand harsher use environments. However, in the actual use process, it is found that the anti-rust and anti-corrosion performance of steel materials is really average, especially the part of the bone conduction device that contacts human skin during use (the environment that has been eroded by sweat and oil for a long time) is very easy to rust, and due to the density High and its own characteristics, it is difficult to satisfy the sound quality transmission, especially in pursuit of better sound quality, so the parts such as the sound transmission plate are designed to be longer and larger. When the vibrator vibrates, the vibrating plate transmits different amplitudes according to the frequency released by the vibrator. Due to the limitation of its own elastic limit and high elastic modulus, the steel material can only produce the required force when the vibrating plate needs to reach a large force. The amount of deformation, which makes the battery capacity and electronic control ability of the bone conduction device need to be enhanced in order to achieve the expected sound quality effect, which increases energy consumption (higher sound quality requires a larger battery), and makes the weight of the bone conduction device high No less, it not only increases the processing cost, but also makes the overall structure of the bone conduction device bulky, which runs counter to the current trend of thin and light electronic products, and naturally cannot gain a foothold in the consumer market.
尽管钢铁材料具有非常明显的缺点,但是由于现有技术中被研究可能用于替代的材料综合性能还不如钢铁材料,尤其是涉及到轻量化的设计中,本领域技术人员考虑到轻薄设计的要求,是不会选用密度比钢铁材料更高的材料进行替换,而密度低于钢铁材料的一些材料(如特殊塑料、镁合金、铝合金)从音质传导上又无法达到要求,所以钢铁材料仍旧是骨传导装置上金属部件的首选。Although iron and steel materials have very obvious shortcomings, because the comprehensive performance of the materials that may be used for replacement in the prior art is not as good as that of steel materials, especially when it comes to lightweight design, those skilled in the art consider the requirements of light and thin design , it will not be replaced by materials with a density higher than steel materials, and some materials with lower densities than steel materials (such as special plastics, magnesium alloys, aluminum alloys) cannot meet the requirements in terms of sound quality conduction, so steel materials are still First choice for metal components on bone conduction devices.
发明内容Contents of the invention
为了克服现有技术的不足,本发明的目的在于提供一种骨传导装置,其能够提升传导声音音质、降低整体结构厚度。In order to overcome the deficiencies of the prior art, the purpose of the present invention is to provide a bone conduction device, which can improve the sound quality of the conducted sound and reduce the thickness of the overall structure.
本发明的目的采用如下技术方案实现:The purpose of the present invention adopts following technical scheme to realize:
骨传导装置,所述骨传导装置为采用了骨传导技术的各种类型的装置,所述骨传导装置的金属材料组件全部或部分为非晶合金,即:所述骨传导装置含有用于传递声音的骨传导模块,所述骨传导模块设有金属材料组件,所述骨传导模块中的金属材料组件全部或者部分为非晶合金。Bone conduction device, the bone conduction device is various types of devices using bone conduction technology, all or part of the metal material components of the bone conduction device are amorphous alloys, that is: the bone conduction device contains The sound bone conduction module is provided with a metal material component, and all or part of the metal material component in the bone conduction module is an amorphous alloy.
进一步地,所述非晶合金为锆基非晶合金、稀土基非晶合金、铜基非晶合金、钛基非晶合金、铝基非晶合金、镁基非晶合金中的一种或者多种。Further, the amorphous alloy is one or more of zirconium-based amorphous alloys, rare earth-based amorphous alloys, copper-based amorphous alloys, titanium-based amorphous alloys, aluminum-based amorphous alloys, and magnesium-based amorphous alloys. kind.
进一步地,所述非晶合金为锆基非晶合金,其成分组成为(Zr,Hf)aAlbCuc(Sn,Mg)d(Y,Ag)e,其中a、b、c、d、e每个独立地表示原子百分比,55≤a≤72、6≤b≤17、16≤c≤24、0≤d≤5、0.2≤e≤1;或者,所述非晶合金为钛基非晶合金,其成分组成为(Ti,Zr)aCub Sn c(Si,Al,B)d,其中a、b、c、d每个独立地表示原子百分比,50≤a≤65、20≤b≤35、7≤c≤20、1≤d≤6,其中Ti原子百分比高于40%。Further, the amorphous alloy is a zirconium-based amorphous alloy, and its composition is (Zr, Hf)aAlbCuc(Sn, Mg)d(Y, Ag)e, wherein each of a, b, c, d, and e Independently represent the atomic percentage, 55≤a≤72, 6≤b≤17, 16≤c≤24, 0≤d≤5, 0.2≤e≤1; or, the amorphous alloy is a titanium-based amorphous alloy, Its composition is (Ti, Zr) aCub Sn c (Si, Al, B) d, where a, b, c, d each independently represent atomic percentage, 50≤a≤65, 20≤b≤35, 7 ≤c≤20, 1≤d≤6, wherein the atomic percentage of Ti is higher than 40%.
