CN110097613A - A kind of B-spline curves generation method and system based on probability calculation - Google Patents
A kind of B-spline curves generation method and system based on probability calculation Download PDFInfo
- Publication number
- CN110097613A CN110097613A CN201910378599.5A CN201910378599A CN110097613A CN 110097613 A CN110097613 A CN 110097613A CN 201910378599 A CN201910378599 A CN 201910378599A CN 110097613 A CN110097613 A CN 110097613A
- Authority
- CN
- China
- Prior art keywords
- group
- binary string
- probability
- module
- control point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/203—Drawing of straight lines or curves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Complex Calculations (AREA)
Abstract
本发明公开了一种基于概率计算的B样条曲线生成方法和系统。方法包括:对输入控制点组进行坐标变换的步骤、对控制点坐标组进行归一化处理的步骤、对映射值组和输入的节点组进行二值化处理,得到第一二进制串组和第二二进制串组的步骤、利用概率计算方法基于第二二进制串组对第一二进制串组进行多路选通以得到概率值组的步骤、对概率值组依次进行随机解码归一化逆运算的步骤。系统包括依次连接的坐标变换模块、归一化模块、二值化模块、概率计算模块和数据解码模块,坐标变换模块接收控制点组,二值化模块接收节点组。本发明较直接计算的方式生成B样条曲线,可以大幅减小系统复杂度,减少计算量,缩减计算时间。
The invention discloses a B-spline curve generation method and system based on probability calculation. The method includes: the step of performing coordinate transformation on the input control point group, the step of normalizing the control point coordinate group, and performing binarization processing on the mapping value group and the input node group to obtain the first binary string group and the step of the second binary string group, using the probability calculation method to multiplex the first binary string group based on the second binary string group to obtain the step of the probability value group, and sequentially performing the step of the probability value group Random decoding steps for the normalized inverse operation. The system includes a coordinate transformation module, a normalization module, a binarization module, a probability calculation module and a data decoding module connected in sequence, the coordinate transformation module receives a control point group, and the binarization module receives a node group. The invention generates B-spline curves in a relatively direct calculation manner, which can greatly reduce system complexity, reduce calculation amount, and shorten calculation time.
Description
技术领域technical field
本发明涉及计算机图形绘制领域,尤其是一种利用概率计算方法生成B样条曲线的方法和系统。The invention relates to the field of computer graphic drawing, in particular to a method and system for generating B-spline curves by using a probability calculation method.
背景技术Background technique
B样条曲线曲面具有几何不变性、凸包性、保凸性、变差减小性、局部支撑性等许多优良性质,是计算机图形学中相当重要的参数曲线。B样条曲线的绘制效率,直接影响到计算机图像绘制效率。B-spline curves and surfaces have many excellent properties such as geometric invariance, convex hull, convexity preservation, variation reduction, local support, etc., and are very important parametric curves in computer graphics. The drawing efficiency of B-spline curve directly affects the drawing efficiency of computer image.
在已知n+1个控制点Pi(i=1、2、3……n)以及节点t的情况下,n次B样条曲线的通用表达式如下:In the case of known n+1 control points P i (i=1, 2, 3...n) and node t, the general expression of the n-degree B-spline curve is as follows:
n为B样条曲线的次数,t为输入节点,Pk为控制点。 n is the degree of B-spline curve, t is the input node, and P k is the control point.
若采用直接计算的方法生成,计算复杂度比较高,尤其在计算生成高阶B样条曲线时,复杂度太高,速度慢。目前直接计算的方法的关键路径由乘法器、加法器等组成。3次B样条曲线时间复杂度为O(t3),4次B样条曲线时间复杂度为O(t4),n次B样条曲线时间复杂度为O(tn)。可见,随着B样条曲线次数的不断增大,传统计算方法的时间复杂度呈O(tn)增长。If it is generated by direct calculation, the calculation complexity is relatively high, especially when calculating and generating high-order B-spline curves, the complexity is too high and the speed is slow. The critical path of the current direct calculation method consists of a multiplier, an adder, and the like. The time complexity of B-spline curve of degree 3 is O(t 3 ), the time complexity of B-spline curve of degree 4 is O(t 4 ), and the time complexity of B-spline curve of degree n is O(t n ). It can be seen that with the continuous increase of the degree of B-spline curve, the time complexity of the traditional calculation method is O(t n ) growth.
概率计算[1]是一种数值表征和计算方法,在概率计算中,利用序列中含1的个数占整个序列长度的比例来表征值,通过构造简单的门级电路来完成乘、加等运算来实现。概率计算的方法近年来已经被应用于数字滤波器、FFT、Turbo译码器、多码率LDPC译码器[2-4]等研究领域。使用概率计算能大幅减小计算量。Probability calculation [1] is a numerical representation and calculation method. In probability calculation, the ratio of the number of 1s in the sequence to the length of the entire sequence is used to represent the value, and the multiplication, addition, etc. are completed by constructing a simple gate-level circuit. operation to achieve. The method of probability calculation has been applied in research fields such as digital filter, FFT, Turbo decoder, multi-code rate LDPC decoder [2-4] in recent years. Using probability calculations can greatly reduce the amount of calculations.
本发明涉及的参考文献如下:The references that the present invention relates to are as follows:
[1]W.Qian and M.Riedel,“The synthesis of robust polynomial arithmeticwith stochastic logic,”in DAC’08:Proceedings of the 45th Design AutomationConference,Anaheim,CA,USA,Jun.2008,pp.648–653.[1] W. Qian and M. Riedel, “The synthesis of robust polynomial arithmetic with stochastic logic,” in DAC’08: Proceedings of the 45th Design Automation Conference, Anaheim, CA, USA, Jun.2008, pp.648–653.
[2]吴思励,周焰,乐艳丽,李加庆.基于实测数据的雷达探测概率计算方法[J].微计算机信息,2008,7-3.[2] Wu Sili, Zhou Yan, Le Yanli, Li Jiaqing. Calculation method of radar detection probability based on measured data [J]. Microcomputer Information, 2008, 7-3.
[3]陈杰男,胡剑浩.基于概率计算的数字滤波器的实现[J].中国集成电路,2010,11.[3] Chen Jienan, Hu Jianhao. Realization of digital filter based on probability calculation [J]. China Integrated Circuit, 2010, 11.
[4]胡剑浩,陈杰男.概率计算在通信信号处理系统实现中的应用[J].无线电通信技术,2015,41(2):01-06.[4] Hu Jianhao, Chen Jienan. The application of probability calculation in the realization of communication signal processing system [J]. Radio Communication Technology, 2015, 41(2): 01-06.
