+

CN110147106A - Intelligent mobile service robot with laser and visual fusion obstacle avoidance system - Google Patents

Intelligent mobile service robot with laser and visual fusion obstacle avoidance system Download PDF

Info

Publication number
CN110147106A
CN110147106A CN201910454798.XA CN201910454798A CN110147106A CN 110147106 A CN110147106 A CN 110147106A CN 201910454798 A CN201910454798 A CN 201910454798A CN 110147106 A CN110147106 A CN 110147106A
Authority
CN
China
Prior art keywords
data
obstacle
laser
module
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910454798.XA
Other languages
Chinese (zh)
Inventor
张国伟
李瑞峰
李振宏
傅根土
江尚良
吴洪
周嚞
陈文桂
黄鸿辉
梁培栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Quanzhou HIT Research Institute of Engineering and Technology
Original Assignee
Fujian Quanzhou HIT Research Institute of Engineering and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Quanzhou HIT Research Institute of Engineering and Technology filed Critical Fujian Quanzhou HIT Research Institute of Engineering and Technology
Priority to CN201910454798.XA priority Critical patent/CN110147106A/en
Publication of CN110147106A publication Critical patent/CN110147106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • G05D1/622Obstacle avoidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/242Means based on the reflection of waves generated by the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/243Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
    • G05D1/2435Extracting 3D information
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/30Specific applications of the controlled vehicles for social or care-giving applications
    • G05D2105/31Specific applications of the controlled vehicles for social or care-giving applications for attending to humans or animals, e.g. in health care environments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals
    • G05D2111/17Coherent light, e.g. laser signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/60Combination of two or more signals
    • G05D2111/67Sensor fusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及智能移动服务机器人领域,具激光和视觉融合避障系统的智能移动服务机器人,激光和视觉融合避障系统包括硬件系统以及导航避障系统,硬件系统包括深度相机、激光雷达、机载PC、运动控制板和电机驱动器,导航避障系统包括障碍物定位及数据转换模块、障碍物分类识别模块、数据融合模块、激光导航框架、底盘驱动模块和底盘运动控制模块;导航避障系统除了底盘运动控制模块运行在运动控制板上,其余运行在机载PC上;激光雷达、深度相机和运动控制板连接机载PC,电机驱动器连接运动控制板,该系统在二维激光避障中融合视觉传感器,在壁障中考虑障碍物的类型和障碍物的三维信息,提高智能移动服务机器人避障的精确性、鲁棒性和环境适应能力。

The invention relates to the field of intelligent mobile service robots, an intelligent mobile service robot with a laser and vision fusion obstacle avoidance system, the laser and vision fusion obstacle avoidance system includes a hardware system and a navigation obstacle avoidance system, the hardware system includes a depth camera, a laser radar, an airborne PC, motion control board and motor driver, navigation obstacle avoidance system includes obstacle positioning and data conversion module, obstacle classification recognition module, data fusion module, laser navigation framework, chassis drive module and chassis motion control module; navigation obstacle avoidance system includes The chassis motion control module runs on the motion control board, and the rest run on the airborne PC; the laser radar, depth camera and motion control board are connected to the airborne PC, and the motor driver is connected to the motion control board. The system is integrated in the two-dimensional laser obstacle avoidance The visual sensor considers the type of obstacle and the three-dimensional information of the obstacle in the obstacle, and improves the accuracy, robustness and environmental adaptability of the intelligent mobile service robot for obstacle avoidance.

Description

具激光和视觉融合避障系统的智能移动服务机器人Intelligent mobile service robot with laser and visual fusion obstacle avoidance system

技术领域technical field

本发明涉及智能移动服务机器人领域,特别是涉及智能移动服务机器人的避障系统领域。The invention relates to the field of intelligent mobile service robots, in particular to the field of obstacle avoidance systems for intelligent mobile service robots.

背景技术Background technique

智能移动服务机器人能够在多个场景连续实时自主移动,通过语音、视觉、触觉等多种传感器与环境和人员进行交互并提供相应的服务,以替代大堂经理、服务员的角色,可应用于家庭、酒店、银行、机场等场景。为了保证安全,服务机器人在自主移动过程中,需要及时避开场景中的桌椅、动物、人等障碍物。智能移动服务机器人的避障的方式一般通过传感器获得外部障碍物的位置信息,在代价地图上规划出一条局部路径,通过运动控制系统沿着规划的路径进行运动,从而可以避开障碍物。The intelligent mobile service robot can continuously move autonomously in multiple scenes in real time, interact with the environment and personnel through various sensors such as voice, vision, and touch, and provide corresponding services to replace the roles of lobby managers and waiters. It can be applied to homes, Hotel, bank, airport and other scenes. In order to ensure safety, the service robot needs to avoid obstacles such as tables, chairs, animals, and people in the scene in time during its autonomous movement. The obstacle avoidance method of intelligent mobile service robots generally obtains the position information of external obstacles through sensors, plans a local path on the cost map, and moves along the planned path through the motion control system, so as to avoid obstacles.

目前服务机器人的避障方式主要包括超声波避障和TOF避障;超声波避障通过在机器人上接入超声波模块,定向发射和接收超声波,根据检测到的距离信息实现避障功能;TOF避障通过红外线或者激光发射特定的波长的光束,记录反射时间差,计算出附近障碍物的距离分布等情况;现有的避障方式采用超声、二维激光等单一传感器,由于单一传感器具有局限性,仅依靠一种传感器无法获得完善的障碍物信息;超声波避障对反射面的光整程度要求较高,在面对没有反射能力或弱反射能力的障碍物时,安全问题不能得到保障;二维激光避障无法实现环境中障碍物的分类识别,从而针对不同的类别采取不同的避障策略,且由于二维激光仅能捕捉到与激光传感器安放位置为同一高度平面的周围环境信息,因此对于异形障碍物,如中空的桌子、下部中空的门等,无法判断其具体的位置。At present, the obstacle avoidance methods of service robots mainly include ultrasonic obstacle avoidance and TOF obstacle avoidance. Infrared rays or lasers emit beams of specific wavelengths, record the reflection time difference, and calculate the distance distribution of nearby obstacles; the existing obstacle avoidance methods use single sensors such as ultrasound and two-dimensional lasers. Due to the limitations of a single sensor, only rely on One type of sensor cannot obtain perfect obstacle information; ultrasonic obstacle avoidance has high requirements on the smoothness of the reflective surface, and safety issues cannot be guaranteed when facing obstacles with no reflective ability or weak reflective ability; two-dimensional laser avoidance The classification and recognition of obstacles in the environment cannot be realized, so different obstacle avoidance strategies are adopted for different categories, and because the two-dimensional laser can only capture the surrounding environment information on the same height plane as the laser sensor, so for special-shaped obstacles objects, such as a hollow table, a hollow door at the bottom, etc., its specific location cannot be judged.

发明内容Contents of the invention

本发明的目的在于提供一种在二维激光避障中融合视觉传感器,在壁障中考虑障碍物的类型和障碍物的三维信息,提高智能移动服务机器人避障的精确性、鲁棒性和环境适应能力的一种智能移动服务机器人的激光视觉融合避障系统。The purpose of the present invention is to provide a fusion of visual sensors in two-dimensional laser obstacle avoidance, consider the type of obstacle and the three-dimensional information of the obstacle in the barrier, and improve the accuracy, robustness and reliability of the intelligent mobile service robot for obstacle avoidance. A laser vision fusion obstacle avoidance system for an intelligent mobile service robot with environmental adaptability.