进一步地,所述非晶合金为下列合金中的一种或者多种:Further, the amorphous alloy is one or more of the following alloys:
Zr62.4Hf2.7Al12Cu20Sn1Mg1.2YAg0.8;Zr62.4Hf2.7Al12Cu20Sn1Mg1.2YAg0.8;
Zr65.7Hf2.5Al11Cu18Sn1Mg1Ag0.8;Zr65.7Hf2.5Al11Cu18Sn1Mg1Ag0.8;
Zr70.1Hf1.4Al10Cu16.2Sn1Mg1Ag0.3;Zr70.1Hf1.4Al10Cu16.2Sn1Mg1Ag0.3;
Zr64.3Hf1.8Al13.2Cu17SnMg3Y0.3Ag0.4;Zr64.3Hf1.8Al13.2Cu17SnMg3Y0.3Ag0.4;
Ti58Zr2Cu25Sn10Si0.8Al4B0.2;Ti58Zr2Cu25Sn10Si0.8Al4B0.2;
Ti54Zr4Cu30Sn7Si1Al4;Ti54Zr4Cu30Sn7Si1Al4;
Ti59.3Zr2Cu25Sn11Al2B0.7;Ti59.3Zr2Cu25Sn11Al2B0.7;
Ti62.5Zr0.5Cu25Sn8Si1Al2.7B0.3。Ti62.5Zr0.5Cu25Sn8Si1Al2.7B0.3.
进一步地,所述骨传导模块为压电式骨传导装置或者电磁式骨传导装置;Further, the bone conduction module is a piezoelectric bone conduction device or an electromagnetic bone conduction device;
所述压电式骨传导装置中的金属材料组件为压电振子中的金属基板、与人体相接处的传导材料、保护压电振子的壳体结构中的一种或者多种;The metal material component in the piezoelectric bone conduction device is one or more of the metal substrate in the piezoelectric vibrator, the conductive material at the junction with the human body, and the shell structure protecting the piezoelectric vibrator;
所述电磁式骨传导装置中的金属材料组件为骨传导振子、骨传导振子固定结构、与人体相接处的传导材料、保护骨传导振子的壳体结构中的一种或者多种。The metal material components in the electromagnetic bone conduction device are one or more of the bone conduction vibrator, the bone conduction vibrator fixing structure, the conductive material at the junction with the human body, and the shell structure for protecting the bone conduction vibrator.
进一步地,所述骨传导模块中的金属材料组件为内部或者外部的骨架结构、外部壳体结构或者连接结构中的一种或者多种。Further, the metal material component in the bone conduction module is one or more of an internal or external skeleton structure, an external shell structure or a connection structure.
进一步地,所述骨传导模块中的金属材料组件中非晶态合金按照体积的占比,大于或者等于整体金属材料组件的10%。Further, the volume ratio of the amorphous alloy in the metal material component in the bone conduction module is greater than or equal to 10% of the overall metal material component.
进一步地,所述骨传导模块中的金属材料组件中非晶态合金按照体积的占比,大于或者等于整体金属材料组件的30%。Further, the volume ratio of the amorphous alloy in the metal material component of the bone conduction module is greater than or equal to 30% of the overall metal material component.
进一步地,所述骨传导装置为骨传导麦克风或者骨传导眼镜或者骨传导手机或者骨传导助听器。Further, the bone conduction device is a bone conduction microphone or bone conduction glasses or a bone conduction mobile phone or a bone conduction hearing aid.
相比现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明中的骨传导装置传递出的声音音质更佳,由于非晶合金与常规的金属材料相比较,具有高强度、较低的弹性模量和较高的弹性极限,可以使装置音质在需要较小的力传导的情况下可以实现相应的变形量,从而使佩戴者获得相应的声音传导,节省能源,在其中的非晶合金变形过程中实现的变形量可以传导不同的音质效果,在音质方面有更强的实现空间,从而可以通过改变使佩戴者获得更好的音质水平,重底音和高音等等其他常规材料需要通过更高的变形力才能获得的音效和音质使用特定体系的非晶合金既能够获得,无需改变整体结构设计。1. The sound quality of the sound transmitted by the bone conduction device in the present invention is better. Compared with conventional metal materials, the amorphous alloy has high strength, lower elastic modulus and higher elastic limit, which can improve the sound quality of the device. The corresponding amount of deformation can be achieved when a small force conduction is required, so that the wearer can obtain corresponding sound conduction and save energy. The deformation amount achieved during the deformation process of the amorphous alloy can transmit different sound quality effects. There is a stronger room for realization in terms of sound quality, so that the wearer can obtain a better sound quality level by changing the sound effect and sound quality of other conventional materials such as heavy bass and treble, which require higher deformation force. Use a specific system The amorphous alloy can be obtained without changing the overall structural design.