发明内容Contents of the invention
本发明的发明目的在于:针对上述存在的问题,提供一种将概率计算运用到B样条曲线的绘制中的方法和系统。以利用概率计算的简单结构,通过低复杂度的结构和较小运算量,快速绘制出较为准确的B样条曲线。The object of the present invention is to provide a method and system for applying probability calculation to the drawing of B-spline curves in view of the above-mentioned problems. With a simple structure using probability calculations, a more accurate B-spline curve can be quickly drawn through a low-complexity structure and a small amount of calculation.
本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:
一种基于概率计算的B样条曲线生成方法,其特征在于,包括以下步骤:A method for generating B-spline curves based on probability calculations, comprising the following steps:
对输入的控制点组进行坐标变换,得到对应的控制点坐标组的步骤;performing coordinate transformation on the input control point group to obtain the corresponding control point coordinate group;
对控制点坐标组进行归一化处理,得到对应的映射值组的步骤;The step of normalizing the control point coordinate group to obtain the corresponding mapping value group;
对各所述映射值组和输入的节点组的值分别进行二值化处理,得到对应的第一二进制串组和第二二进制串组的步骤;Performing binary processing on the values of each of the mapping value groups and the input node groups to obtain the corresponding first binary string group and the second binary string group;
基于第二二进制串组对第一二进制串组进行多路选通,以得到概率值组的步骤;multiplexing the first binary string based on the second binary string to obtain a probability value group;
对概率值组进行随机解码,并对解码结果进行归一化逆运算,得到对应的点坐标组的步骤。The step of randomly decoding the probability value group, and performing normalized inverse operation on the decoding result to obtain the corresponding point coordinate group.
上述方案基于概率计算方法生成B样条曲线,计算过程仅涉及加法、比较和多路选通,属于复杂度随B样条曲线次数增加而呈线性增长的方法,较直接计算中,复杂处为O(t4)的方法,大幅减小了计算量,降低了计算复杂度,缩减了计算耗时,在生成高阶B样条曲线时,效果尤为突出。The above scheme is based on the probability calculation method to generate B-spline curves. The calculation process only involves addition, comparison and multiplexing. It belongs to the method that the complexity increases linearly with the increase of the number of B-spline curves. In the direct calculation, the complexity is The O(t 4 ) method greatly reduces the amount of calculation, the complexity of calculation, and the time-consuming calculation, especially when generating high-order B-spline curves.
进一步的,上述二值化处理的过程为将待二值化处理的数据与预设长度伪随机码进行移位比较以得到比较结果的过程。Further, the above binarization process is a process of shifting and comparing the data to be binarized with a pseudo-random code of a preset length to obtain a comparison result.
进一步的,上述基于第二二进制串组对第一二进制串组进行多路选通具体为:以第二二进制串组对应位相加的结果作为多路选通控制端,以对第一二进制串组进行多路选通。Further, the above-mentioned multiplexing of the first binary string based on the second binary string is specifically: using the result of adding the corresponding bits of the second binary string as the multiplex control terminal, to multiplex the first binary string.
进一步的,上述对控制点坐标组进行归一化处理中,归一化方法为:GPi=(Ai-min(A0,A1,A2.....An))/(max(A0,A1,A2....An)-min(A0,A1,A2.....An)),(i=0,1,2,...n);其中,min(.)是求最小值函数,max(.)是求最大值函数,n为控制点组数量,A0,A1,A2.....An为控制点坐标组,GPi为归一化得到的映射值。Further, in the above-mentioned normalization processing of the control point coordinate group, the normalization method is: GP i =(A i -min(A 0 ,A 1 ,A 2 .....A n ))/( max(A 0 ,A 1 ,A 2 ....A n )-min(A 0 ,A 1 ,A 2 .....A n )),(i=0,1,2,... n); among them, min(.) is the minimum value function, max(.) is the maximum value function, n is the number of control point groups, A 0 , A 1 , A 2 .....A n is the control point Coordinate group, GP i is the normalized mapping value.
一种基于概率计算的B样条曲线绘制系统,其包括依次连接的坐标变换模块、归一化模块、二值化模块、概率计算模块和数据解码模块;其中:A B-spline curve drawing system based on probability calculation, which includes sequentially connected coordinate transformation module, normalization module, binarization module, probability calculation module and data decoding module; wherein:
坐标变换模块用于对输入的控制点组进行坐标变换,输出对应的控制点坐标组;The coordinate transformation module is used to perform coordinate transformation on the input control point group, and output the corresponding control point coordinate group;
归一化模块用于对接收的控制点坐标组进行归一化处理,输出对应的映射值组;The normalization module is used to normalize the received control point coordinate group, and output the corresponding mapping value group;
二值化模块用于接收归一化模块输出的映射值组,还接收输入的节点组,二值化模块用于对接收的数据进行二值化处理,输出对应的二进制串,对于接收的概率值组,则对应输出第一二进制串组,对于接收的节点组,则对应输出第二二进制串;The binarization module is used to receive the mapping value group output by the normalization module, and also receives the input node group. The binarization module is used to binarize the received data and output the corresponding binary string. For the probability of receiving The value group corresponds to the output of the first binary string group, and for the received node group, it corresponds to the output of the second binary string;
概率计算模块基于第二二进制串对第一二进制串进行多路选通,以输出概率值组;The probability calculation module multiplexes the first binary string based on the second binary string to output a set of probability values;
数据解码模块对接收的概率值组进行随机解码和归一化逆运算,得到绘制点的位置坐标。The data decoding module performs random decoding and normalized inverse operation on the received probability value group to obtain the position coordinates of the drawing points.
进一步的,上述二值化模块用于对接收的数据基于伪随机码进行二值化处理。Further, the above-mentioned binarization module is used to perform binarization processing on the received data based on the pseudo-random code.
进一步的,上述二值化模块包括一伪随机码生成单元和一比较器;所述伪随机码生成单元用于生成预设长度的伪随机码,所述伪随机码生成单元的输出端连接所述比较器的第一输入端,所述比较器的第二输入端用于接收归一化模块的输出值,比较器的输出端输出对应于其第二输入端所接收的数据的二进制串。即当比较器的第二输入端输入为映射值组时,其输出端输出第一二进制串,当比较器的第二输入端输入为节点组是,其输出端输出第二二进制串。Further, the above-mentioned binarization module includes a pseudo-random code generation unit and a comparator; the pseudo-random code generation unit is used to generate a pseudo-random code of preset length, and the output terminal of the pseudo-random code generation unit is connected to the The first input terminal of the comparator, the second input terminal of the comparator is used to receive the output value of the normalization module, and the output terminal of the comparator outputs a binary string corresponding to the data received by the second input terminal. That is, when the input of the second input terminal of the comparator is a mapping value group, its output terminal outputs the first binary string; when the input terminal of the second input terminal of the comparator is a node group, its output terminal outputs the second binary string string.
