+

CN119299484A - A safety and environmental inspection system - Google Patents

A safety and environmental inspection system Download PDF

Info

Publication number
CN119299484A
CN119299484A CN202411423089.2A CN202411423089A CN119299484A CN 119299484 A CN119299484 A CN 119299484A CN 202411423089 A CN202411423089 A CN 202411423089A CN 119299484 A CN119299484 A CN 119299484A
Authority
CN
China
Prior art keywords
module
data
inspection
environmental
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202411423089.2A
Other languages
Chinese (zh)
Inventor
施文进
施芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wellong Etown International Logistics Co ltd
Original Assignee
Wellong Etown International Logistics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellong Etown International Logistics Co ltd filed Critical Wellong Etown International Logistics Co ltd
Priority to CN202411423089.2A priority Critical patent/CN119299484A/en
Publication of CN119299484A publication Critical patent/CN119299484A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种安环巡检系统,具体涉及安环巡检技术领域,其包括用于负责实时采集环境、设备和人员数据并安全传输的智能数据采集传输模块。本发明通过设计从数据采集、处理、分析,到巡检管理和用户反馈的全流程智能化管理,确保巡检过程的高效和安全。系统不仅能够实时监测和分析环境、设备和人员数据,自动识别和检测潜在风险,还能通过智能巡检机器人自主执行巡检任务,动态调整任务优先级,管理和记录异常事件。此外,系统通过跨平台用户界面和增强现实技术,为巡检人员提供便捷的操作界面和实时数据叠加显示,并通过24/7客户支持和在线培训模块提供全面的用户支持服务。

The present invention discloses a safety and environmental inspection system, which specifically relates to the field of safety and environmental inspection technology, and includes an intelligent data acquisition and transmission module for real-time collection of environmental, equipment and personnel data and secure transmission. The present invention ensures the efficiency and safety of the inspection process by designing full-process intelligent management from data collection, processing, analysis, to inspection management and user feedback. The system can not only monitor and analyze environmental, equipment and personnel data in real time, automatically identify and detect potential risks, but also autonomously perform inspection tasks through intelligent inspection robots, dynamically adjust task priorities, and manage and record abnormal events. In addition, the system provides inspection personnel with a convenient operation interface and real-time data overlay display through a cross-platform user interface and augmented reality technology, and provides comprehensive user support services through 24/7 customer support and online training modules.

Description

一种安环巡检系统A safety and environmental inspection system

技术领域Technical Field

本发明涉及安环巡检技术领域,尤其涉及一种安环巡检系统。The present invention relates to the technical field of safety and environmental inspection, and in particular to a safety and environmental inspection system.

背景技术Background Art

安全环境巡检系统是保障工业设施、公共场所和企业环境安全的重要手段,广泛应用于石油化工、电力、制造、交通等行业。传统的巡检方式通常依赖人工巡查,巡检人员需要按照预定路线检查设备和环境的安全状况,记录发现的问题并进行处理。这种方式不仅耗时费力,还容易出现疏漏和人为错误,难以实时、全面地掌握巡检区域的安全动态。随着物联网、大数据和人工智能技术的发展,智能化的安环巡检系统逐渐兴起,通过集成各种传感器、数据采集和分析技术,实现对环境和设备的实时监测和智能巡检,提高巡检效率和安全保障水平。The safety and environmental inspection system is an important means to ensure the safety of industrial facilities, public places and corporate environments. It is widely used in petrochemical, electric power, manufacturing, transportation and other industries. Traditional inspection methods usually rely on manual inspections. Inspectors need to check the safety status of equipment and environment according to the predetermined route, record the problems found and deal with them. This method is not only time-consuming and labor-intensive, but also prone to omissions and human errors, making it difficult to grasp the safety dynamics of the inspection area in real time and comprehensively. With the development of the Internet of Things, big data and artificial intelligence technologies, intelligent safety and environmental inspection systems are gradually emerging. By integrating various sensors, data collection and analysis technologies, real-time monitoring and intelligent inspection of the environment and equipment can be achieved, improving inspection efficiency and safety assurance levels.

现有的安环巡检系统在实际应用中存在一些缺陷。首先,传统巡检系统的数据采集和处理能力有限,难以全面、实时地监测和分析环境、设备和人员数据,导致潜在风险无法及时识别和处理。其次,现有系统的巡检任务通常依赖人工执行,巡检人员的工作负担重,巡检效率低,且在复杂和危险环境中存在安全隐患。此外,传统巡检系统的用户界面操作繁琐,缺乏直观的实时数据展示和交互功能,影响巡检人员的工作效率和准确性。同时,巡检数据的记录和管理分散,难以形成综合性报告,为决策提供有效支持。因此我们提供一种安环巡检系统。The existing safety and environmental inspection system has some defects in practical application. First, the data collection and processing capabilities of the traditional inspection system are limited, making it difficult to comprehensively and in real time monitor and analyze environmental, equipment and personnel data, resulting in the inability to identify and handle potential risks in a timely manner. Secondly, the inspection tasks of the existing system usually rely on manual execution, the workload of the inspectors is heavy, the inspection efficiency is low, and there are safety hazards in complex and dangerous environments. In addition, the user interface of the traditional inspection system is cumbersome to operate, lacks intuitive real-time data display and interactive functions, and affects the work efficiency and accuracy of the inspectors. At the same time, the recording and management of inspection data are scattered, making it difficult to form a comprehensive report to provide effective support for decision-making. Therefore, we provide a safety and environmental inspection system.

发明内容Summary of the invention

本发明的目的是解决现有技术中存在的缺点,而提出的一种安环巡检系统。The purpose of the present invention is to solve the shortcomings in the prior art and to propose a safety and environmental inspection system.

为了实现上述目的,本发明采用了如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种安环巡检系统,包括用于负责实时采集环境、设备和人员数据并安全传输的智能数据采集传输模块、用于执行数据清洗、标准化、特征提取及深度分析与建模的高级数据处理分析模块、用于进行巡检路径规划、任务调度与异常处理的智能巡检管理模块以及用于提供跨平台的用户界面和实时数据反馈的多平台用户反馈模块;A safety and environmental inspection system, comprising an intelligent data collection and transmission module for real-time collection of environmental, equipment and personnel data and secure transmission, an advanced data processing and analysis module for data cleaning, standardization, feature extraction, in-depth analysis and modeling, an intelligent inspection management module for inspection route planning, task scheduling and exception handling, and a multi-platform user feedback module for providing a cross-platform user interface and real-time data feedback;

所述智能数据采集传输模块包括用于采用自适应传感器网络来智能调整传感器布置和采集频率的传感器网络优化模块、用于整合来自卫星、无人机、移动设备等多源数据的多源数据融合模块以及用于在传感器附近部署边缘计算设备进行初步数据处理和过滤的边缘计算模块;The intelligent data acquisition and transmission module includes a sensor network optimization module for intelligently adjusting sensor layout and acquisition frequency using an adaptive sensor network, a multi-source data fusion module for integrating multi-source data from satellites, drones, mobile devices, etc., and an edge computing module for deploying edge computing devices near sensors for preliminary data processing and filtering;

所述高级数据处理分析模块包括用于利用云计算平台进行大规模数据处理和存储的云存储与计算模块、用于应用先进的AI和深度学习技术来自动识别复杂的环境模式和潜在风险的人工智能学习模块以及用于通过高级数据可视化工具,生成动态的、交互式的巡检报告和环境评估图表的可视化报告生成模块;The advanced data processing and analysis module includes a cloud storage and computing module for utilizing a cloud computing platform for large-scale data processing and storage, an artificial intelligence learning module for applying advanced AI and deep learning techniques to automatically identify complex environmental patterns and potential risks, and a visual report generation module for generating dynamic, interactive inspection reports and environmental assessment charts through advanced data visualization tools;

所述智能巡检管理模块包括用于引入自动巡检机器人,能够自主导航和执行巡检任务的自动巡检机器模块、用于基于实时数据和分析结果智能调整巡检任务的优先级和分配的动态任务分配模块以及用于建立全面的异常事件管理系统的异常事件管理模块;The intelligent inspection management module includes an automatic inspection machine module for introducing automatic inspection robots that can autonomously navigate and perform inspection tasks, a dynamic task allocation module for intelligently adjusting the priority and allocation of inspection tasks based on real-time data and analysis results, and an abnormal event management module for establishing a comprehensive abnormal event management system;

所述多平台用户反馈模块包括用于开发适用于PC、移动设备、平板电脑等多平台用户界面的跨平台用户界面模块、用于引入AR技术为巡检人员提供实时的环境数据叠加显示和导航指导的增强现实支撑模块以及用于集成在线培训模块和24/7客户支持的用户培训与支撑模块。The multi-platform user feedback module includes a cross-platform user interface module for developing multi-platform user interfaces suitable for PCs, mobile devices, tablets, etc., an augmented reality support module for introducing AR technology to provide patrol personnel with real-time environmental data overlay display and navigation guidance, and a user training and support module for integrating online training modules and 24/7 customer support.