2.本发明中的骨传导装置根据不同的骨传导原理利用非晶合金进行替换原有金属材料,在压电式骨传导装置和电磁式骨传导装置中,通过设置非晶合金材料的占比以及特性降低了装置的整体重量,从而间接降低了所需电池容量和控制电机的重量,使骨传导装置整体轻薄化,在增加了不同音质音色的全面性、使装置的音色音质更加完美的同时,未降低该装置的便携性和可佩戴性,也没有降低续航能力。2. The bone conduction device in the present invention uses amorphous alloys to replace the original metal materials according to different bone conduction principles. In piezoelectric bone conduction devices and electromagnetic bone conduction devices, by setting the proportion of amorphous alloy materials And the characteristics reduce the overall weight of the device, thereby indirectly reducing the required battery capacity and the weight of the control motor, making the bone conduction device lighter and thinner as a whole, increasing the comprehensiveness of different sound qualities and timbres, and making the timbre and sound quality of the device more perfect at the same time , without compromising the portability and wearability of the device, and without compromising battery life.
3.本发明中的骨传导装置,由于其中的金属材料组件全部或部分为非晶合金,非晶合金具有杀菌消毒的功效,在使用过程中,该骨传导装置受到汗液、灰尘、油污及其他物质的污染时,使用非晶合金制作形成的部分可以有效控制细菌的滋生,使该骨传导装置始终处于安全卫生的使用环境中。3. In the bone conduction device of the present invention, since all or part of the metal material components therein are amorphous alloys, the amorphous alloy has the effect of sterilization and disinfection. During use, the bone conduction device is subjected to sweat, dust, oil and other In the case of material contamination, the part formed by the amorphous alloy can effectively control the growth of bacteria, so that the bone conduction device is always in a safe and hygienic use environment.
附图说明Description of drawings
图1为本发明中压电式骨传导装置的压电振子结构示意图;Fig. 1 is a structural schematic diagram of the piezoelectric vibrator of the piezoelectric bone conduction device in the present invention;
图2为本发明中压电式骨传导装置的简易结构示意图;Fig. 2 is a schematic structural diagram of a piezoelectric bone conduction device in the present invention;
图3为本发明中电磁是骨传导装置的简易结构示意图。Fig. 3 is a schematic structural diagram of the electromagnetic bone conduction device in the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行详细的说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1压电式骨传导装置Embodiment 1 Piezoelectric bone conduction device
压电式骨传导装置是利用压电陶瓷的逆压电效应进行发声传导的装置,用具有音频的电信号直接驱动压电振子,通过压电振子的机械变形来产生振动,振动经颅骨传到耳蜗,从而感受到声音。压电振子是压电式骨传导装置中的最重要的核心结构,应用压电振子的骨传导装置一般具有1KHz或者是更高的谐振频率,因此压电式骨传导装置的低频区域的发生容易再现不充分,如何使低频区域充分进行传导是压电式骨传导装置的研究重点。Piezoelectric bone conduction device is a device that uses the inverse piezoelectric effect of piezoelectric ceramics to conduct sound transmission. The piezoelectric vibrator is directly driven by an electrical signal with audio frequency, and vibration is generated through the mechanical deformation of the piezoelectric vibrator. The vibration is transmitted to the human body through the skull. The cochlea to perceive sound. The piezoelectric vibrator is the most important core structure in the piezoelectric bone conduction device. The bone conduction device using the piezoelectric vibrator generally has a resonance frequency of 1KHz or higher, so the occurrence of the low frequency region of the piezoelectric bone conduction device is easy. Insufficient reproduction, how to fully conduct conduction in the low-frequency region is the research focus of piezoelectric bone conduction devices.
压电振子中一般使用压电陶瓷,但是由于压电陶瓷片本身硬且脆,而且能够产生的位移或者力非常小(振动的振幅非常小),所以压电陶瓷片一般不作为驱动原件直接使用,而是与具有弹性的金属基板粘结在一起制成复合结构使用,该复合结构即压电振子。现有技术中往往使用不锈钢或者是纯铜片与压电陶瓷复合,但是制成的压电振子传导低频区域效果差、声音再现不充分(低频是声音的基础)。Piezoelectric ceramics are generally used in piezoelectric vibrators, but because piezoelectric ceramics are hard and brittle, and the displacement or force that can be generated is very small (the amplitude of vibration is very small), piezoelectric ceramics are generally not directly used as driving components. , but bonded together with an elastic metal substrate to make a composite structure, the composite structure is the piezoelectric vibrator. In the prior art, stainless steel or pure copper sheets are often combined with piezoelectric ceramics, but the resulting piezoelectric vibrator has poor conduction effect in the low-frequency region and insufficient sound reproduction (low frequency is the basis of sound).
