+

CN110184281B - Rice seed storability gene OsGH3-2 and application of molecular marker thereof - Google Patents

Rice seed storability gene OsGH3-2 and application of molecular marker thereof Download PDF

Info

Publication number
CN110184281B
CN110184281B CN201910554967.7A CN201910554967A CN110184281B CN 110184281 B CN110184281 B CN 110184281B CN 201910554967 A CN201910554967 A CN 201910554967A CN 110184281 B CN110184281 B CN 110184281B
Authority
CN
China
Prior art keywords
gene
osgh3
rice
storability
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910554967.7A
Other languages
Chinese (zh)
Other versions
CN110184281A (en
Inventor
余四斌
袁志阳
凡凯
田莉
熊银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201910554967.7A priority Critical patent/CN110184281B/en
Publication of CN110184281A publication Critical patent/CN110184281A/en
Application granted granted Critical
Publication of CN110184281B publication Critical patent/CN110184281B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种水稻种子耐贮藏性基因OsGH3‑2及其分子标记的应用,本发明图位克隆了水稻种子耐贮藏性基因OsGH3‑2,其核苷酸序列如SEQ ID NO.1所示,其编码蛋白质的氨基酸序列如SEQ ID NO.2所示。本发明通过遗传转化验证了该基因在提高水稻种子耐贮藏能力中的功能:利用RNAi技术诱导OsGH3‑2基因功能丧失以及RNAi降低OsGH3‑2基因表达量,证实了该基因可以显著地增强水稻种子的耐贮藏性。本发明还提供了与OsGH3‑2基因紧密连锁的分子标记,利用该分子标记可以检测OsGH3‑2单倍型与基因选择,实现其在培育种子耐贮藏性强的水稻品种中的应用。The invention provides a rice seed storability gene OsGH3-2 and the application of its molecular marker. The present invention clones the rice seed storability gene OsGH3-2, and its nucleotide sequence is as shown in SEQ ID NO.1 The amino acid sequence of the encoded protein is shown in SEQ ID NO.2. The present invention verifies the function of the gene in improving the storage tolerance of rice seeds through genetic transformation: using RNAi technology to induce the loss of OsGH3-2 gene function and RNAi to reduce the expression of the OsGH3-2 gene, confirming that the gene can significantly enhance rice seeds storability. The present invention also provides a molecular marker closely linked with the OsGH3-2 gene, which can be used to detect the OsGH3-2 haplotype and gene selection, and realize its application in cultivating rice varieties with strong seed storage tolerance.

Description

一种水稻种子耐贮藏性基因OsGH3-2及其分子标记的应用A rice seed storage tolerance gene OsGH3-2 and its application of molecular markers

技术领域technical field

本发明属于作物分子生物学领域,具体地说,涉及一种水稻种子耐贮藏性基因OsGH3-2及其分子标记的应用。The invention belongs to the field of crop molecular biology, in particular to the application of a rice seed storage tolerance gene OsGH3-2 and its molecular marker.

背景技术Background technique

种子是植物遗传物质载体,还是农业生产基本的物质资料和主要产出形式。作物种子收获后受贮藏环境诱导不可避免地发生老化,导致生活力下降,进而影响其种用价值与作物产量(Yamauchi and Winn 1996)。由于农作物季节茬口安排、种子供应的市场性行为以及稳定农业生产的政策需要,常年都需要一定数量种子储备或库存。我国主要农作物如水稻、玉米、小麦等近年平均种子库存量接近12亿公斤,贮藏期间生活力下降不仅导致巨大的商业损失,更增加粮食生产风险(高利伟等2016,国家统计局2017)。种子耐贮藏性是指种子长期贮藏后保持种子活力的能力。种子耐贮藏性强的品种,经过一段时间贮藏后仍具有较高的生活力与播种价值,延长商品用种供应时效性。因此,种子耐贮藏性是重要的农艺性状和商品特性,直接关系到种子生产利用效果。种子受贮藏环境诱导代谢增强,活性氧过度累积诱导生物大分子损伤,如脂膜过氧化、蛋白羰基化以及核酸链断裂,导致种子劣变(Parkhey et al 2012)。以抑制活性氧产生或增强清除能力为基础的植物自身保护机制以及氧化损伤修复系统是调控种子耐贮藏性的关键。水稻是重要的粮食作物,其产区湿热环境容易诱导种子劣变,导致其种子寿命也更短,一般只有1-2年。因此,提高水稻种子耐贮藏性能够延长种用时间,提高种子质量,保留粮食原有加工和营养品质,对保障粮食供应安全具有重大的社会效益和经济价值(胡晋2014)。Seed is the carrier of plant genetic material, and it is also the basic material information and main output form of agricultural production. After harvesting, crop seeds are inevitably aged by storage environment, resulting in a decline in viability, which in turn affects their seed value and crop yield (Yamauchi and Winn 1996). Due to the arrangement of crop seasons, the market behavior of seed supply and the policy needs of stabilizing agricultural production, a certain amount of seed reserves or stocks are required all year round. In recent years, the average seed inventory of major crops such as rice, corn, and wheat in my country is close to 1.2 billion kilograms. The decline in viability during storage not only leads to huge commercial losses, but also increases the risk of grain production (Gao Liwei et al. 2016, National Bureau of Statistics 2017). Seed storability refers to the ability of seeds to maintain seed vigor after long-term storage. Seeds with strong storability can still have high viability and sowing value after a period of storage, extending the timeliness of commercial seed supply. Therefore, seed storability is an important agronomic trait and commodity characteristic, which is directly related to the effect of seed production and utilization. Seeds undergo enhanced metabolism induced by the storage environment, and excessive accumulation of reactive oxygen species induces damage to biomacromolecules, such as lipid membrane peroxidation, protein carbonylation, and nucleic acid strand breaks, resulting in seed deterioration (Parkhey et al 2012). Plant self-protection mechanism and oxidative damage repair system based on inhibiting the production of reactive oxygen species or enhancing the scavenging ability are the keys to regulating the storability of seeds. Rice is an important food crop, and the humid and hot environment in its production area easily induces seed deterioration, resulting in a shorter seed life, generally only 1-2 years. Therefore, improving the storability of rice seeds can prolong the planting time, improve the quality of seeds, and retain the original processing and nutritional quality of the grain, which has great social and economic value for ensuring the security of food supply (Hu Jin 2014).

种子耐贮藏性是受多基因控制的复杂数量性状(Bentsink et al 2006)。水稻种子耐贮藏性存在广泛变异,一般野生稻强于籼稻,籼稻强于粳稻(曾大力等2002,吴方喜等2010)。目前,研究者利用多个水稻遗传群体检测到超过50个种子耐贮藏性相关QTLs(Miuraet al 2002,Zeng et al 2006,Li et al 2012,Hang et al 2014,Dong et al2017,Jinet al 2018,Liu et al 2018)。然而,水稻种子耐贮藏性基因挖掘工作进展缓慢,目前尚未利用等位基因自然变异克隆水稻种子耐贮藏性基因的报道(Kretzschmar et al 2015)。因此,利用正向遗传学挖掘种子耐贮藏性基因是降低种子贮藏成本,提高种子质量最为经济有效的手段。Seed storability is a complex quantitative trait controlled by multiple genes (Bentsink et al 2006). There are wide variations in the storability of rice seeds. Generally, wild rice is stronger than indica rice, and indica rice is stronger than japonica rice (Zeng Dali et al. 2002, Wu Fangxi et al. 2010). At present, researchers have detected more than 50 QTLs related to seed storability using multiple rice genetic populations (Miura et al 2002, Zeng et al 2006, Li et al 2012, Hang et al 2014, Dong et al2017, Jinet al 2018, Liu et al. et al 2018). However, the storability gene mining of rice seeds has progressed slowly, and there is no report on the cloning of storability genes in rice seeds using natural allele variation (Kretzschmar et al 2015). Therefore, using forward genetics to mine seed storability genes is the most economical and effective means to reduce seed storage costs and improve seed quality.

发明内容SUMMARY OF THE INVENTION

本发明目的是提供一种水稻种子耐贮藏基因OsGH3-2及其分子标记与应用。The purpose of the present invention is to provide a rice seed storage tolerance gene OsGH3-2 and its molecular marker and application.

本发明图位克隆了水稻种子耐贮藏基因OsGH3-2,通过遗传转化证实了该基因负调控种子耐贮藏性。通过等位基因功能与单倍型功能分析,证实了该基因启动子变异-446位点SNP导致基因功能变异,进而本发明也开发了一个分子标记用于检测该位点基因型。The present invention clones the rice seed storage tolerance gene OsGH3-2, and confirms that the gene negatively regulates the seed storage tolerance through genetic transformation. Through the analysis of allele function and haplotype function, it is confirmed that the gene promoter variation-446 SNP leads to gene function variation, and the present invention also develops a molecular marker for detecting the genotype of this site.