进一步的,上述概率计算模块基于第二二进制串组对第一二进制串组进行多路选通具体为:概率计算模块基于第二二进制串组对应位相加的结果对第一二进制串组进行多路选通。Further, the above-mentioned probability calculation module multiplexes the first binary string group based on the second binary string group specifically: the probability calculation module selects the second binary string group based on the result of adding the corresponding bits of the second binary string group A binary string is multiplexed.
进一步的,上述概率计算模块包括一加法器和一多路选通器,加法器输入端用于接收第二二进制串组,加法器输出端连接多路选通器的控制端,多路选通器的系数输入端用于接收第一二进制串组,多路选通器的输出端输出概率值组。Further, the above-mentioned probability calculation module includes an adder and a multiplexer, the input end of the adder is used to receive the second binary string group, the output end of the adder is connected to the control end of the multiplexer, and the multiplexer The coefficient input terminal of the selector is used to receive the first binary string group, and the output terminal of the multiplex selector outputs the probability value group.
进一步的,上述归一化模块的归一化方法为:Further, the normalization method of the above normalization module is:
GPi=(Ai-min(A0,A1,A2.....An))/(max(A0,A1,A2....An)-min(A0,A1,A2.....An)),(i=0,1,2,...n);其中,min(.)是求最小值函数,max(.)是求最大值函数,n为控制点组数量,A0,A1,A2.....An为控制点坐标组,GPi为归一化得到的映射值。GP i =(A i -min(A 0 ,A 1 ,A 2 .....A n ))/(max(A 0 ,A 1 ,A 2 ....A n )-min(A 0 ,A 1 ,A 2 .....A n )),(i=0,1,2,...n); among them, min(.) is the function for finding the minimum value, and max(.) is the function for finding the maximum value Value function, n is the number of control point groups, A 0 , A 1 , A 2 .....A n is the coordinate group of control points, and GP i is the normalized mapping value.
综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, owing to adopting above-mentioned technical scheme, the beneficial effect of the present invention is:
现有方案采用直接计算的方式,其计算的关键路径主要由乘法构成,对于n次B样条曲线,其绘图的复杂度为O(tn),可见,其呈O(tn)增长,计算量较大,计算耗时长。而本发明采用概率计算的方式绘制B样条曲线,其计算的关键路径由加法、比较和多路选通组成,对于n次B样条曲线,需要进行2n次比较、1次n位加法和1次n+1选一的多路选通,显然,绘图的计算量随着B样条曲线次数的不断增加,计算(或系统结构)的复杂度呈线性增加,较直接计算的方式,大幅降低了计算复杂度,计算量小,计算速度快(尤其对于高阶B样条曲线的绘制),便于在FPGA等硬件上的实现。The existing scheme adopts the method of direct calculation, and the key path of the calculation is mainly composed of multiplication. For the n-degree B-spline curve, the complexity of drawing is O(t n ), it can be seen that it grows in O(t n ), The amount of calculation is large and the calculation takes a long time. And the present invention adopts the mode of probability calculation to draw B-spline curve, and the critical path of its calculation is made up of addition, comparison and multi-way selection, for n times of B-spline curve, need to carry out 2n times of comparison, 1 time of n-bit addition and 1 multi-way selection of n+1 selection. Obviously, the calculation amount of drawing increases linearly with the increase of the number of B-spline curves, and the complexity of calculation (or system structure) increases linearly. Compared with the direct calculation method, it is significantly The calculation complexity is reduced, the calculation amount is small, and the calculation speed is fast (especially for the drawing of high-order B-spline curves), which is convenient for realization on hardware such as FPGA.
附图说明Description of drawings
本发明将通过例子并参照附图的方式说明,其中:The invention will be illustrated by way of example with reference to the accompanying drawings, in which:
图1是基于概率计算的B样条曲线生成方法流程的一个实施例。Fig. 1 is an embodiment of the flow of the B-spline curve generation method based on probability calculation.
图2是基于概率计算的B样条曲线绘制方法的结构图。Fig. 2 is a structural diagram of a B-spline curve drawing method based on probability calculation.
图3是二值化模块结构的一个实施例。Fig. 3 is an embodiment of the binarization module structure.
图4是概率计算模块结构的一个实施例。Fig. 4 is an embodiment of the probability calculation module structure.
图5是通过本发明方案和通过直接计算方式所绘制出的三次B样条曲线。Fig. 5 is a cubic B-spline curve drawn by the scheme of the present invention and by direct calculation.
图6是通过本发明方案所绘制出的若干中三次B样条曲线。Fig. 6 is a number of cubic B-spline curves drawn by the scheme of the present invention.
其中,在图5和图6中,虚线曲线为通过本发明方案所绘制出的三次B样条曲线,实线曲线为通过直接计算的方式所绘制出的三次B样条曲线;图6中,(a)为取256位伪随机码的结果,(b)为取取512位伪随机码的结果,(c)为取取1024位伪随机码的结果,(d)为取取2048位伪随机码的结果。Wherein, in Fig. 5 and Fig. 6, dotted line curve is the cubic B-spline curve drawn by the scheme of the present invention, and solid line curve is the cubic B-spline curve drawn by the mode of direct calculation; Among Fig. 6, (a) is the result of taking 256-bit pseudo-random code, (b) is the result of taking 512-bit pseudo-random code, (c) is the result of taking 1024-bit pseudo-random code, (d) is taking the result of 2048-bit pseudo-random code The result of the random code.
具体实施方式Detailed ways
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any manner, except for mutually exclusive features and/or steps.
本说明书(包括任何附加权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。Any feature disclosed in this specification (including any appended claims, abstract), unless otherwise stated, may be replaced by alternative features which are equivalent or serve a similar purpose. That is, unless expressly stated otherwise, each feature is one example only of a series of equivalent or similar features.
实施例一Embodiment one
本实施例公开了一种基于概率计算的B样条曲线生成方法,包括以下步骤:This embodiment discloses a method for generating a B-spline curve based on probability calculation, including the following steps:
基于B样条曲线的通用表达,对输入的控制点Pi(i=1、2、3……n)进行坐标变换,得到对应的控制点坐标Ai(i=1、2、3……n)的步骤。Based on the general expression of the B-spline curve, coordinate transformation is performed on the input control point P i (i=1, 2, 3...n), and the corresponding control point coordinate A i (i=1, 2, 3...n) is obtained n) steps.
将控制点坐标进行归一化处理,得到对应的映射值GPi(i=1、2、3……n)的步骤,其中,归一化方法为:The coordinates of the control points are normalized to obtain the corresponding mapping value GP i (i=1, 2, 3...n), wherein the normalization method is:
GPi=(Ai-min(A0,A1,A2.....An))/(max(A0,A1,A2....An)-min(A0,A1,A2.....An)),(i=0,1,2,...n);其中,min(.)是求最小值函数,max(.)是求最大值函数。GP i =(A i -min(A 0 ,A 1 ,A 2 .....A n ))/(max(A 0 ,A 1 ,A 2 ....A n )-min(A 0 ,A 1 ,A 2 .....A n )),(i=0,1,2,...n); among them, min(.) is the function for finding the minimum value, and max(.) is the function for finding the maximum value value function.