在本实施例的压电式骨传导装置中,如附图1所示,压电陶瓷101与非晶合金基板102组成压电振子。非晶合金基板102可全部采用非晶合金材料制成或者部分采用非晶合金材料制成,部分采用非晶合金材料的,其中非晶态合金按照体积的占比,大于或者等于整体金属材料组件的10%,以保证该金属材料组件具有较佳的强度、较低的弹性模量和较高的弹性极限,从而使该骨传导装置具有较佳的音质水平,优选大于或者等于整体金属材料组件的30%。In the piezoelectric bone conduction device of this embodiment, as shown in FIG. 1 , piezoelectric ceramics 101 and an amorphous alloy substrate 102 form a piezoelectric vibrator. The amorphous alloy substrate 102 can be entirely made of amorphous alloy material or partly made of amorphous alloy material, and partly made of amorphous alloy material, wherein the volume ratio of the amorphous alloy is greater than or equal to that of the overall metal material component 10% to ensure that the metal material component has better strength, lower elastic modulus and higher elastic limit, so that the bone conduction device has a better sound quality level, preferably greater than or equal to the overall metal material component 30% of.
由非晶合金制成的金属材料组件厚度为相同结构普通晶态合金材料厚度的15-60%即可满足使用要求,既能满足强度、硬度、耐蚀性的要求,又能够达到减薄的效果。在本实施例中的压电振子中,采用锆基非晶合金材料制成的基板102比纯铜片基板厚度减薄20%,且强度更高、弹性模量更低,无需过大的振动即可传递声音,能够实现低音频段的有效传递。The thickness of metal material components made of amorphous alloys is 15-60% of the thickness of ordinary crystalline alloy materials with the same structure, which can meet the requirements of use. It can not only meet the requirements of strength, hardness, and corrosion resistance, but also achieve thinning. Effect. In the piezoelectric vibrator in this embodiment, the substrate 102 made of zirconium-based amorphous alloy material is 20% thinner than the pure copper substrate, and has higher strength and lower elastic modulus, without excessive vibration The sound can be transmitted, and the effective transmission of the low frequency range can be realized.
如附图2所示,为压电式骨传导装置的简易结构示意图。压电振子202设有保护壳体结构201,同时与传导柱203相连,通过传导柱203将声音传递给人体204。在该结构中,传导柱203、保护壳体结构201同样可全部采用非晶合金材料制成或者部分采用非晶合金材料制成,部分采用非晶合金材料的,其中非晶态合金按照体积的占比,大于或者等于整体金属材料组件的10%,优选大于或者等于整体金属材料组件的30%。对于作为保护结构的壳体201来说,非晶合金材料的厚度可适当增加,优选为相同结构普通晶态合金材料厚度的50-60%即可满足使用要求,而作为传导结构的传导柱,厚度则以不同设计为准,一般优选为相同结构普通晶态合金材料厚度的30-60%即可满足使用要求。As shown in Figure 2, it is a schematic diagram of a simplified structure of a piezoelectric bone conduction device. The piezoelectric vibrator 202 is provided with a protective shell structure 201 , and is connected to a conduction column 203 , and transmits sound to a human body 204 through the conduction column 203 . In this structure, the conduction column 203 and the protective shell structure 201 can also be made of amorphous alloy material entirely or partly made of amorphous alloy material, and partly made of amorphous alloy material, wherein the amorphous alloy is The proportion is greater than or equal to 10% of the overall metal material component, preferably greater than or equal to 30% of the overall metal material component. For the housing 201 as a protective structure, the thickness of the amorphous alloy material can be appropriately increased, preferably 50-60% of the thickness of the common crystalline alloy material of the same structure to meet the requirements of use, and as the conduction column of the conduction structure, The thickness is subject to different designs, and generally it is preferably 30-60% of the thickness of common crystalline alloy materials with the same structure to meet the use requirements.
实施例2电磁式骨传导装置Embodiment 2 Electromagnetic bone conduction device
电磁式骨传导装置原理与压电式类似,不同之处在于其骨传导振子为磁体复合结构。The principle of the electromagnetic bone conduction device is similar to that of the piezoelectric type, except that the bone conduction vibrator is a composite structure of magnets.
如附图3所示为电磁是骨传导装置的简易结构示意图。骨传导装置主要包括骨传导振子304、设于骨传导振子两侧的固定结构302、保护前壳体301、保护后壳体303,其中保护前后壳体任一可作为与人体相接处的传导材料,效果同实施例1中的传导柱203。Figure 3 is a schematic diagram of a simple structure of an electromagnetic bone conduction device. The bone conduction device mainly includes a bone conduction vibrator 304, a fixed structure 302 arranged on both sides of the bone conduction vibrator, a protective front shell 301, and a protective rear shell 303, wherein any one of the protective front and rear shells can be used as a conduction conductor at the junction with the human body. The material is the same as the conduction column 203 in Embodiment 1.