本发明提供的水稻种子耐贮藏性基因OsGH3-2的核苷酸序列如SEQ ID No.1所示,或SEQ ID No.1所示核苷酸序列经取代、缺失和/或增加一个或几个核苷酸编码相同功能蛋白的基因。The nucleotide sequence of the rice seed storage tolerance gene OsGH3-2 provided by the present invention is shown in SEQ ID No. 1, or the nucleotide sequence shown in SEQ ID No. 1 is substituted, deleted and/or added by one or more genes encoding the same functional protein.

本发明还提供了水稻种子耐贮藏性基因OsGH3-2编码的蛋白,其具有:The present invention also provides the protein encoded by the rice seed storage tolerance gene OsGH3-2, which has:

1)如SEQ ID No.2所示的氨基酸序列;或1) the amino acid sequence shown in SEQ ID No.2; or

2)SEQ ID No.2所示的氨基酸序列经取代、缺失和/或增加一个或多个氨基酸且具有同等活性的由2)衍生的蛋白质。2) A protein derived from 2) in which the amino acid sequence shown in SEQ ID No. 2 is substituted, deleted and/or added by one or more amino acids and has equivalent activity.

本发明提供了含有OsGH3-2基因的生物材料,所述生物材料为载体、转基因细胞系、工程菌、宿主细胞或表达盒。The present invention provides a biological material containing the OsGH3-2 gene, and the biological material is a vector, a transgenic cell line, an engineered bacteria, a host cell or an expression cassette.

本发明提供了上述水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在提高植物种子耐贮藏性能中的应用。The present invention provides the application of the above-mentioned rice seed storability gene OsGH3-2, or the protein encoded by it, or a biological material containing the gene, in improving the storability of plant seeds.

本发明提供了上述水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在提高贮藏后植物种子发芽率中的应用。The present invention provides the application of the above-mentioned rice seed storage tolerance gene OsGH3-2, or the protein encoded by it, or the biological material containing the gene, in improving the germination rate of plant seeds after storage.

本发明提供了上述水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在延长植物种子种用时间、提高种子质量中的应用。The invention provides the application of the above-mentioned rice seed storage tolerance gene OsGH3-2, or the protein encoded by it, or the biological material containing the gene, in prolonging the planting time of plant seeds and improving the quality of seeds.

本发明证实了基因OsGH3-2是水稻种子的耐贮藏性负调控基因,基于本发明的发现,本领域技术人员能够理解,采用本领域公知的敲除OsGH3-2基因的方法,如CRISPR-Gas9技术、或降低OsGH3-2基因表达量的方法,如RNAi方法,阻止或降低OsGH3-2基因的表达,均能够实现提高植物种子耐贮藏性、提高贮藏后植物种子发芽率、延长植物种子种用时间、提高种子质量的目的。因此,本领域技术人员能够理解上述的应用均为OsGH3-2基因的负向调控应用。The present invention confirms that the gene OsGH3-2 is a negative regulation gene of rice seed storability. Based on the findings of the present invention, those skilled in the art can understand that a method known in the art for knocking out the OsGH3-2 gene, such as CRISPR-Gas9 technology, or methods to reduce the expression of OsGH3-2 gene, such as RNAi method, to prevent or reduce the expression of OsGH3-2 gene, can improve the storage tolerance of plant seeds, improve the germination rate of plant seeds after storage, and prolong the use of plant seeds. time and the purpose of improving seed quality. Therefore, those skilled in the art can understand that the above applications are all negative regulation applications of the OsGH3-2 gene.

基于此,本申请提供了OsGH3-2基因的表达抑制剂或抑制该基因表达的方法的以下任一应用:Based on this, the application provides an expression inhibitor of the OsGH3-2 gene or any of the following applications of the method for inhibiting the expression of the gene:

(1)提高植物种子耐贮藏性能中的应用;(1) application in improving the storage resistance of plant seeds;

(2)提高贮藏后植物种子发芽率中的应用;(2) application in improving the germination rate of plant seeds after storage;

(3)延长植物种子种用时间、提高种子质量中的应用。(3) The application of prolonging the planting time of plant seeds and improving the quality of seeds.

本发明提供了上述水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在植物育种、种质资源改良、或培育强种子耐贮藏性转基因植物中的应用。The present invention provides the application of the above-mentioned rice seed storability gene OsGH3-2, or its encoded protein, or a biological material containing the gene in plant breeding, germplasm resource improvement, or cultivation of transgenic plants with strong seed storability.

上述应用中,所述的植物为水稻、大豆、小麦、大麦、高粱、小米、芝麻、油菜、玉米、花生。优选地,所述植物为水稻。In the above application, the plants are rice, soybean, wheat, barley, sorghum, millet, sesame, rape, corn, peanut. Preferably, the plant is rice.

本发明还提供了水稻种子耐贮藏性基因OsGH3-2的分子标记,其为OsGH3-2启动子-446位碱基SNP变异,即位于SEQ ID No.3所示核苷酸序列的第155位,其多态性为A/G。The present invention also provides a molecular marker of the rice seed storage tolerance gene OsGH3-2, which is the OsGH3-2 promoter-446 base SNP variation, which is located at the 155th position of the nucleotide sequence shown in SEQ ID No.3 , and its polymorphism is A/G.

进一步地,本发明所述的分子标记,其可由以下引物组合扩增得到,所述引物组合含有3条引物,其核苷酸序列分别为:Further, the molecular marker described in the present invention can be amplified by the following primer combination, and the primer combination contains 3 primers whose nucleotide sequences are:

上游引物1:CTTATTAATTTCTCCATCAGATGAGAA(SEQ ID NO.4)Upstream primer 1: CTTATTAATTTCTCCATCAGATGAGAA (SEQ ID NO. 4)

上游引物2:CTTATTAATTTCTCCATCAGATGAGAG(SEQ ID NO.5)Upstream primer 2: CTTATTAATTTCTCCATCAGATGAGAG (SEQ ID NO. 5)

通用引物:CGTCTCCGGATTAATCAACGGC(SEQ ID NO.6)。Universal primer: CGTCTCCGGGATTAATCAACGGC (SEQ ID NO. 6).

本发明还提供了一组用于检测水稻种子耐贮藏能力的引物组合,含有3条引物,其核苷酸序列分别为:The present invention also provides a set of primer combinations for detecting the storability of rice seeds, comprising three primers whose nucleotide sequences are:

上游引物1:CTTATTAATTTCTCCATCAGATGAGAA(SEQ ID NO.4)Upstream primer 1: CTTATTAATTTCTCCATCAGATGAGAA (SEQ ID NO. 4)

上游引物2:CTTATTAATTTCTCCATCAGATGAGAG(SEQ ID NO.5)Upstream primer 2: CTTATTAATTTCTCCATCAGATGAGAG (SEQ ID NO. 5)

通用引物:CGTCTCCGGATTAATCAACGGC(SEQ ID NO.6)。Universal primer: CGTCTCCGGGATTAATCAACGGC (SEQ ID NO. 6).

本发明提供了上述分子标记或引物组合的以下任一应用:The present invention provides any of the following applications of the above-mentioned molecular marker or primer combination:

(1)筛选耐贮藏能力强的水稻种子;(1) Screening rice seeds with strong storability;

(2)淘汰耐贮藏能力弱的水稻种子;(2) Eliminate rice seeds with weak storability;

(3)检测水稻种子贮藏过程中,发芽率高的水稻种子或发芽率低的水稻种子;(3) Detecting rice seeds with high germination rate or rice seeds with low germination rate during the storage process of rice seeds;

(4)筛选种用时间长,质量高的水稻种子;(4) Screening of rice seeds with long seeding time and high quality;

(5)培育耐贮藏能力强的水稻品种。(5) Cultivate rice varieties with strong storage tolerance.

优选地,上述应用中,是采用SEQ ID NO.4-6所示的引物基于KASP反应体系平台检测PCR扩增产物,根据扩增产物的荧光信号,进行判断。Preferably, in the above application, the primers shown in SEQ ID NO. 4-6 are used to detect the PCR amplification product based on the KASP reaction system platform, and the judgment is made according to the fluorescence signal of the amplification product.