基于N位伪随机码Ri(i=1,2,3……n),将各映射值GPi(i=1,2,3……n)和输入的节点tk(k=1,2...n)分别进行二值化处理,得到对应的二进制串Bi(i=1,2...n)和Xi(i=1,2...n)的步骤。Based on the N-bit pseudo-random code R i (i=1, 2, 3...n), each mapping value GP i (i=1, 2, 3...n) and the input node t k (k=1, 2...n) A step of performing binarization processing respectively to obtain corresponding binary strings B i (i=1, 2...n) and Xi ( i =1, 2...n).
以Xi(i=1,2...n)逐位相加的结果S(i)=X1(i)+X2(i)+...+Xn(i),(i=1,2...N)作为多路选通控制端,以Bi(i=1,2...n)作为多路选通系数输入端,得到概率值Y(i)=BS(i)(i=0,1,2...N)的步骤。S(i)=X 1 ( i )+X 2 (i)+...+X n (i), (i= 1, 2...N) as the multiplex control terminal, with B i (i=1,2...n) as the multiplex coefficient input terminal, the probability value Y(i)=B S( i) (i=0,1,2...N) steps.
对概率值进行随机解码,并对解码结果进行归一化逆运算,得到对应的点坐标的步骤。通过各点坐标上的点,即可绘制出对应的B样条曲线。Randomly decode the probability value, and perform a normalized inverse operation on the decoded result to obtain the corresponding point coordinates. Through the points on the coordinates of each point, the corresponding B-spline curve can be drawn.
实施例二Embodiment two
如图1所示,本实施例一公开了一种基于概率计算的B样条曲线生成方法,包括以下步骤:As shown in Figure 1, the first embodiment discloses a method for generating a B-spline curve based on probability calculation, including the following steps:
1、基于B样条曲线的通用表达,对输入的控制点组Pi(i=1、2、3……n)进行坐标变换,得到对应的控制点坐标组Ai(i=1、2、3……n)的步骤。1. Based on the general expression of B-spline curve, carry out coordinate transformation on the input control point group P i (i=1, 2, 3...n), and obtain the corresponding control point coordinate group A i (i=1, 2 , 3...n) steps.
B样条曲线的表达式为:The expression of B-spline curve is:
其中,P0,P1,…Pn为曲线的控制点组;n为B样条曲线的次数,如三次B样条曲线,n为3;t为0到1之间的小数值;k为其中的第k个点,k的取值范围为0,1,2,…n。将式(1)变换整理得到下式(概率计算多项式):Among them, P 0 , P 1 ,...P n is the control point group of the curve; n is the degree of B-spline curve, such as cubic B-spline curve, n is 3; t is a decimal value between 0 and 1; k is the kth point among them, and the value range of k is 0, 1, 2,...n. Transform formula (1) to get the following formula (probability calculation polynomial):
以三次B样条曲线为例,将B样条曲线表达式进行展开得到:Taking the cubic B-spline curve as an example, the expression of the B-spline curve is expanded to get:
P(t)=1/6(P0(-t3+3t2-3t+1)+P1(3t3-6t2+4)+P2(-3t3+3t2+3t+1)+P3t3) (2)P(t)=1/6(P 0 (-t 3 +3t 2 -3t+1)+P 1 (3t 3 -6t 2 +4)+P 2 (-3t 3 +3t 2 +3t+1) +P 3 t 3 ) (2)
由式(2)整理得到式(3):Formula (3) is obtained from formula (2):
P(t)=1/6((P0+4P1+P2)+(-3P0+3P2)t+(3P0-6P1+3P2)t2+(-P0+3P1-3P2+P3)t3)P(t)=1/6((P 0 +4P 1 +P 2 )+(-3P 0 +3P 2 )t+(3P 0 -6P 1 +3P 2 )t 2 +(-P 0 +3P 1 - 3P 2 +P 3 )t 3 )
(3),对应到控制点坐标,变换得到:(3), corresponding to the control point coordinates, the transformation is obtained:
其中: in:
A0=1/6(P0+4P1+P2) (5),A 0 =1/6(P 0 +4P 1 +P 2 ) (5),
A1=1/6(4P1+2P2) (6),A 1 =1/6(4P 1 +2P 2 ) (6),
A2=1/6(2P1+4P2) (7),A 2 =1/6(2P 1 +4P 2 ) (7),
A3=1/6(P1+4P2+P3) (8)。A 3 =1/6(P 1 +4P 2 +P 3 ) (8).
通过输入的控制点组P0-P3,即得到控制点坐标组A0-A3。Through the input control point group P 0 -P 3 , the control point coordinate group A 0 -A 3 is obtained.
2、将控制点坐标组A0A1,A2....An进行归一化处理,得到对应的映射值组GPi(i=1、2、3……n)的步骤。2. A step of normalizing control point coordinate groups A 0 A 1 , A 2 . . . A n to obtain a corresponding mapping value group GP i (i=1, 2, 3 .
归一化处理是将各控制点坐标组A0A1,A2....An的值分别映射到[0,1]之间,归一化映射转换方法如下:The normalization process is to map the values of each control point coordinate group A 0 A 1 , A 2 ....A n to [0,1] respectively, and the normalization mapping conversion method is as follows:
GPi=(Ai-min(A0,A1,A2.....An))/(max(A0,A1,A2....An)-min(A0,A1,A2.....An)),(i=0,1,2,...n)(9),min(.)是求最小值函数,max(.)是求最大值函数。GP i =(A i -min(A 0 ,A 1 ,A 2 .....A n ))/(max(A 0 ,A 1 ,A 2 ....A n )-min(A 0 ,A 1 ,A 2 .....A n )),(i=0,1,2,...n)(9), min(.) is the function to find the minimum value, max(.) is the function to find Maximum function.
3、基于N位伪随机码组Ri(i=1,2,3……n),将映射值组GPi(i=1,2,3……n)和输入的节点组tk(k=1,2,3…n)分别进行二值化处理,得到对应的二进制串组Bi(i=1,2,3…n)和Xi(i=1,2,3…n)的步骤。3. Based on the N-bit pseudo-random code group R i (i=1, 2, 3...n), the mapping value group GP i (i=1, 2, 3...n) and the input node group t k ( k=1,2,3...n) are binarized respectively to obtain the corresponding binary strings B i (i=1,2,3...n) and Xi ( i =1,2,3...n) A step of.