上述结构均可全部采用非晶合金材料制成或者部分采用非晶合金材料制成,部分采用非晶合金材料的,其中非晶态合金按照体积的占比,大于或者等于整体金属材料组件的10%,优选大于或者等于整体金属材料组件的30%。对于作为保护结构的壳体301、303来说,非晶合金材料的厚度可适当增加,优选为相同结构普通晶态合金材料厚度的50-60%即可满足使用要求,若设某一侧为接触侧,厚度则以接触侧的要求设计为准,一般优选为相同结构普通晶态合金材料厚度的30-60%即可满足使用要求(更薄)。The above-mentioned structures can all be made of amorphous alloy materials or partially made of amorphous alloy materials, and some of them are made of amorphous alloy materials, wherein the volume ratio of the amorphous alloy is greater than or equal to 10% of the overall metal material component. %, preferably greater than or equal to 30% of the overall metal material component. For the shells 301 and 303 as protective structures, the thickness of the amorphous alloy material can be appropriately increased, preferably 50-60% of the thickness of the common crystalline alloy material of the same structure to meet the requirements for use. If a certain side is The thickness of the contact side is subject to the design requirements of the contact side, generally preferably 30-60% of the thickness of the common crystalline alloy material with the same structure to meet the use requirements (thinner).
实施例1和2中,非晶合金制成发声的合金组件进行应用,故骨传导装置中的金属材料组件非晶合金或者包含非晶合金的结构的弹性极限选取为1.8-3.5%,维氏硬度选取为350-900HV,抗拉强度选取为1200-3000MPa,屈服强度选取为800-1500MPa,表面粗糙度Ra小于0.01μm为宜。其中,弹性极限优选2.2%以上,维氏硬度选取450-600HV,抗拉强度选取1800-2300MPa,屈服强度选取900-1200MPa为宜,可兼顾非晶合金的制造难度、制备成本以及机械性能,既要防止性能不符合要求,也需防止性能过剩带来的成本上的提升。In Examples 1 and 2, the amorphous alloy is made into a sounding alloy component for application, so the elastic limit of the metal material component amorphous alloy in the bone conduction device or the structure containing the amorphous alloy is selected as 1.8-3.5%, Vickers The hardness is selected to be 350-900HV, the tensile strength is selected to be 1200-3000MPa, the yield strength is selected to be 800-1500MPa, and the surface roughness Ra is preferably less than 0.01μm. Among them, the elastic limit is preferably above 2.2%, the Vickers hardness is selected from 450-600HV, the tensile strength is selected from 1800-2300MPa, and the yield strength is preferably selected from 900-1200MPa, which can take into account the manufacturing difficulty, preparation cost and mechanical properties of amorphous alloys. To prevent the performance from not meeting the requirements, it is also necessary to prevent the increase in cost caused by excess performance.
实施例3Example 3
在压电式骨传导装置或者电磁式骨传导装置中,其内部或者外部的骨架结构、外部壳体结构或者连接结构中的一种或者多种由非晶合金或者部分由非晶合金制成,如后戴式骨传导耳机(整体结构)中部的连接部、保护两侧传声组件的外壳体和内壳体等,这些仅作为结构制件的组件中非晶态合金按照体积的占比,大于或者等于整体金属材料组件的10%即可满足需求,根据使用要求的可提升非晶态占比,最高可达90%(过高的非晶态含量对非晶合金制造工艺提出更高的要求,制备成本飙升)。由非晶合金制成的金属材料组件厚度为相同结构普通晶态合金材料厚度的20-80%,优选为相同结构普通晶态合金材料厚度的40-60%,非晶合金最大形成能力大于2mm即可具有实用性,可利用压铸、浇铸等普通铸造工艺对其进行加工制造。In a piezoelectric bone conduction device or an electromagnetic bone conduction device, one or more of its internal or external skeleton structure, external shell structure or connection structure is made of amorphous alloy or partially made of amorphous alloy, For example, the connection part in the middle of the rear-mounted bone conduction earphone (overall structure), the outer shell and the inner shell that protect the sound transmission components on both sides, etc., in these components that are only used as structural parts, the proportion of amorphous alloys in terms of volume, Greater than or equal to 10% of the overall metal material component can meet the demand, and the proportion of amorphous state can be increased according to the use requirements, up to 90% (excessively high amorphous content puts higher demands on the amorphous alloy manufacturing process requirements, and the cost of preparation soars). The thickness of metal material components made of amorphous alloys is 20-80% of the thickness of ordinary crystalline alloy materials with the same structure, preferably 40-60% of the thickness of ordinary crystalline alloy materials with the same structure, and the maximum forming ability of amorphous alloys is greater than 2mm It can be practical, and it can be processed and manufactured by common casting techniques such as die-casting and casting.