为实现上述目的,本发明的技术方案是:具激光和视觉融合避障系统的智能移动服务机器人,所述激光和视觉融合避障系统包括布设在移动服务机器人机身主体上的硬件系统以及导航避障系统,所述硬件系统包括深度相机、激光雷达、机载PC、运动控制板和电机驱动器,所述导航避障系统包括障碍物定位及数据转换模块、障碍物分类识别模块、数据融合模块、激光导航框架和底盘运动控制模块;所述底盘运动控制模块运行在运动控制板上,所述障碍物定位及数据转换模块、障碍物分类识别模块、数据融合模块和激光导航框架运行在机载PC上;所述激光雷达、深度相机和运动控制板连接机载PC,所述电机驱动器连接运动控制板。In order to achieve the above object, the technical solution of the present invention is: an intelligent mobile service robot with a laser and vision fusion obstacle avoidance system, the laser and vision fusion obstacle avoidance system includes a hardware system and a navigation system arranged on the main body of the mobile service robot. Obstacle avoidance system, the hardware system includes depth camera, laser radar, airborne PC, motion control board and motor driver, and the navigation obstacle avoidance system includes obstacle positioning and data conversion module, obstacle classification and identification module, data fusion module , a laser navigation frame and a chassis motion control module; the chassis motion control module runs on a motion control board, and the obstacle positioning and data conversion module, obstacle classification and identification module, data fusion module and laser navigation frame run on an airborne On the PC; the lidar, depth camera and motion control board are connected to the onboard PC, and the motor driver is connected to the motion control board.

所述激光和视觉融合避障系统的导航及避障方法是通过深度相机获得的视觉数据分别发送给障碍物定位及数据转换模块和障碍物分类识别模块,通过激光雷达获得的激光数据发送给数据融合模块,所述障碍物定位及数据转换模块将视觉数据进行处理得出障碍物的定位信息数据发送给数据融合模块,所述障碍物分类识别模块将视觉数据进行处理得出障碍物的类型信息数据发送给数据融合模块,所述数据融合模块将激光数据及障碍物的定位信息数据和障碍物的类型信息数据进行处理得出融合后的障碍物的位置信息数据发送给激光导航框架,所述激光导航框架将障碍物的位置信息数据进行处理得出新的局部代价地图,所述激光导航框架进行局部路径规划得出局部路径规划数据发送给底盘驱动模块,所述底盘驱动模块将局部路径规划数据进行处理得出底盘运动控制数据发送给底盘运动控制模块,所述底盘运动控制模块向电机驱动器发送运动控制命令。The navigation and obstacle avoidance method of the laser and visual fusion obstacle avoidance system is to send the visual data obtained by the depth camera to the obstacle positioning and data conversion module and the obstacle classification recognition module respectively, and send the laser data obtained by the laser radar to the data center. The fusion module, the obstacle positioning and data conversion module processes the visual data to obtain the positioning information data of the obstacle and sends it to the data fusion module, and the obstacle classification and identification module processes the visual data to obtain the type information of the obstacle The data is sent to the data fusion module, and the data fusion module processes the laser data and the location information data of the obstacle and the type information data of the obstacle to obtain the position information data of the fused obstacle and send it to the laser navigation framework, the said The laser navigation framework processes the position information data of obstacles to obtain a new local cost map, and the laser navigation framework performs local path planning to obtain the local path planning data and sends it to the chassis driving module, and the chassis driving module plans the local path planning After the data is processed, the chassis motion control data is sent to the chassis motion control module, and the chassis motion control module sends a motion control command to the motor driver.

所述障碍物分类识别模块通过卷积神经网络的深度学习算法利用yolo V3 预训练模型对特定场景的障碍物进行训练得到训练好的神经网络模型,所述训练好的神经网络模型可根据通过深度相机获得的视觉数据中捕捉的彩色图像信息数据进行处理判断得出所述障碍物的类型信息数据。The obstacle classification recognition module utilizes the deep learning algorithm of the convolutional neural network to use the yolo V3 pre-training model to train the obstacles in the specific scene to obtain the trained neural network model, and the trained neural network model can be passed through according to the depth. The color image information data captured in the visual data obtained by the camera is processed and judged to obtain the type information data of the obstacle.

所述障碍物定位及数据转换模块包括障碍物的三维信息检测和虚拟二维激光信息转换,三维信息检测通过图像采集卡将深度相机采集的深度图像转化为机载PC能识别的数字图像并进行图像预处理得出三维图像的深度信息,虚拟二维激光信息转换通过depthimage_to_laserscan算法将三维图像的深度信息转换为虚拟二维激光信息数据,所述虚拟二维激光信息数据即为所述障碍物的定位信息数据。The obstacle positioning and data conversion module includes three-dimensional information detection of obstacles and virtual two-dimensional laser information conversion. The three-dimensional information detection converts the depth image collected by the depth camera into a digital image that can be recognized by the airborne PC through the image acquisition card and performs The image preprocessing obtains the depth information of the three-dimensional image, and the virtual two-dimensional laser information conversion converts the depth information of the three-dimensional image into virtual two-dimensional laser information data through the depthimage_to_laserscan algorithm, and the virtual two-dimensional laser information data is the obstacle Location information data.

所述数据融合模块通过卡尔曼滤波算法融合虚拟二维激光信息数据、障碍物的类型信息数据和激光数据中的点云信息数据得到所述障碍物的位置信息数据。The data fusion module fuses the virtual two-dimensional laser information data, the obstacle type information data and the point cloud information data in the laser data through the Kalman filter algorithm to obtain the position information data of the obstacle.

所述硬件系统还包括超声波传感器和机械防撞传感器,所述超声波传感器和机械防撞传感器连接运动控制板上的底盘运动控制模块,所述超声波传感器和机械防撞传感器传感获得的数据发送给底盘运动控制模块,所述底盘运动控制模块接收到超声波传感器和机械防撞传感器传感获得的数据为障碍物传感数据时向电机驱动器发送控制命令为停止。The hardware system also includes an ultrasonic sensor and a mechanical anti-collision sensor, the ultrasonic sensor and the mechanical anti-collision sensor are connected to the chassis motion control module on the motion control board, and the data obtained by the ultrasonic sensor and the mechanical anti-collision sensor are sent to The chassis motion control module, when the chassis motion control module receives the data sensed by the ultrasonic sensor and the mechanical anti-collision sensor as obstacle sensing data, it sends a control command to the motor driver to stop.

所述超声波传感器的传感距离为10-50厘米时发送障碍物传感数据;所述机械防撞传感器发生碰撞时发送障碍物传感数据。The ultrasonic sensor sends obstacle sensing data when the sensing distance is 10-50 cm; the mechanical anti-collision sensor sends obstacle sensing data when a collision occurs.

通过采用上述技术方案,本发明的有益效果是:本发明具激光和视觉融合避障系统的智能移动服务机器人通过上述的系统结构,采用激光雷达和深度相机结合通过上述的本发明涉及的系统的导航及避障方法实现了一种激光与视觉的融合从而进行激光导航框架的局部路径规划的导航及避障方法,从而实现本发明提高智能移动服务机器人避障的精确性、鲁棒性和环境适应能力的目的。By adopting the above-mentioned technical scheme, the beneficial effect of the present invention is: the intelligent mobile service robot with the laser and visual fusion obstacle avoidance system of the present invention adopts the above-mentioned system structure, adopts the combination of laser radar and depth camera through the above-mentioned system involved in the present invention The navigation and obstacle avoidance method realizes a kind of laser and vision fusion so as to carry out the navigation and obstacle avoidance method of the local path planning of the laser navigation frame, thereby realizing the accuracy, robustness and environmental protection of the intelligent mobile service robot to improve the obstacle avoidance of the present invention Purpose of Adaptability.