二值化处理分别将tk和GPi对应转变成二进制串组Xi和Bi。转变输入tk,输出得到Xi,输入GPi,输出得到Bi。转变过程基于伪随机码组完成,文献“伪随机码及计算机的产生”(吴明捷、杜天苍,辽宁工程技术大学学报,第21卷第2期)中提到将本原多项式作为反馈移位寄存器的特征多项式,可以产生伪随机码序列。The binarization process transforms t k and GP i correspondingly into binary strings Xi and Bi respectively . Transform input t k , output to get X i , input to GP i , output to get B i . The conversion process is completed based on the pseudo-random code group. The literature "Pseudo-random code and computer generation" (Wu Mingjie, Du Tiancang, Journal of Liaoning University of Technology, Vol. 21, No. 2) mentioned the idea of using primitive polynomials as feedback shift registers The characteristic polynomial can generate a pseudo-random code sequence.
伪随机码组由本原多项式移位产生。将本原多项式作为反馈移位寄存器的特征多项式,即可产生伪随机码组。本原多项式如下:Pseudo-random code groups are generated by shifting primitive polynomials. Using the primitive polynomial as the characteristic polynomial of the feedback shift register, a pseudo-random code group can be generated. The primitive polynomial is as follows:
在本实施例中,本原多项式取10阶,即n取10,用110000101反馈移位产生N位随机码Ri,N分别取256位、512位、1024位和2048位进行实验。对应的三次B样条曲线的绘制结果如图6中的(a)、(b)、(c)、(d)所示。In this embodiment, the primitive polynomial is of order 10, that is, n is 10, and 110000101 feedback shift is used to generate an N-bit random code R i , and N is respectively 256 bits, 512 bits, 1024 bits and 2048 bits for experiments. The drawing results of the corresponding cubic B-spline curves are shown in (a), (b), (c), and (d) in Figure 6.
在将GPi与Ri(i=0,1,2…,n)进行移位比较时,若GPi大于等于Ri,输出为“1”,小于则输出为“0”。实验证明,得到的Bi的二进制串中(i取1,2,…n),“1”所占的比例与GPi表示的值相同。这就为概率计算应用到B样条曲线绘制中提供了基础。假如GPi的的值为0.4,N为128位,则Bi中“1”的个数为128*0.4个,虽然Bi中“1”所占的比例相同,但由于Ri中“1”的位置是随机的,所以Bi中的二进制串中“1”的位置也是随机的。同样,tk与Ri进行移位比较(i=0,1,2…,n),得到随机的二进制串组Xi。When performing shift comparison between GP i and R i (i=0, 1, 2...,n), if GP i is greater than or equal to R i , the output is "1", and if it is less than, the output is "0". The experiment proves that in the obtained binary string of B i (i takes 1, 2, ... n), the proportion of "1" is the same as the value represented by GP i . This provides the basis for the application of probability calculation to the drawing of B-spline curve. If the value of GP i is 0.4, and N is 128 bits, then the number of "1" in B i is 128*0.4. Although the proportion of "1" in B i is the same, because the "1" in R i The position of " is random, so the position of "1" in the binary string in B i is also random. Similarly, t k and R i are shifted and compared (i=0, 1, 2..., n), and a random binary string group X i is obtained.
4、以Xi(i=1,2,3...n)对应位相加的结果S(i)=X1(i)+X2(i)+...+Xn(i),(i=1,2...N)作为多路选通控制端,以Bi(i=1,2...n)作为多路选通系数输入端,得到概率值组Y(i)=BS(i)(i=0,1,2...N)的步骤。4. S(i)=X 1 (i)+X 2 (i)+...+X n (i) is the result of adding the corresponding bits of X i (i=1,2,3...n) , (i=1,2...N) is used as the multiplex control terminal, and B i (i=1,2...n) is used as the multiplex gate coefficient input terminal to obtain the probability value group Y(i )= BS(i) (i=0,1,2...N) step.
如图4所示,概率计算中,使用到一加法器和一多路选通器,以Xi(i=1,2,3...n)作为加法器的输入端,各位对应相加得到S(1)S(2)...S(N),其中,S(i)=X1(i)+X2(i)+...+Xn(i)(i=1,2...N)。加法器输出端Si(i=1,2,3...N)作为多路选通器的控制端,Bi(i=1,2...n)作为多路选通器的系数输入端(数据输入端),多路选通器输出端输出Y(i)=BS(i)(i=0,1,2...N),得到输出值Y(1)Y(2)…Y(N)。BS(i)计算的真值表如下表所示:As shown in Figure 4, in the probability calculation, an adder and a multiplexer are used, and Xi ( i =1,2,3...n) is used as the input end of the adder, and each bit is added correspondingly Get S(1)S(2)...S(N), where S(i)=X 1 (i)+X 2 (i)+...+X n (i) (i=1, 2...N). The output terminal S i (i=1,2,3...N) of the adder is used as the control terminal of the multiplexer, and B i (i=1,2...n) is used as the coefficient of the multiplexer The input terminal (data input terminal), the output terminal of the multiplexer outputs Y(i)=B S(i) (i=0,1,2...N), and the output value Y(1)Y(2 )...Y(N). The truth table of B S(i) calculation is shown in the following table:
5、对概率值组进行随机解码,并对解码结果进行归一化逆运算,得到曲线的点坐标的步骤。通过各点坐标上的点,即可绘制出对应的B样条曲线。5. Perform random decoding on the probability value group, and perform normalized inverse operation on the decoding result to obtain the point coordinates of the curve. Through the points on the coordinates of each point, the corresponding B-spline curve can be drawn.
随机解码方法为:The random decoding method is:
其统计Y(1)Y(2)…Y(N)中“1”的个数在二进制串的比例,随机解码过程即为概率计算过程。再经过式(12)进行归一化逆运算,得到绘制点的位置坐标。It counts the ratio of the number of "1" in the binary string in Y(1)Y(2)...Y(N), and the random decoding process is the probability calculation process. Then carry out the normalized inverse operation through formula (12), and obtain the position coordinates of the drawing point.
DY=Y(max(A0,A1,A2....An)-min(A0,A1,A2.....An))+min(A0,A1,A2....An)(12),DY=Y(max(A 0 ,A 1 ,A 2 ....A n )-min(A 0 ,A 1 ,A 2 .....A n ))+min(A 0 ,A 1 , A 2 .... A n )(12),
DY为通过概率计算得到的与输入值tk和控制点组P0,P1,…Pn对应的输出坐标值。由DY的值可以直接绘制出B样条曲线。如图5所示,为本实施例方法所绘制的三次B样条曲线,所选用的伪随机码长度为512位。DY is the output coordinate value corresponding to the input value t k and the control point group P 0 , P 1 ,...P n obtained through probability calculation. The B-spline curve can be drawn directly from the value of DY. As shown in FIG. 5, it is the cubic B-spline curve drawn by the method of this embodiment, and the selected pseudo-random code length is 512 bits.