本发明提供了检测上述分子标记的方法,通过下述引物组合扩增待检水稻基因组DNA,基于KASP反应体系平台检测PCR扩增产物:The present invention provides a method for detecting the above-mentioned molecular markers. The following primer combinations are used to amplify the genomic DNA of the rice to be tested, and the PCR amplification products are detected based on the KASP reaction system platform:

所述引物组合的核苷酸序列为:The nucleotide sequence of the primer combination is:

上游引物1:CTTATTAATTTCTCCATCAGATGAGAA(SEQ ID NO.4)Upstream primer 1: CTTATTAATTTCTCCATCAGATGAGAA (SEQ ID NO. 4)

上游引物2:CTTATTAATTTCTCCATCAGATGAGAG(SEQ ID NO.5)Upstream primer 2: CTTATTAATTTCTCCATCAGATGAGAG (SEQ ID NO. 5)

通用引物:CGTCTCCGGATTAATCAACGGC(SEQ ID NO.6);Universal primer: CGTTCCGGGATTAATCAACGGC (SEQ ID NO. 6);

如果样品PCR产物只检测到上游引物1对应的荧光信号,则待检测SNP位点为碱基A,判定测试样品含有OsGH3-2单倍型4,含该等位基因材料种子耐贮藏性较差;若只检测到上游引物2对应的荧光信号,则待检测SNP位点为碱基G,即测试样品不含OsGH3-2单倍型4,含该等位基因材料种子耐贮藏性较强;若同时检测到两种荧光信号则检测位点为A:G,则含有杂合的OsGH3-2基因。If only the fluorescent signal corresponding to upstream primer 1 is detected in the sample PCR product, the SNP site to be detected is base A, and it is determined that the test sample contains OsGH3-2 haplotype 4, and the seeds containing this allele have poor storage resistance. ; If only the fluorescence signal corresponding to the upstream primer 2 is detected, the SNP site to be detected is the base G, that is, the test sample does not contain OsGH3-2 haplotype 4, and the seeds containing this allele have strong storage resistance; If two fluorescent signals are detected at the same time, the detection site is A:G, which contains the heterozygous OsGH3-2 gene.

本发明图位克隆了水稻种子耐贮藏基因OsGH3-2,并通过遗传转化验证了该基因的功能:利用RNAi技术诱导OsGH3-2基因功能丧失以及RNAi降低OsGH3-2基因表达量,证实了该基因可以显著地增强水稻种子的耐贮藏性。本发明还提供了与OsGH3-2基因紧密连锁的分子标记,利用该分子标记可以检测OsGH3-2等位基因与基因选择,实现其在培育强种子耐贮藏性的水稻品种中的应用。The present invention clones the rice seed storage tolerance gene OsGH3-2, and verifies the function of the gene through genetic transformation: using RNAi technology to induce the loss of OsGH3-2 gene function and RNAi to reduce the expression of the OsGH3-2 gene, confirming the gene It can significantly enhance the storability of rice seeds. The invention also provides a molecular marker closely linked with the OsGH3-2 gene, which can be used to detect the OsGH3-2 allele and gene selection, and realize its application in breeding rice varieties with strong seed storage tolerance.

附图说明Description of drawings

图1为qSS1近等基因系基因型与种子耐贮藏性表型示意图。Figure 1 is a schematic diagram of qSS1 near-isogenic line genotype and seed storage tolerance phenotype.

图2为qSS1精细定位与候选基因区域序列变异示意图。Figure 2 is a schematic diagram of qSS1 fine mapping and sequence variation in candidate gene regions.

图3为OsGH3-2超量表达与RNAi转基因材料种子耐贮藏性表型结果图。OX5,6,7分别表示OsGH3-2超量表达阳性家系;RNAi1,2,3分别表示OsGH3-2RNAi阳性家系。Figure 3 is a graph showing the results of OsGH3-2 overexpression and storability phenotype of RNAi transgenic seeds. OX5, 6, 7 respectively represent OsGH3-2 overexpression positive families; RNAi1, 2, 3 represent OsGH3-2 RNAi positive families, respectively.

具体实施方式Detailed ways

以下实施例用于说明本发明,但不用来限制本发明的范围。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention. Modifications or substitutions made to the methods, steps or conditions of the present invention without departing from the spirit and essence of the present invention all belong to the scope of the present invention.

若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段;若未特别指明,实施例中所用试剂均为市售。Unless otherwise specified, the technical means used in the examples are conventional means known to those skilled in the art; unless otherwise specified, the reagents used in the examples are all commercially available.

实施例1 水稻种子耐贮藏性基因OsGH3-2的获得与表型分析Example 1 Acquisition and phenotypic analysis of rice seed storage tolerance gene OsGH3-2

1.水稻种子耐贮藏性位点挖掘1. Excavation of storability loci in rice seeds

本发明利用NIP与9311构建的回交重组自交系群体种子寿命检测到4个耐贮藏性QTLs,其中qSS1遗传效应最大,候选基因区域位于第1染色体31,849,525-32,274,465。通过分子标记辅助选择,得到qSS1替换为NIP而基因组其他位置均为9311基因型的近等基因系NIL-qSS1NIP,其基因型如图1的A图。自然老化以及人工老化(通过高温、高湿诱导种子加速劣变实现,本实施例是将种子在43℃,湿度90%环境中加速种子老化)后,二者种子发芽率趋势一致,NIL-qSS1NIP种子发芽率均显著地低于9311(图1的B图),即qSS1的9311等位基因增强种子的耐贮藏性。The present invention uses the backcross recombinant inbred line population constructed by NIP and 9311 to detect four storability QTLs, among which qSS1 has the greatest genetic effect, and the candidate gene region is located on chromosome 1 31,849,525-32,274,465. Through molecular marker-assisted selection, a near-isogenic line NIL-qSS1 NIP with 9311 genotype replaced by qSS1 and 9311 genotype in the rest of the genome was obtained. After natural aging and artificial aging (achieved by the accelerated deterioration of seeds induced by high temperature and high humidity, this example is to accelerate the aging of seeds in an environment of 43 ° C and a humidity of 90%), the germination rates of the two seeds have the same trend, NIL-qSS1 The germination rates of NIP seeds were significantly lower than those of 9311 (B panel in Figure 1 ), that is, the 9311 allele of qSS1 enhanced the storability of seeds.

2.qSS1精细定位2.qSS1 fine positioning

利用侧翼标记RM11698和RM11716对NIL-qSS1NIP与9311回交构建的6048株分离群体进行基因型鉴定,共得到145个重组单株(图2的A图)。将重组单株种种植成家系,单株收种,通过人工老化鉴定种子耐贮藏性表型。结合重组家系基因型与种子耐贮藏性分析,最终将qSS1精细定位到RM11709与Indel2之间的4.4kb区域(图2的B图)。候选基因区域仅包含1个注释基因LOC_Os01g55940,其编码IAA酰胺合成酶,命名为OsGH3-2。通过序列比对,发现候选基因区域内NIP与9311在启动子区域仅含有4个SNP,而在基因编码区仅含有1个非同义突变(图2的C图)。利用Realtime-PCR对9311与NIL-qSS1NIP叶片OsGH3-2表达量进行检测,发现OsGH3-2在9311中表达量显著地低于NIL-qSS1NIP(图2的D图)。近等基因系显示:OsGH3-2等位基因表达量越高,其种子耐贮藏性越差,因此推测该基因是负向调控种子耐贮藏性。The flanking markers RM11698 and RM11716 were used to genotype 6048 isolates constructed by backcrossing NIL-qSS1 NIP with 9311, and a total of 145 recombinant individuals were obtained (Figure 2A). The recombinant single species was planted into a family, the single plant was harvested, and the storability phenotype of the seeds was identified by artificial aging. Combined with the genotype of the recombinant family and the analysis of seed storability, qSS1 was finally fine-mapped to the 4.4kb region between RM11709 and Indel2 (Figure 2, panel B). The candidate gene region contains only one annotated gene, LOC_Os01g55940, which encodes an IAA amide synthase, named OsGH3-2. Through sequence alignment, it was found that NIP and 9311 in the candidate gene region contained only 4 SNPs in the promoter region and only 1 non-synonymous mutation in the gene coding region (C panel in Figure 2). The expression levels of OsGH3-2 in leaves of 9311 and NIL-qSS1 NIP were detected by Realtime-PCR, and it was found that the expression level of OsGH3-2 in 9311 was significantly lower than that of NIL-qSS1 NIP (D panel in Figure 2). The near-isogenic lines showed that the higher the expression of OsGH3-2 allele, the worse the storability of seeds. Therefore, it is speculated that this gene negatively regulates the storability of seeds.

表1与qSS1紧密连锁的多态性分子标记Table 1 Polymorphic molecular markers closely linked to qSS1

Figure BDA0002106611910000061
Figure BDA0002106611910000061

Figure BDA0002106611910000071
Figure BDA0002106611910000071

Figure BDA0002106611910000081
Figure BDA0002106611910000081

3.OsGH3-2功能分析3. Functional analysis of OsGH3-2

为了验证OsGH3-2的基因功能,本发明从9311基因组克隆了OsGH3-2基因编码区3221bp,构建到pCambia1301载体,由35S启动子驱动的超量表达。将上述超量表达载体转化中花11,得到56株T0代阳性转基因植株,其生长发育正常未出现矮化丛生现象。选取3个表达量显著提高的阳性T0代单株种植并收获T1代家系种子(图3的A)。自然老化(室内常温一年)后,考察种子发芽率,发现3个独立的T1阳性家系种子发芽率均显著地降低(表2),即其种子耐贮藏性极显著地弱于野生型(图3的B)。In order to verify the gene function of OsGH3-2, the present invention cloned the OsGH3-2 gene coding region 3221bp from the 9311 genome, constructed it into the pCambia1301 vector, and overexpressed it driven by the 35S promoter. The above-mentioned overexpression vector was transformed into Zhonghua 11, and 56 positive transgenic plants of T0 generation were obtained. Select 3 positive T0 generation single plants with significantly increased expression levels to plant and harvest the T1 generation family seeds (Figure 3A). After natural aging (one year at room temperature), the seed germination rate was investigated, and it was found that the seed germination rate of the three independent T1-positive families was significantly reduced (Table 2), that is, the seed storage tolerance was significantly weaker than that of the wild type (Fig. 3B).