本发明进一步设置为:所述人工智能学习模块包括用于通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并与环境数据进行融合,评估安全风险的情绪驱动安全评估模块、用于利用量子通信技术确保数据在传输过程中的安全性和完整性的量子增强传感融合模块、用于通过脑机接口技术实现巡检人员与系统直接互动的生物反馈优化模块、用于利用虚拟现实技术创建逼真的巡检场景结合深度学习算法的沉浸式虚拟训练模块、用于利用AI技术自动检测和修复网络故障的自修复数据网络模块、用于基于实时数据和历史模式,动态调整风险评估模型,提供精准异常判定和预警的智能异常判定模块以及用于将多模态数据分析和自适应风险评估的结果进行整合生成综合性报告的综合报告生成模块;The present invention is further configured as follows: the artificial intelligence learning module includes an emotion-driven safety assessment module for analyzing workplace sound, video and social media data, monitoring the emotional state of the group in real time, and integrating it with environmental data to assess safety risks, a quantum-enhanced sensor fusion module for ensuring the security and integrity of data during transmission using quantum communication technology, a biofeedback optimization module for enabling direct interaction between patrol personnel and the system through brain-computer interface technology, an immersive virtual training module for creating realistic patrol scenes combined with deep learning algorithms using virtual reality technology, a self-repairing data network module for automatically detecting and repairing network faults using AI technology, an intelligent anomaly determination module for dynamically adjusting risk assessment models based on real-time data and historical patterns, and providing accurate anomaly determination and early warning, and a comprehensive report generation module for integrating the results of multimodal data analysis and adaptive risk assessment to generate a comprehensive report;

所述智能异常判定模块包括整合并分析来自不同传感器和数据源的多样化数据,提供综合性的异常检测和情境理解的多模态分析分支和动态调整和优化风险评估模型,基于实时数据和历史模式,提供精确风险预测和决策支持的自适应评估分支;The intelligent anomaly determination module includes a multimodal analysis branch that integrates and analyzes diverse data from different sensors and data sources to provide comprehensive anomaly detection and situational understanding, and an adaptive assessment branch that dynamically adjusts and optimizes the risk assessment model to provide accurate risk prediction and decision support based on real-time data and historical patterns;

所述多模态分析分支包括用于利用高级算法从情绪感知数据、量子传感数据和生物监测数据进行清洗、标准化处理并提取关键特征的数据融合预处理模块、用于开发和训练结合多种数据类型的神经网络模型通过集成学习技术,将多个模型的输出结果进行整合的深度学习模型训练模块以及用于建立实时数据流处理框架,能够在数据到达时即时进行分析和判定且自动标记检测到的异常事件并记录详细信息以供后续分析和处理的实时异常检测模块;The multimodal analysis branch includes a data fusion preprocessing module for using advanced algorithms to clean, standardize and extract key features from emotion perception data, quantum sensing data and biological monitoring data, a deep learning model training module for developing and training neural network models that combine multiple data types and integrate the output results of multiple models through ensemble learning technology, and a real-time anomaly detection module for establishing a real-time data stream processing framework that can analyze and judge data in real time when it arrives, automatically mark detected abnormal events, and record detailed information for subsequent analysis and processing;

所述自适应评估分支包括用于利用历史数据建立基线风险模型根据当前环境和情境数据,动态调整风险模型参数的动态风险模型构建模块、用于通过模拟不同情景,预测可能的风险发展趋势并结合专家系统,利用专家知识和规则进一步增强风险评估准确性的智能决策支撑模块以及用于建立自动反馈机制,根据实际检测到的异常和风险事件,调整和优化模型参数引入自学习算法,使系统能够从每次的风险评估和异常检测中学习和改进的反馈与自学习模块。The adaptive assessment branch includes a dynamic risk model construction module for establishing a baseline risk model using historical data and dynamically adjusting risk model parameters according to current environment and situational data; an intelligent decision support module for predicting possible risk development trends by simulating different scenarios and combining expert systems to further enhance the accuracy of risk assessment using expert knowledge and rules; and a feedback and self-learning module for establishing an automatic feedback mechanism, adjusting and optimizing model parameters according to actual detected anomalies and risk events, and introducing a self-learning algorithm, so that the system can learn and improve from each risk assessment and anomaly detection.

本发明进一步设置为:所述情绪驱动安全评估模块通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并将这些数据传输给量子增强传感融合模块;所述量子增强传感融合模块确保数据在传输过程中的安全性和完整性,并将传输后的数据提供给生物反馈优化模块;所述生物反馈优化模块收集巡检人员的生物反馈数据,并将这些数据传输给沉浸式虚拟训练模块;所述沉浸式虚拟训练模块利用虚拟现实技术和深度学习算法进行训练,并依赖自修复数据网络模块确保训练环境的数据传输稳定性和网络的可靠性;所述自修复数据网络模块确保系统中各模块间的数据传输稳定和网络故障的自动检测与修复,为智能异常判定模块提供稳定的数据输入源;所述智能异常判定模块通过分析和检测异常情况,将结果传输给综合报告生成模块。The present invention is further configured as follows: the emotion-driven safety assessment module monitors the emotional state of the group in real time by analyzing the sound, video and social media data in the workplace, and transmits the data to the quantum enhanced sensing fusion module; the quantum enhanced sensing fusion module ensures the security and integrity of the data during the transmission process, and provides the transmitted data to the biofeedback optimization module; the biofeedback optimization module collects the biofeedback data of the patrol personnel and transmits the data to the immersive virtual training module; the immersive virtual training module uses virtual reality technology and deep learning algorithms for training, and relies on the self-repairing data network module to ensure the data transmission stability and network reliability of the training environment; the self-repairing data network module ensures the data transmission stability between modules in the system and the automatic detection and repair of network faults, and provides a stable data input source for the intelligent abnormality determination module; the intelligent abnormality determination module transmits the results to the comprehensive report generation module by analyzing and detecting abnormal conditions.

本发明进一步设置为:所述传感器网络优化模块通过自适应传感器网络智能调整传感器布置和采集频率,并将优化后的数据传输给多源数据融合模块;所述多源数据融合模块整合来自卫星、无人机、移动设备等多源数据,并将整合后的数据传输给边缘计算模块;所述边缘计算模块在传感器附近部署边缘计算设备,对数据进行初步处理和过滤,并将处理后的数据传输给高级数据处理分析模块的云存储与计算模块。The present invention is further configured as follows: the sensor network optimization module intelligently adjusts the sensor layout and acquisition frequency through an adaptive sensor network, and transmits the optimized data to a multi-source data fusion module; the multi-source data fusion module integrates multi-source data from satellites, drones, mobile devices, etc., and transmits the integrated data to an edge computing module; the edge computing module deploys edge computing devices near the sensors, performs preliminary processing and filtering on the data, and transmits the processed data to a cloud storage and computing module of an advanced data processing and analysis module.

本发明进一步设置为:所述云存储与计算模块利用云计算平台进行大规模数据处理和存储,并将处理和存储后的数据提供给人工智能学习模块;所述人工智能学习模块应用AI和深度学习技术自动识别复杂的环境模式和潜在风险,并将分析结果传输给可视化报告生成模块。The present invention is further configured as follows: the cloud storage and computing module utilizes the cloud computing platform to perform large-scale data processing and storage, and provides the processed and stored data to the artificial intelligence learning module; the artificial intelligence learning module applies AI and deep learning technology to automatically identify complex environmental patterns and potential risks, and transmits the analysis results to the visualization report generation module.

本发明进一步设置为:所述自动巡检机器模块引入自动巡检机器人自主导航和执行巡检任务,并将巡检数据和任务执行情况传输给动态任务分配模块;所述动态任务分配模块基于实时数据和分析结果智能调整巡检任务的优先级和分配,并将更新后的任务信息传输给异常事件管理模块;所述异常事件管理模块接收和处理来自动态任务分配模块的更新任务信息,管理和记录异常事件,并将相关信息反馈给多平台用户反馈模块的用户培训与支撑模块。The present invention is further configured as follows: the automatic inspection machine module introduces an automatic inspection robot to autonomously navigate and execute inspection tasks, and transmits the inspection data and task execution status to the dynamic task allocation module; the dynamic task allocation module intelligently adjusts the priority and allocation of inspection tasks based on real-time data and analysis results, and transmits the updated task information to the abnormal event management module; the abnormal event management module receives and processes the updated task information from the dynamic task allocation module, manages and records abnormal events, and feeds back relevant information to the user training and support module of the multi-platform user feedback module.

本发明进一步设置为:所述跨平台用户界面模块开发适用于PC、移动设备、平板电脑等多平台的用户界面,并将这些界面集成到增强现实支撑模块;所述增强现实支撑模块利用AR技术为巡检人员提供实时的环境数据叠加显示和导航指导,并将用户交互数据和体验信息传输给用户培训与支撑模块;所述用户培训与支撑模块集成在线培训模块和24/7客户支持,接收从增强现实支撑模块传输的用户交互数据,提供相应的培训和支持服务,并将用户反馈信息传输回相关模块优化系统性能。The present invention is further configured as follows: the cross-platform user interface module develops user interfaces suitable for multiple platforms such as PCs, mobile devices, and tablet computers, and integrates these interfaces into the augmented reality support module; the augmented reality support module uses AR technology to provide patrol personnel with real-time environmental data overlay display and navigation guidance, and transmits user interaction data and experience information to the user training and support module; the user training and support module integrates an online training module and 24/7 customer support, receives user interaction data transmitted from the augmented reality support module, provides corresponding training and support services, and transmits user feedback information back to relevant modules to optimize system performance.

本发明的有益效果为:The beneficial effects of the present invention are:

本发明从数据采集、处理、分析,到巡检管理和用户反馈的全流程智能化管理,确保巡检过程的高效和安全,系统不仅能够实时监测和分析环境、设备和人员数据,自动识别和检测潜在风险,还能通过智能巡检机器人自主执行巡检任务,动态调整任务优先级,管理和记录异常事件,此外,系统通过跨平台用户界面和增强现实技术,为巡检人员提供便捷的操作界面和实时数据叠加显示,并通过24/7客户支持和在线培训模块提供全面的用户支持服务,最终,系统通过综合报告生成模块整合多模态数据分析和自适应风险评估的结果,生成综合性报告,以供决策使用,从而实现智能化的巡检管理和高效的安全保障。The present invention ensures the efficiency and safety of the inspection process through intelligent management of the entire process from data collection, processing, analysis to inspection management and user feedback. The system can not only monitor and analyze environmental, equipment and personnel data in real time, automatically identify and detect potential risks, but also autonomously perform inspection tasks through intelligent inspection robots, dynamically adjust task priorities, manage and record abnormal events. In addition, the system provides inspection personnel with a convenient operation interface and real-time data overlay display through a cross-platform user interface and augmented reality technology, and provides comprehensive user support services through 24/7 customer support and online training modules. Finally, the system integrates the results of multimodal data analysis and adaptive risk assessment through a comprehensive report generation module to generate a comprehensive report for decision-making, thereby realizing intelligent inspection management and efficient safety assurance.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明中的系统示意图。FIG. 1 is a schematic diagram of a system in the present invention.

图2为本发明中的人工智能学习模块部分流程示意图。FIG. 2 is a partial flow chart of the artificial intelligence learning module in the present invention.

具体实施方式DETAILED DESCRIPTION

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, rather than all the embodiments.

实施例1Example 1

如图1所示,一种安环巡检系统,包括用于负责实时采集环境、设备和人员数据并安全传输的智能数据采集传输模块、用于执行数据清洗、标准化、特征提取及深度分析与建模的高级数据处理分析模块、用于进行巡检路径规划、任务调度与异常处理的智能巡检管理模块以及用于提供跨平台的用户界面和实时数据反馈的多平台用户反馈模块;As shown in FIG1 , a safety and environmental inspection system includes an intelligent data collection and transmission module for real-time collection of environmental, equipment and personnel data and secure transmission, an advanced data processing and analysis module for data cleaning, standardization, feature extraction, in-depth analysis and modeling, an intelligent inspection management module for inspection route planning, task scheduling and exception handling, and a multi-platform user feedback module for providing a cross-platform user interface and real-time data feedback;

所述智能数据采集传输模块包括用于采用自适应传感器网络来智能调整传感器布置和采集频率的传感器网络优化模块、用于整合来自卫星、无人机、移动设备等多源数据的多源数据融合模块以及用于在传感器附近部署边缘计算设备进行初步数据处理和过滤的边缘计算模块;The intelligent data acquisition and transmission module includes a sensor network optimization module for intelligently adjusting sensor layout and acquisition frequency using an adaptive sensor network, a multi-source data fusion module for integrating multi-source data from satellites, drones, mobile devices, etc., and an edge computing module for deploying edge computing devices near sensors for preliminary data processing and filtering;

所述高级数据处理分析模块包括用于利用云计算平台进行大规模数据处理和存储的云存储与计算模块、用于应用先进的AI和深度学习技术来自动识别复杂的环境模式和潜在风险的人工智能学习模块以及用于通过高级数据可视化工具,生成动态的、交互式的巡检报告和环境评估图表的可视化报告生成模块;The advanced data processing and analysis module includes a cloud storage and computing module for utilizing a cloud computing platform for large-scale data processing and storage, an artificial intelligence learning module for applying advanced AI and deep learning techniques to automatically identify complex environmental patterns and potential risks, and a visual report generation module for generating dynamic, interactive inspection reports and environmental assessment charts through advanced data visualization tools;

所述智能巡检管理模块包括用于引入自动巡检机器人,能够自主导航和执行巡检任务的自动巡检机器模块、用于基于实时数据和分析结果智能调整巡检任务的优先级和分配的动态任务分配模块以及用于建立全面的异常事件管理系统的异常事件管理模块;The intelligent inspection management module includes an automatic inspection machine module for introducing automatic inspection robots that can autonomously navigate and perform inspection tasks, a dynamic task allocation module for intelligently adjusting the priority and allocation of inspection tasks based on real-time data and analysis results, and an abnormal event management module for establishing a comprehensive abnormal event management system;

所述多平台用户反馈模块包括用于开发适用于PC、移动设备、平板电脑等多平台用户界面的跨平台用户界面模块、用于引入AR技术为巡检人员提供实时的环境数据叠加显示和导航指导的增强现实支撑模块以及用于集成在线培训模块和24/7客户支持的用户培训与支撑模块;The multi-platform user feedback module includes a cross-platform user interface module for developing multi-platform user interfaces for PCs, mobile devices, tablets, etc., an augmented reality support module for introducing AR technology to provide real-time environmental data overlay display and navigation guidance for inspection personnel, and a user training and support module for integrating online training modules and 24/7 customer support;

所述传感器网络优化模块通过自适应传感器网络智能调整传感器布置和采集频率,并将优化后的数据传输给多源数据融合模块;所述多源数据融合模块整合来自卫星、无人机、移动设备等多源数据,并将整合后的数据传输给边缘计算模块;所述边缘计算模块在传感器附近部署边缘计算设备,对数据进行初步处理和过滤,并将处理后的数据传输给高级数据处理分析模块的云存储与计算模块;The sensor network optimization module intelligently adjusts the sensor layout and acquisition frequency through the adaptive sensor network, and transmits the optimized data to the multi-source data fusion module; the multi-source data fusion module integrates multi-source data from satellites, drones, mobile devices, etc., and transmits the integrated data to the edge computing module; the edge computing module deploys edge computing devices near the sensors, performs preliminary processing and filtering on the data, and transmits the processed data to the cloud storage and computing module of the advanced data processing and analysis module;

所述云存储与计算模块利用云计算平台进行大规模数据处理和存储,并将处理和存储后的数据提供给人工智能学习模块;所述人工智能学习模块应用AI和深度学习技术自动识别复杂的环境模式和潜在风险,并将分析结果传输给可视化报告生成模块;The cloud storage and computing module uses the cloud computing platform to process and store large-scale data, and provides the processed and stored data to the artificial intelligence learning module; the artificial intelligence learning module uses AI and deep learning technology to automatically identify complex environmental patterns and potential risks, and transmits the analysis results to the visualization report generation module;

所述自动巡检机器模块引入自动巡检机器人自主导航和执行巡检任务,并将巡检数据和任务执行情况传输给动态任务分配模块;所述动态任务分配模块基于实时数据和分析结果智能调整巡检任务的优先级和分配,并将更新后的任务信息传输给异常事件管理模块;所述异常事件管理模块接收和处理来自动态任务分配模块的更新任务信息,管理和记录异常事件,并将相关信息反馈给多平台用户反馈模块的用户培训与支撑模块;The automatic inspection machine module introduces an automatic inspection robot to autonomously navigate and perform inspection tasks, and transmits inspection data and task execution status to the dynamic task allocation module; the dynamic task allocation module intelligently adjusts the priority and allocation of inspection tasks based on real-time data and analysis results, and transmits the updated task information to the abnormal event management module; the abnormal event management module receives and processes the updated task information from the dynamic task allocation module, manages and records abnormal events, and feeds back relevant information to the user training and support module of the multi-platform user feedback module;

所述跨平台用户界面模块开发适用于PC、移动设备、平板电脑等多平台的用户界面,并将这些界面集成到增强现实支撑模块;所述增强现实支撑模块利用AR技术为巡检人员提供实时的环境数据叠加显示和导航指导,并将用户交互数据和体验信息传输给用户培训与支撑模块;所述用户培训与支撑模块集成在线培训模块和24/7客户支持,接收从增强现实支撑模块传输的用户交互数据,提供相应的培训和支持服务,并将用户反馈信息传输回相关模块优化系统性能。The cross-platform user interface module develops user interfaces suitable for multiple platforms such as PCs, mobile devices, and tablet computers, and integrates these interfaces into the augmented reality support module; the augmented reality support module uses AR technology to provide patrol personnel with real-time environmental data overlay display and navigation guidance, and transmits user interaction data and experience information to the user training and support module; the user training and support module integrates online training modules and 24/7 customer support, receives user interaction data transmitted from the augmented reality support module, provides corresponding training and support services, and transmits user feedback information back to relevant modules to optimize system performance.

上述实施例中,首先,智能数据采集传输模块通过传感器网络优化模块智能调整传感器布置和采集频率,将优化后的数据传输给多源数据融合模块,整合多源数据并传输至边缘计算模块进行初步处理,随后传送至高级数据处理分析模块的云存储与计算模块进行大规模数据处理和存储。处理后的数据由人工智能学习模块应用AI和深度学习技术自动识别复杂的环境模式和潜在风险,并将分析结果传输给可视化报告生成模块,生成动态、交互式的巡检报告和环境评估图表。智能巡检管理模块引入自动巡检机器人自主导航和执行巡检任务,将巡检数据和任务执行情况传输至动态任务分配模块,基于实时数据和分析结果智能调整巡检任务的优先级和分配,并将更新后的任务信息传输至异常事件管理模块,管理和记录异常事件,反馈给多平台用户反馈模块的用户培训与支撑模块。多平台用户反馈模块通过跨平台用户界面模块开发适用于各种设备的用户界面,并将其集成到增强现实支撑模块,利用AR技术为巡检人员提供实时数据叠加显示和导航指导,用户交互数据和体验信息则传输至用户培训与支撑模块,提供在线培训和24/7客户支持,并将用户反馈信息传回相关模块以优化系统性能。通过这些模块的协同工作,本安环巡检系统实现了实时数据采集、智能分析处理、自动化巡检管理和多平台用户反馈的全面整合,确保巡检过程的高效和安全。In the above embodiment, first, the intelligent data acquisition and transmission module intelligently adjusts the sensor layout and acquisition frequency through the sensor network optimization module, transmits the optimized data to the multi-source data fusion module, integrates the multi-source data and transmits it to the edge computing module for preliminary processing, and then transmits it to the cloud storage and computing module of the advanced data processing and analysis module for large-scale data processing and storage. The processed data is automatically identified by the artificial intelligence learning module using AI and deep learning technology for complex environmental patterns and potential risks, and the analysis results are transmitted to the visual report generation module to generate dynamic, interactive inspection reports and environmental assessment charts. The intelligent inspection management module introduces automatic inspection robots to autonomously navigate and perform inspection tasks, transmits inspection data and task execution status to the dynamic task allocation module, intelligently adjusts the priority and allocation of inspection tasks based on real-time data and analysis results, and transmits the updated task information to the abnormal event management module to manage and record abnormal events, and feedback to the user training and support module of the multi-platform user feedback module. The multi-platform user feedback module develops user interfaces suitable for various devices through the cross-platform user interface module, and integrates it into the augmented reality support module, using AR technology to provide real-time data overlay display and navigation guidance for inspection personnel, and user interaction data and experience information are transmitted to the user training and support module, providing online training and 24/7 customer support, and transmitting user feedback information back to related modules to optimize system performance. Through the collaborative work of these modules, the intrinsically safe environmental inspection system realizes the comprehensive integration of real-time data collection, intelligent analysis and processing, automated inspection management and multi-platform user feedback, ensuring the efficiency and safety of the inspection process.

其中,所述云存储与计算模块中数据储存可以利用云储存计算相关代码如下:The data storage in the cloud storage and computing module can utilize cloud storage computing related codes as follows:

其中,所述云存储与计算模块中大规模数据处理与分析可以利用云计算平台进行大规模数据处理和分析,采用MapReduce、Spark等大数据处理框架。相关代码如下:Among them, the large-scale data processing and analysis in the cloud storage and computing module can use the cloud computing platform to perform large-scale data processing and analysis, using big data processing frameworks such as MapReduce and Spark. The relevant code is as follows:

实施例2Example 2

如图1-2所示,一种安环巡检系统,所述人工智能学习模块包括用于通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并与环境数据进行融合,评估安全风险的情绪驱动安全评估模块、用于利用量子通信技术确保数据在传输过程中的安全性和完整性的量子增强传感融合模块、用于通过脑机接口技术实现巡检人员与系统直接互动的生物反馈优化模块、用于利用虚拟现实技术创建逼真的巡检场景结合深度学习算法的沉浸式虚拟训练模块、用于利用AI技术自动检测和修复网络故障的自修复数据网络模块、用于基于实时数据和历史模式,动态调整风险评估模型,提供精准异常判定和预警的智能异常判定模块以及用于将多模态数据分析和自适应风险评估的结果进行整合生成综合性报告的综合报告生成模块;As shown in FIG1-2, a safety and environmental inspection system, the artificial intelligence learning module includes an emotion-driven safety assessment module for analyzing workplace sound, video and social media data, monitoring group emotional states in real time, and integrating with environmental data to assess safety risks, a quantum-enhanced sensor fusion module for using quantum communication technology to ensure the security and integrity of data during transmission, a biofeedback optimization module for enabling direct interaction between inspectors and the system through brain-computer interface technology, an immersive virtual training module for using virtual reality technology to create realistic inspection scenarios combined with deep learning algorithms, a self-repairing data network module for automatically detecting and repairing network faults using AI technology, an intelligent anomaly determination module for dynamically adjusting risk assessment models based on real-time data and historical patterns to provide accurate anomaly determination and early warning, and a comprehensive report generation module for integrating the results of multimodal data analysis and adaptive risk assessment to generate a comprehensive report;

所述智能异常判定模块包括整合并分析来自不同传感器和数据源的多样化数据,提供综合性的异常检测和情境理解的多模态分析分支和动态调整和优化风险评估模型,基于实时数据和历史模式,提供精确风险预测和决策支持的自适应评估分支;The intelligent anomaly determination module includes a multimodal analysis branch that integrates and analyzes diverse data from different sensors and data sources to provide comprehensive anomaly detection and situational understanding, and an adaptive assessment branch that dynamically adjusts and optimizes the risk assessment model to provide accurate risk prediction and decision support based on real-time data and historical patterns;

所述多模态分析分支包括用于利用高级算法从情绪感知数据、量子传感数据和生物监测数据进行清洗、标准化处理并提取关键特征的数据融合预处理模块、用于开发和训练结合多种数据类型的神经网络模型通过集成学习技术,将多个模型的输出结果进行整合的深度学习模型训练模块以及用于建立实时数据流处理框架,能够在数据到达时即时进行分析和判定且自动标记检测到的异常事件并记录详细信息以供后续分析和处理的实时异常检测模块;The multimodal analysis branch includes a data fusion preprocessing module for using advanced algorithms to clean, standardize and extract key features from emotion perception data, quantum sensing data and biological monitoring data, a deep learning model training module for developing and training neural network models that combine multiple data types and integrate the output results of multiple models through ensemble learning technology, and a real-time anomaly detection module for establishing a real-time data stream processing framework that can analyze and judge data in real time when it arrives, automatically mark detected abnormal events, and record detailed information for subsequent analysis and processing;

所述自适应评估分支包括用于利用历史数据建立基线风险模型根据当前环境和情境数据,动态调整风险模型参数的动态风险模型构建模块、用于通过模拟不同情景,预测可能的风险发展趋势并结合专家系统,利用专家知识和规则进一步增强风险评估准确性的智能决策支撑模块以及用于建立自动反馈机制,根据实际检测到的异常和风险事件,调整和优化模型参数引入自学习算法,使系统能够从每次的风险评估和异常检测中学习和改进的反馈与自学习模块;The adaptive assessment branch includes a dynamic risk model building module for using historical data to establish a baseline risk model and dynamically adjust the risk model parameters according to the current environment and situational data, an intelligent decision support module for predicting possible risk development trends by simulating different scenarios and combining expert systems to further enhance the accuracy of risk assessment by using expert knowledge and rules, and a feedback and self-learning module for establishing an automatic feedback mechanism to adjust and optimize model parameters according to the actual detected anomalies and risk events, and introduce a self-learning algorithm to enable the system to learn and improve from each risk assessment and anomaly detection;

所述情绪驱动安全评估模块通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并将这些数据传输给量子增强传感融合模块;所述量子增强传感融合模块确保数据在传输过程中的安全性和完整性,并将传输后的数据提供给生物反馈优化模块;所述生物反馈优化模块收集巡检人员的生物反馈数据,并将这些数据传输给沉浸式虚拟训练模块;所述沉浸式虚拟训练模块利用虚拟现实技术和深度学习算法进行训练,并依赖自修复数据网络模块确保训练环境的数据传输稳定性和网络的可靠性;所述自修复数据网络模块确保系统中各模块间的数据传输稳定和网络故障的自动检测与修复,为智能异常判定模块提供稳定的数据输入源;所述智能异常判定模块通过分析和检测异常情况,将结果传输给综合报告生成模块。The emotion-driven safety assessment module monitors the emotional state of the group in real time by analyzing the sound, video and social media data in the workplace, and transmits the data to the quantum enhanced sensor fusion module; the quantum enhanced sensor fusion module ensures the security and integrity of the data during transmission, and provides the transmitted data to the biofeedback optimization module; the biofeedback optimization module collects the biofeedback data of the patrol personnel and transmits the data to the immersive virtual training module; the immersive virtual training module uses virtual reality technology and deep learning algorithms for training, and relies on the self-repairing data network module to ensure the data transmission stability and network reliability of the training environment; the self-repairing data network module ensures the stability of data transmission between modules in the system and the automatic detection and repair of network faults, providing a stable data input source for the intelligent anomaly determination module; the intelligent anomaly determination module transmits the results to the comprehensive report generation module by analyzing and detecting abnormal situations.

上述实施例中,首先,情绪驱动安全评估模块通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并将这些数据传输给量子增强传感融合模块,确保数据在传输过程中的安全性和完整性。然后,量子增强传感融合模块将传输后的数据提供给生物反馈优化模块,后者通过脑机接口技术收集巡检人员的生物反馈数据,并将其传输给沉浸式虚拟训练模块。沉浸式虚拟训练模块利用虚拟现实技术和深度学习算法创建逼真的巡检场景并进行训练,同时依赖自修复数据网络模块来确保训练环境的数据传输稳定性和网络的可靠性。In the above embodiment, first, the emotion-driven safety assessment module monitors the emotional state of the group in real time by analyzing the sound, video and social media data in the workplace, and transmits these data to the quantum enhanced sensor fusion module to ensure the security and integrity of the data during the transmission process. Then, the quantum enhanced sensor fusion module provides the transmitted data to the biofeedback optimization module, which collects the biofeedback data of the inspectors through brain-computer interface technology and transmits it to the immersive virtual training module. The immersive virtual training module uses virtual reality technology and deep learning algorithms to create realistic inspection scenarios and conduct training, while relying on the self-healing data network module to ensure the data transmission stability and network reliability of the training environment.

自修复数据网络模块通过AI技术自动检测和修复网络故障,确保系统中各模块间的数据传输稳定,为智能异常判定模块提供稳定的数据输入源。智能异常判定模块包含多模态分析分支和自适应评估分支,通过整合并分析来自不同传感器和数据源的多样化数据,提供综合性的异常检测和情境理解,并基于实时数据和历史模式动态调整风险评估模型,提供精准风险预测和决策支持。最终,智能异常判定模块将分析和检测到的异常情况和风险评估结果传输给综合报告生成模块,整合生成综合性报告,以供决策使用。The self-healing data network module automatically detects and repairs network failures through AI technology, ensuring stable data transmission between modules in the system and providing a stable data input source for the intelligent anomaly determination module. The intelligent anomaly determination module includes a multimodal analysis branch and an adaptive evaluation branch. It integrates and analyzes diverse data from different sensors and data sources to provide comprehensive anomaly detection and situational understanding, and dynamically adjusts the risk assessment model based on real-time data and historical patterns to provide accurate risk prediction and decision support. Finally, the intelligent anomaly determination module transmits the analyzed and detected anomalies and risk assessment results to the comprehensive report generation module, which integrates and generates a comprehensive report for decision-making.

其中,所述数据融合预处理模块对多源数据进行清洗、标准化和特征提取,并将处理后的数据提供给深度学习模型训练模块进行模型训练;所述深度学习模型训练模块使用处理后的数据进行模型训练,并将训练得到的模型应用于实时异常检测模块。Among them, the data fusion preprocessing module cleans, standardizes and extracts features from multi-source data, and provides the processed data to the deep learning model training module for model training; the deep learning model training module uses the processed data for model training, and applies the trained model to the real-time anomaly detection module.

其中,所述动态风险模型构建模块根据历史数据和实时环境数据建立并调整风险模型,并将这些模型提供给智能决策支撑模块用于风险预测和决策支持;所述智能决策支撑模块通过情景模拟和专家系统提供风险预测和决策支持,并将结果反馈给反馈与自学习模块。Among them, the dynamic risk model construction module establishes and adjusts the risk model based on historical data and real-time environmental data, and provides these models to the intelligent decision support module for risk prediction and decision support; the intelligent decision support module provides risk prediction and decision support through scenario simulation and expert system, and feeds back the results to the feedback and self-learning module.

工作原理:本发明在使用时,首先,数据采集与传输模块负责收集环境、设备和人员的数据。具体来说,传感器网络优化模块通过自适应传感器网络智能调整传感器布置和采集频率,将优化后的数据传输至多源数据融合模块。多源数据融合模块整合来自卫星、无人机、移动设备等多源数据,随后将这些整合后的数据传输至边缘计算模块进行初步处理和过滤。边缘计算模块在传感器附近部署边缘计算设备,对数据进行初步处理和过滤,将处理后的数据传输至高级数据处理分析模块的云存储与计算模块。Working principle: When the present invention is in use, first, the data acquisition and transmission module is responsible for collecting data on the environment, equipment and personnel. Specifically, the sensor network optimization module intelligently adjusts the sensor layout and acquisition frequency through the adaptive sensor network, and transmits the optimized data to the multi-source data fusion module. The multi-source data fusion module integrates multi-source data from satellites, drones, mobile devices, etc., and then transmits the integrated data to the edge computing module for preliminary processing and filtering. The edge computing module deploys edge computing devices near the sensors, performs preliminary processing and filtering on the data, and transmits the processed data to the cloud storage and computing module of the advanced data processing and analysis module.

在数据处理与分析方面,云存储与计算模块利用云计算平台进行大规模数据处理和存储,处理后的数据提供给人工智能学习模块。人工智能学习模块包含多个子模块,首先是情绪驱动安全评估模块,通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,然后将这些数据传输给量子增强传感融合模块。量子增强传感融合模块确保数据在传输过程中的安全性和完整性,并将传输后的数据提供给生物反馈优化模块。生物反馈优化模块通过脑机接口技术收集巡检人员的生物反馈数据,并将其传输至沉浸式虚拟训练模块。沉浸式虚拟训练模块利用虚拟现实技术和深度学习算法创建逼真的巡检场景并进行训练,同时依赖自修复数据网络模块来确保训练环境的数据传输稳定性和网络的可靠性。In terms of data processing and analysis, the cloud storage and computing module uses the cloud computing platform for large-scale data processing and storage, and the processed data is provided to the artificial intelligence learning module. The artificial intelligence learning module contains multiple sub-modules. The first is the emotion-driven safety assessment module, which monitors the emotional state of the group in real time by analyzing the sound, video and social media data in the workplace, and then transmits these data to the quantum enhanced sensor fusion module. The quantum enhanced sensor fusion module ensures the security and integrity of the data during transmission, and provides the transmitted data to the biofeedback optimization module. The biofeedback optimization module collects the biofeedback data of the inspectors through brain-computer interface technology and transmits it to the immersive virtual training module. The immersive virtual training module uses virtual reality technology and deep learning algorithms to create realistic inspection scenarios and conduct training, while relying on the self-healing data network module to ensure the data transmission stability and network reliability of the training environment.

自修复数据网络模块通过AI技术自动检测和修复网络故障,确保系统中各模块间的数据传输稳定,为智能异常判定模块提供稳定的数据输入源。智能异常判定模块包含多模态分析分支和自适应评估分支,整合并分析来自不同传感器和数据源的多样化数据,提供综合性的异常检测和情境理解,并基于实时数据和历史模式动态调整风险评估模型,提供精准风险预测和决策支持。最终,智能异常判定模块将分析和检测到的异常情况和风险评估结果传输至综合报告生成模块,生成动态、交互式的巡检报告和环境评估图表,以供决策使用。The self-healing data network module automatically detects and repairs network failures through AI technology, ensuring stable data transmission between modules in the system and providing a stable data input source for the intelligent anomaly determination module. The intelligent anomaly determination module includes a multimodal analysis branch and an adaptive evaluation branch, which integrates and analyzes diverse data from different sensors and data sources, provides comprehensive anomaly detection and situational understanding, and dynamically adjusts risk assessment models based on real-time data and historical patterns to provide accurate risk prediction and decision support. Finally, the intelligent anomaly determination module transmits the analyzed and detected anomalies and risk assessment results to the comprehensive report generation module, generating dynamic, interactive inspection reports and environmental assessment charts for decision-making.

在巡检管理方面,系统引入了自动巡检机器人,可以自主导航和执行巡检任务。自动巡检机器模块将巡检数据和任务执行情况传输至动态任务分配模块。动态任务分配模块基于实时数据和分析结果智能调整巡检任务的优先级和分配,并将更新后的任务信息传输至异常事件管理模块。异常事件管理模块接收并处理来自动态任务分配模块的更新任务信息,管理和记录异常事件,并将相关信息反馈至多平台用户反馈模块的用户培训与支撑模块。In terms of inspection management, the system introduces an automatic inspection robot that can autonomously navigate and perform inspection tasks. The automatic inspection machine module transmits inspection data and task execution status to the dynamic task allocation module. The dynamic task allocation module intelligently adjusts the priority and allocation of inspection tasks based on real-time data and analysis results, and transmits the updated task information to the abnormal event management module. The abnormal event management module receives and processes the updated task information from the dynamic task allocation module, manages and records abnormal events, and feeds back relevant information to the user training and support module of the multi-platform user feedback module.

在用户反馈与支持方面,多平台用户反馈模块通过跨平台用户界面模块开发适用于PC、移动设备、平板电脑等多平台的用户界面,并将这些界面集成至增强现实支撑模块。增强现实支撑模块利用AR技术为巡检人员提供实时的环境数据叠加显示和导航指导,将用户交互数据和体验信息传输至用户培训与支撑模块。用户培训与支撑模块集成在线培训模块和24/7客户支持,接收用户交互数据,提供相应的培训和支持服务,并将用户反馈信息传输回相关模块以优化系统性能。In terms of user feedback and support, the multi-platform user feedback module develops user interfaces for multiple platforms such as PC, mobile devices, and tablets through the cross-platform user interface module, and integrates these interfaces into the augmented reality support module. The augmented reality support module uses AR technology to provide real-time environmental data overlay display and navigation guidance for patrol personnel, and transmits user interaction data and experience information to the user training and support module. The user training and support module integrates the online training module and 24/7 customer support, receives user interaction data, provides corresponding training and support services, and transmits user feedback information back to the relevant modules to optimize system performance.

具体来说,情绪驱动安全评估模块通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并将这些数据传输给量子增强传感融合模块,确保数据在传输过程中的安全性和完整性。量子增强传感融合模块将传输后的数据提供给生物反馈优化模块,后者通过脑机接口技术收集巡检人员的生物反馈数据,并将其传输给沉浸式虚拟训练模块。沉浸式虚拟训练模块利用虚拟现实技术和深度学习算法创建逼真的巡检场景并进行训练,同时依赖自修复数据网络模块来确保训练环境的数据传输稳定性和网络的可靠性。Specifically, the emotion-driven safety assessment module monitors the emotional state of the group in real time by analyzing the sound, video and social media data in the workplace, and transmits this data to the quantum enhanced sensor fusion module to ensure the security and integrity of the data during transmission. The quantum enhanced sensor fusion module provides the transmitted data to the biofeedback optimization module, which collects the biofeedback data of the inspectors through brain-computer interface technology and transmits it to the immersive virtual training module. The immersive virtual training module uses virtual reality technology and deep learning algorithms to create realistic inspection scenarios and conduct training, while relying on the self-healing data network module to ensure the data transmission stability and network reliability of the training environment.

自修复数据网络模块通过AI技术自动检测和修复网络故障,确保系统中各模块间的数据传输稳定,为智能异常判定模块提供稳定的数据输入源。智能异常判定模块包含多模态分析分支和自适应评估分支,整合并分析来自不同传感器和数据源的多样化数据,提供综合性的异常检测和情境理解,并基于实时数据和历史模式动态调整风险评估模型,提供精准风险预测和决策支持。最终,智能异常判定模块将分析和检测到的异常情况和风险评估结果传输至综合报告生成模块,生成综合性报告,以供决策使用。The self-healing data network module automatically detects and repairs network failures through AI technology, ensuring stable data transmission between modules in the system and providing a stable data input source for the intelligent anomaly determination module. The intelligent anomaly determination module includes a multimodal analysis branch and an adaptive evaluation branch, which integrates and analyzes diverse data from different sensors and data sources, provides comprehensive anomaly detection and situational understanding, and dynamically adjusts the risk assessment model based on real-time data and historical patterns to provide accurate risk prediction and decision support. Finally, the intelligent anomaly determination module transmits the analyzed and detected anomalies and risk assessment results to the comprehensive report generation module to generate a comprehensive report for decision-making.

在数据处理与分析方面,数据融合预处理模块对多源数据进行清洗、标准化和特征提取,并将处理后的数据提供给深度学习模型训练模块进行模型训练。深度学习模型训练模块使用处理后的数据进行模型训练,并将训练得到的模型应用于实时异常检测模块。实时异常检测模块在数据到达时即时进行分析和判定,自动标记检测到的异常事件并记录详细信息以供后续分析和处理。In terms of data processing and analysis, the data fusion preprocessing module cleans, standardizes and extracts features from multi-source data, and provides the processed data to the deep learning model training module for model training. The deep learning model training module uses the processed data for model training, and applies the trained model to the real-time anomaly detection module. The real-time anomaly detection module analyzes and judges the data immediately when it arrives, automatically marks the detected abnormal events and records detailed information for subsequent analysis and processing.

自适应评估分支中的动态风险模型构建模块根据历史数据和实时环境数据建立并调整风险模型,并将这些模型提供给智能决策支撑模块用于风险预测和决策支持。智能决策支撑模块通过情景模拟和专家系统提供风险预测和决策支持,并将结果反馈给反馈与自学习模块。反馈与自学习模块根据实际检测到的异常和风险事件,调整和优化模型参数,引入自学习算法,使系统能够从每次的风险评估和异常检测中学习和改进。The dynamic risk model building module in the adaptive assessment branch builds and adjusts risk models based on historical data and real-time environmental data, and provides these models to the intelligent decision support module for risk prediction and decision support. The intelligent decision support module provides risk prediction and decision support through scenario simulation and expert system, and feeds the results back to the feedback and self-learning module. The feedback and self-learning module adjusts and optimizes model parameters based on the actual detected anomalies and risk events, and introduces self-learning algorithms, so that the system can learn and improve from each risk assessment and anomaly detection.

通过这些模块的协同工作,安环巡检系统在实际使用过程中实现了从数据采集、处理、分析,到巡检管理和用户反馈的全流程智能化管理,确保巡检过程的高效和安全。系统不仅能够实时监测和分析环境、设备和人员数据,自动识别和检测潜在风险,还能通过智能巡检机器人自主执行巡检任务,动态调整任务优先级,管理和记录异常事件。此外,系统通过跨平台用户界面和增强现实技术,为巡检人员提供便捷的操作界面和实时数据叠加显示,并通过24/7客户支持和在线培训模块提供全面的用户支持服务。最终,系统通过综合报告生成模块整合多模态数据分析和自适应风险评估的结果,生成综合性报告,以供决策使用,从而实现智能化的巡检管理和高效的安全保障。Through the collaborative work of these modules, the safety and environmental inspection system has achieved intelligent management of the entire process from data collection, processing, analysis, to inspection management and user feedback in actual use, ensuring the efficiency and safety of the inspection process. The system can not only monitor and analyze environmental, equipment and personnel data in real time, automatically identify and detect potential risks, but also autonomously perform inspection tasks through intelligent inspection robots, dynamically adjust task priorities, and manage and record abnormal events. In addition, the system provides inspection personnel with a convenient operation interface and real-time data overlay display through a cross-platform user interface and augmented reality technology, and provides comprehensive user support services through 24/7 customer support and online training modules. Finally, the system integrates the results of multimodal data analysis and adaptive risk assessment through a comprehensive report generation module to generate a comprehensive report for decision-making, thereby realizing intelligent inspection management and efficient safety assurance.

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred specific implementation manner of the present invention, but the protection scope of the present invention is not limited thereto. Any technician familiar with the technical field can make equivalent replacements or changes according to the technical scheme and inventive concept of the present invention within the technical scope disclosed by the present invention, which should be covered by the protection scope of the present invention.

Claims (7)

1.一种安环巡检系统,其特征在于,包括用于负责实时采集环境、设备和人员数据并安全传输的智能数据采集传输模块、用于执行数据清洗、标准化、特征提取及深度分析与建模的高级数据处理分析模块、用于进行巡检路径规划、任务调度与异常处理的智能巡检管理模块以及用于提供跨平台的用户界面和实时数据反馈的多平台用户反馈模块;1. A safety and environmental inspection system, characterized by comprising an intelligent data acquisition and transmission module for real-time collection of environmental, equipment and personnel data and secure transmission, an advanced data processing and analysis module for data cleaning, standardization, feature extraction, in-depth analysis and modeling, an intelligent inspection management module for inspection route planning, task scheduling and exception handling, and a multi-platform user feedback module for providing a cross-platform user interface and real-time data feedback; 所述智能数据采集传输模块包括用于采用自适应传感器网络来智能调整传感器布置和采集频率的传感器网络优化模块、用于整合来自卫星、无人机、移动设备等多源数据的多源数据融合模块以及用于在传感器附近部署边缘计算设备进行初步数据处理和过滤的边缘计算模块;The intelligent data acquisition and transmission module includes a sensor network optimization module for intelligently adjusting sensor layout and acquisition frequency using an adaptive sensor network, a multi-source data fusion module for integrating multi-source data from satellites, drones, mobile devices, etc., and an edge computing module for deploying edge computing devices near sensors for preliminary data processing and filtering; 所述高级数据处理分析模块包括用于利用云计算平台进行大规模数据处理和存储的云存储与计算模块、用于应用先进的AI和深度学习技术来自动识别复杂的环境模式和潜在风险的人工智能学习模块以及用于通过高级数据可视化工具,生成动态的、交互式的巡检报告和环境评估图表的可视化报告生成模块;The advanced data processing and analysis module includes a cloud storage and computing module for utilizing a cloud computing platform for large-scale data processing and storage, an artificial intelligence learning module for applying advanced AI and deep learning techniques to automatically identify complex environmental patterns and potential risks, and a visual report generation module for generating dynamic, interactive inspection reports and environmental assessment charts through advanced data visualization tools; 所述智能巡检管理模块包括用于引入自动巡检机器人,能够自主导航和执行巡检任务的自动巡检机器模块、用于基于实时数据和分析结果智能调整巡检任务的优先级和分配的动态任务分配模块以及用于建立全面的异常事件管理系统的异常事件管理模块;The intelligent inspection management module includes an automatic inspection machine module for introducing automatic inspection robots that can autonomously navigate and perform inspection tasks, a dynamic task allocation module for intelligently adjusting the priority and allocation of inspection tasks based on real-time data and analysis results, and an abnormal event management module for establishing a comprehensive abnormal event management system; 所述多平台用户反馈模块包括用于开发适用于PC、移动设备、平板电脑等多平台用户界面的跨平台用户界面模块、用于引入AR技术为巡检人员提供实时的环境数据叠加显示和导航指导的增强现实支撑模块以及用于集成在线培训模块和24/7客户支持的用户培训与支撑模块。The multi-platform user feedback module includes a cross-platform user interface module for developing multi-platform user interfaces suitable for PCs, mobile devices, tablets, etc., an augmented reality support module for introducing AR technology to provide patrol personnel with real-time environmental data overlay display and navigation guidance, and a user training and support module for integrating online training modules and 24/7 customer support. 2.根据权利要求1所述的一种安环巡检系统,其特征在于,所述人工智能学习模块包括用于通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并与环境数据进行融合,评估安全风险的情绪驱动安全评估模块、用于利用量子通信技术确保数据在传输过程中的安全性和完整性的量子增强传感融合模块、用于通过脑机接口技术实现巡检人员与系统直接互动的生物反馈优化模块、用于利用虚拟现实技术创建逼真的巡检场景结合深度学习算法的沉浸式虚拟训练模块、用于利用AI技术自动检测和修复网络故障的自修复数据网络模块、用于基于实时数据和历史模式,动态调整风险评估模型,提供精准异常判定和预警的智能异常判定模块以及用于将多模态数据分析和自适应风险评估的结果进行整合生成综合性报告的综合报告生成模块;2. A safety and environmental inspection system according to claim 1, characterized in that the artificial intelligence learning module includes an emotion-driven safety assessment module for analyzing the sound, video and social media data in the workplace, monitoring the emotional state of the group in real time, and integrating it with environmental data to assess safety risks, a quantum enhanced sensor fusion module for using quantum communication technology to ensure the security and integrity of data during transmission, a biofeedback optimization module for realizing direct interaction between inspection personnel and the system through brain-computer interface technology, an immersive virtual training module for using virtual reality technology to create realistic inspection scenes combined with deep learning algorithms, a self-repairing data network module for automatically detecting and repairing network faults using AI technology, an intelligent anomaly determination module for dynamically adjusting the risk assessment model based on real-time data and historical patterns to provide accurate anomaly determination and early warning, and a comprehensive report generation module for integrating the results of multimodal data analysis and adaptive risk assessment to generate a comprehensive report; 所述智能异常判定模块包括整合并分析来自不同传感器和数据源的多样化数据,提供综合性的异常检测和情境理解的多模态分析分支和动态调整和优化风险评估模型,基于实时数据和历史模式,提供精确风险预测和决策支持的自适应评估分支;The intelligent anomaly determination module includes a multimodal analysis branch that integrates and analyzes diverse data from different sensors and data sources to provide comprehensive anomaly detection and situational understanding, and an adaptive assessment branch that dynamically adjusts and optimizes the risk assessment model to provide accurate risk prediction and decision support based on real-time data and historical patterns; 所述多模态分析分支包括用于利用高级算法从情绪感知数据、量子传感数据和生物监测数据进行清洗、标准化处理并提取关键特征的数据融合预处理模块、用于开发和训练结合多种数据类型的神经网络模型通过集成学习技术,将多个模型的输出结果进行整合的深度学习模型训练模块以及用于建立实时数据流处理框架,能够在数据到达时即时进行分析和判定且自动标记检测到的异常事件并记录详细信息以供后续分析和处理的实时异常检测模块;The multimodal analysis branch includes a data fusion preprocessing module for using advanced algorithms to clean, standardize and extract key features from emotion perception data, quantum sensing data and biological monitoring data, a deep learning model training module for developing and training neural network models that combine multiple data types and integrate the output results of multiple models through ensemble learning technology, and a real-time anomaly detection module for establishing a real-time data stream processing framework that can analyze and judge data in real time when it arrives, automatically mark detected abnormal events, and record detailed information for subsequent analysis and processing; 所述自适应评估分支包括用于利用历史数据建立基线风险模型根据当前环境和情境数据,动态调整风险模型参数的动态风险模型构建模块、用于通过模拟不同情景,预测可能的风险发展趋势并结合专家系统,利用专家知识和规则进一步增强风险评估准确性的智能决策支撑模块以及用于建立自动反馈机制,根据实际检测到的异常和风险事件,调整和优化模型参数引入自学习算法,使系统能够从每次的风险评估和异常检测中学习和改进的反馈与自学习模块。The adaptive assessment branch includes a dynamic risk model construction module for establishing a baseline risk model using historical data and dynamically adjusting risk model parameters according to current environment and situational data; an intelligent decision support module for predicting possible risk development trends by simulating different scenarios and combining expert systems to further enhance the accuracy of risk assessment using expert knowledge and rules; and a feedback and self-learning module for establishing an automatic feedback mechanism, adjusting and optimizing model parameters according to actual detected anomalies and risk events, and introducing a self-learning algorithm, so that the system can learn and improve from each risk assessment and anomaly detection. 3.根据权利要求2所述的一种安环巡检系统,其特征在于,所述情绪驱动安全评估模块通过分析工作场所的声音、视频和社交媒体数据,实时监测群体情绪状态,并将这些数据传输给量子增强传感融合模块;所述量子增强传感融合模块确保数据在传输过程中的安全性和完整性,并将传输后的数据提供给生物反馈优化模块;所述生物反馈优化模块收集巡检人员的生物反馈数据,并将这些数据传输给沉浸式虚拟训练模块;所述沉浸式虚拟训练模块利用虚拟现实技术和深度学习算法进行训练,并依赖自修复数据网络模块确保训练环境的数据传输稳定性和网络的可靠性;所述自修复数据网络模块确保系统中各模块间的数据传输稳定性和网络故障的自动检测与修复,为智能异常判定模块提供稳定的数据输入源;所述智能异常判定模块通过分析和检测异常情况,将结果传输给综合报告生成模块。3. A safety and environmental inspection system according to claim 2, characterized in that the emotion-driven safety assessment module monitors the emotional state of the group in real time by analyzing the sound, video and social media data in the workplace, and transmits these data to the quantum enhanced sensing fusion module; the quantum enhanced sensing fusion module ensures the security and integrity of the data during the transmission process, and provides the transmitted data to the biofeedback optimization module; the biofeedback optimization module collects the biofeedback data of the inspectors and transmits these data to the immersive virtual training module; the immersive virtual training module uses virtual reality technology and deep learning algorithms for training, and relies on the self-repairing data network module to ensure the data transmission stability and network reliability of the training environment; the self-repairing data network module ensures the data transmission stability between modules in the system and the automatic detection and repair of network faults, providing a stable data input source for the intelligent abnormality determination module; the intelligent abnormality determination module transmits the results to the comprehensive report generation module by analyzing and detecting abnormal conditions. 4.根据权利要求1所述的一种安环巡检系统,其特征在于,所述传感器网络优化模块通过自适应传感器网络智能调整传感器布置和采集频率,并将优化后的数据传输给多源数据融合模块;所述多源数据融合模块整合来自卫星、无人机、移动设备等多源数据,并将整合后的数据传输给边缘计算模块;所述边缘计算模块在传感器附近部署边缘计算设备,对数据进行初步处理和过滤,并将处理后的数据传输给高级数据处理分析模块的云存储与计算模块。4. A safety and environmental inspection system according to claim 1, characterized in that the sensor network optimization module intelligently adjusts the sensor layout and acquisition frequency through an adaptive sensor network, and transmits the optimized data to the multi-source data fusion module; the multi-source data fusion module integrates multi-source data from satellites, drones, mobile devices, etc., and transmits the integrated data to the edge computing module; the edge computing module deploys edge computing devices near the sensors, performs preliminary processing and filtering on the data, and transmits the processed data to the cloud storage and computing module of the advanced data processing and analysis module. 5.根据权利要求1所述的一种安环巡检系统,其特征在于,所述云存储与计算模块利用云计算平台进行大规模数据处理和存储,并将处理和存储后的数据提供给人工智能学习模块;所述人工智能学习模块应用AI和深度学习技术自动识别复杂的环境模式和潜在风险,并将分析结果传输给可视化报告生成模块。5. According to claim 1, a safety and environmental inspection system is characterized in that the cloud storage and computing module uses a cloud computing platform to perform large-scale data processing and storage, and provides the processed and stored data to the artificial intelligence learning module; the artificial intelligence learning module uses AI and deep learning technology to automatically identify complex environmental patterns and potential risks, and transmits the analysis results to the visual report generation module. 6.根据权利要求1所述的一种安环巡检系统,其特征在于,所述自动巡检机器模块引入自动巡检机器人自主导航和执行巡检任务,并将巡检数据和任务执行情况传输给动态任务分配模块;所述动态任务分配模块基于实时数据和分析结果智能调整巡检任务的优先级和分配,并将更新后的任务信息传输给异常事件管理模块;所述异常事件管理模块接收和处理来自动态任务分配模块的更新任务信息,管理和记录异常事件,并将相关信息反馈给多平台用户反馈模块的用户培训与支撑模块。6. A safety and environmental inspection system according to claim 1, characterized in that the automatic inspection machine module introduces an automatic inspection robot to autonomously navigate and perform inspection tasks, and transmits the inspection data and task execution status to the dynamic task allocation module; the dynamic task allocation module intelligently adjusts the priority and allocation of inspection tasks based on real-time data and analysis results, and transmits the updated task information to the abnormal event management module; the abnormal event management module receives and processes the updated task information from the dynamic task allocation module, manages and records abnormal events, and feeds back relevant information to the user training and support module of the multi-platform user feedback module. 7.根据权利要求1所述的一种安环巡检系统,其特征在于,所述跨平台用户界面模块开发适用于PC、移动设备、平板电脑等多平台的用户界面,并将这些界面集成到增强现实支撑模块;所述增强现实支撑模块利用AR技术为巡检人员提供实时的环境数据叠加显示和导航指导,并将用户交互数据和体验信息传输给用户培训与支撑模块;所述用户培训与支撑模块集成在线培训模块和24/7客户支持,接收从增强现实支撑模块传输的用户交互数据,提供相应的培训和支持服务,并将用户反馈信息传输回相关模块优化系统性能。7. A safety and environmental inspection system according to claim 1, characterized in that the cross-platform user interface module develops user interfaces suitable for multiple platforms such as PC, mobile devices, and tablet computers, and integrates these interfaces into the augmented reality support module; the augmented reality support module uses AR technology to provide real-time environmental data overlay display and navigation guidance for inspection personnel, and transmits user interaction data and experience information to the user training and support module; the user training and support module integrates online training modules and 24/7 customer support, receives user interaction data transmitted from the augmented reality support module, provides corresponding training and support services, and transmits user feedback information back to relevant modules to optimize system performance.
CN202411423089.2A 2024-10-12 2024-10-12 A safety and environmental inspection system Pending CN119299484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411423089.2A CN119299484A (en) 2024-10-12 2024-10-12 A safety and environmental inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411423089.2A CN119299484A (en) 2024-10-12 2024-10-12 A safety and environmental inspection system

Publications (1)

Publication Number Publication Date
CN119299484A true CN119299484A (en) 2025-01-10

Family

ID=94155630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411423089.2A Pending CN119299484A (en) 2024-10-12 2024-10-12 A safety and environmental inspection system

Country Status (1)

Country Link
CN (1) CN119299484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120260151A (en) * 2025-06-04 2025-07-04 张家港港务集团有限公司 A port AR intelligent point inspection method, system and equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120260151A (en) * 2025-06-04 2025-07-04 张家港港务集团有限公司 A port AR intelligent point inspection method, system and equipment

Similar Documents

Publication Publication Date Title
CN118466371B (en) Port machinery crowd remote monitering system based on virtual reality
CN115494802B (en) A multi-level digital safety monitoring system for process operations
CN119299484A (en) A safety and environmental inspection system
CN101615026B (en) A multi-layer dynamic tracking control method for process control system
CN104917803A (en) Autonomous inspection system based on user behavior control
CN118469270B (en) AI-assisted BIM construction progress intelligent simulation and management system
CN118607930A (en) A chemical safety risk management method and system based on knowledge graph
Ersan et al. Applications, insights and implications of digital twins in smart city management
CN116859842A (en) Chemical production line safety evaluation system
Chu et al. Enhancing manual inspection in semiconductor manufacturing with integrated augmented reality solutions
CN112113145A (en) Intelligent online detection method for chemical pipeline safety
KR20230056006A (en) Apparatus for artificial intelligence based safety diagnosis through 3d model and method thereof
CN120471432A (en) Intelligent building safety management system based on big data
CN116011992A (en) An existing building operation and maintenance management system based on BIM technology
CN118566156B (en) Spectrum traceability calibration method for toxic and harmful gas crossing scenes
Cabour et al. A work-centered approach for cyber-physical-social system design: applications in aerospace industrial inspection
CN114995302A (en) Intelligent control method and system
CN119048064A (en) Intelligent operation and maintenance management system and method for submarine tunnel
CN118761630A (en) A universal industrial IoT equipment management system
CN117612755A (en) Intelligent inspection method applied to nuclear power station
CN118572657A (en) Risk prediction method and system based on deduction of scheduling operation behaviors
Moufaddal et al. Towards a novel cyber physical control system framework: a deep learning driven use case
Benharkat et al. The influence of manufacturing digitisation on safety management and reliability engineering
Kaswan et al. Digital Twin for Sustainable Development of Intelligent Manufacturing
Clounie et al. Digital Twin Approach to Support Preventative Maintenance in a Robotic Application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载