对于上述结构制件,非晶合金或者包含非晶合金的结构的弹性极限选取为1.8-3.2%,维氏硬度选取为350-900HV,抗拉强度选取为1800-3000MPa,屈服强度选取为800-1500MPa。其中,弹性极限优选2.5%以上,维氏硬度选取450-600HV,抗拉强度选取1800-2300MPa,屈服强度选取1000-1200MPa为宜,可兼顾非晶合金的制造难度、制备成本以及机械性能,既要防止性能不符合要求,也需防止性能过剩带来的成本上的提升。For the above-mentioned structural parts, the elastic limit of the amorphous alloy or the structure containing the amorphous alloy is selected as 1.8-3.2%, the Vickers hardness is selected as 350-900HV, the tensile strength is selected as 1800-3000MPa, and the yield strength is selected as 800- 1500MPa. Among them, the elastic limit is preferably 2.5% or more, the Vickers hardness is 450-600HV, the tensile strength is 1800-2300MPa, and the yield strength is 1000-1200MPa, which can take into account the manufacturing difficulty, preparation cost and mechanical properties of the amorphous alloy. To prevent the performance from not meeting the requirements, it is also necessary to prevent the increase in cost caused by excess performance.
在本发明中,适合选择的非晶合金体系包括锆基非晶合金、稀土基非晶合金、铜基非晶合金、钛基非晶合金、铝基非晶合金、镁基非晶合金中的一种或者多种,从生物相容性、制备工艺难度以及成本上,进一步优选采用锆基非晶合金或者钛基非晶合金。In the present invention, suitable amorphous alloy systems include zirconium-based amorphous alloys, rare earth-based amorphous alloys, copper-based amorphous alloys, titanium-based amorphous alloys, aluminum-based amorphous alloys, and magnesium-based amorphous alloys. One or more, in terms of biocompatibility, difficulty of preparation process and cost, zirconium-based amorphous alloy or titanium-based amorphous alloy is more preferably used.
经本发明认真对骨传导装置的特性进行研究,非晶合金为锆基非晶合金,其成分组成为(Zr,Hf)a Al b Cu c(Sn,Mg)d(Y,Ag)e,其中a、b、c、d、e每个独立地表示原子百分比,55≤a≤72、6≤b≤17、16≤c≤24、0≤d≤5、0.2≤e≤1;After the present invention carefully studies the characteristics of the bone conduction device, the amorphous alloy is a zirconium-based amorphous alloy, and its composition is (Zr, Hf) a Al b Cu c (Sn, Mg) d (Y, Ag) e, Wherein a, b, c, d, e each independently represent an atomic percentage, 55≤a≤72, 6≤b≤17, 16≤c≤24, 0≤d≤5, 0.2≤e≤1;
非晶合金为钛基非晶合金,其成分组成为(Ti,Zr)a Cu b Sn c(Si,Al,B)d,其中a、b、c、d每个独立地表示原子百分比,50≤a≤65、20≤b≤35、7≤c≤20、1≤d≤6,其中Ti原子百分比高于40%;The amorphous alloy is a titanium-based amorphous alloy, and its composition is (Ti, Zr) a Cu b Sn c (Si, Al, B) d, where a, b, c, and d each independently represent an atomic percentage, and 50 ≤a≤65, 20≤b≤35, 7≤c≤20, 1≤d≤6, wherein the atomic percentage of Ti is higher than 40%;
上述两种非晶合金体系为上佳选择。The above two amorphous alloy systems are the best choices.
适用的非晶合金组成如:Applicable amorphous alloy compositions such as:
Zr62.4Hf2.7Al12Cu20Sn1Mg1.2YAg0.8Zr62.4Hf2.7Al12Cu20Sn1Mg1.2YAg0.8
Zr65.7Hf2.5Al11Cu18Sn1Mg1Ag0.8Zr65.7Hf2.5Al11Cu18Sn1Mg1Ag0.8
Zr70.1Hf1.4Al10Cu16.2Sn1Mg1Ag0.3Zr70.1Hf1.4Al10Cu16.2Sn1Mg1Ag0.3
Zr64.3Hf1.8Al13.2Cu17SnMg3Y0.3Ag0.4Zr64.3Hf1.8Al13.2Cu17SnMg3Y0.3Ag0.4
Ti58Zr2Cu25Sn10Si0.8Al4B0.2Ti58Zr2Cu25Sn10Si0.8Al4B0.2
Ti54Zr4Cu30Sn7Si1Al4Ti54Zr4Cu30Sn7Si1Al4
Ti59.3Zr2Cu25Sn11Al2B0.7Ti59.3Zr2Cu25Sn11Al2B0.7
Ti62.5Zr0.5Cu25Sn8Si1Al2.7B0.3。Ti62.5Zr0.5Cu25Sn8Si1Al2.7B0.3.
上述非晶合金应用于骨传导装置,如骨传导耳机、骨传导麦克风或者骨传导眼镜中不仅力学性能卓越、声音传导性能高,而且具有杀菌性能,可有效抑制细菌的滋生,同时生物相容性好,适合对金属敏感的人群使用。The above-mentioned amorphous alloys are applied to bone conduction devices, such as bone conduction earphones, bone conduction microphones or bone conduction glasses, which not only have excellent mechanical properties and high sound conduction performance, but also have bactericidal properties, which can effectively inhibit the growth of bacteria Well, for those who are sensitive to metals.