表2 OsGH3-2超量表达转基因材料人工老化后种子发芽率Table 2 Seed germination rate after artificial aging of OsGH3-2 overexpressed transgenic materials

Figure BDA0002106611910000082
Figure BDA0002106611910000082

另外,本发明选取OsGH3-2编码区3’513bp作为RNAi靶位点,构建RNA干涉遗传转化材料。选取3个OsGH3-2的表达量显著降低的T0代阳性家系,调查种子耐贮藏性表型(图3的C)。人工老化后,OsGH3-2RNAi阳性家系种子发芽率显著地高于野生型中花11,见表3,表明OsGH3-2负调控水稻种子耐贮藏性。育种家可以选择OsGH3-2非单倍型4的等位基因,以增强水稻种子耐贮藏性。In addition, the present invention selects the 3'513bp of the OsGH3-2 coding region as the RNAi target site to construct the RNA interference genetic transformation material. Three T0-generation positive families with significantly reduced OsGH3-2 expression were selected to investigate the seed storage tolerance phenotype (C in Figure 3). After artificial aging, the seed germination rate of OsGH3-2 RNAi-positive families was significantly higher than that of wild-type Zhonghua 11, as shown in Table 3, indicating that OsGH3-2 negatively regulates the storability of rice seeds. Breeders can select for OsGH3-2 non-haplotype 4 alleles to enhance the storability of rice seeds.

表3 OsGH3-2RNAi转基因材料人工老化后种子发芽率Table 3 Seed germination rate after artificial aging of OsGH3-2RNAi transgenic materials

Figure BDA0002106611910000083
Figure BDA0002106611910000083

实施例2 OsGH3-2分子标记的获得Example 2 Acquisition of OsGH3-2 molecular marker

利用qSS1精细定位区域内SNP对OsGH3-2进行单倍型分析,发现OsGH3-2在水稻核心种质中主要存在4种单倍型,单倍型4种子耐贮藏性极显著地低于其他3种单倍型(表2),由此判断SNP-446引起OsGH3-2等位基因功能变异,该变异发生在SEQ ID NO.3中第155位。Haplotype analysis of OsGH3-2 was carried out by using SNPs in the fine mapping region of qSS1, and it was found that OsGH3-2 mainly had 4 haplotypes in the rice core germplasm, and the storage tolerance of seeds of the 4 haplotypes was significantly lower than that of the other 3 haplotypes. haplotype (Table 2), thus it is judged that SNP-446 causes a functional variation of the OsGH3-2 allele, and the variation occurs at position 155 in SEQ ID NO.3.

表4 OsGH3-2单倍型分析结果Table 4 OsGH3-2 haplotype analysis results

Figure BDA0002106611910000091
Figure BDA0002106611910000091

附注:ab相同字母表示水稻种子寿命经过多重比较(LSD Duncan)不存在显著性差异。Note: The same letter as ab indicates that there is no significant difference in rice seed longevity after multiple comparisons (LSD Duncan).

本发明将SNP-446这个单碱基变异开发成KASP(Kompetitive Allele SpecificPCR)标记用于基因选择。所开发的标记K_OsGH3-2-446的序列如下:In the present invention, the single base variation of SNP-446 is developed into KASP (Kompetitive Allele Specific PCR) marker for gene selection. The sequence of the developed marker K_OsGH3-2-446 is as follows:

上游引物1:CTTATTAATTTCTCCATCAGATGAGAA(SEQ ID NO.4)Upstream primer 1: CTTATTAATTTCTCCATCAGATGAGAA (SEQ ID NO. 4)

上游引物2:CTTATTAATTTCTCCATCAGATGAGAG(SEQ ID NO.5)Upstream primer 2: CTTATTAATTTCTCCATCAGATGAGAG (SEQ ID NO. 5)

通用引物:CGTCTCCGGATTAATCAACGGC(SEQ ID NO.6)Universal primer: CGTCTCCGGGATTAATCAACGGC (SEQ ID NO. 6)

两条特异性引物5’分别连接LGC公司的FAM或HEX接头序列。KASP反应体系参照KASP Master Mix试剂说明书,结果检测利用其配套的LGC SNP line基因分型平台。The 5' of the two specific primers were respectively connected to the FAM or HEX linker sequences of LGC Company. The KASP reaction system refers to the instructions of the KASP Master Mix reagent, and the matching LGC SNP line genotyping platform is used for the result detection.

如果样品PCR产物只检测到上游引物1对应的荧光信号,则检测位点为碱基A,判定测试样品含有OsGH3-2单倍型4,即该等位基因种子耐贮藏性较差;若只检测到上游引物2对应的荧光信号,则检测位点为碱基G,即测试样品中OsGH3-2非单倍型4,即该等位基因种子耐贮藏性较强;若同时检测到两种荧光信号则检测位点为A:G,则含有杂合的OsGH3-2基因。If only the fluorescent signal corresponding to upstream primer 1 is detected in the sample PCR product, the detection site is base A, and it is determined that the test sample contains OsGH3-2 haplotype 4, that is, the allele seed has poor storage resistance; If the fluorescence signal corresponding to the upstream primer 2 is detected, the detection site is base G, that is, the OsGH3-2 in the test sample is not haplotype 4, that is, the allele seeds have strong storage resistance; If the fluorescent signal is detected, the site is A:G, and it contains the heterozygous OsGH3-2 gene.

利用标记K_OsGH3-2-446对23份水稻OsGH3-2基因启动子-446位核苷酸进行检测。标记K_OsGH3-2-446分析结果如表5,与该位点测序结果完全一致,说明该标记能够准确检测水稻材料中OsGH3-2单倍型。另外,K_OsGH3-2-446分析显示:该位点为G的水稻材料种子耐贮藏性普遍强于位点为A水稻材料,由此可以判断该标记不仅可以分析OsGH3-2等位基因基因型,也可以预测材料种子耐贮藏性。Twenty-three copies of rice OsGH3-2 gene promoter-446 nucleotide were detected by marker K_OsGH3-2-446. The analysis results of the marker K_OsGH3-2-446 are shown in Table 5, which are completely consistent with the sequencing results of this site, indicating that the marker can accurately detect the OsGH3-2 haplotype in rice materials. In addition, the analysis of K_OsGH3-2-446 showed that the storability of the rice material with the G locus was generally stronger than that of the rice material with the locus A, so it can be judged that this marker can not only analyze the OsGH3-2 allele genotype, but also The storability of material seeds can also be predicted.

表5 标记K_OsGH3-2-446测试基因分型数据Table 5 Test genotyping data for marker K_OsGH3-2-446

Figure BDA0002106611910000101
Figure BDA0002106611910000101

Figure BDA0002106611910000111
Figure BDA0002106611910000111

以种子寿命为指标,种子寿命越长,其耐贮藏性也越强。该标记不仅能够准确区分位点基因型,也能够较好地判断水稻材料种子耐贮藏性。Taking the seed life as an indicator, the longer the seed life, the stronger the storability. The marker can not only accurately distinguish locus genotypes, but also better judge the storability of rice seeds.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the technical principles of the present invention, several improvements and modifications can be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.