通过激光雷达的应用获得的激光数据即获取了精确的环境方位、距离信息,建立精确的环境地图,通过深度相机的应用获得的数据通过障碍物定位及数据转换模块和障碍物分类识别模块的处理即对周围环境进行深度感知,将深度学习算法集成于智能移动服务机器人平台上,从而得出障碍物的定位信息数据即获取周围障碍物的目标类型和三维位置信息,即视觉的三维信息,通过将通过将视觉的三维位置信息转换得到障碍物的定位信息数据即激光的二维平面地图,并结合障碍物的类型信息,发送给激光导航框架进行处理得出新的局部代价地图,再进行局部路径规划从而达到激光与视觉融合的避障导航,实现本发明在二维激光避障中融合视觉传感器,在壁障中考虑障碍物的类型和障碍物的三维信息,提高智能移动服务机器人避障的精确性、鲁棒性和环境适应能力的目的。The laser data obtained through the application of the laser radar can obtain accurate environmental orientation and distance information, and establish an accurate environmental map. The data obtained through the application of the depth camera is processed by the obstacle positioning and data conversion module and the obstacle classification and identification module. That is, the deep perception of the surrounding environment is carried out, and the deep learning algorithm is integrated on the intelligent mobile service robot platform, so as to obtain the positioning information data of obstacles, that is, to obtain the target type and three-dimensional position information of surrounding obstacles, that is, the visual three-dimensional information, through By converting the visual three-dimensional position information, the obstacle positioning information data, that is, the laser two-dimensional plane map, is combined with the obstacle type information, and sent to the laser navigation framework for processing to obtain a new local cost map, and then perform local Path planning thus achieves obstacle avoidance navigation of laser and visual fusion, realizes the fusion of visual sensors in two-dimensional laser obstacle avoidance in the present invention, considers the type of obstacle and the three-dimensional information of obstacles in barriers, and improves the obstacle avoidance of intelligent mobile service robots. The purpose of accuracy, robustness and environmental adaptability.

附图说明Description of drawings

图1和图2是本发明涉及的智能移动服务机器人的结构示意图;Fig. 1 and Fig. 2 are the structural representations of the intelligent mobile service robot involved in the present invention;

图3是本发明涉及的硬件系统的结构框图;Fig. 3 is the structural block diagram of the hardware system involved in the present invention;

图4是本发明涉及的激光和视觉融合避障系统的结构框图。Fig. 4 is a structural block diagram of the laser and vision fusion obstacle avoidance system involved in the present invention.

图中:In the picture:

机身主体1;行走机构2;深度相机31;激光雷达32;Fuselage main body 1; traveling mechanism 2; depth camera 31; laser radar 32;

机载PC33;运动控制板34;电机驱动器35;Airborne PC33; motion control board 34; motor driver 35;

障碍物定位及数据转换模块41;障碍物分类识别模块42;Obstacle location and data conversion module 41; Obstacle classification and recognition module 42;

数据融合模块43;激光导航框架44;Data fusion module 43; Laser navigation framework 44;

底盘运动控制模块45;超声波传感器36;机械防撞传感器37。Chassis motion control module 45; ultrasonic sensor 36; mechanical anti-collision sensor 37.

具体实施方式Detailed ways

为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。In order to further explain the technical solution of the present invention, the present invention will be described in detail below through specific examples.

本发明公开的具激光和视觉融合避障系统的智能移动服务机器人,如图1、图2、图3和图4所示,图中的智能移动服务机器人为类似人类体型的外形结构的机身主体1,机身主体1的底部为行走机构2,本发明的智能移动服务机器人与现有的智能移动服务机器人的不同之处在于发明的智能移动服务机器人包括有激光和视觉融合避障系统,该系统包括布设在机身主体上的硬件系统及导航避障系统,具体的所述硬件系统包括深度相机31、激光雷达32、机载PC33、运动控制板34和电机驱动器35,所述导航避障系统包括障碍物定位及数据转换模块41、障碍物分类识别模块42、数据融合模块43、激光导航框架44和底盘运动控制模块45,所述底盘运动控制模块45运行在运动控制板34上,所述障碍物定位及数据转换模块41、障碍物分类识别模块42、数据融合模块43和激光导航框架44运行在机载PC33上;所述激光雷达32、深度相机31和运动控制板 34连接机载PC33,这里的连接可采用网口通信、USB通信、串口通信、信号线等方式连接,所述电机驱动器35连接运动控制板34用于驱动行走机构2,机载 PC33、运动控制板34和电机驱动器35通常设置在机身主体1内部,深度相机 31和激光雷达32则设置在机身主体1的壳体上,其工作端朝外,如图中所示的,深度相机31和激光雷达32设置在智能移动服务机器人类似人类体型的外形结构的前侧面,智能移动服务机器人的机身主体1的壳体上还可设置与机载PC连接的显示屏等设备,通常智能移动服务机器人还可包括有扬声器、声音接收器等,由于这些不是本发明的主要改进之处,本具体实施方式中就不再对其他部件设备进行说明描述。The intelligent mobile service robot with laser and visual fusion obstacle avoidance system disclosed by the present invention is shown in Figure 1, Figure 2, Figure 3 and Figure 4, and the intelligent mobile service robot in the figure is a fuselage with a shape structure similar to that of a human body Main body 1, the bottom of the fuselage main body 1 is the walking mechanism 2, the difference between the intelligent mobile service robot of the present invention and the existing intelligent mobile service robot is that the intelligent mobile service robot of the invention includes a laser and visual fusion obstacle avoidance system, The system includes a hardware system and a navigation obstacle avoidance system arranged on the main body of the fuselage. Specifically, the hardware system includes a depth camera 31, a laser radar 32, an airborne PC 33, a motion control board 34, and a motor driver 35. The obstacle system includes an obstacle positioning and data conversion module 41, an obstacle classification and recognition module 42, a data fusion module 43, a laser navigation framework 44 and a chassis motion control module 45, and the chassis motion control module 45 runs on the motion control board 34, The obstacle location and data conversion module 41, the obstacle classification recognition module 42, the data fusion module 43 and the laser navigation framework 44 run on the airborne PC33; the laser radar 32, the depth camera 31 and the motion control board 34 are connected to the machine Carry PC33, the connection here can adopt modes such as network port communication, USB communication, serial port communication, signal line to connect, described motor driver 35 connects motion control board 34 to be used for driving traveling mechanism 2, airborne PC33, motion control board 34 and The motor driver 35 is usually arranged inside the fuselage body 1, and the depth camera 31 and the laser radar 32 are arranged on the shell of the fuselage body 1, with the working end facing outward. As shown in the figure, the depth camera 31 and the laser radar 32 32 is arranged on the front side of the human body shape structure of the intelligent mobile service robot. The shell of the main body 1 of the intelligent mobile service robot can also be equipped with display screens and other equipment connected to the on-board PC. Usually the intelligent mobile service robot also has It may include a loudspeaker, a sound receiver, etc. Since these are not the main improvements of the present invention, other component devices will not be described in this specific embodiment.