最后需要说明的是,以上实施例仅用以说明本发明实施例的技术方案而非对其进行限制,尽管参照较佳实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解依然可以对本发明实施例的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the embodiments of the present invention and not to limit them. Although the embodiments of the present invention have been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should It is understood that modifications or equivalent replacements can still be made to the technical solutions of the embodiments of the present invention, and these modifications or equivalent replacements cannot make the modified technical solutions deviate from the scope of the technical solutions of the embodiments of the present invention.
Claims (9)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2019102668886 | 2019-04-03 | ||
| CN201910266888.6A CN110072169A (en) | 2019-04-03 | 2019-04-03 | Bone-conduction device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN110536207A true CN110536207A (en) | 2019-12-03 |
Family
ID=67367087
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910266888.6A Pending CN110072169A (en) | 2019-04-03 | 2019-04-03 | Bone-conduction device |
| CN201921452201.XU Active CN211047157U (en) | 2019-04-03 | 2019-08-31 | Bone conduction earphone |
| CN201921434572.5U Active CN210405601U (en) | 2019-04-03 | 2019-08-31 | Bone conduction device |
| CN201910819273.1A Pending CN110536206A (en) | 2019-04-03 | 2019-08-31 | Bone conduction earphone |
| CN201910819275.0A Pending CN110536207A (en) | 2019-04-03 | 2019-08-31 | Bone-conduction device |
Family Applications Before (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910266888.6A Pending CN110072169A (en) | 2019-04-03 | 2019-04-03 | Bone-conduction device |
| CN201921452201.XU Active CN211047157U (en) | 2019-04-03 | 2019-08-31 | Bone conduction earphone |
| CN201921434572.5U Active CN210405601U (en) | 2019-04-03 | 2019-08-31 | Bone conduction device |
| CN201910819273.1A Pending CN110536206A (en) | 2019-04-03 | 2019-08-31 | Bone conduction earphone |
Country Status (1)
| Country | Link |
|---|---|
| CN (5) | CN110072169A (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110072169A (en) * | 2019-04-03 | 2019-07-30 | 宋佳 | Bone-conduction device |
| CN113596648B (en) * | 2020-04-30 | 2025-06-06 | 深圳市韶音科技有限公司 | A bone conduction headset |
| CN214507335U (en) * | 2020-11-13 | 2021-10-26 | 数码绿洲有限公司 | Bone conduction earphone with improved bone conduction sound effect |
| CN112312287A (en) * | 2020-11-30 | 2021-02-02 | 歌尔股份有限公司 | Voice coil assembly and sound production device |
| CN112927664A (en) * | 2021-01-29 | 2021-06-08 | 东莞颠覆产品设计有限公司 | Application of amorphous alloy and/or high-entropy alloy in stringed instrument |
| CN113025928A (en) * | 2021-02-24 | 2021-06-25 | 东莞颠覆产品设计有限公司 | Application of amorphous alloy and/or high-entropy alloy to gong in three-minute form |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09308681A (en) * | 1996-05-23 | 1997-12-02 | Ishikawajima Harima Heavy Ind Co Ltd | Bone-conductive metal material and method for producing the same |
| US20050147272A1 (en) * | 2004-01-07 | 2005-07-07 | Adire Audio | Speaker suspension element |
| US20050251260A1 (en) * | 2002-08-15 | 2005-11-10 | David Gerber | Controlled artificial intervertebral disc implant |
| US20120293765A1 (en) * | 2011-05-21 | 2012-11-22 | Kang James W | Material for eyewear & eyewear structure |
| CN104451472A (en) * | 2014-12-29 | 2015-03-25 | 东莞台一盈拓科技股份有限公司 | Amorphous alloy spectacle frame and glass and production method thereof |
| CN104683904A (en) * | 2015-02-11 | 2015-06-03 | 东莞台一盈拓科技股份有限公司 | Amorphous alloy earphone hanger as well as earphone and manufacturing method thereof |
| CN107526184A (en) * | 2017-07-31 | 2017-12-29 | 杭州双弯月电子科技有限公司 | Osteoacusis glasses |
| CN107837425A (en) * | 2016-09-18 | 2018-03-27 | 浙江蓝怡医药有限公司 | Novel porous bioceramic bone material and preparation method thereof |
| CN107889036A (en) * | 2017-12-18 | 2018-04-06 | 陈火 | A kind of low drain sound bone-conduction speaker unit |
| CN108419184A (en) * | 2018-03-05 | 2018-08-17 | 宋佳 | A kind of non-crystaline amorphous metal vibrating diaphragm |
| CN210405601U (en) * | 2019-04-03 | 2020-04-24 | 东莞市无疆科技投资有限公司 | Bone conduction device |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104789910B (en) * | 2015-03-06 | 2017-01-25 | 张临财 | Ti-based amorphous alloy and method for making bone drill from the same |