序列表sequence listing

<110> 华中农业大学<110> Huazhong Agricultural University

<120> 一种水稻种子耐贮藏性基因OsGH3-2及其分子标记的应用<120> A rice seed storage tolerance gene OsGH3-2 and its application of molecular markers

<130> KHP191113235.6<130> KHP191113235.6

<160> 38<160> 38

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1845<211> 1845

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

atggctccgg cggcggtggc tgcggcggag gcggggtcga aggcggcggc ggtggcgggg 60atggctccgg cggcggtggc tgcggcggag gcggggtcga aggcggcggc ggtggcgggg 60

aaggccgtgg cggcgtgcga gcgcgacgcg gagaagctgg agttcatcga ggagatgacg 120aaggccgtgg cggcgtgcga gcgcgacgcg gagaagctgg agttcatcga ggagatgacg 120

agggggttcg acgcggtgca ggagcgggtg ctggcggcga tcctggcgcg gaacaacggc 180agggggttcg acgcggtgca ggagcgggtg ctggcggcga tcctggcgcg gaacaacggc 180

gccgagtacc tccgccgcca cggcatggaa gggcgcaccg accgggaggc gttcaaggcg 240gccgagtacc tccgccgcca cggcatggaa gggcgcaccg accgggaggc gttcaaggcg 240

cgcgtccccg tcgtcaccta cgaggacctc cgcccggaga tcgagcgcat cgccaacggc 300cgcgtccccg tcgtcaccta cgaggacctc cgcccggaga tcgagcgcat cgccaacggc 300

gaccgctcca acatcatctc ctcccacccc atcaccgagt tcctcaccag ctcggggact 360gaccgctcca acatcatctc ctcccacccc atcaccgagt tcctcaccag ctcggggact 360

tcggcggggg agaggaagct aatgccgacg atagaagatg agctggacag gaggcagatg 420tcggcggggg agaggaagct aatgccgacg atagaagatg agctggacag gaggcagatg 420

ctctacagcc tcctcatgcc cgtcatgaac ttgtacgtgc cagggctgga caagggcaag 480ctctacagcc tcctcatgcc cgtcatgaac ttgtacgtgc cagggctgga caagggcaag 480

gggctctact tcctgttcat caagtcggag acgaagacgc ccggcgggct gccggcgagg 540gggctctact tcctgttcat caagtcggag acgaagacgc ccggcgggct gccggcgagg 540

ccggtgctga ccagctacta caagagcgat cacttcaagc accgcccctt cgacccctac 600ccggtgctga ccagctacta caagagcgat cacttcaagc accgcccctt cgacccctac 600

aacgtgtaca cgagcccgac ggcggccatc ctgtgcaccg acgcgttcca gtccatgtac 660aacgtgtaca cgagcccgac ggcggccatc ctgtgcaccg acgcgttcca gtccatgtac 660

gcgcagatgc tgtgcggcct cgtggcgcgc gccgaggtgc tccgcgtcgg cgccgtcttc 720gcgcagatgc tgtgcggcct cgtggcgcgc gccgaggtgc tccgcgtcgg cgccgtcttc 720

gcctcgggcc tcctccgcgc catccgcttc ctccagctcc actggaggga gctcgcccac 780gcctcgggcc tcctccgcgc catccgcttc ctccagctcc actggaggga gctcgcccac 780

gacatcagga ccgggacgct gagcgccaag gtgacggagc cgtccatccg cgacgccgtg 840gacatcagga ccgggacgct gagcgccaag gtgacggagc cgtccatccg cgacgccgtg 840

gcggaggtgc tcgcggcgcc cgacgccgag ctcgccgcgt tcgtggaggc cgagtgcggg 900gcggaggtgc tcgcggcgcc cgacgccgag ctcgccgcgt tcgtggaggc cgagtgcggg 900

aaggacaagt gggaggggat catcaccagg atgtggccca acaccaagta cctcgacgtg 960aaggacaagt gggaggggat catcaccagg atgtggccca acaccaagta cctcgacgtg 960

atcgtcacgg gcgccatggc gcagtacatc cccacgctca agttctacag cggtgggctc 1020atcgtcacgg gcgccatggc gcagtacatc cccacgctca agttctacag cggtgggctc 1020

cccatggcgt gcaccatgta cgcgtcgtcc gagtgctact tcggcctcaa cctgcgcccc 1080cccatggcgt gcaccatgta cgcgtcgtcc gagtgctact tcggcctcaa cctgcgcccc 1080

atgtgcgacc cgtcggaggt gtcgtacacc atcatgccca acatgggcta cttcgagctt 1140atgtgcgacc cgtcggaggt gtcgtacacc atcatgccca acatgggcta cttcgagctt 1140

atgccgcacg acccggacgc gccgccgctg ccccgcgacg cgccgccgcc gcggctcgtc 1200atgccgcacg acccggacgc gccgccgctg ccccgcgacg cgccgccgcc gcggctcgtc 1200

gacctggccg acgccgaggt cgggagggag tacgagctgg tgatcaccac ctacgcgggg 1260gacctggccg acgccgaggt cgggagggag tacgagctgg tgatcaccac ctacgcgggg 1260

ctctgccgct accgcgtggg cgacatcctg caggtgaccg ggttccacaa cgcggcgccg 1320ctctgccgct accgcgtggg cgacatcctg caggtgaccg ggttccacaa cgcggcgccg 1320

cagttccggt tcgtccgccg caagaacgtg ctcctcagca tcgactccga caagacggac 1380cagttccggt tcgtccgccg caagaacgtg ctcctcagca tcgactccga caagacggac 1380

gaggcggagc tgcaggccgc ggtggagcgc gcgtccgcgc tgctgtcccc ctacggcgcc 1440gaggcggagc tgcaggccgc ggtggagcgc gcgtccgcgc tgctgtcccc ctacggcgcc 1440

agcatcgtgg agtacacgag ccaggcggac gcgaccacca tcccggggca ctacgtggtg 1500agcatcgtgg agtacacgag ccaggcggac gcgaccacca tcccggggca ctacgtggtg 1500

tactgggagc tgatggtgcg ggagggcggc gcgtggccgc cgccggcgga ggaggagggc 1560tactgggagc tgatggtgcg ggagggcggc gcgtggccgc cgccggcgga ggaggagggc 1560

cgcggcgtgt tcgaacggtg ctgcctcgag atggaggagg cgctcaacgc cgtgtacagg 1620cgcggcgtgt tcgaacggtg ctgcctcgag atggaggagg cgctcaacgc cgtgtacagg 1620

cagggacgca acggcgaggc catcgggccg ctcgagatcc gggtggtgcg cgccggcacg 1680cagggacgca acggcgaggc catcgggccg ctcgagatcc gggtggtgcg cgccggcacg 1680

ttcgaggagg tgatggacta cgccatctcc cgcggcgcct ccatcaacca gtacaaggcg 1740ttcgaggagg tgatggacta cgccatctcc cgcggcgcct ccatcaacca gtacaaggcg 1740

ccgcgctgcg tctccttcgg ccccatcatc gagctgctca actcgcgcgt catctccaag 1800ccgcgctgcg tctccttcgg ccccatcatc gagctgctca actcgcgcgt catctccaag 1800

cacttcagcc cggcttgccc caaatacagc ccgcacaaga agtga 1845cacttcagcc cggcttgccc caaatacagc ccgcacaaga agtga 1845

<210> 2<210> 2

<211> 614<211> 614

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

Met Ala Pro Ala Ala Val Ala Ala Ala Glu Ala Gly Ser Lys Ala AlaMet Ala Pro Ala Ala Val Ala Ala Ala Glu Ala Gly Ser Lys Ala Ala

1 5 10 151 5 10 15

Ala Val Ala Gly Lys Ala Val Ala Ala Cys Glu Arg Asp Ala Glu LysAla Val Ala Gly Lys Ala Val Ala Ala Cys Glu Arg Asp Ala Glu Lys

20 25 30 20 25 30

Leu Glu Phe Ile Glu Glu Met Thr Arg Gly Phe Asp Ala Val Gln GluLeu Glu Phe Ile Glu Glu Met Thr Arg Gly Phe Asp Ala Val Gln Glu

35 40 45 35 40 45

Arg Val Leu Ala Ala Ile Leu Ala Arg Asn Asn Gly Ala Glu Tyr LeuArg Val Leu Ala Ala Ile Leu Ala Arg Asn Asn Gly Ala Glu Tyr Leu

50 55 60 50 55 60

Arg Arg His Gly Met Glu Gly Arg Thr Asp Arg Glu Ala Phe Lys AlaArg Arg His Gly Met Glu Gly Arg Thr Asp Arg Glu Ala Phe Lys Ala

65 70 75 8065 70 75 80

Arg Val Pro Val Val Thr Tyr Glu Asp Leu Arg Pro Glu Ile Glu ArgArg Val Pro Val Val Thr Tyr Glu Asp Leu Arg Pro Glu Ile Glu Arg

85 90 95 85 90 95

Ile Ala Asn Gly Asp Arg Ser Asn Ile Ile Ser Ser His Pro Ile ThrIle Ala Asn Gly Asp Arg Ser Asn Ile Ile Ser Ser His Pro Ile Thr

100 105 110 100 105 110

Glu Phe Leu Thr Ser Ser Gly Thr Ser Ala Gly Glu Arg Lys Leu MetGlu Phe Leu Thr Ser Ser Gly Thr Ser Ala Gly Glu Arg Lys Leu Met

115 120 125 115 120 125

Pro Thr Ile Glu Asp Glu Leu Asp Arg Arg Gln Met Leu Tyr Ser LeuPro Thr Ile Glu Asp Glu Leu Asp Arg Arg Gln Met Leu Tyr Ser Leu

130 135 140 130 135 140

Leu Met Pro Val Met Asn Leu Tyr Val Pro Gly Leu Asp Lys Gly LysLeu Met Pro Val Met Asn Leu Tyr Val Pro Gly Leu Asp Lys Gly Lys