本发明的激光和视觉融合避障系统的导航及避障方法是这样的:The navigation and obstacle avoidance method of the laser and visual fusion obstacle avoidance system of the present invention are as follows:

通过深度相机31获得的视觉数据分别发送给障碍物定位及数据转换模块41 和障碍物分类识别模块42;所述障碍物分类识别模块42通过卷积神经网络的深度学习算法(已知的神经网络深度学习算法,在网络上可到相关信息,这里就不再详细描述)利用yolo V3(yolo是一种已知计算方法,其全称是You Only Look Once,yolo V3即为yolo系列之yoloV3,是该系列的最新算法,也是已知算法,在网络上可到相关信息,这里就不再详细描述,,另外,这里说明一下能够实现与yolo V3算法相似或相同算法效果的计算方法也可应用,本实施例中仅公开了一种可实现的适于智能移动服务机器人的yolo V3算法,任何算法的采用均落在本发明的保护范围之内)预训练模型对特定场景的障碍物进行训练得到训练好的神经网络模型,所述训练好的神经网络模型可根据通过深度相机获得的视觉数据中捕捉的彩色图像信息数据进行处理判断得出所述障碍物的类型信息数据;所述障碍物定位及数据转换模块41包括障碍物的三维信息检测和虚拟二维激光信息转换,三维信息检测通过图像采集卡(现有产品)将深度相机 31采集的深度图像转化为机载PC33能识别的数字图像并进行图像预处理得出三维图像的深度信息,虚拟二维激光信息转换通过depthimage_to_laserscan算法(一种已知计算方法,在网络上可到相关信息,这里就不再详细描述,另外,这里说明一下能够实现与depthimage_to_laserscan算法相似或相同算法效果的计算方法也可应用,本实施例中仅公开了一种可实现的适于智能移动服务机器人的depthimage_to_laserscan算法,任何算法的采用均落在本发明的保护范围之内)将三维图像的深度信息转换为虚拟二维激光信息数据,所述虚拟二维激光信息数据即为所述障碍物的定位信息数据。The visual data obtained by depth camera 31 are sent to obstacle location and data conversion module 41 and obstacle classification recognition module 42 respectively; In-depth learning algorithm, relevant information can be found on the Internet, and will not be described in detail here) using yolo V3 (yolo is a known calculation method, its full name is You Only Look Once, yolo V3 is yoloV3 of the yolo series, is The latest algorithm of this series is also a known algorithm. Relevant information can be found on the Internet, so I will not describe it in detail here. In addition, here is a description of the calculation method that can achieve similar or identical algorithm effects to the yolo V3 algorithm. This embodiment only discloses a realizable yolo V3 algorithm suitable for intelligent mobile service robots, and the adoption of any algorithm falls within the scope of protection of the present invention) The pre-training model is trained on obstacles in specific scenarios to obtain A trained neural network model, the trained neural network model can be processed and judged to obtain the type information data of the obstacle according to the color image information data captured in the visual data obtained by the depth camera; the obstacle location And the data conversion module 41 includes the three-dimensional information detection of obstacles and the virtual two-dimensional laser information conversion, and the three-dimensional information detection converts the depth image collected by the depth camera 31 into a digital image that can be recognized by the airborne PC33 through the image acquisition card (existing product) And carry out image preprocessing to obtain the depth information of the three-dimensional image, and convert the virtual two-dimensional laser information through the depthimage_to_laserscan algorithm (a known calculation method, relevant information can be found on the Internet, and will not be described in detail here. In addition, here is an explanation Computing methods that can achieve a similar or identical algorithm effect to the depthimage_to_laserscan algorithm can also be applied. In this embodiment, only one realizable depthimage_to_laserscan algorithm suitable for intelligent mobile service robots is disclosed. The adoption of any algorithm falls under the protection of the present invention. within the range) to convert the depth information of the three-dimensional image into virtual two-dimensional laser information data, and the virtual two-dimensional laser information data is the positioning information data of the obstacle.

通过激光雷达32获得的激光数据发送给数据融合模块43,所述障碍物定位及数据转换模块41将视觉数据进行处理得出障碍物的定位信息数据发送给数据融合模块43,所述障碍物分类识别模块42将视觉数据进行处理得出障碍物的类型信息数据发送给数据融合模块43,所述数据融合模块43将激光数据及障碍物的定位信息数据和障碍物的类型信息数据进行处理得出融合后的障碍物的位置信息数据发送给激光导航框架44,这里我们先解释一下激光导航框架44。The laser data obtained by the laser radar 32 is sent to the data fusion module 43, and the obstacle location and data conversion module 41 processes the visual data to obtain the location information data of the obstacle and sends it to the data fusion module 43, and the obstacle classification The recognition module 42 processes the visual data to obtain the type information data of the obstacle and sends it to the data fusion module 43, and the data fusion module 43 processes the laser data and the location information data of the obstacle and the type information data of the obstacle to obtain The fused position information data of the obstacle is sent to the laser navigation framework 44, here we first explain the laser navigation framework 44.

激光导航框架44是一种已知的激光导航技术,该框架通常包括有地图服务模块、move_base模块、底盘驱动模块、tf变化模块、amcl定位模块、里程计模块等,所述move_base模块通常包括全局代价地图、全局路径规划、局部代价地图、局部路径规划等,其导航的一种方法这里简单说明一下将栅格地图导入地图服务模块进行处理得出的地图数据传输给全局代价地图,导航目标位置确定通过全局路径获取全局代价地图进行全局路径规划以及tf变化模块、amcl 定位模块、里程计模块处理计算得出全局路径规划数据经局部路径规划发送给底盘驱动模块,在出现局部改变地图的情况时,得出局部代价地图替换进全局代价地图的对应局部并通过局部路径规划出局部路径替换进全局路径规划,再经过其他模块的处理得出路径规划数据发送给底盘驱动模块,从而达到导航作用,现有的一些导航技术中也应用到了激光雷达,但是现有技术的应用是用于前期建立地图的使用,而本发明的则不同,本发明是将激光雷达与深度相机结合应用,下面继续描述本发明的实施方式。The laser navigation framework 44 is a known laser navigation technology. This framework usually includes a map service module, a move_base module, a chassis driver module, a tf change module, an amcl positioning module, an odometer module, etc., and the move_base module usually includes a global Cost map, global path planning, local cost map, local path planning, etc., a method of navigation Here is a brief explanation of importing the grid map into the map service module for processing and transferring the map data to the global cost map to navigate the target position It is determined to obtain the global cost map through the global path for global path planning, and the tf change module, amcl positioning module, and odometer module process and calculate the global path planning data to be sent to the chassis driver module through local path planning. When there is a local change in the map , get the local cost map and replace it into the corresponding part of the global cost map, and replace the local path into the global path planning through the local path planning, and then get the path planning data after processing by other modules and send it to the chassis driver module, so as to achieve the navigation function. Lidar is also applied to some existing navigation technologies, but the application of the prior art is for the use of establishing maps in the early stage, but the present invention is different. The present invention combines the application of Lidar and depth camera, which will be described below Embodiments of the present invention.

所述数据融合模块43通过卡尔曼滤波算法融合激光数据中的点云信息数据、虚拟二维激光信息数据和障碍物的类型信息数据得到所述障碍物的位置信息数据,这里说明一下能够实现该数据融合的计算方法还有其他算法,也可应用于本发明,本实施例中仅公开了一种可实现的适于智能移动服务机器人的卡尔曼滤波算法,实际可根据现场使用环境所要达到的算法效果来决定所采用的算法,任何算法的采用均落在本发明的保护范围之内。The data fusion module 43 fuses the point cloud information data in the laser data, the virtual two-dimensional laser information data and the type information data of the obstacle through the Kalman filter algorithm to obtain the position information data of the obstacle. There are other algorithms for the calculation method of data fusion, which can also be applied to the present invention. In this embodiment, only a realizable Kalman filter algorithm suitable for intelligent mobile service robots is disclosed, which can actually be achieved according to the on-site use environment. The adopted algorithm is determined based on the effect of the algorithm, and the adoption of any algorithm falls within the protection scope of the present invention.