实施例三Embodiment Three
如图2所示,本实施例公开了一种基于概率计算的B样条曲线生成系统,其包括依次连接的坐标变换模块、归一化模块、二值化模块、概率计算模块和数据解码模块;其中:As shown in Figure 2, this embodiment discloses a B-spline curve generation system based on probability calculation, which includes a coordinate transformation module, a normalization module, a binarization module, a probability calculation module and a data decoding module connected in sequence ;in:
坐标变换模块用于对输入的控制点Pi(i=1、2、3……n)进行坐标变换,输出对应的控制点坐标Ai(i=1、2、3……n);The coordinate transformation module is used to perform coordinate transformation on the input control point P i (i=1, 2, 3...n), and output the corresponding control point coordinate A i (i=1, 2, 3...n);
归一化模块用于对接收的控制点坐标进行归一化处理,输出对应的映射值GPi(i=1、2、3……n);The normalization module is used to normalize the received control point coordinates, and output the corresponding mapping value GP i (i=1, 2, 3...n);
二值化模块用于接收归一化模块输出的数据,还接收输入的节点tk(k=1,2,3…n),二值化模块用于对接收的数据基于N位伪随机码进行二值化处理,输出对应的二进制串,对于接收的概率值GPi,则对应输出二进制串Bi(i=1、2、3……n),对于接收的节点tk,则对应输出二进制串Xi(i=1、2、3……n);The binarization module is used to receive the data output by the normalization module, and also receives the input node t k (k=1,2,3...n), and the binarization module is used to base the N-bit pseudo-random code on the received data Perform binarization processing and output the corresponding binary string. For the received probability value GP i , the corresponding output binary string B i (i=1, 2, 3...n), for the received node t k , the corresponding output Binary string X i (i=1, 2, 3...n);
概率计算模块以Xi(i=1,2,3......n)对应位相加的结果S(i)=X1(i)+X2(i)+...+Xn(i),(i=1,2......N)作为多路选通控制端,以Bi(i=、1、2……3)作n为多路选通系数输入端,输出概率值Y(i)=BS(i)(i=0,1,2...N);The probability calculation module adds the result S(i)=X 1 (i)+X 2 ( i )+...+X to the corresponding bits of Xi (i=1,2,3...n) n (i), (i=1, 2...N) is used as the multiplex control terminal, and B i (i=, 1, 2...3) is used as n as the multiplex coefficient input Terminal, output probability value Y(i)=B S(i) (i=0,1,2...N);
数据解码模块对接收的数据(概率计算模块输出的Y(i)(i=0,1,2...N))进行依次进行随机解码和归一化逆运算,得到绘制点的位置坐标。将计算出的各绘制点在图上标记出即达到B样条曲线。如图5所示,其中的虚线为依据本实施例的绘图系统在伪随机码长度取512位情况下所绘制出的三次B样条曲线。The data decoding module sequentially performs random decoding and normalized inverse operation on the received data (Y(i) (i=0,1,2...N) output by the probability calculation module) to obtain the position coordinates of the drawing points. Mark the calculated drawing points on the graph to achieve the B-spline curve. As shown in FIG. 5 , the dotted line is a cubic B-spline curve drawn by the drawing system according to this embodiment when the length of the pseudo-random code is 512 bits.
实施例四Embodiment Four
本实施例公开了一种基于概率计算的B样条曲线生成系统,如图2所示,其包括依次连接的坐标变换模块、归一化模块、二值化模块、概率计算模块和数据解码模块。This embodiment discloses a B-spline curve generation system based on probability calculation, as shown in Figure 2, which includes a coordinate transformation module, a normalization module, a binarization module, a probability calculation module and a data decoding module connected in sequence .
坐标变换模块包括一控制点输入口,用于对从控制点输入口输入的控制点组Pi(i=1、2、3……n)进行坐标变换,输出对应的控制点坐标组Ai(i=1、2、3……n)。坐标变换方法为:The coordinate transformation module includes a control point input port, which is used to perform coordinate transformation on the control point group P i (i=1, 2, 3...n) input from the control point input port, and output the corresponding control point coordinate group A i (i=1, 2, 3...n). The coordinate transformation method is:
B样条曲线的表达式为:The expression of B-spline curve is:
其中,P0,P1,…Pn为曲线的控制点组;n为B样条曲线的次数,如三次B样条曲线,n为3;t为0到1之间的小数值;k为其中的第k个点,k的取值范围为0,1,2,…n。将式(1)变换整理得到:Among them, P 0 , P 1 ,...P n is the control point group of the curve; n is the degree of B-spline curve, such as cubic B-spline curve, n is 3; t is a decimal value between 0 and 1; k is the kth point among them, and the value range of k is 0, 1, 2,...n. Transform formula (1) to get:
以三次B样条曲线为例,将B样条曲线表达式进行展开得到:Taking the cubic B-spline curve as an example, the expression of the B-spline curve is expanded to get:
P(t)=1/6(P0(-t3+3t2-3t+1)+P1(3t3-6t2+4)+P2(-3t3+3t2+3t+1)+P3t3) (2)P(t)=1/6(P 0 (-t 3 +3t 2 -3t+1)+P 1 (3t 3 -6t 2 +4)+P 2 (-3t 3 +3t 2 +3t+1) +P 3 t 3 ) (2)
由式(2)整理得到式(3):Formula (3) is obtained from formula (2):
P(t)=1/6((P0+4P1+P2)+(-3P0+3P2)t+(3P0-6P1+3P2)t2+(-P0+3P1-3P2+P3)t3)P(t)=1/6((P 0 +4P 1 +P 2 )+(-3P 0 +3P 2 )t+(3P 0 -6P 1 +3P 2 )t 2 +(-P 0 +3P 1 - 3P 2 +P 3 )t 3 )
(3),对应到控制点坐标,变换得到:(3), corresponding to the control point coordinates, the transformation is obtained:
其中: in:
A0=1/6(P0+4P1+P2) (5),A 0 =1/6(P 0 +4P 1 +P 2 ) (5),
A1=1/6(4P1+2P2) (6),A 1 =1/6(4P 1 +2P 2 ) (6),
A2=1/6(2P1+4P2) (7),A 2 =1/6(2P 1 +4P 2 ) (7),
A3=1/6(P1+4P2+P3) (8)。A 3 =1/6(P 1 +4P 2 +P 3 ) (8).
通过输入的控制点组P0-P3,即得到控制点坐标组A0-A3。Through the input control point group P 0 -P 3 , the control point coordinate group A 0 -A 3 is obtained.
归一化模块用于对接收的控制点坐标组进行归一化处理,输出对应的映射值组GPi(i=1、2、3……n)。The normalization module is used to normalize the received control point coordinate group, and output the corresponding mapping value group GP i (i=1, 2, 3...n).