145 150 155 160145 150 155 160

Gly Leu Tyr Phe Leu Phe Ile Lys Ser Glu Thr Lys Thr Pro Gly GlyGly Leu Tyr Phe Leu Phe Ile Lys Ser Glu Thr Lys Thr Pro Gly Gly

165 170 175 165 170 175

Leu Pro Ala Arg Pro Val Leu Thr Ser Tyr Tyr Lys Ser Asp His PheLeu Pro Ala Arg Pro Val Leu Thr Ser Tyr Tyr Lys Ser Asp His Phe

180 185 190 180 185 190

Lys His Arg Pro Phe Asp Pro Tyr Asn Val Tyr Thr Ser Pro Thr AlaLys His Arg Pro Phe Asp Pro Tyr Asn Val Tyr Thr Ser Pro Thr Ala

195 200 205 195 200 205

Ala Ile Leu Cys Thr Asp Ala Phe Gln Ser Met Tyr Ala Gln Met LeuAla Ile Leu Cys Thr Asp Ala Phe Gln Ser Met Tyr Ala Gln Met Leu

210 215 220 210 215 220

Cys Gly Leu Val Ala Arg Ala Glu Val Leu Arg Val Gly Ala Val PheCys Gly Leu Val Ala Arg Ala Glu Val Leu Arg Val Gly Ala Val Phe

225 230 235 240225 230 235 240

Ala Ser Gly Leu Leu Arg Ala Ile Arg Phe Leu Gln Leu His Trp ArgAla Ser Gly Leu Leu Arg Ala Ile Arg Phe Leu Gln Leu His Trp Arg

245 250 255 245 250 255

Glu Leu Ala His Asp Ile Arg Thr Gly Thr Leu Ser Ala Lys Val ThrGlu Leu Ala His Asp Ile Arg Thr Gly Thr Leu Ser Ala Lys Val Thr

260 265 270 260 265 270

Glu Pro Ser Ile Arg Asp Ala Val Ala Glu Val Leu Ala Ala Pro AspGlu Pro Ser Ile Arg Asp Ala Val Ala Glu Val Leu Ala Ala Pro Asp

275 280 285 275 280 285

Ala Glu Leu Ala Ala Phe Val Glu Ala Glu Cys Gly Lys Asp Lys TrpAla Glu Leu Ala Ala Phe Val Glu Ala Glu Cys Gly Lys Asp Lys Trp

290 295 300 290 295 300

Glu Gly Ile Ile Thr Arg Met Trp Pro Asn Thr Lys Tyr Leu Asp ValGlu Gly Ile Ile Thr Arg Met Trp Pro Asn Thr Lys Tyr Leu Asp Val

305 310 315 320305 310 315 320

Ile Val Thr Gly Ala Met Ala Gln Tyr Ile Pro Thr Leu Lys Phe TyrIle Val Thr Gly Ala Met Ala Gln Tyr Ile Pro Thr Leu Lys Phe Tyr

325 330 335 325 330 335

Ser Gly Gly Leu Pro Met Ala Cys Thr Met Tyr Ala Ser Ser Glu CysSer Gly Gly Leu Pro Met Ala Cys Thr Met Tyr Ala Ser Ser Glu Cys

340 345 350 340 345 350

Tyr Phe Gly Leu Asn Leu Arg Pro Met Cys Asp Pro Ser Glu Val SerTyr Phe Gly Leu Asn Leu Arg Pro Met Cys Asp Pro Ser Glu Val Ser

355 360 365 355 360 365

Tyr Thr Ile Met Pro Asn Met Gly Tyr Phe Glu Leu Met Pro His AspTyr Thr Ile Met Pro Asn Met Gly Tyr Phe Glu Leu Met Pro His Asp

370 375 380 370 375 380

Pro Asp Ala Pro Pro Leu Pro Arg Asp Ala Pro Pro Pro Arg Leu ValPro Asp Ala Pro Pro Leu Pro Arg Asp Ala Pro Pro Pro Arg Leu Val

385 390 395 400385 390 395 400

Asp Leu Ala Asp Ala Glu Val Gly Arg Glu Tyr Glu Leu Val Ile ThrAsp Leu Ala Asp Ala Glu Val Gly Arg Glu Tyr Glu Leu Val Ile Thr

405 410 415 405 410 415

Thr Tyr Ala Gly Leu Cys Arg Tyr Arg Val Gly Asp Ile Leu Gln ValThr Tyr Ala Gly Leu Cys Arg Tyr Arg Val Gly Asp Ile Leu Gln Val

420 425 430 420 425 430

Thr Gly Phe His Asn Ala Ala Pro Gln Phe Arg Phe Val Arg Arg LysThr Gly Phe His Asn Ala Ala Pro Gln Phe Arg Phe Val Arg Arg Lys

435 440 445 435 440 445

Asn Val Leu Leu Ser Ile Asp Ser Asp Lys Thr Asp Glu Ala Glu LeuAsn Val Leu Leu Ser Ile Asp Ser Asp Lys Thr Asp Glu Ala Glu Leu

450 455 460 450 455 460

Gln Ala Ala Val Glu Arg Ala Ser Ala Leu Leu Ser Pro Tyr Gly AlaGln Ala Ala Val Glu Arg Ala Ser Ala Leu Leu Ser Pro Tyr Gly Ala

465 470 475 480465 470 475 480

Ser Ile Val Glu Tyr Thr Ser Gln Ala Asp Ala Thr Thr Ile Pro GlySer Ile Val Glu Tyr Thr Ser Gln Ala Asp Ala Thr Thr Ile Pro Gly

485 490 495 485 490 495

His Tyr Val Val Tyr Trp Glu Leu Met Val Arg Glu Gly Gly Ala TrpHis Tyr Val Val Tyr Trp Glu Leu Met Val Arg Glu Gly Gly Ala Trp

500 505 510 500 505 510

Pro Pro Pro Ala Glu Glu Glu Gly Arg Gly Val Phe Glu Arg Cys CysPro Pro Pro Ala Glu Glu Glu Gly Arg Gly Val Phe Glu Arg Cys Cys

515 520 525 515 520 525

Leu Glu Met Glu Glu Ala Leu Asn Ala Val Tyr Arg Gln Gly Arg AsnLeu Glu Met Glu Glu Ala Leu Asn Ala Val Tyr Arg Gln Gly Arg Asn

530 535 540 530 535 540

Gly Glu Ala Ile Gly Pro Leu Glu Ile Arg Val Val Arg Ala Gly ThrGly Glu Ala Ile Gly Pro Leu Glu Ile Arg Val Val Arg Ala Gly Thr

545 550 555 560545 550 555 560

Phe Glu Glu Val Met Asp Tyr Ala Ile Ser Arg Gly Ala Ser Ile AsnPhe Glu Glu Val Met Asp Tyr Ala Ile Ser Arg Gly Ala Ser Ile Asn

565 570 575 565 570 575

Gln Tyr Lys Ala Pro Arg Cys Val Ser Phe Gly Pro Ile Ile Glu LeuGln Tyr Lys Ala Pro Arg Cys Val Ser Phe Gly Pro Ile Ile Glu Leu

580 585 590 580 585 590

Leu Asn Ser Arg Val Ile Ser Lys His Phe Ser Pro Ala Cys Pro LysLeu Asn Ser Arg Val Ile Ser Lys His Phe Ser Pro Ala Cys Pro Lys

595 600 605 595 600 605

Tyr Ser Pro His Lys LysTyr Ser Pro His Lys Lys

610 610

<210> 3<210> 3

<211> 600<211> 600

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

tggcgctgca cactactgtg tcgacacata cccaagcagc aacaaaacac cccctctcct 60tggcgctgca cactactgtg tcgacacata cccaagcagc aacaaaacac cccctctcct 60

ggatttccat tttcttttcg tccaaccttg ataatacatt tttataaacc tattcatgtc 120ggatttccat tttcttttcg tccaaccttg ataatacatt tttataaacc tattcatgtc 120

gtatattact tattaatttc tccatcagat gagagattgc cgttgattaa tccggagatg 180gtatattact tattaatttc tccatcagat gagagattgc cgttgattaa tccggagatg 180

aacaactaca caacccgacc ggtcgggtaa ttaaaaccaa tttagctctc gttcgtcagc 240aacaactaca caacccgacc ggtcgggtaa ttaaaaccaa tttagctctc gttcgtcagc 240

gccgatggct aagctcgctg ccggggcgcg ccggccgcgc gtcccgtcgc ggggcccggg 300gccgatggct aagctcgctg ccggggcgcg ccggccgcgc gtcccgtcgc ggggcccggg 300

cgtccgacgt ggccgaccag gcgggcccac gtgccccctc ctcgctcggg cagtgacgcc 360cgtccgacgt ggccgaccag gcgggcccac gtgccccctc ctcgctcggg cagtgacgcc 360

cgcgtgggcc acgccctgcc tccccagtcc ccaccctcac cggcccgcct cgctcgcccg 420cgcgtgggcc acgccctgcc tccccagtcc ccaccctcac cggcccgcct cgctcgcccg 420

cgcgcgcgcg cgcgacgtgc atggcgcgcg gcctcctccc cccctcccgc cgctatatat 480cgcgcgcgcg cgcgacgtgc atggcgcgcg gcctcctccc cccctcccgc cgctatatat 480

acccctccct tgcaaccgcc tcctctcatc gcacactcca agctaagcct aagcgagcga 540acccctccct tgcaaccgcc tcctctcatc gcacactcca agctaagcct aagcgagcga 540

gaaaaaatag caaaagctag ccggcaagca acgccaacta attaggggag agagatattc 600gaaaaaatag caaaagctag ccggcaagca acgccaacta attaggggag agagatattc 600

<210> 4<210> 4

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

cttattaatt tctccatcag atgagaa 27cttattaatt tctccatcag atgagaa 27

<210> 5<210> 5

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

cttattaatt tctccatcag atgagag 27cttattaatt tctccatcag atgagag 27

<210> 6<210> 6

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

cgtctccgga ttaatcaacg gc 22cgtctccgga ttaatcaacg gc 22

<210> 7<210> 7

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

atcagcatcc caaagctaga acc 23atcagcatcc caaagctaga acc 23

<210> 8<210> 8

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

aaccgtatat tgagggagca agc 23aaccgtatat tgagggagca agc 23

<210> 9<210> 9

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

ctggtggagt tgcagtgcct ctagc 25ctggtggagt tgcagtgcct ctagc 25

<210> 10<210> 10

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

ccttgctgct ttctcattga aactgg 26ccttgctgct ttctcattga aactgg 26

<210> 11<210> 11

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

cagcccggca gtctatattt cg 22cagcccggca gtctatattt cg 22

<210> 12<210> 12

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

actgacgacg ggctagtgtt cc 22actgacgacg ggctagtgtt cc 22

<210> 13<210> 13

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

cctctacctc gcccaacagc 20cctctacctc gcccaacagc 20

<210> 14<210> 14

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

gaggaccgac tccctgatcg 20gaggaccgac tccctgatcg 20

<210> 15<210> 15

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 15<400> 15

atggctccgg cggcggtggc tgcgg 25atggctccgg cggcggtggc tgcgg 25

<210> 16<210> 16

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 16<400> 16

ggccttaaac taatgcatcg atc 23ggccttaaac taatgcatcg atc 23

<210> 17<210> 17

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 17<400> 17

gagctagacg acacaacgat atatag 26gagctagacg acacaacgat atatag 26

<210> 18<210> 18

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 18<400> 18

cacgagaaat tacacacgca c 21cacgagaaat tacacacgca c 21

<210> 19<210> 19

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 19<400> 19

ctcagaagtt gccagggaac 20ctcagaagtt gccaggggaac 20

<210> 20<210> 20

<211> 18<211> 18

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 20<400> 20

ctgatgcgtg acacagcc 18ctgatgcgtg acacagcc 18

<210> 21<210> 21

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 21<400> 21

tgatagcagt ttctggtcct g 21tgatagcagt ttctggtcct g 21

<210> 22<210> 22

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 22<400> 22

gaaatgaact ttatgtttgg atagatg 27gaaatgaact ttatgtttgg atagatg 27

<210> 23<210> 23

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 23<400> 23

ttcgatgggt tgatgtggta 20ttcgatgggt tgatgtggta 20

<210> 24<210> 24

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 24<400> 24

agaagggctg aatctctcca 20agaagggctg aatctctcca 20

<210> 25<210> 25

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 25<400> 25

gtctgagaaa cgtggttcca c 21gtctgagaaa cgtggttcca c 21

<210> 26<210> 26

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 26<400> 26

cacttgactg tgcaagagat g 21cacttgactg tgcaagagat g 21

<210> 27<210> 27

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 27<400> 27

gtccatcacg acgaaccaac 20gtccatcacg acgaaccaac 20

<210> 28<210> 28

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 28<400> 28

aacccctgtc aaaaccatcc 20aacccctgtc aaaaccatcc 20

<210> 29<210> 29

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 29<400> 29

actggagaag aaaggccgaa 20actggagaag aaaggccgaa 20

<210> 30<210> 30

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 30<400> 30

gtcttgcatg cttgtggagt 20gtcttgcatg cttgtggagt 20

<210> 31<210> 31

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 31<400> 31

atgaattgtg tcgtcggcag 20atgaattgtg tcgtcggcag 20

<210> 32<210> 32

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 32<400> 32

acatcgctga gttttgaggc 20acatcgctga gttttgaggc 20

<210> 33<210> 33

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 33<400> 33

gtgattgcga agtcatgcgt 20gtgattgcga agtcatgcgt 20

<210> 34<210> 34

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 34<400> 34

ccgccactac acaaacacat 20ccgccactac acaaacacat 20

<210> 35<210> 35

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 35<400> 35

gaactaatca agcatgcacg ag 22gaactaatca agcatgcacg ag 22

<210> 36<210> 36

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 36<400> 36

tttcatctca agtttgttca cgt 23tttcatctca agtttgttca cgt 23

<210> 37<210> 37

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 37<400> 37

gctatttccc attccaggcc 20gctatttccc attccaggcc 20

<210> 38<210> 38

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 38<400> 38

ctgggtttga ggttgtgtcg 20ctgggtttga ggttgtgtcg 20

Claims (8)

1.水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在提高水稻种子耐贮藏性能中的应用,1. The application of rice seed storability gene OsGH3-2, or the protein encoded by it, or a biological material containing the gene in improving the storability of rice seeds, 所述水稻种子耐贮藏性基因OsGH3-2的核苷酸序列如SEQ ID No.1所示;The nucleotide sequence of the rice seed storage tolerance gene OsGH3-2 is shown in SEQ ID No.1; 所述编码的蛋白的氨基酸序列如SEQ ID No.2所示;The amino acid sequence of the encoded protein is shown in SEQ ID No.2; 所述生物材料为载体、宿主细胞或表达盒。The biological material is a vector, host cell or expression cassette. 2.水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在提高贮藏后水稻种子发芽率中的应用,所述水稻种子耐贮藏性基因OsGH3-2的核苷酸序列如SEQID No.1所示;2. Application of the rice seed storability gene OsGH3-2, or the protein encoded by it, or the biological material containing the gene in improving the germination rate of rice seeds after storage, the core of the rice seed storability gene OsGH3-2 The nucleotide sequence is shown in SEQID No.1; 所述编码的蛋白的氨基酸序列如SEQ ID No.2所示;The amino acid sequence of the encoded protein is shown in SEQ ID No.2; 所述生物材料为载体、宿主细胞或表达盒。The biological material is a vector, host cell or expression cassette. 3.水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在延长水稻种子种用时间中的应用,所述水稻种子耐贮藏性基因OsGH3-2的核苷酸序列如SEQ IDNo.1所示;3. The application of rice seed storability gene OsGH3-2, or the protein encoded by it, or the biological material containing the gene, in prolonging the planting time of rice seeds, the nucleoside of the rice seed storability gene OsGH3-2 The acid sequence is shown in SEQ IDNo.1; 所述编码的蛋白的氨基酸序列如SEQ ID No.2所示;The amino acid sequence of the encoded protein is shown in SEQ ID No.2; 所述生物材料为载体、宿主细胞或表达盒。The biological material is a vector, host cell or expression cassette. 4.水稻种子耐贮藏性基因OsGH3-2、或其编码的蛋白、或含有该基因的生物材料在培育种子耐贮藏性强的转基因水稻中的应用,所述水稻种子耐贮藏性基因OsGH3-2的核苷酸序列如SEQ ID No.1所示;4. Application of the rice seed storability gene OsGH3-2, or the protein encoded by it, or the biological material containing the gene in cultivating transgenic rice with strong seed storability, the rice seed storability gene OsGH3-2 The nucleotide sequence is shown in SEQ ID No.1; 所述编码的蛋白的氨基酸序列如SEQ ID No.2所示;The amino acid sequence of the encoded protein is shown in SEQ ID No.2; 所述生物材料为载体、宿主细胞或表达盒。The biological material is a vector, host cell or expression cassette. 5.水稻种子耐贮藏性基因OsGH3-2的分子标记,其特征在于,所述分子标记如SEQ IDNo.3所示,在该序列的第155位发生A/G突变,导致水稻种子耐贮藏多态性。5. The molecular marker of rice seed storability gene OsGH3-2, characterized in that, the molecular marker is as shown in SEQ ID No. 3, and A/G mutation occurs at position 155 of the sequence, resulting in more storability of rice seeds. attitude. 6.一组用于检测水稻种子耐贮藏能力的引物组合,其特征在于,含有3条引物,其核苷酸序列分别为:6. A set of primer combinations for detecting the storability of rice seeds, characterized in that it contains 3 primers, the nucleotide sequences of which are respectively: 上游引物1:CTTATTAATTTCTCCATCAGATGAGAA(SEQ ID NO.4)Upstream primer 1: CTTATTAATTTCTCCATCAGATGAGAA (SEQ ID NO. 4) 上游引物2:CTTATTAATTTCTCCATCAGATGAGAG(SEQ ID NO.5)Upstream primer 2: CTTATTAATTTCTCCATCAGATGAGAG (SEQ ID NO. 5) 通用引物:CGTCTCCGGATTAATCAACGGC(SEQ ID NO.6)。Universal primer: CGTCTCCGGGATTAATCAACGGC (SEQ ID NO. 6). 7.权利要求5所述的分子标记或权利要求6所述的引物组合的以下任一应用:7. the following any application of the molecular marker described in claim 5 or the primer combination described in claim 6: (1)筛选耐贮藏能力强的水稻种子;(1) Screening rice seeds with strong storability; (2)淘汰耐贮藏能力弱的水稻种子;(2) Eliminate rice seeds with weak storability; (3)检测水稻种子贮藏过程中,发芽率高的水稻种子或发芽率低的水稻种子;(3) Detecting rice seeds with high germination rate or rice seeds with low germination rate during the storage process of rice seeds; (4)筛选种用时间长的水稻种子;(4) Screening rice seeds with long seeding time; (5)培育耐贮藏能力强的水稻品种。(5) Cultivate rice varieties with strong storage tolerance. 8.检测水稻种子耐贮藏性强弱的方法,其特征在于,通过下述引物组合扩增待检水稻基因组DNA,基于KASP反应体系平台检测PCR扩增产物:8. The method for detecting the storability of rice seeds, characterized in that the following primer combinations are used to amplify the genomic DNA of the rice to be tested, and the PCR amplification product is detected based on the KASP reaction system platform: 所述引物组合的核苷酸序列为:The nucleotide sequence of the primer combination is: 上游引物1:CTTATTAATTTCTCCATCAGATGAGAA(SEQ ID NO.4)Upstream primer 1: CTTATTAATTTCTCCATCAGATGAGAA (SEQ ID NO. 4) 上游引物2:CTTATTAATTTCTCCATCAGATGAGAG(SEQ ID NO.5)Upstream primer 2: CTTATTAATTTCTCCATCAGATGAGAG (SEQ ID NO. 5) 通用引物:CGTCTCCGGATTAATCAACGGC(SEQ ID NO.6);Universal primer: CGTCTCCGGGATTAATCAACGGC (SEQ ID NO. 6); 如果样品PCR产物只检测到上游引物1对应的荧光信号,则待检测SNP位点为碱基A,含该等位基因材料种子耐贮藏性较差;若只检测到上游引物2对应的荧光信号,则待检测SNP位点为碱基G,含该等位基因材料种子耐贮藏性较强;若同时检测到两种荧光信号则检测位点为A:G,则含有杂合的OsGH3-2基因。If only the fluorescent signal corresponding to upstream primer 1 is detected in the sample PCR product, the SNP site to be detected is base A, and the seeds containing this allele have poor storage resistance; if only the fluorescent signal corresponding to upstream primer 2 is detected , the SNP site to be detected is the base G, and the seeds containing this allele have strong storage resistance; if two kinds of fluorescent signals are detected at the same time, the detection site is A:G, which contains the heterozygous OsGH3-2 Gene.
CN201910554967.7A 2019-06-25 2019-06-25 Rice seed storability gene OsGH3-2 and application of molecular marker thereof Active CN110184281B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910554967.7A CN110184281B (en) 2019-06-25 2019-06-25 Rice seed storability gene OsGH3-2 and application of molecular marker thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910554967.7A CN110184281B (en) 2019-06-25 2019-06-25 Rice seed storability gene OsGH3-2 and application of molecular marker thereof

Publications (2)

Publication Number Publication Date
CN110184281A CN110184281A (en) 2019-08-30
CN110184281B true CN110184281B (en) 2020-10-02

Family

ID=67723256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910554967.7A Active CN110184281B (en) 2019-06-25 2019-06-25 Rice seed storability gene OsGH3-2 and application of molecular marker thereof

Country Status (1)

Country Link
CN (1) CN110184281B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120272642A (en) * 2025-06-10 2025-07-08 中国农业科学院作物科学研究所 Rice seed storage-resistant site qST9, molecular marker and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100525A3 (en) * 2012-12-21 2014-09-04 Pioneer Hi-Bred International, Inc. Compositions and methods for auxin-analog conjugation
CN104087605A (en) * 2014-07-11 2014-10-08 中国农业大学 Method for cultivating transgenic gramineous plant with increased tiller number and biological material related with method
CN107460204A (en) * 2016-06-03 2017-12-12 中国科学院上海生命科学研究院 The upstream and downstream action pathway of OsSPL7 controlling plant type of rice and its application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009724A1 (en) * 1998-08-10 2000-02-24 The General Hospital Corporation Transgenic plants expressing a mapkkk protein kinase domain
CN101993880B (en) * 2009-08-24 2012-07-04 华中农业大学 Rice disease resistance related gene GH3-2 and application thereof in breeding of broad spectrum disease-resistant rice
CN107881179A (en) * 2017-11-18 2018-04-06 复旦大学 Rice heteroauxin amination synthase gene OsGH3.6 coded sequence and its application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100525A3 (en) * 2012-12-21 2014-09-04 Pioneer Hi-Bred International, Inc. Compositions and methods for auxin-analog conjugation
CN104087605A (en) * 2014-07-11 2014-10-08 中国农业大学 Method for cultivating transgenic gramineous plant with increased tiller number and biological material related with method
CN107460204A (en) * 2016-06-03 2017-12-12 中国科学院上海生命科学研究院 The upstream and downstream action pathway of OsSPL7 controlling plant type of rice and its application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Genetic Dissection of Seed Storability and Validation of Candidate Gene Associated with Antioxidant Capability in Rice (Oryza sativa L.).;Yuan, Zhiyang等;《International Journal of Molecular Sciences》;20190909;第20卷(第18期);4442 *
Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.);LINFANG LI等;《Plant Breeding》;20120912;第131卷(第6期);739-743 *
水稻种子耐贮性主效QTL qSS-5~(N22)的挖掘和qSS-9~(Kasalath)的精细定位;林秋云;《中国博士学位论文全文数据库(电子期刊)农业科技辑》;20180516(第06期);D047-4 *
通过分子标记辅助选择将耐储藏主效QTL qSS-9Kas转入宁粳4号提高其种子贮藏能力;张平等;《作物学报》;20190103;第45卷(第3期);335-343 *

Also Published As

Publication number Publication date
CN110184281A (en) 2019-08-30

Similar Documents

Publication Publication Date Title
US10356992B2 (en) Maize plants with improved disease resistance
RU2352638C2 (en) Plant transformants of pv-zmir13 (mon863) maize and compositions and methods of identifying them
CN1950509B (en) High lysine corn composition and detection method thereof
US11032986B2 (en) Methods of creating drought tolerant corn plants using markers linked to cold shock domain-containing proteins and compositions thereof
Liu et al. Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population
CN101978065A (en) Corn plant event mon87460 and compositions and methods for detection thereof
Cheng et al. New semi‐dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3‐oxidase 1 using CRISPR‐Cas9 in barley (Hordeum vulgare L.)
CN117812999A (en) Methods for identifying, selecting and producing anthracnose-stem rot resistant crops
US20120317676A1 (en) Method of producing plants having enhanced transpiration efficiency and plants produced therefrom
Li et al. Fine mapping of the grain chalkiness quantitative trait locus qCGP6 reveals the involvement of Wx in grain chalkiness formation
CN109111511B (en) Cultivation method of super long grain rice
CN104736721A (en) Molecular markers of low palmitic acid content in sunflower (Helianthus annuus) and methods of use thereof
CN110184281B (en) Rice seed storability gene OsGH3-2 and application of molecular marker thereof
CN114015701A (en) A molecular marker for detecting barley grain shrinkage and its application
US20160135415A1 (en) Sorghum hybrids with delayed flowering times
CN111363751A (en) Clone and application of rice grain width and grain weight gene GW5.1
CN110819638B (en) Rice FL1 Gene and Its Molecular Markers and Applications
CN110358773B (en) A rice seed storability gene sd1 and its molecular markers and applications
US10858664B2 (en) Modifying flowering time in maize
Xu et al. Genome-wide association analysis reveals novel candidate loci and a gene regulating tiller number in orchardgrass
US11647709B1 (en) Maize plants with improved disease resistance
JP7672701B2 (en) How to create lodging-resistant plants
CN108660242A (en) The specific primer group of augmentation detection corn dek10 gene molecular labelings and its application
US12305180B2 (en) Wheat transgenic event IND-øø412-7
Cheng et al. Multiple areas investigation reveals the genes related to vascular bundles in rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载