所述激光导航框架44可同上公开方法将障碍物的位置信息数据进行处理得出新的局部代价地图替换进全局代价地图的对应局部,进行局部路径路径规划等的计算,得出局部路径规划数据,或替换进全局路径规划,所述激光导航框架44进行局部路径规划得出局部路径规划数据(即为达到导航避障效果的数据) 发送给底盘驱动模块,所述底盘驱动模块将局部路径规划数据进行处理得出底盘运动控制数据发送给底盘运动控制模块45,所述底盘运动控制模块45向电机驱动器35发送运动控制命令,从而达到控制智能移动服务机器人的导航避障,且是在在二维激光避障中融合视觉传感器,在壁障中考虑障碍物的类型和障碍物的三维信息,提高智能移动服务机器人避障的精确性、鲁棒性和环境适应能力。The laser navigation framework 44 can process the position information data of obstacles in the same way as disclosed above to obtain a new local cost map and replace it into the corresponding part of the global cost map, and perform calculations such as local path planning to obtain local path planning data. , or replace into the global path planning, the laser navigation framework 44 performs local path planning to obtain the local path planning data (that is, the data to achieve the effect of navigation and obstacle avoidance) and send it to the chassis drive module, and the chassis drive module will plan the local path The data is processed and the chassis motion control data is sent to the chassis motion control module 45, and the chassis motion control module 45 sends a motion control command to the motor driver 35, so as to control the navigation and obstacle avoidance of the intelligent mobile service robot. The visual sensor is integrated in the 3D laser obstacle avoidance, and the type of obstacle and the three-dimensional information of the obstacle are considered in the obstacle, so as to improve the accuracy, robustness and environmental adaptability of the intelligent mobile service robot for obstacle avoidance.

本发明中,所述硬件系统还可包括超声波传感器36和机械防撞传感器37,所述超声波传感器36和机械防撞传感器37连接运动控制板34上的底盘运动控制模块,所述超声波传感器36和机械防撞传感器37传感获得的数据可直接发送给底盘运动控制模块,在底盘运动控制模块接收到超声波传感器36和机械防撞传感器37传感获得的数据为障碍物传感数据时向电机驱动器35发送控制命令为停止,如将所述超声波传感器36的传感距离设定为10-50厘米(优选的可为20厘米或者根据实际情况设定)时发送障碍物传感数据,使智能移动服务机器人停止运动,所述机械防撞传感器37则在发生碰触或碰撞时发送障碍物传感数据,使智能移动服务机器人停止运动,。In the present invention, the hardware system can also include an ultrasonic sensor 36 and a mechanical anti-collision sensor 37, the ultrasonic sensor 36 and the mechanical anti-collision sensor 37 are connected to the chassis motion control module on the motion control board 34, the ultrasonic sensor 36 and the mechanical anti-collision sensor 37 The data sensed by the mechanical anti-collision sensor 37 can be directly sent to the chassis motion control module. 35 send control commands to stop, as the sensing distance of the ultrasonic sensor 36 is set to 10-50 centimeters (preferred can be 20 centimeters or set according to actual conditions) when sending obstacle sensing data, so that intelligent movement The service robot stops moving, and the mechanical anti-collision sensor 37 sends obstacle sensing data when a touch or collision occurs, so that the intelligent mobile service robot stops moving.

如图中所示,所述超声波传感器36和机械防撞传感器37与深度相机31和激光雷达32相同设置在智能移动服务机器人类似人类体型的外形结构的前侧面,图中所示的,所述超声波传感器36和机械防撞传感器37与深度相机31和激光雷达32在智能移动服务机器人类似人类体型的外形结构的前侧面是自上往下间隔布设的,深度相机31在最上方,机械防撞传感器37在最下方,激光雷达32和超声波传感器36在深度相机31与机械防撞传感器37之间,其布设原则以有利于扩大视觉范围、扩大激光扫描范围、扩大传感范围为宜,所述超声波传感器36和机械防撞传感器37的设置能够进一步提高智能移动服务机器人避障的精确性、鲁棒性和环境适应能力。As shown in the figure, the ultrasonic sensor 36 and the mechanical anti-collision sensor 37 are arranged on the front side of the shape structure of the intelligent mobile service robot similar to the human body shape, as the depth camera 31 and the laser radar 32. As shown in the figure, the Ultrasonic sensor 36, mechanical anti-collision sensor 37, depth camera 31 and laser radar 32 are arranged at intervals from top to bottom on the front side of the human-shaped shape structure of the intelligent mobile service robot. The depth camera 31 is at the top, and the mechanical anti-collision The sensor 37 is at the bottom, and the laser radar 32 and the ultrasonic sensor 36 are between the depth camera 31 and the mechanical anti-collision sensor 37. The arrangement of the ultrasonic sensor 36 and the mechanical anti-collision sensor 37 can further improve the accuracy, robustness and environmental adaptability of the intelligent mobile service robot for obstacle avoidance.

上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。The above-mentioned embodiments and drawings do not limit the form and style of the product of the present invention, and any appropriate changes or modifications made by those skilled in the art should be considered as not departing from the patent scope of the present invention.

Claims (10)