| CN205596323U (en) * | 2016-01-21 | 2016-09-21 | 瑞声光电科技(常州)有限公司 | Sounding device |
| CN106392363B (en) * | 2016-12-06 | 2020-02-21 | 北京航空航天大学 | A titanium-zirconium-based amorphous alloy brazing filler metal with low Cu and Ni content and no Si element and preparation method thereof |
| CN108504969B (en) * | 2018-05-04 | 2020-04-17 | 深圳市锆安材料科技有限公司 | Corrosion-resistant zirconium-based amorphous alloy and preparation method thereof |
-
2019
- 2019-04-03 CN CN201910266888.6A patent/CN110072169A/en active Pending
- 2019-08-31 CN CN201921452201.XU patent/CN211047157U/en active Active
- 2019-08-31 CN CN201921434572.5U patent/CN210405601U/en active Active
- 2019-08-31 CN CN201910819273.1A patent/CN110536206A/en active Pending
- 2019-08-31 CN CN201910819275.0A patent/CN110536207A/en active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09308681A (en) * | 1996-05-23 | 1997-12-02 | Ishikawajima Harima Heavy Ind Co Ltd | Bone-conductive metal material and method for producing the same |
| US20050251260A1 (en) * | 2002-08-15 | 2005-11-10 | David Gerber | Controlled artificial intervertebral disc implant |
| US20050147272A1 (en) * | 2004-01-07 | 2005-07-07 | Adire Audio | Speaker suspension element |
| US20120293765A1 (en) * | 2011-05-21 | 2012-11-22 | Kang James W | Material for eyewear & eyewear structure |
| CN104451472A (en) * | 2014-12-29 | 2015-03-25 | 东莞台一盈拓科技股份有限公司 | Amorphous alloy spectacle frame and glass and production method thereof |
| CN104683904A (en) * | 2015-02-11 | 2015-06-03 | 东莞台一盈拓科技股份有限公司 | Amorphous alloy earphone hanger as well as earphone and manufacturing method thereof |
| CN107837425A (en) * | 2016-09-18 | 2018-03-27 | 浙江蓝怡医药有限公司 | Novel porous bioceramic bone material and preparation method thereof |
| CN107526184A (en) * | 2017-07-31 | 2017-12-29 | 杭州双弯月电子科技有限公司 | Osteoacusis glasses |
| CN107889036A (en) * | 2017-12-18 | 2018-04-06 | 陈火 | A kind of low drain sound bone-conduction speaker unit |
| CN108419184A (en) * | 2018-03-05 | 2018-08-17 | 宋佳 | A kind of non-crystaline amorphous metal vibrating diaphragm |
| CN210405601U (en) * | 2019-04-03 | 2020-04-24 | 东莞市无疆科技投资有限公司 | Bone conduction device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN210405601U (en) | 2020-04-24 |
| CN211047157U (en) | 2020-07-17 |
| CN110072169A (en) | 2019-07-30 |
| CN110536206A (en) | 2019-12-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN210405601U (en) | Bone conduction device | |
| RU2352083C2 (en) | Hearing aid | |
| TW202316869A (en) | Acoustic output device | |
| WO2020140449A1 (en) | Loudspeaker device | |
| TW200526057A (en) | Acoustic vibration generating element | |
| US20060159297A1 (en) | Ear canal signal converting method, ear canal transducer and headset | |
| CN112367596A (en) | Bone conduction sound production device | |
| CN102301747A (en) | Balanced Armature Devices And Methods For Hearing | |
| CN112383865B (en) | Using method of bone conduction sound production device | |
| WO2012129918A1 (en) | Speaker vibration diaphragm and speaker | |
| CN102404678A (en) | Actuator for hearing compensation and hearing aid device with the same | |
| CN102883253A (en) | Piezoelectric ceramic bone conduction vibrator | |
| CN102836018B (en) | Artificial auditory ossicle for treating mixed hearing damage | |
| CN101841760B (en) | The manufacture method of minitype acoustic generator | |
| CN217904621U (en) | Bone conduction vibration component and ear clip type bone conduction earphone sound production device | |
| CN102413407A (en) | Middle ear implanted miniature piezoelectric microphone and preparation method thereof | |
| WO2014061646A1 (en) | Earphone | |
| CN214960112U (en) | A single-shrapnel bone conduction vibrator | |
| CN214960111U (en) | Double-elastic-piece type bone conduction vibrator | |
| CN103391500A (en) | Piezoelectric ceramic bone-conduction receiver vibrator and mounting structure thereof | |
| CN201260237Y (en) | Insert earphone adopting bone conduction loudspeaker | |
| CN217904622U (en) | Earclip type bone conduction earphone sound production device | |
| CN217904626U (en) | Earclip type bone conduction earphone sounding device | |
| CN205693851U (en) | In-Ear high pitch compensates earphone | |
| CN221103537U (en) | Annular double-hanging-edge four-magnet flat plate unit for in-ear earphone |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191203 |