归一化处理是将各控制点坐标组A0A1,A2....An的值分别映射到[0,1]之间,归一化映射转换方法如下:The normalization process is to map the values of each control point coordinate group A 0 A 1 , A 2 ....A n to [0,1] respectively, and the normalization mapping conversion method is as follows:
GPi=(Ai-min(A0,A1,A2.....An))/(max(A0,A1,A2....An)-min(A0,A1,A2.....An)),(i=0,1,2,...n) (9),GP i =(A i -min(A 0 ,A 1 ,A 2 .....A n ))/(max(A 0 ,A 1 ,A 2 ....A n )-min(A 0 ,A 1 ,A 2 .....A n )),(i=0,1,2,...n) (9),
min(.)是求最小值函数,max(.)是求最大值函数,n为控制点坐标组数。min(.) is the minimum value function, max(.) is the maximum value function, and n is the number of control point coordinate groups.
二值化模块还包括一节点输入口,二值化模块用于对接收的数据基于N位伪随机码组Ri(i=1,2,3...n)进行二值化处理,得到对应的二进制串。对于接收的概率值组GPi,则对应输出二进制串组Bi,对于接收的节点组tk,则对应输出二进制串组Xi,其中,i=1,2,3...n,k=1,2,3...n。The binarization module also includes a node input port, and the binarization module is used to perform binarization processing on the received data based on the N-bit pseudo-random code group R i (i=1, 2, 3...n), and obtain corresponding binary string. For the received probability value group GP i , it corresponds to the output binary string group B i , and for the received node group t k , it corresponds to the output binary string group X i , where i=1,2,3...n,k =1,2,3...n.
如图3所示,二值化模块包括一伪随机码生成单元和一比较器,伪随机码生成模块的输出端连接比较器的一输入端。在二值化处理时,待处理数据输入到比较器的另一输入端,比较器输出端输出对应的二进制串。As shown in FIG. 3 , the binarization module includes a pseudo-random code generating unit and a comparator, and an output terminal of the pseudo-random code generating module is connected to an input terminal of the comparator. During binarization processing, the data to be processed is input to the other input end of the comparator, and the output end of the comparator outputs a corresponding binary string.
在一个实施例中,伪随机码生成单元为移位寄存器,该移位寄存器的特征多项式为本原多项式:In one embodiment, the pseudo-random code generation unit is a shift register, and the characteristic polynomial of the shift register is a primitive polynomial:
本实施例中,本原多项式取10阶,即n取10,用110000101反馈移位产生N位随机码Ri,N分别取256位、512位、1024位和2048位进行实验。对应的绘制结果依次对应图6中的(a)、(b)、(c)、(d)。In this embodiment, the primitive polynomial is of order 10, that is, n is 10, and N-bit random code R i is generated by 110000101 feedback shift, and N is respectively 256 bits, 512 bits, 1024 bits and 2048 bits for experiments. The corresponding drawing results correspond to (a), (b), (c), and (d) in Figure 6 in turn.
概率计算模块以Xi(i=1,2,3…n)对应位相加的结果S(i)=X1(i)+X2(i)+...+Xn(i),(i=1,2…,N)作为多路选通控制端,以Bi(i=1、2、3……n)作为多路选通系数输入端,输出概率值组Y(i)=BS(i)(i=0,1,2,...N)。The probability calculation module adds the result S(i)=X 1 (i)+X 2 (i)+...+X n (i) to the corresponding bits of X i (i=1,2,3...n), (i=1,2...,N) as the multiplex control terminal, with B i (i=1,2,3...n) as the multiplex coefficient input terminal, output probability value group Y(i) = BS(i) (i=0, 1, 2, . . . N).
如图4所示,概率计算模块在一个实施例中,包括一加法器和一多路选通器,加法器输入端用于接收Xi(i=1,2,3…n),加法器输出端连接多路选通器的控制端,多路选通器的系数输入端用于接收Bi(i=1、2、3……n),多路选通器的输出端输出Y(i)=BS(i)(i=0,1,2,...N)。BS(i)计算的真值表如下表所示:As shown in Figure 4, in one embodiment, the probability calculation module includes an adder and a multiplexer, the input end of the adder is used to receive Xi ( i =1,2,3...n), the adder The output terminal is connected to the control terminal of the multiplexer, the coefficient input terminal of the multiplexer is used to receive B i (i=1, 2, 3...n), and the output terminal of the multiplexer outputs Y ( i) = B S(i) (i = 0, 1, 2, . . . N). The truth table of B S(i) calculation is shown in the following table:
数据解码模块对接收的数据(概率计算模块输出的Y(i)(i=0,1,2,...N))依次进行随机解码和归一化逆运算,得到绘制点的位置坐标。The data decoding module sequentially performs random decoding and normalized inverse operation on the received data (Y(i)(i=0,1,2,...N) output by the probability calculation module) to obtain the position coordinates of the drawing points.
随机解码方法为:The random decoding method is:
其统计Y(1)Y(2)…Y(N)中“1”的个数在二进制串的比例。再经过式(12)进行归一化逆运算,得到绘制点的位置坐标。It counts the ratio of the number of "1" in the binary string in Y(1)Y(2)...Y(N). Then carry out the normalized inverse operation through formula (12), and obtain the position coordinates of the drawing point.
DY=Y(max(A0,A1,A2....An)-min(A0,A1,A2.....An))+min(A0,A1,A2....An) (12),DY=Y(max(A 0 ,A 1 ,A 2 ....A n )-min(A 0 ,A 1 ,A 2 .....A n ))+min(A 0 ,A 1 , A 2 .... A n ) (12),
DY为通过概率计算得到的与输入值tk和控制点组P0,P1,…Pn对应的输出坐标值。由DY的值可以直接绘制出B样条曲线。如图5所示,为根据本实施例系统输出的位置坐标所绘制的三次B样条曲线,所选用的伪随机码长度为512位。其结果误差如下表:DY is the output coordinate value corresponding to the input value t k and the control point group P 0 , P 1 ,...P n obtained through probability calculation. The B-spline curve can be drawn directly from the value of DY. As shown in FIG. 5 , it is a cubic B-spline curve drawn according to the position coordinates output by the system of this embodiment, and the selected pseudo-random code has a length of 512 bits. The resulting error is as follows:
如图6所示,为根据本实施例系统输出的位置坐标所绘制的三次B样条曲线(其他多次B样条曲线绘制结果类似),曲线(a)、(b)、(c)、(d)依次对应于256位伪随机码、512位伪随机码、1024位伪随机码和2048位伪随机码。不同长度伪随机码所绘制的B样条曲线的误差如下表:As shown in Figure 6, for the cubic B-spline curve drawn according to the position coordinates output by the system of the present embodiment (other multiple B-spline curve drawing results are similar), curves (a), (b), (c), (d) corresponds to 256-bit pseudo-random code, 512-bit pseudo-random code, 1024-bit pseudo-random code and 2048-bit pseudo-random code in turn. The errors of B-spline curves drawn by pseudo-random codes of different lengths are as follows:
由上表可以看出,随着伪随机码长度的不断增大,差值不断缩小,其结果会越来越精确。It can be seen from the above table that as the length of the pseudo-random code increases and the difference decreases, the result will become more and more accurate.