1.具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述激光和视觉融合避障系统包括布设在移动服务机器人机身主体上的硬件系统以及导航避障系统,所述硬件系统包括深度相机、激光雷达、机载PC、运动控制板和电机驱动器,所述导航避障系统包括障碍物定位及数据转换模块、障碍物分类识别模块、数据融合模块、激光导航框架和底盘运动控制模块;所述底盘运动控制模块运行在运动控制板上,所述障碍物定位及数据转换模块、障碍物分类识别模块、数据融合模块和激光导航框架运行在机载PC上;所述激光雷达、深度相机和运动控制板连接机载PC,所述电机驱动器连接运动控制板。1. An intelligent mobile service robot with a laser and vision fusion obstacle avoidance system, characterized in that: the laser and vision fusion obstacle avoidance system includes a hardware system and a navigation obstacle avoidance system arranged on the main body of the mobile service robot, the The hardware system includes depth camera, laser radar, airborne PC, motion control board and motor driver. The navigation and obstacle avoidance system includes obstacle positioning and data conversion module, obstacle classification and recognition module, data fusion module, laser navigation framework and chassis Motion control module; the chassis motion control module runs on the motion control board, and the obstacle positioning and data conversion module, obstacle classification recognition module, data fusion module and laser navigation framework run on the airborne PC; the laser The radar, the depth camera and the motion control board are connected to the airborne PC, and the motor driver is connected to the motion control board. 2.如权利要求1所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述激光和视觉融合避障系统的导航及避障方法是通过深度相机获得的视觉数据分别发送给障碍物定位及数据转换模块和障碍物分类识别模块,通过激光雷达获得的激光数据发送给数据融合模块,所述障碍物定位及数据转换模块将视觉数据进行处理得出障碍物的定位信息数据发送给数据融合模块,所述障碍物分类识别模块将视觉数据进行处理得出障碍物的类型信息数据发送给数据融合模块,所述数据融合模块将激光数据及障碍物的定位信息数据和障碍物的类型信息数据进行处理得出融合后的障碍物的位置信息数据发送给激光导航框架,所述激光导航框架将障碍物的位置信息数据进行处理得出新的局部代价地图,所述激光导航框架进行局部路径规划得出局部路径规划数据发送给底盘驱动模块,所述底盘驱动模块将局部路径规划数据进行处理得出底盘运动控制数据发送给底盘运动控制模块,所述底盘运动控制模块向电机驱动器发送运动控制命令。2. The intelligent mobile service robot with laser and vision fusion obstacle avoidance system as claimed in claim 1, characterized in that: the navigation and obstacle avoidance method of the laser and vision fusion obstacle avoidance system is the visual data obtained by the depth camera Send them to the obstacle positioning and data conversion module and the obstacle classification and recognition module respectively, and send the laser data obtained by the laser radar to the data fusion module, and the obstacle positioning and data conversion module processes the visual data to obtain the location of the obstacle The information data is sent to the data fusion module, and the obstacle classification and identification module processes the visual data to obtain the type information data of the obstacle and sends it to the data fusion module, and the data fusion module combines the laser data and the positioning information data of the obstacle with The type information data of the obstacle is processed to obtain the fused position information data of the obstacle and sent to the laser navigation framework, and the laser navigation framework processes the position information data of the obstacle to obtain a new local cost map. The navigation frame performs local path planning to obtain the local path planning data and send it to the chassis driving module. The chassis driving module processes the local path planning data to obtain chassis motion control data and sends it to the chassis motion control module. The chassis motion control module sends The motor driver sends motion control commands. 3.如权利要求2所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述障碍物分类识别模块通过卷积神经网络的深度学习算法利用预训练模型计算方法对特定场景的障碍物进行训练得到训练好的神经网络模型,所述训练好的神经网络模型可根据通过深度相机获得的视觉数据中捕捉的彩色图像信息数据进行处理判断得出所述障碍物的类型信息数据。3. The intelligent mobile service robot with laser and vision fusion obstacle avoidance system as claimed in claim 2, characterized in that: said obstacle classification and identification module utilizes the pre-training model calculation method through the deep learning algorithm of convolutional neural network to Obstacles in a specific scene are trained to obtain a trained neural network model, and the trained neural network model can be processed and judged according to the color image information data captured in the visual data obtained through the depth camera to obtain the type of the obstacle information data. 4.如权利要求3所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述障碍物定位及数据转换模块包括障碍物的三维信息检测和虚拟二维激光信息转换,三维信息检测通过图像采集卡将深度相机采集的深度图像转化为机载PC能识别的数字图像并进行图像预处理得出三维图像的深度信息,虚拟二维激光信息转换通过计算方法将三维图像的深度信息转换为虚拟二维激光信息数据,所述虚拟二维激光信息数据即为所述障碍物的定位信息数据。4. The intelligent mobile service robot with laser and visual fusion obstacle avoidance system according to claim 3, characterized in that: the obstacle positioning and data conversion module includes three-dimensional information detection of obstacles and virtual two-dimensional laser information conversion , 3D information detection converts the depth image collected by the depth camera into a digital image that can be recognized by the airborne PC through the image acquisition card, and performs image preprocessing to obtain the depth information of the 3D image. The virtual 2D laser information conversion converts the 3D image through calculation methods The depth information of the object is converted into virtual two-dimensional laser information data, and the virtual two-dimensional laser information data is the positioning information data of the obstacle. 5.如权利要求4所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述数据融合模块通过计算方法融合激光数据中的点云信息数据、虚拟二维激光信息数据和障碍物的类型信息数据得到所述障碍物的位置信息数据。5. The intelligent mobile service robot with laser and visual fusion obstacle avoidance system as claimed in claim 4, characterized in that: said data fusion module fuses point cloud information data and virtual two-dimensional laser information in laser data by computing methods The data and the type information data of the obstacle are used to obtain the position information data of the obstacle. 6.如权利要求2所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述障碍物定位及数据转换模块包括障碍物的三维信息检测和虚拟二维激光信息转换,三维信息检测通过图像采集卡将深度相机采集的深度图像转化为机载PC能识别的数字图像并进行图像预处理得出三维图像的深度信息,虚拟二维激光信息转换通过计算方法将三维图像的深度信息转换为虚拟二维激光信息数据,所述虚拟二维激光信息数据即为所述障碍物的定位信息数据。6. The intelligent mobile service robot with laser and visual fusion obstacle avoidance system according to claim 2, characterized in that: the obstacle positioning and data conversion module includes three-dimensional information detection of obstacles and virtual two-dimensional laser information conversion , 3D information detection converts the depth image collected by the depth camera into a digital image that can be recognized by the airborne PC through the image acquisition card, and performs image preprocessing to obtain the depth information of the 3D image. The virtual 2D laser information conversion converts the 3D image through calculation methods The depth information of the object is converted into virtual two-dimensional laser information data, and the virtual two-dimensional laser information data is the positioning information data of the obstacle. 7.如权利要求2所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述数据融合模块通过计算方法融合激光数据中的点云信息数据、虚拟二维激光信息数据和障碍物的类型信息数据得到所述障碍物的位置信息数据。7. The intelligent mobile service robot with laser and visual fusion obstacle avoidance system as claimed in claim 2, characterized in that: said data fusion module fuses point cloud information data and virtual two-dimensional laser information in laser data by calculation methods The data and the type information data of the obstacle are used to obtain the position information data of the obstacle. 8.如权利要求3所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述数据融合模块通过计算方法融合激光数据中的点云信息数据、虚拟二维激光信息数据和障碍物的类型信息数据得到所述障碍物的位置信息数据。8. The intelligent mobile service robot with laser and visual fusion obstacle avoidance system according to claim 3, characterized in that: said data fusion module fuses point cloud information data and virtual two-dimensional laser information in laser data by calculation methods The data and the type information data of the obstacle are used to obtain the position information data of the obstacle. 9.如权利要求1-8任意一项所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述硬件系统还包括超声波传感器和机械防撞传感器,所述超声波传感器和机械防撞传感器连接运动控制板上的底盘运动控制模块,所述超声波传感器和机械防撞传感器传感获得的数据发送给底盘运动控制模块,所述底盘运动控制模块接收到超声波传感器和机械防撞传感器传感获得的数据为障碍物传感数据时向电机驱动器发送控制命令为停止。9. The intelligent mobile service robot with laser and visual fusion obstacle avoidance system according to any one of claims 1-8, characterized in that: the hardware system also includes an ultrasonic sensor and a mechanical anti-collision sensor, and the ultrasonic sensor Connect the chassis motion control module on the motion control board with the mechanical anti-collision sensor, and send the data obtained by the ultrasonic sensor and the mechanical anti-collision sensor to the chassis motion control module, and the chassis motion control module receives the ultrasonic sensor and the mechanical anti-collision sensor. When the data obtained by the collision sensor is the obstacle sensing data, the control command is sent to the motor driver to stop. 10.如权利要求5所述的具激光和视觉融合避障系统的智能移动服务机器人,其特征在于:所述预训练模型方法为yolo V3预训练模型计算方法;所述将三维图像的深度信息转换为虚拟二维激光信息数据的计算方法为depthimage_to_laserscan算法;所述融合激光数据中的点云信息数据、虚拟二维激光信息数据和障碍物的类型信息数据的计算方法为卡尔曼滤波算法。10. The intelligent mobile service robot with laser and vision fusion obstacle avoidance system as claimed in claim 5, characterized in that: the pre-training model method is a yolo V3 pre-training model calculation method; the depth information of the three-dimensional image The calculation method for converting into virtual two-dimensional laser information data is depthimage_to_laserscan algorithm; the calculation method for point cloud information data, virtual two-dimensional laser information data and obstacle type information data in the fusion laser data is Kalman filter algorithm.
CN201910454798.XA 2019-05-29 2019-05-29 Intelligent mobile service robot with laser and visual fusion obstacle avoidance system Pending CN110147106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910454798.XA CN110147106A (en) 2019-05-29 2019-05-29 Intelligent mobile service robot with laser and visual fusion obstacle avoidance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910454798.XA CN110147106A (en) 2019-05-29 2019-05-29 Intelligent mobile service robot with laser and visual fusion obstacle avoidance system

Publications (1)

Publication Number Publication Date
CN110147106A true CN110147106A (en) 2019-08-20

Family

ID=67593563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910454798.XA Pending CN110147106A (en) 2019-05-29 2019-05-29 Intelligent mobile service robot with laser and visual fusion obstacle avoidance system

Country Status (1)

Country Link
CN (1) CN110147106A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110502019A (en) * 2019-09-06 2019-11-26 北京云迹科技有限公司 A kind of barrier-avoiding method and device of Indoor Robot
CN110562354A (en) * 2019-10-21 2019-12-13 上海沃迪智能装备股份有限公司 barrier heavy load AGV is kept away in space
CN110604597A (en) * 2019-09-09 2019-12-24 李胜利 Method of intelligently acquiring fetal cardiac cycle images based on ultrasound four-chamber view
CN110733039A (en) * 2019-10-10 2020-01-31 南京驭行科技有限公司 Automatic robot driving method based on VFH + and vision auxiliary decision
CN110764511A (en) * 2019-11-13 2020-02-07 苏州大成有方数据科技有限公司 Mobile robot with multi-sensor fusion and control method thereof
CN110789636A (en) * 2019-12-02 2020-02-14 深圳职业技术学院 An intelligent transport wheelchair
CN110908374A (en) * 2019-11-14 2020-03-24 华南农业大学 An obstacle avoidance system and method for mountain orchards based on ROS platform
CN111413970A (en) * 2020-03-18 2020-07-14 天津大学 Ultra-wideband and vision integrated indoor robot positioning and autonomous navigation method
CN111426326A (en) * 2020-01-17 2020-07-17 深圳市镭神智能系统有限公司 Navigation method, device, equipment, system and storage medium
CN112034861A (en) * 2020-09-15 2020-12-04 航天科工智能机器人有限责任公司 Bionic autonomous robot autonomous obstacle avoidance system and obstacle avoidance method thereof
CN112083730A (en) * 2020-09-28 2020-12-15 双擎科技(杭州)有限公司 Method for avoiding obstacles in complex environment by fusing multiple groups of sensor data
CN112113565A (en) * 2020-09-22 2020-12-22 温州科技职业学院 Robot positioning system for agricultural greenhouse environment
CN112132929A (en) * 2020-09-01 2020-12-25 北京布科思科技有限公司 Grid map marking method based on depth vision and single line laser radar
CN112155487A (en) * 2019-08-21 2021-01-01 追创科技(苏州)有限公司 Sweeping robot, control method of sweeping robot and storage medium
CN112157662A (en) * 2020-09-04 2021-01-01 江汉大学 Blasting robot
CN112486171A (en) * 2020-11-30 2021-03-12 中科院软件研究所南京软件技术研究院 Robot obstacle avoidance method based on vision
CN112558045A (en) * 2020-12-07 2021-03-26 福建(泉州)哈工大工程技术研究院 Offline acceptance method for multi-line laser radar function of automatic driving equipment
CN112570906A (en) * 2020-12-10 2021-03-30 苏州阿甘机器人有限公司 Efficient intelligent cutting robot and working method thereof
CN112606211A (en) * 2020-12-17 2021-04-06 湖南机电职业技术学院 Stirring and transporting robot
CN112622049A (en) * 2020-12-17 2021-04-09 湖南机电职业技术学院 Stirring and transporting robot with automatic obstacle avoidance function
CN112859873A (en) * 2021-01-25 2021-05-28 山东亚历山大智能科技有限公司 Semantic laser-based mobile robot multi-stage obstacle avoidance system and method
CN112859880A (en) * 2021-02-25 2021-05-28 湖南擎谱数字科技有限公司 Indoor automatic positioning and intelligent obstacle avoidance system and method for mobile robot
CN113353173A (en) * 2021-06-01 2021-09-07 福勤智能科技(昆山)有限公司 Automatic guided vehicle
CN113409631A (en) * 2021-06-18 2021-09-17 上海锡鼎智能科技有限公司 AI auxiliary teaching robot
CN113641103A (en) * 2021-08-13 2021-11-12 广东工业大学 Treadmill control method and system for adaptive robot
CN113697001A (en) * 2021-08-31 2021-11-26 武汉铁路职业技术学院 Sharing carrier
CN114131628A (en) * 2021-12-09 2022-03-04 深圳市优必选科技股份有限公司 smart robot
TWI757999B (en) * 2020-12-04 2022-03-11 國立陽明交通大學 Real-time obstacle avoidance system, real-time obstacle avoidance method and unmanned vehicle with real-time obstacle avoidance function
CN114475861A (en) * 2022-01-26 2022-05-13 上海合时智能科技有限公司 Robot and control method thereof
CN114947653A (en) * 2022-04-21 2022-08-30 上海景吾酷租科技发展有限公司 Visual and laser fusion slam method and system based on hotel cleaning robot
CN117539268A (en) * 2024-01-09 2024-02-09 吉林省吉邦自动化科技有限公司 VGA autonomous obstacle avoidance system based on fusion of machine vision and laser radar
CN118181323A (en) * 2024-04-29 2024-06-14 山东新一代信息产业技术研究院有限公司 Pet nurse robot and application method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285778B1 (en) * 1991-09-19 2001-09-04 Yazaki Corporation Vehicle surroundings monitor with obstacle avoidance lighting
JP2005242552A (en) * 2004-02-25 2005-09-08 Denso Corp On-vehicle reception device, on-vehicle transmission device and server
CN106097348A (en) * 2016-06-13 2016-11-09 大连理工大学 A Fusion Method of 3D Laser Point Cloud and 2D Image
CN106405555A (en) * 2016-09-23 2017-02-15 百度在线网络技术(北京)有限公司 Obstacle detecting method and device used for vehicle-mounted radar system
CN106772435A (en) * 2016-12-12 2017-05-31 浙江华飞智能科技有限公司 A kind of unmanned plane barrier-avoiding method and device
CN108958250A (en) * 2018-07-13 2018-12-07 华南理工大学 Multisensor mobile platform and navigation and barrier-avoiding method based on known map
CN109002800A (en) * 2018-07-20 2018-12-14 苏州索亚机器人技术有限公司 The real-time identification mechanism of objective and recognition methods based on Multi-sensor Fusion
CN109160452A (en) * 2018-10-23 2019-01-08 西安中科光电精密工程有限公司 Unmanned transhipment fork truck and air navigation aid based on laser positioning and stereoscopic vision
CN109506658A (en) * 2018-12-26 2019-03-22 广州市申迪计算机系统有限公司 Robot autonomous localization method and system
CN109804223A (en) * 2016-10-11 2019-05-24 御眼视觉技术有限公司 Navigating a vehicle based on detected obstacles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285778B1 (en) * 1991-09-19 2001-09-04 Yazaki Corporation Vehicle surroundings monitor with obstacle avoidance lighting
JP2005242552A (en) * 2004-02-25 2005-09-08 Denso Corp On-vehicle reception device, on-vehicle transmission device and server
CN106097348A (en) * 2016-06-13 2016-11-09 大连理工大学 A Fusion Method of 3D Laser Point Cloud and 2D Image
CN106405555A (en) * 2016-09-23 2017-02-15 百度在线网络技术(北京)有限公司 Obstacle detecting method and device used for vehicle-mounted radar system
CN109804223A (en) * 2016-10-11 2019-05-24 御眼视觉技术有限公司 Navigating a vehicle based on detected obstacles
CN106772435A (en) * 2016-12-12 2017-05-31 浙江华飞智能科技有限公司 A kind of unmanned plane barrier-avoiding method and device
CN108958250A (en) * 2018-07-13 2018-12-07 华南理工大学 Multisensor mobile platform and navigation and barrier-avoiding method based on known map
CN109002800A (en) * 2018-07-20 2018-12-14 苏州索亚机器人技术有限公司 The real-time identification mechanism of objective and recognition methods based on Multi-sensor Fusion
CN109160452A (en) * 2018-10-23 2019-01-08 西安中科光电精密工程有限公司 Unmanned transhipment fork truck and air navigation aid based on laser positioning and stereoscopic vision
CN109506658A (en) * 2018-12-26 2019-03-22 广州市申迪计算机系统有限公司 Robot autonomous localization method and system

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112155487A (en) * 2019-08-21 2021-01-01 追创科技(苏州)有限公司 Sweeping robot, control method of sweeping robot and storage medium
CN110502019A (en) * 2019-09-06 2019-11-26 北京云迹科技有限公司 A kind of barrier-avoiding method and device of Indoor Robot
CN110604597B (en) * 2019-09-09 2020-10-27 李胜利 Method for intelligently acquiring fetal cardiac cycle images based on ultrasonic four-cavity cardiac section
CN110604597A (en) * 2019-09-09 2019-12-24 李胜利 Method of intelligently acquiring fetal cardiac cycle images based on ultrasound four-chamber view
CN110733039A (en) * 2019-10-10 2020-01-31 南京驭行科技有限公司 Automatic robot driving method based on VFH + and vision auxiliary decision
CN110562354A (en) * 2019-10-21 2019-12-13 上海沃迪智能装备股份有限公司 barrier heavy load AGV is kept away in space
CN110764511A (en) * 2019-11-13 2020-02-07 苏州大成有方数据科技有限公司 Mobile robot with multi-sensor fusion and control method thereof
CN110908374A (en) * 2019-11-14 2020-03-24 华南农业大学 An obstacle avoidance system and method for mountain orchards based on ROS platform
CN110908374B (en) * 2019-11-14 2021-04-23 华南农业大学 An obstacle avoidance system and method for mountain orchards based on ROS platform
CN110789636A (en) * 2019-12-02 2020-02-14 深圳职业技术学院 An intelligent transport wheelchair
CN111426326A (en) * 2020-01-17 2020-07-17 深圳市镭神智能系统有限公司 Navigation method, device, equipment, system and storage medium
CN111413970A (en) * 2020-03-18 2020-07-14 天津大学 Ultra-wideband and vision integrated indoor robot positioning and autonomous navigation method
CN112132929B (en) * 2020-09-01 2024-01-26 北京布科思科技有限公司 Grid map marking method based on depth vision and single-line laser radar
CN112132929A (en) * 2020-09-01 2020-12-25 北京布科思科技有限公司 Grid map marking method based on depth vision and single line laser radar
CN112157662A (en) * 2020-09-04 2021-01-01 江汉大学 Blasting robot
CN112157662B (en) * 2020-09-04 2023-07-07 江汉大学 Blasting robot
CN112034861A (en) * 2020-09-15 2020-12-04 航天科工智能机器人有限责任公司 Bionic autonomous robot autonomous obstacle avoidance system and obstacle avoidance method thereof
CN112113565A (en) * 2020-09-22 2020-12-22 温州科技职业学院 Robot positioning system for agricultural greenhouse environment
CN112083730A (en) * 2020-09-28 2020-12-15 双擎科技(杭州)有限公司 Method for avoiding obstacles in complex environment by fusing multiple groups of sensor data
CN112486171A (en) * 2020-11-30 2021-03-12 中科院软件研究所南京软件技术研究院 Robot obstacle avoidance method based on vision
TWI757999B (en) * 2020-12-04 2022-03-11 國立陽明交通大學 Real-time obstacle avoidance system, real-time obstacle avoidance method and unmanned vehicle with real-time obstacle avoidance function
CN112558045A (en) * 2020-12-07 2021-03-26 福建(泉州)哈工大工程技术研究院 Offline acceptance method for multi-line laser radar function of automatic driving equipment
CN112558045B (en) * 2020-12-07 2024-03-15 福建(泉州)哈工大工程技术研究院 Offline acceptance method for multi-line laser radar function of automatic driving equipment
CN112570906A (en) * 2020-12-10 2021-03-30 苏州阿甘机器人有限公司 Efficient intelligent cutting robot and working method thereof
CN112606211A (en) * 2020-12-17 2021-04-06 湖南机电职业技术学院 Stirring and transporting robot
CN112622049A (en) * 2020-12-17 2021-04-09 湖南机电职业技术学院 Stirring and transporting robot with automatic obstacle avoidance function
CN112859873A (en) * 2021-01-25 2021-05-28 山东亚历山大智能科技有限公司 Semantic laser-based mobile robot multi-stage obstacle avoidance system and method
CN112859880A (en) * 2021-02-25 2021-05-28 湖南擎谱数字科技有限公司 Indoor automatic positioning and intelligent obstacle avoidance system and method for mobile robot
CN113353173A (en) * 2021-06-01 2021-09-07 福勤智能科技(昆山)有限公司 Automatic guided vehicle
CN113409631A (en) * 2021-06-18 2021-09-17 上海锡鼎智能科技有限公司 AI auxiliary teaching robot
CN113641103B (en) * 2021-08-13 2023-04-25 广东工业大学 Treadmill control method and system for adaptive robot
CN113641103A (en) * 2021-08-13 2021-11-12 广东工业大学 Treadmill control method and system for adaptive robot
CN113697001A (en) * 2021-08-31 2021-11-26 武汉铁路职业技术学院 Sharing carrier
CN114131628A (en) * 2021-12-09 2022-03-04 深圳市优必选科技股份有限公司 smart robot
CN114475861A (en) * 2022-01-26 2022-05-13 上海合时智能科技有限公司 Robot and control method thereof
CN114947653A (en) * 2022-04-21 2022-08-30 上海景吾酷租科技发展有限公司 Visual and laser fusion slam method and system based on hotel cleaning robot
CN117539268A (en) * 2024-01-09 2024-02-09 吉林省吉邦自动化科技有限公司 VGA autonomous obstacle avoidance system based on fusion of machine vision and laser radar
CN118181323A (en) * 2024-04-29 2024-06-14 山东新一代信息产业技术研究院有限公司 Pet nurse robot and application method thereof

Similar Documents

Publication Publication Date Title
CN110147106A (en) Intelligent mobile service robot with laser and visual fusion obstacle avoidance system
US20210247764A1 (en) Multi-sensor environmental mapping
US11407116B2 (en) Robot and operation method therefor
CA2950791C (en) Binocular visual navigation system and method based on power robot
CN112518739B (en) Track-mounted chassis robot reconnaissance intelligent autonomous navigation method
CN110221623A (en) A kind of air-ground coordination operating system and its localization method
CN106598039B (en) An obstacle avoidance method for substation inspection robot based on lidar
CN108572663A (en) Target Tracking
CN105946853A (en) Long-distance automatic parking system and method based on multi-sensor fusion
CN108673501A (en) A kind of the target follower method and device of robot
JP2020079997A (en) Information processing apparatus, information processing method, and program
CN108062111A (en) A kind of multi-rotor unmanned aerial vehicle automatic obstacle avoiding device and barrier-avoiding method
CN110088703B (en) Method for navigating and positioning itself for autonomously traveling processing equipment
CN116518984B (en) Vehicle road co-location system and method for underground coal mine auxiliary transportation robot
CN113109821A (en) Mapping method, device and system based on ultrasonic radar and laser radar
WO2023102911A1 (en) Data collection method, data presentation method, data processing method, aircraft landing method, data presentation system and storage medium
CN111781929A (en) AGV trolley and 3D laser radar positioning and navigation method
CN117850420A (en) Sanitation vehicle control method and sanitation vehicle
CN111157008B (en) Local autonomous navigation system and method based on multi-dimensional environmental information perception
CN115951710A (en) Method and system for autonomous take-off and landing of UAV based on binocular vision
KR20230113475A (en) 3D lidar obstacle detection system using super resolution and reflection intensity
Poomarin et al. Automatic docking with obstacle avoidance of a differential wheel mobile robot
CN118424254A (en) Unmanned aerial vehicle-based autonomous map building detection method for unknown closed space
CN113081525A (en) Intelligent walking aid equipment and control method thereof
CN118628677A (en) A path planning method for unmanned vehicles based on kinematic model constraints

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190820

RJ01 Rejection of invention patent application after publication
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载