本实施例系统的关键路径由加法器、比较器、多路选通器等组成。由图3可知,3次B样条曲线需要6个比较器,1个加法器和1个四选一多路选通器,4次B样条曲线需要8个比较器,1个加法器和1个五选一多路选通器,n次B样条曲线需要2n比较器,1个加法和1个n+1选一多路选通器。因此,随着B样条曲线次数的不断增加,概率计算方法所需硬件呈线性增加,计算复杂度低。The critical path of the system in this embodiment is composed of an adder, a comparator, a multiplexer, and the like. It can be seen from Figure 3 that the 3rd degree B-spline curve needs 6 comparators, 1 adder and 1 four-to-one multiplexer, and the 4th degree B-spline curve needs 8 comparators, 1 adder and 1 five-select one-to-one multiplexer, n-degree B-spline curve requires 2n comparators, one addition and one n+1 one-to-one multiplexer. Therefore, with the continuous increase of the B-spline curve degree, the hardware required by the probability calculation method increases linearly, and the calculation complexity is low.
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。The present invention is not limited to the foregoing specific embodiments. The present invention extends to any new feature or any new combination disclosed in this specification, and any new method or process step or any new combination disclosed.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910378599.5A CN110097613B (en) | 2019-05-08 | 2019-05-08 | A method and system for generating B-spline curves based on probability calculation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910378599.5A CN110097613B (en) | 2019-05-08 | 2019-05-08 | A method and system for generating B-spline curves based on probability calculation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110097613A true CN110097613A (en) | 2019-08-06 |
| CN110097613B CN110097613B (en) | 2023-08-25 |
Family
ID=67447265
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910378599.5A Active CN110097613B (en) | 2019-05-08 | 2019-05-08 | A method and system for generating B-spline curves based on probability calculation |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110097613B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111325815A (en) * | 2020-03-05 | 2020-06-23 | 成都威爱新经济技术研究院有限公司 | Editing method of multi-level B-spline curve |
| CN112836982A (en) * | 2021-02-22 | 2021-05-25 | 长春汇通光电技术有限公司 | Instruction list generation method and device and computer readable storage medium |
| CN115861547A (en) * | 2023-02-15 | 2023-03-28 | 南京铖联激光科技有限公司 | Model surface sample line generation method based on projection |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007328522A (en) * | 2006-06-07 | 2007-12-20 | Tokyo Electric Power Co Inc:The | Failure probability calculating apparatus, method, and program |
| CN102222353A (en) * | 2011-05-24 | 2011-10-19 | 南京信息工程大学 | Curve drawing method based on secondary B spline iteration |
| CN103646422A (en) * | 2013-12-19 | 2014-03-19 | 哈尔滨工程大学 | Genetic multilayer B-spline interpolation algorithm based three-dimensional display method |
| CN107317701A (en) * | 2017-06-13 | 2017-11-03 | 电子科技大学 | A kind of network flow abnormal detecting method based on empirical mode decomposition |
-
2019
- 2019-05-08 CN CN201910378599.5A patent/CN110097613B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007328522A (en) * | 2006-06-07 | 2007-12-20 | Tokyo Electric Power Co Inc:The | Failure probability calculating apparatus, method, and program |
| CN102222353A (en) * | 2011-05-24 | 2011-10-19 | 南京信息工程大学 | Curve drawing method based on secondary B spline iteration |
| CN103646422A (en) * | 2013-12-19 | 2014-03-19 | 哈尔滨工程大学 | Genetic multilayer B-spline interpolation algorithm based three-dimensional display method |
| CN107317701A (en) * | 2017-06-13 | 2017-11-03 | 电子科技大学 | A kind of network flow abnormal detecting method based on empirical mode decomposition |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111325815A (en) * | 2020-03-05 | 2020-06-23 | 成都威爱新经济技术研究院有限公司 | Editing method of multi-level B-spline curve |
| CN112836982A (en) * | 2021-02-22 | 2021-05-25 | 长春汇通光电技术有限公司 | Instruction list generation method and device and computer readable storage medium |
| CN112836982B (en) * | 2021-02-22 | 2023-06-23 | 长春汇通光电技术有限公司 | Instruction list generation method and device and computer readable storage medium |
| CN115861547A (en) * | 2023-02-15 | 2023-03-28 | 南京铖联激光科技有限公司 | Model surface sample line generation method based on projection |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110097613B (en) | 2023-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sarkis et al. | Fast polar decoders: Algorithm and implementation | |
| Alimohammad et al. | A compact and accurate Gaussian variate generator | |
| CN106685663B (en) | An Encryption Method and Circuit for Error Learning Problem in Ring Domain | |
| Hamood et al. | Fast walsh–hadamard–fourier transform algorithm | |
| CN110097613B (en) | A method and system for generating B-spline curves based on probability calculation | |
| CN104079382A (en) | Polar code decoder and polar code decoding method based on probability calculation | |
| CN112256236B (en) | FFT circuit based on approximate constant complex multiplier and implementation method | |
| CN103166903B (en) | The soft solution preprocess method of constellation mapping and soft solution method | |
| CN105356971A (en) | SCMA decoder based on probability calculation | |
| WO2021021876A1 (en) | Systems and methods for efficient clipping in crest factor reduction processes | |
| JP2005503725A (en) | Apparatus and method for calculating input softness value of channel decoder in data communication system | |
| CN102356554B (en) | Turbo code data interweaving process method and interweaving device used for interweaving turbo code data | |
| CN107133194B (en) | Configurable FFT/IFFT coprocessor based on hybrid radix | |
| CN108737022B (en) | Low-complexity SCMA decoding method and device based on quantum computation | |
| Roy et al. | Fast OMP algorithm and its FPGA implementation for compressed sensing‐based sparse signal acquisition systems | |
| Lachowicz et al. | Fast evaluation of the square root and other nonlinear functions in FPGA | |
| Chen et al. | A novel FIR filter based on stochastic logic | |
| CN108008665B (en) | Large-scale circular array real-time beam former based on single-chip FPGA and beam forming calculation method | |
| CN106774624A (en) | A kind of Parallel Implementation method of real-time white Gaussian noise hardware generator | |
| CN107743107A (en) | A method and device for blind detection of interference sources | |
| CN108833043B (en) | AWGN channel realization method and device based on Polar method improvement | |
| CN107450886B (en) | Method and device for generating Gaussian random signal simulating Gaussian white noise | |
| CN102566963A (en) | Method for processing data in field programmable gate array (FPGA) | |
| CN110096677B (en) | Quick calculation method and system for high-order derivative function based on probability calculation | |
| CN118276820A (en) | Improved CORDIC iterative calculation method, device, equipment, storage medium, and chip |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |