CN118590430A - A network integrated dynamic resource routing management system and method - Google Patents
A network integrated dynamic resource routing management system and method Download PDFInfo
- Publication number
- CN118590430A CN118590430A CN202410863425.9A CN202410863425A CN118590430A CN 118590430 A CN118590430 A CN 118590430A CN 202410863425 A CN202410863425 A CN 202410863425A CN 118590430 A CN118590430 A CN 118590430A
- Authority
- CN
- China
- Prior art keywords
- resource
- data
- network
- unit
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005457 optimization Methods 0.000 claims abstract description 130
- 238000012544 monitoring process Methods 0.000 claims abstract description 81
- 238000013468 resource allocation Methods 0.000 claims abstract description 72
- 238000004458 analytical method Methods 0.000 claims abstract description 65
- 230000004927 fusion Effects 0.000 claims abstract description 40
- 238000007726 management method Methods 0.000 claims abstract description 31
- 238000007781 pre-processing Methods 0.000 claims abstract description 13
- 230000004044 response Effects 0.000 claims abstract description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 31
- 230000007246 mechanism Effects 0.000 claims description 26
- 238000011156 evaluation Methods 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 22
- 238000013527 convolutional neural network Methods 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- 230000008901 benefit Effects 0.000 claims description 13
- 230000006403 short-term memory Effects 0.000 claims description 13
- 238000004140 cleaning Methods 0.000 claims description 10
- 238000013480 data collection Methods 0.000 claims description 10
- 230000010354 integration Effects 0.000 claims description 10
- 230000015654 memory Effects 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 8
- 238000013501 data transformation Methods 0.000 claims description 7
- 230000007774 longterm Effects 0.000 claims description 6
- 230000002787 reinforcement Effects 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 5
- 239000013256 coordination polymer Substances 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- 230000002068 genetic effect Effects 0.000 claims description 5
- 238000012217 deletion Methods 0.000 claims description 3
- 230000037430 deletion Effects 0.000 claims description 3
- 238000011176 pooling Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- CLOMYZFHNHFSIQ-UHFFFAOYSA-N clonixin Chemical compound CC1=C(Cl)C=CC=C1NC1=NC=CC=C1C(O)=O CLOMYZFHNHFSIQ-UHFFFAOYSA-N 0.000 claims 1
- 230000007787 long-term memory Effects 0.000 claims 1
- 230000009467 reduction Effects 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 230000003068 static effect Effects 0.000 abstract description 3
- 238000004141 dimensional analysis Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
- H04L45/08—Learning-based routing, e.g. using neural networks or artificial intelligence
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/123—Evaluation of link metrics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/124—Shortest path evaluation using a combination of metrics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/76—Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
- H04L47/805—QOS or priority aware
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及网络资源管理技术领域,尤其涉及一种网络集成动态资源路由管理系统及方法。The present invention relates to the technical field of network resource management, and in particular to a network integrated dynamic resource routing management system and method.
背景技术Background Art
随着信息技术的快速发展,网络资源管理的复杂性显著增加,尤其在大规模数据中心和云计算环境中,现代网络系统面临的挑战包括资源配置的动态性、服务质量保障以及对突发事件的快速响应能力,传统的网络资源管理方法依赖静态的配置策略,这些策略往往无法有效适应网络条件和业务需求的快速变化,此外,传统方法在资源监控和预测准确性方面存在不足,常常导致资源浪费或服务中断,例如,当网络流量突然增加时,静态配置的网络可能无法及时调整资源,影响用户体验和业务连续性。With the rapid development of information technology, the complexity of network resource management has increased significantly, especially in large-scale data centers and cloud computing environments. The challenges faced by modern network systems include the dynamic nature of resource configuration, service quality assurance, and the ability to respond quickly to emergencies. Traditional network resource management methods rely on static configuration strategies, which often cannot effectively adapt to the rapid changes in network conditions and business needs. In addition, traditional methods are insufficient in resource monitoring and prediction accuracy, which often leads to resource waste or service interruption. For example, when network traffic suddenly increases, a statically configured network may not be able to adjust resources in a timely manner, affecting user experience and business continuity.
为了解决这些问题,本发明提出一种网络集成动态资源路由管理系统及其方法,旨在通过动态监控和实时数据分析,提高网络资源管理的灵活性和效率,现有技术中的不足包括资源分配方案的反应速度慢、缺乏有效的资源优化反馈机制以及路由调整策略的不足,这些问题限制了网络系统在高需求和变动环境中的性能。In order to solve these problems, the present invention proposes a network integrated dynamic resource routing management system and method thereof, aiming to improve the flexibility and efficiency of network resource management through dynamic monitoring and real-time data analysis. The shortcomings of the prior art include slow response speed of resource allocation schemes, lack of effective resource optimization feedback mechanism and insufficient routing adjustment strategy, which limit the performance of network systems in high demand and changing environments.
因此,开发一种能够实时调整和优化网络资源配置的方法,以适应网络状况和业务需求的变化,成为提升网络管理效能和服务质量的关键。Therefore, developing a method that can adjust and optimize network resource configuration in real time to adapt to changes in network conditions and business needs has become the key to improving network management efficiency and service quality.
发明内容Summary of the invention
基于上述目的,本发明提供了一种网络集成动态资源路由管理系统及方法。Based on the above objectives, the present invention provides a network integrated dynamic resource routing management system and method.
一种网络集成动态资源路由管理系统,包括资源监控模块、数据采集融合模块、智能预测分析模块、决策支持优化模块、动态资源调度模块以及反馈优化模块;其中:A network integrated dynamic resource routing management system, comprising a resource monitoring module, a data acquisition and fusion module, an intelligent prediction and analysis module, a decision support and optimization module, a dynamic resource scheduling module and a feedback optimization module; wherein:
资源监控模块:用于实时监控并采集网络资源的使用情况,包括带宽、存储和计算能力,并生成资源使用报告;Resource monitoring module: used to monitor and collect network resource usage in real time, including bandwidth, storage and computing power, and generate resource usage reports;
数据采集融合模块:对采集的网络资源数据进行预处理以消除噪声和冗余信息,同时进行多源数据融合,提高数据的准确性和一致性;Data acquisition and fusion module: pre-processes the collected network resource data to eliminate noise and redundant information, and simultaneously performs multi-source data fusion to improve data accuracy and consistency;
智能预测分析模块:基于数据采集融合模块提供的预处理数据进行多维度分析,采用结合卷积神经网络和长短期记忆网络的混合模型,预测资源需求和流量变化趋势,生成资源优化方案,并将优化方案传递给决策支持优化模块;Intelligent prediction and analysis module: Based on the pre-processed data provided by the data acquisition and fusion module, it performs multi-dimensional analysis, adopts a hybrid model combining convolutional neural network and long short-term memory network, predicts resource demand and traffic change trends, generates resource optimization plans, and passes the optimization plans to the decision support optimization module;
决策支持优化模块:利用智能预测分析模块提供的资源优化方案,结合当前网络状况和业务需求,动态调整资源分配策略和路由路径;Decision support optimization module: Use the resource optimization solution provided by the intelligent prediction analysis module to dynamically adjust resource allocation strategies and routing paths in combination with current network conditions and business needs;
动态资源调度模块:负责执行决策支持优化模块生成的资源分配和路由调整方案,通过动态资源调度算法实时调整网络资源配置,并监控执行效果,确保调整过程中的网络稳定性和服务质量;Dynamic resource scheduling module: responsible for executing the resource allocation and routing adjustment schemes generated by the decision support optimization module, adjusting network resource configuration in real time through the dynamic resource scheduling algorithm, and monitoring the execution effect to ensure network stability and service quality during the adjustment process;
反馈优化模块:持续收集动态资源调度模块提供的调整后网络运行数据,分析执行效果,根据分析结果对智能预测分析模块的混合模型进行调整和优化,形成闭环优化机制;并通过不断试错和学习,优化资源调度和路由策略,以提高整体系统性能。Feedback optimization module: Continuously collects the adjusted network operation data provided by the dynamic resource scheduling module, analyzes the execution effect, and adjusts and optimizes the hybrid model of the intelligent prediction analysis module based on the analysis results to form a closed-loop optimization mechanism; and optimizes resource scheduling and routing strategies through continuous trial and error and learning to improve the overall system performance.
进一步的,所述资源监控模块包括带宽监控单元、存储监控单元和计算能力监控单元;其中:Further, the resource monitoring module includes a bandwidth monitoring unit, a storage monitoring unit and a computing capacity monitoring unit; wherein:
带宽监控单元:用于实时监测网络带宽的使用情况,通过监控网络接口的数据传输速率、丢包率和延迟的参数,生成带宽使用报告;Bandwidth monitoring unit: used to monitor the usage of network bandwidth in real time, and generate bandwidth usage reports by monitoring the data transmission rate, packet loss rate and delay parameters of the network interface;
存储监控单元:用于实时监测网络存储资源的使用情况,通过监控存储设备的容量利用率、读写速率和I/O操作频率的参数,生成存储使用报告;Storage monitoring unit: used to monitor the usage of network storage resources in real time, and generate storage usage reports by monitoring the capacity utilization, read and write rates, and I/O operation frequency parameters of storage devices;
计算能力监控单元:用于实时监测网络计算资源的使用情况,通过监控服务器和计算节点的CPU负载、内存使用率和计算任务队列长度参数,生成计算能力使用报告;Computing capacity monitoring unit: used to monitor the usage of network computing resources in real time, and generate computing capacity usage reports by monitoring the CPU load, memory usage and computing task queue length parameters of servers and computing nodes;
资源使用报告生成单元:负责整合带宽监控单元、存储监控单元和计算能力监控单元提供的数据,生成综合性的资源使用报告;报告内容包括各类资源的当前使用情况、历史使用趋势和预测使用情况。Resource usage report generation unit: responsible for integrating the data provided by the bandwidth monitoring unit, storage monitoring unit and computing power monitoring unit to generate a comprehensive resource usage report; the report content includes the current usage, historical usage trends and predicted usage of various resources.
进一步的,所述数据采集融合模块包括数据预处理单元和多源数据融合单元;其中:Furthermore, the data acquisition and fusion module includes a data preprocessing unit and a multi-source data fusion unit; wherein:
数据预处理单元:用于对从不同网络节点采集的实时数据进行预处理,通过噪声过滤、数据清洗和重复数据删除的步骤,消除数据中的噪声和冗余信息;所述噪声过滤使用信号处理算法对数据进行噪声过滤,去除异常值和突变数据;数据清洗利用数据清洗技术,修正数据中的缺失值和错误值;重复数据删除采用哈希算法,识别并删除数据中的重复项;Data preprocessing unit: used to preprocess the real-time data collected from different network nodes, and eliminate the noise and redundant information in the data through the steps of noise filtering, data cleaning and duplicate data deletion; the noise filtering uses a signal processing algorithm to filter the data noise and remove abnormal values and mutation data; data cleaning uses data cleaning technology to correct missing values and erroneous values in the data; duplicate data deletion uses a hash algorithm to identify and delete duplicate items in the data;
多源数据融合单元:用于对预处理后的数据进行多源数据融合,通过数据对齐、数据变换和数据整合的步骤,提高数据的准确性和一致性,其中,数据对齐具体基于时间戳,对来自不同网络节点的数据进行对齐,确保数据在同一时间维度上的一致性;数据变换是根据不同数据源的特性,采用统一的数据格式和单位,对数据进行变换和标准化处理;数据整合则利用数据融合算法,将来自不同源的数据整合为统一的数据集,生成综合性的数据视图。Multi-source data fusion unit: used to perform multi-source data fusion on pre-processed data, and improve data accuracy and consistency through data alignment, data transformation and data integration steps. Among them, data alignment is specifically based on timestamps to align data from different network nodes to ensure the consistency of data in the same time dimension; data transformation is to transform and standardize data according to the characteristics of different data sources, using a unified data format and unit; data integration uses data fusion algorithms to integrate data from different sources into a unified data set to generate a comprehensive data view.
进一步的,所述智能预测分析模块包括特征提取单元、预测分析单元和资源优化方案生成单元;其中:Furthermore, the intelligent prediction and analysis module includes a feature extraction unit, a prediction and analysis unit, and a resource optimization solution generation unit; wherein:
特征提取单元:用于基于数据采集融合模块提供的预处理数据进行多维度分析,采用卷积神经网络对综合性的数据视图进行特征提取,具体先接收数据采集融合模块提供的预处理数据,并将其输入到卷积神经网络中;然后通过多个卷积层提取数据的局部特征,捕捉数据中的空间关系和模式;最后通过池化层对卷积后的特征进行降维和筛选,保留预定特征;Feature extraction unit: used to perform multi-dimensional analysis based on the pre-processed data provided by the data acquisition and fusion module, and use convolutional neural network to extract features from the comprehensive data view. Specifically, the pre-processed data provided by the data acquisition and fusion module is first received and input into the convolutional neural network; then the local features of the data are extracted through multiple convolutional layers to capture the spatial relationship and pattern in the data; finally, the convolutional features are reduced in dimension and screened through the pooling layer to retain the predetermined features;
预测分析单元:基于特征提取单元提取的特征,采用长短期记忆网络进行时间序列预测,并结合注意力机制以提升预测的准确性和响应速度,预测资源需求和流量变化趋势,生成包括未来的资源需求和流量变化趋势的预测结果;Prediction and analysis unit: Based on the features extracted by the feature extraction unit, the long short-term memory network is used to perform time series prediction, and the attention mechanism is combined to improve the accuracy and response speed of the prediction, predict resource demand and traffic change trends, and generate prediction results including future resource demand and traffic change trends;
资源优化方案生成单元:基于预测分析单元提供的预测结果,生成资源优化方案,具体先整合预测分析单元的输出数据,形成完整的预测视图;然后采用优化算法根据预测视图计算最优的资源分配和路由策略,生成资源优化方案。Resource optimization solution generation unit: Generates a resource optimization solution based on the prediction results provided by the prediction analysis unit. Specifically, the output data of the prediction analysis unit is first integrated to form a complete prediction view; then an optimization algorithm is used to calculate the optimal resource allocation and routing strategy based on the prediction view to generate a resource optimization solution.
进一步的,所述预测分析单元包括:Furthermore, the prediction analysis unit includes:
特征输入:接收特征提取单元输出的特征,将特征数据表示为时间序列输入长短期记忆网络,具体表示为:其中,Xt为时间点t上的特征向量,xti为时间点t上的第i个特征数据;Feature input: Receive the features output by the feature extraction unit, represent the feature data as a time series and input it into the long short-term memory network, which is specifically expressed as: Among them, Xt is the feature vector at time point t, and xti is the i-th feature data at time point t;
序列学习:通过LSTM层学习时间序列数据的时间依赖关系,捕捉数据的长期和短期趋势;Sequence learning: Learn the temporal dependencies of time series data through the LSTM layer to capture the long-term and short-term trends of the data;
引入注意力机制:利用注意力机制增强模型对时间序列数据中预定特征的关注度,自动识别并重点关注对预测结果影响较大的时间步骤或特征,注意力机制的计算公式为:Introducing the attention mechanism: The attention mechanism is used to enhance the model's attention to the predetermined features in the time series data, automatically identifying and focusing on the time steps or features that have a greater impact on the prediction results. The calculation formula of the attention mechanism is:
et,j=vT·tanh(We·[ht;hj]+be);e t,j = v T ·tanh(W e ·[h t ;h j ]+b e );
其中,et,j为时间点t与时间点j的注意力得分,αt,j为时间点t与时间点j的注意力权重,为时间点t的加权隐藏状态,v为注意力权重向量,We为注意力权重矩阵,be为注意力偏置,ht为时间点t的隐藏状态,hj为时间点j的隐藏状态; Among them, e t,j is the attention score of time point t and time point j, α t,j is the attention weight of time point t and time point j, is the weighted hidden state at time point t, v is the attention weight vector, We is the attention weight matrix, be is the attention bias, ht is the hidden state at time point t, and hj is the hidden state at time point j;
预测输出:基于注意力加权后的隐藏状态通过全连接层生成预测结果,包括未来的资源需求和流量变化趋势,公式为:其中,为时间点t+1的预测值,Wy为全连接层的权重矩阵,by为全连接层的偏置;Prediction output: hidden state based on attention weighting The prediction results are generated through the fully connected layer, including future resource requirements and traffic change trends. The formula is: in, is the predicted value at time point t+1, W y is the weight matrix of the fully connected layer, and by is the bias of the fully connected layer;
结果传输:将生成的预测结果,包括未来的资源需求和流量变化趋势,传输至资源优化方案生成单元。Result transmission: The generated prediction results, including future resource demand and traffic change trends, are transmitted to the resource optimization solution generation unit.
进一步的,所述资源优化方案生成单元包括:Furthermore, the resource optimization solution generating unit includes:
数据整合:整合预测分析单元的输出数据,形成完整的预测视图,表示为:其中,Pt为时间点t上的预测视图,为时间点t+i的预测值;Data integration: Integrate the output data of the prediction analysis unit to form a complete prediction view, expressed as: Where Pt is the predicted view at time point t, is the predicted value at time point t+i;
目标函数定义:定义资源优化的目标函数,包括资源利用率最大化和服务质量最优化,目标函数表示为:其中,U为优化目标函数,Rt+i为时间点t+i的资源利用率,Qt+i为时间点t+i的服务质量损失,α和β为权重系数;Objective function definition: Define the objective function of resource optimization, including maximizing resource utilization and optimizing service quality. The objective function is expressed as: Among them, U is the optimization objective function, R t+i is the resource utilization at time point t+i, Q t+i is the service quality loss at time point t+i, α and β are weight coefficients;
约束条件设置:设置资源分配的约束条件,确保资源分配在合理范围内,约束条件公式为:Rmin≤Rt+i≤Rmax,其中,Rmin为资源利用率下限,Rmax为资源利用率上限;Constraint setting: Set the resource allocation constraints to ensure that the resource allocation is within a reasonable range. The constraint formula is: R min ≤ R t+i ≤ R max , where R min is the lower limit of resource utilization and R max is the upper limit of resource utilization;
优化计算:采用遗传算法进行优化计算,生成最优的资源分配和路由策略;Optimization calculation: Genetic algorithm is used for optimization calculation to generate the best resource allocation and routing strategy;
方案输出:将最优资源分配和路由策略作为资源优化方案输出,传输至决策支持优化模块。Solution output: The optimal resource allocation and routing strategy is output as a resource optimization solution and transmitted to the decision support optimization module.
进一步的,所述决策支持优化模块包括网络状况评估单元、业务需求评估单元和策略调整单元;其中:Further, the decision support optimization module includes a network status assessment unit, a service demand assessment unit and a strategy adjustment unit; wherein:
网络状况评估单元:用于实时评估当前网络状况,包括带宽利用率、存储利用率和计算能力利用率的参数,网络状况评估公式为:其中,Nt为时间点t的网络状况评估结果,Bt为带宽利用率,St为存储利用率,Ct为计算能力利用率;Network status evaluation unit: used to evaluate the current network status in real time, including parameters of bandwidth utilization, storage utilization, and computing power utilization. The network status evaluation formula is: Wherein, Nt is the network status evaluation result at time point t, Bt is the bandwidth utilization, St is the storage utilization, and Ct is the computing power utilization;
业务需求评估单元:用于评估当前业务需求,包括各业务应用的优先级、实时流量需求和服务质量要求;业务需求评估公式为:其中,Dt为时间点t的业务需求评估结果,Pt为各业务应用的优先级,Tt为实时流量需求,Qt为服务质量要求;Business demand assessment unit: used to assess current business needs, including the priority of each business application, real-time traffic demand and service quality requirements; the business demand assessment formula is: Where Dt is the service demand assessment result at time point t, Pt is the priority of each service application, Tt is the real-time traffic demand, and Qt is the service quality requirement;
策略调整单元:用于结合网络状况评估结果和业务需求评估结果,基于智能预测分析模块提供的资源优化方案,动态调整资源分配策略和路由路径;具体包括以下步骤:Policy adjustment unit: used to dynamically adjust resource allocation strategy and routing path based on resource optimization scheme provided by intelligent prediction analysis module in combination with network status assessment results and business demand assessment results; specifically includes the following steps:
首先,整合网络状况评估结果和业务需求评估结果,形成综合评估视图,具体表示为:其中,Et为时间点t的综合评估视图;First, integrate the network status assessment results and business demand assessment results to form a comprehensive assessment view, which is specifically expressed as follows: Where E t is the comprehensive evaluation view at time point t;
然后,基于综合评估视图和资源优化方案,计算最优资源分配策略和路由路径,策略计算公式为:St=argmax(α·UR,t+β·UQ,t-γ·Ct),其中,St为时间点t的资源分配策略,UR,t为资源利用率收益,UQ,t为服务质量收益,Ct为调整成本,α,β和γ为权重系数;Then, based on the comprehensive evaluation view and resource optimization scheme, the optimal resource allocation strategy and routing path are calculated. The strategy calculation formula is: S t = argmax(α· UR,t +β· UQ,t -γ· Ct ), where S t is the resource allocation strategy at time point t, UR,t is the resource utilization benefit, UQ ,t is the service quality benefit, C t is the adjustment cost, and α, β and γ are weight coefficients;
最后,将计算得到的最优资源分配策略和路由路径作为调整方案输出,传输至动态资源调度模块,以供执行资源分配和路由调整。Finally, the calculated optimal resource allocation strategy and routing path are output as adjustment solutions and transmitted to the dynamic resource scheduling module for executing resource allocation and routing adjustment.
进一步的,所述动态资源调度模块包括资源配置单元、路由调整单元和执行监控单元;其中:Furthermore, the dynamic resource scheduling module includes a resource configuration unit, a routing adjustment unit and an execution monitoring unit; wherein:
资源配置单元:用于接收决策支持优化模块生成的资源分配方案,并根据该方案实时调整网络资源配置,资源配置公式为:Rt+1=Rt+ΔRt其中,Rt+1为时间点t+1的资源配置,Rt为时间点t的资源配置,ΔRt为根据资源分配方案计算的资源调整量;Resource configuration unit: used to receive the resource allocation plan generated by the decision support optimization module, and adjust the network resource configuration in real time according to the plan. The resource configuration formula is: R t+1 =R t +ΔR t , where R t+1 is the resource configuration at time point t+1, R t is the resource configuration at time point t, and ΔR t is the resource adjustment amount calculated according to the resource allocation plan;
路由调整单元:用于接收决策支持优化模块生成的路由调整方案,并根据该方案动态调整网络路由路径,路由调整公式为:Route adjustment unit: used to receive the route adjustment plan generated by the decision support optimization module and dynamically adjust the network routing path according to the plan. The route adjustment formula is:
Pt+1=argmin(CP,t+1+β·DP,t+1),其中,Pt+1为时间点t+1的路由路径,CP,t+1为时间点t+1的路由成本,DP,t+1为时间点t+1的路由延迟,β为权重系数;P t+1 = argmin( CP,t+1 + β·DP ,t+1 ), where P t+1 is the routing path at time point t+1, CP,t+1 is the routing cost at time point t+1, DP,t+1 is the routing delay at time point t+1, and β is the weight coefficient;
执行监控单元:用于监控资源配置和路由调整的执行效果,确保调整过程中网络的稳定性和服务质量,执行监控公式为:其中,Mt为时间点t的执行监控指标,Qi,t为时间点t第i个服务质量参数,n为服务质量参数的数量。Execution monitoring unit: used to monitor the execution effect of resource configuration and routing adjustment to ensure network stability and service quality during the adjustment process. The execution monitoring formula is: Wherein, M t is the execution monitoring index at time point t, Qi ,t is the i-th service quality parameter at time point t, and n is the number of service quality parameters.
进一步的,所述反馈优化模块包括数据收集单元、模型调整单元和策略优化单元;其中:Furthermore, the feedback optimization module includes a data collection unit, a model adjustment unit and a strategy optimization unit; wherein:
数据收集单元:用于持续收集动态资源调度模块提供的调整后网络运行数据,包括资源利用率、服务质量和网络性能的参数;Data collection unit: used to continuously collect the adjusted network operation data provided by the dynamic resource scheduling module, including resource utilization, service quality and network performance parameters;
模型调整单元:用于基于数据收集单元提供的运行数据,对智能预测分析模块的混合模型进行调整和优化,具体先计算预测结果与实际运行数据之间的误差,公式为:其中,Et为时间点t的预测误差,为时间点t+i的预测值,yt+i为时间点t+i的实际值,n为预测数据点的数量;然后基于计算的误差,通过优化算法调整混合模型的参数,更新模型以提高预测精度;Model adjustment unit: used to adjust and optimize the hybrid model of the intelligent prediction analysis module based on the operation data provided by the data collection unit. Specifically, the error between the prediction result and the actual operation data is calculated first. The formula is: Where Et is the prediction error at time point t, is the predicted value at time point t+i, y t+i is the actual value at time point t+i, and n is the number of predicted data points; then based on the calculated error, the parameters of the hybrid model are adjusted through the optimization algorithm, and the model is updated to improve the prediction accuracy;
策略优化单元:用于通过不断试错和学习,优化资源调度和路由策略,具体先应用强化学习算法,通过试错过程学习最优的资源调度和路由策略,强化学习的奖励函数表示为:Rt=α·UR,t+β·UQ,t-γ·Ct,其中,Rt为时间点t的奖励值,UR,t为资源利用率收益,UQ,t为服务质量收益,Ct为调整成本,α,β和γ为权重系数;接着基于奖励函数的反馈,调整资源调度和路由策略,以提高整体系统性能。Policy optimization unit: used to optimize resource scheduling and routing strategies through continuous trial and error and learning. Specifically, the reinforcement learning algorithm is first applied to learn the optimal resource scheduling and routing strategies through trial and error. The reward function of reinforcement learning is expressed as: R t = α· UR,t + β·U Q,t -γ·C t , where R t is the reward value at time point t, UR,t is the resource utilization benefit, U Q,t is the service quality benefit, C t is the adjustment cost, and α, β and γ are weight coefficients; then, based on the feedback of the reward function, the resource scheduling and routing strategies are adjusted to improve the overall system performance.
一种网络集成动态资源路由管理方法,包括以下步骤:A network integrated dynamic resource routing management method comprises the following steps:
S1:实时监控网络资源的使用情况,包括带宽、存储和计算能力,并生成资源使用报告;S1: Monitor the usage of network resources in real time, including bandwidth, storage, and computing power, and generate resource usage reports;
S2:从不同的网络节点采集实时数据,并对采集数据进行预处理以消除噪声和冗余信息,同时进行多源数据融合,提高数据质量;S2: Collect real-time data from different network nodes, pre-process the collected data to eliminate noise and redundant information, and perform multi-source data fusion to improve data quality;
S3:采用结合卷积神经网络和长短期记忆网络的混合模型,并结合注意力机制,对S2预处理后的数据进行多维度分析,以预测资源需求和流量变化趋势,生成资源优化方案;S3: A hybrid model combining convolutional neural networks and long short-term memory networks, combined with an attention mechanism, performs multi-dimensional analysis on the data preprocessed by S2 to predict resource demand and traffic change trends and generate resource optimization plans;
S4:利用S3的资源优化方案,结合当前网络状况和业务需求,动态调整资源分配策略和路由路径;S4: Use the resource optimization solution of S3 to dynamically adjust resource allocation strategies and routing paths based on current network conditions and business needs;
S5:执行S4中生成的资源分配和路由调整方案,并通过动态资源调度算法实时调整网络资源配置,并监控执行效果;S5: Execute the resource allocation and routing adjustment plan generated in S4, adjust the network resource configuration in real time through the dynamic resource scheduling algorithm, and monitor the execution effect;
S6:持续收集S5调整后的网络运行数据,并分析执行效果,根据分析结果对S3中的混合模型进行调整和优化,形成闭环优化机制,并通过不断试错和学习,优化资源调度和路由策略。S6: Continue to collect network operation data adjusted by S5 and analyze the execution effect. Adjust and optimize the hybrid model in S3 based on the analysis results to form a closed-loop optimization mechanism. Optimize resource scheduling and routing strategies through continuous trial and error and learning.
本发明的有益效果:Beneficial effects of the present invention:
本发明,通过实施智能化的资源管理方法,显著提高了网络资源的利用效率和响应速度;首先通过实时监控网络资源的使用情况,并结合先进的数据采集与融合技术,确保了数据的高准确性和一致性,从而使资源预测分析更为精确;智能预测分析模块运用混合的卷积神经网络和长短期记忆网络模型,能够有效预测资源需求和流量变化趋势,特别是在处理突发事件和异常流量时,展现出卓越的预测能力;此外系统还通过不断学习和试错,不断优化资源配置和路由策略,进一步提升系统的适应性和灵活性。The present invention significantly improves the utilization efficiency and response speed of network resources by implementing an intelligent resource management method. First, by real-time monitoring of the use of network resources and combining advanced data acquisition and fusion technology, the high accuracy and consistency of data are ensured, thereby making resource prediction and analysis more accurate. The intelligent prediction and analysis module uses a hybrid convolutional neural network and long short-term memory network model to effectively predict resource demand and traffic change trends, especially when dealing with emergencies and abnormal traffic, showing excellent prediction capabilities. In addition, the system also continuously optimizes resource allocation and routing strategies through continuous learning and trial and error, further improving the adaptability and flexibility of the system.
本发明,通过决策支持优化模块和动态资源调度模块协同工作,根据智能预测分析模块的输出及时调整资源分配和路由路径,这种动态调整机制不仅提升了网络的服务质量,还极大地增强了网络在面对需求波动和不确定因素时的韧性,通过实现闭环优化,反馈优化模块能够基于实际操作结果调整预测模型,确保长期运行中持续提升性能和效率,综上所述,本发明能有效解决现有技术中网络资源管理静态化和反应迟缓的问题,对于大规模数据中心和复杂网络环境中的资源管理提供了一种创新且实用的解决方案。The present invention, through the collaborative work of the decision support optimization module and the dynamic resource scheduling module, timely adjusts the resource allocation and routing path according to the output of the intelligent prediction and analysis module. This dynamic adjustment mechanism not only improves the service quality of the network, but also greatly enhances the resilience of the network in the face of demand fluctuations and uncertain factors. By realizing closed-loop optimization, the feedback optimization module can adjust the prediction model based on actual operation results to ensure continuous improvement of performance and efficiency in long-term operation. In summary, the present invention can effectively solve the problems of static and slow response of network resource management in the prior art, and provides an innovative and practical solution for resource management in large-scale data centers and complex network environments.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings in the following description are only for the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明实施例的动态资源路由管理系统示意图;FIG1 is a schematic diagram of a dynamic resource routing management system according to an embodiment of the present invention;
图2为本发明实施例的网络集成动态资源路由管理方法示意图。FIG. 2 is a schematic diagram of a network integrated dynamic resource routing management method according to an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with specific embodiments.
需要说明的是,除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。It should be noted that, unless otherwise defined, the technical terms or scientific terms used in the present invention should be understood by people with ordinary skills in the field to which the present invention belongs. The words "first", "second" and similar words used in the present invention do not indicate any order, quantity or importance, but are only used to distinguish different components. The words "include" or "comprise" and similar words mean that the elements or objects appearing before the word include the elements or objects listed after the word and their equivalents, without excluding other elements or objects.
如图1-图2所示,一种网络集成动态资源路由管理系统,包括资源监控模块、数据采集融合模块、智能预测分析模块、决策支持优化模块、动态资源调度模块以及反馈优化模块;其中:As shown in FIG1-2, a network integrated dynamic resource routing management system includes a resource monitoring module, a data acquisition and fusion module, an intelligent prediction and analysis module, a decision support and optimization module, a dynamic resource scheduling module, and a feedback optimization module; wherein:
资源监控模块:用于实时监控并采集网络资源的使用情况,包括带宽、存储和计算能力,并生成资源使用报告;Resource monitoring module: used to monitor and collect network resource usage in real time, including bandwidth, storage and computing power, and generate resource usage reports;
数据采集融合模块:对采集的网络资源数据进行预处理以消除噪声和冗余信息,同时进行多源数据融合,提高数据的准确性和一致性;Data acquisition and fusion module: pre-processes the collected network resource data to eliminate noise and redundant information, and simultaneously performs multi-source data fusion to improve data accuracy and consistency;
智能预测分析模块:基于数据采集融合模块提供的预处理数据进行多维度分析,采用结合卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合模型,预测资源需求和流量变化趋势,生成资源优化方案,该混合模型特别关注突发流量和异常事件的预测,并将优化方案传递给决策支持优化模块;Intelligent prediction and analysis module: Based on the pre-processed data provided by the data acquisition and fusion module, it performs multi-dimensional analysis and adopts a hybrid model combining convolutional neural network (CNN) and long short-term memory network (LSTM) to predict resource demand and traffic change trends and generate resource optimization plans. This hybrid model pays special attention to the prediction of sudden traffic and abnormal events, and passes the optimization plan to the decision support optimization module;
决策支持优化模块:利用智能预测分析模块提供的资源优化方案,结合当前网络状况和业务需求,动态调整资源分配策略和路由路径,确保资源的高效利用;Decision support optimization module: Utilizes the resource optimization solution provided by the intelligent prediction analysis module, combines the current network status and business needs, and dynamically adjusts the resource allocation strategy and routing path to ensure efficient use of resources;
动态资源调度模块:负责执行决策支持优化模块生成的资源分配和路由调整方案,通过动态资源调度算法实时调整网络资源配置,并监控执行效果,确保调整过程中的网络稳定性和服务质量;Dynamic resource scheduling module: responsible for executing the resource allocation and routing adjustment schemes generated by the decision support optimization module, adjusting network resource configuration in real time through the dynamic resource scheduling algorithm, and monitoring the execution effect to ensure network stability and service quality during the adjustment process;
反馈优化模块:持续收集动态资源调度模块提供的调整后网络运行数据,分析执行效果,根据分析结果对智能预测分析模块的混合模型进行调整和优化,形成闭环优化机制;并通过不断试错和学习,优化资源调度和路由策略,以提高整体系统性能。Feedback optimization module: Continuously collects the adjusted network operation data provided by the dynamic resource scheduling module, analyzes the execution effect, and adjusts and optimizes the hybrid model of the intelligent prediction analysis module based on the analysis results to form a closed-loop optimization mechanism; and optimizes resource scheduling and routing strategies through continuous trial and error and learning to improve the overall system performance.
资源监控模块包括带宽监控单元、存储监控单元和计算能力监控单元;其中:The resource monitoring module includes a bandwidth monitoring unit, a storage monitoring unit and a computing power monitoring unit; wherein:
带宽监控单元:用于实时监测网络带宽的使用情况,通过监控网络接口的数据传输速率、丢包率和延迟的参数,生成带宽使用报告;以确保带宽使用情况的准确性和及时性;Bandwidth monitoring unit: used to monitor the usage of network bandwidth in real time, and generate bandwidth usage reports by monitoring the data transmission rate, packet loss rate and delay parameters of the network interface to ensure the accuracy and timeliness of bandwidth usage;
存储监控单元:用于实时监测网络存储资源的使用情况,通过监控存储设备的容量利用率、读写速率和I/O操作频率的参数,生成存储使用报告;Storage monitoring unit: used to monitor the usage of network storage resources in real time, and generate storage usage reports by monitoring the capacity utilization, read and write rates, and I/O operation frequency parameters of storage devices;
计算能力监控单元:用于实时监测网络计算资源的使用情况,通过监控服务器和计算节点的CPU负载、内存使用率和计算任务队列长度参数,生成计算能力使用报告;Computing capacity monitoring unit: used to monitor the usage of network computing resources in real time, and generate computing capacity usage reports by monitoring the CPU load, memory usage and computing task queue length parameters of servers and computing nodes;
资源使用报告生成单元:负责整合带宽监控单元、存储监控单元和计算能力监控单元提供的数据,生成综合性的资源使用报告;报告内容包括各类资源的当前使用情况、历史使用趋势和预测使用情况,并将报告传输至数据采集融合模块;资源监控模块通过带宽监控单元、存储监控单元和计算能力监控单元的协同工作,实现了对网络资源使用情况的全面监控,确保了资源使用数据的准确性和及时性,并通过资源使用报告生成单元提供综合性的资源使用分析,为智能预测分析模块和决策支持优化模块提供可靠的数据基础。Resource usage report generation unit: responsible for integrating the data provided by the bandwidth monitoring unit, storage monitoring unit and computing power monitoring unit to generate a comprehensive resource usage report; the report content includes the current usage, historical usage trends and predicted usage of various resources, and the report is transmitted to the data acquisition and fusion module; the resource monitoring module realizes comprehensive monitoring of network resource usage through the collaborative work of the bandwidth monitoring unit, storage monitoring unit and computing power monitoring unit, ensures the accuracy and timeliness of resource usage data, and provides comprehensive resource usage analysis through the resource usage report generation unit, providing a reliable data foundation for the intelligent prediction analysis module and the decision support optimization module.
数据采集融合模块包括数据预处理单元和多源数据融合单元;其中:The data acquisition and fusion module includes a data preprocessing unit and a multi-source data fusion unit; wherein:
数据预处理单元:用于对从不同网络节点采集的实时数据进行预处理,通过噪声过滤、数据清洗和重复数据删除的步骤,消除数据中的噪声和冗余信息;噪声过滤使用信号处理算法对数据进行噪声过滤,去除异常值和突变数据;数据清洗利用数据清洗技术,修正数据中的缺失值和错误值,确保数据的完整性和准确性;重复数据删除采用哈希算法,识别并删除数据中的重复项,确保数据的唯一性;Data preprocessing unit: used to preprocess the real-time data collected from different network nodes, and eliminate the noise and redundant information in the data through the steps of noise filtering, data cleaning and deduplication. Noise filtering uses signal processing algorithms to filter the noise of data and remove abnormal values and mutation data. Data cleaning uses data cleaning technology to correct missing values and error values in the data to ensure the integrity and accuracy of the data. Deduplication uses hash algorithms to identify and delete duplicate items in the data to ensure the uniqueness of the data.
多源数据融合单元:用于对预处理后的数据进行多源数据融合,通过数据对齐、数据变换和数据整合的步骤,提高数据的准确性和一致性,其中,数据对齐具体基于时间戳,对来自不同网络节点的数据进行对齐,确保数据在同一时间维度上的一致性;数据变换是根据不同数据源的特性,采用统一的数据格式和单位,对数据进行变换和标准化处理;数据整合则利用数据融合算法,将来自不同源的数据整合为统一的数据集,生成综合性的数据视图,并将结果传输至智能预测分析模块以供进一步分析和优化;通过上述数据采集融合模块的详细设计和功能划分,能够实现对网络资源数据的高效预处理和多源数据融合,该模块的各单元协同工作,通过噪声过滤、数据清洗和重复数据删除等步骤消除数据中的噪声和冗余信息,并通过数据对齐、数据变换和数据整合等步骤提高数据的准确性和一致性,为智能预测分析和决策支持提供了可靠的数据基础,增强了系统的整体性能和稳定性。Multi-source data fusion unit: used to fuse multi-source data after preprocessing, and improve the accuracy and consistency of data through data alignment, data transformation and data integration steps. Among them, data alignment is specifically based on timestamps to align data from different network nodes to ensure the consistency of data in the same time dimension; data transformation is to transform and standardize data according to the characteristics of different data sources, using a unified data format and unit; data integration uses a data fusion algorithm to integrate data from different sources into a unified data set, generate a comprehensive data view, and transmit the results to the intelligent prediction analysis module for further analysis and optimization; through the detailed design and functional division of the above data acquisition and fusion module, efficient preprocessing and multi-source data fusion of network resource data can be achieved. The various units of this module work together to eliminate noise and redundant information in the data through steps such as noise filtering, data cleaning and deduplication, and improve the accuracy and consistency of data through steps such as data alignment, data transformation and data integration, providing a reliable data foundation for intelligent prediction analysis and decision support, and enhancing the overall performance and stability of the system.
智能预测分析模块包括特征提取单元、预测分析单元和资源优化方案生成单元;其中:The intelligent prediction and analysis module includes a feature extraction unit, a prediction and analysis unit, and a resource optimization solution generation unit; wherein:
特征提取单元:用于基于数据采集融合模块提供的预处理数据进行多维度分析,采用卷积神经网络对综合性的数据视图进行特征提取,具体先接收数据采集融合模块提供的预处理数据,并将其输入到卷积神经网络中;然后通过多个卷积层提取数据的局部特征,捕捉数据中的空间关系和模式;最后通过池化层对卷积后的特征进行降维和筛选,保留预定特征;Feature extraction unit: used to perform multi-dimensional analysis based on the pre-processed data provided by the data acquisition and fusion module, and use convolutional neural network to extract features from the comprehensive data view. Specifically, the pre-processed data provided by the data acquisition and fusion module is first received and input into the convolutional neural network; then the local features of the data are extracted through multiple convolutional layers to capture the spatial relationship and pattern in the data; finally, the convolutional features are reduced in dimension and screened through the pooling layer to retain the predetermined features;
预测分析单元:基于特征提取单元提取的特征,采用长短期记忆网络进行时间序列预测,并结合注意力机制以提升预测的准确性和响应速度,预测资源需求和流量变化趋势;具体步骤包括接收特征提取单元输出的特征,并将其输入到长短期记忆网络中,通过多个LSTM层学习数据的时间依赖关系,捕捉数据的长期和短期趋势,引入注意力机制自动识别并重点关注对预测结果影响较大的时间步骤或特征,从而提高预测的精度,生成包括未来的资源需求和流量变化趋势的预测结果;Prediction and analysis unit: Based on the features extracted by the feature extraction unit, a long short-term memory network is used to perform time series prediction, and an attention mechanism is combined to improve the accuracy and response speed of the prediction, and to predict resource demand and traffic change trends. The specific steps include receiving the features output by the feature extraction unit and inputting them into the long short-term memory network, learning the time dependency of the data through multiple LSTM layers, capturing the long-term and short-term trends of the data, and introducing an attention mechanism to automatically identify and focus on the time steps or features that have a greater impact on the prediction results, thereby improving the accuracy of the prediction and generating prediction results including future resource demand and traffic change trends.
资源优化方案生成单元:基于预测分析单元提供的预测结果,生成资源优化方案,具体先整合预测分析单元的输出数据,形成完整的预测视图;然后采用优化算法根据预测视图计算最优的资源分配和路由策略,生成资源优化方案,并将方案传输至决策支持优化模块以供进一步的资源分配和路由调整;通过上述智能预测分析模块的详细设计和功能划分,能够基于预处理数据进行高效的多维度分析,采用结合卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合模型,并引入注意力机制,对综合性的数据视图进行特征提取和时间序列预测,准确预测资源需求和流量变化趋势,通过生成资源优化方案,确保了资源的高效利用和网络性能的优化。Resource optimization solution generation unit: Generates resource optimization solutions based on the prediction results provided by the prediction analysis unit. Specifically, the output data of the prediction analysis unit is first integrated to form a complete prediction view. Then, the optimization algorithm is used to calculate the optimal resource allocation and routing strategy according to the prediction view, generate a resource optimization solution, and transmit the solution to the decision support optimization module for further resource allocation and routing adjustment. Through the detailed design and functional division of the above-mentioned intelligent prediction analysis module, efficient multi-dimensional analysis can be performed based on pre-processed data. A hybrid model combining convolutional neural network (CNN) and long short-term memory network (LSTM) is adopted, and an attention mechanism is introduced to perform feature extraction and time series prediction on the comprehensive data view, accurately predict resource demand and traffic change trends, and generate resource optimization solutions to ensure efficient resource utilization and network performance optimization.
预测分析单元包括:The predictive analysis unit includes:
特征输入:接收特征提取单元输出的特征,将特征数据表示为时间序列输入长短期记忆网络(LSTM),具体表示为:其中,Xt为时间点t上的特征向量,xti为时间点t上的第i个特征数据;Feature input: Receive the features output by the feature extraction unit, represent the feature data as a time series and input it into the long short-term memory network (LSTM), which is specifically expressed as: Among them, Xt is the feature vector at time point t, and xti is the i-th feature data at time point t;
序列学习:通过LSTM层学习时间序列数据的时间依赖关系,捕捉数据的长期和短期趋势;LSTM的计算公式为:Sequence learning: The time dependency of time series data is learned through the LSTM layer to capture the long-term and short-term trends of the data; the calculation formula of LSTM is:
it=σ(Wix·xt+Wih·ht-1+bi);i t =σ(W ix ·x t +W ih ·h t-1 +b i );
ft=σ(Wfx·xt+Wfh·ht-1+bf);f t =σ(W fx ·x t +W fh ·h t-1 +b f );
ot=σ(Wox·xt+Woh·ht-1+bo);o t =σ(W ox ·x t +W oh ·h t-1 +b o );
ct=ft·ct-1+it·tanh(Wcx·xt+Wch·ht-1+bc);c t = f t ·c t-1 +i t ·tanh(W cx ·x t +W ch ·h t-1 +b c );
ht=ot·tanh(ct);其中,it为输入门激活值,ft为遗忘门激活值,ot为输出门激活值,ct为记忆单元状态,ht为隐藏状态,σ为sigmoid函数,tanh为双曲正切函数,Wix为输入到输入门的权重矩阵,Wih为隐藏状态到输入门的权重矩阵,Wfx为输入到遗忘门的权重矩阵,Wfh为隐藏状态到遗忘门的权重矩阵,Wox为输入到输出门的权重矩阵,Woh为隐藏状态到输出门的权重矩阵,Wcx为输入到记忆单元的权重矩阵,Wch为隐藏状态到记忆单元的权重矩阵,bi为输入门的偏置,bf为遗忘门的偏置,bo为输出门的偏置,bc为记忆单元的偏置;h t = o t ·tanh( ct ); where it is the input gate activation value, f is the forget gate activation value, o is the output gate activation value, c is the memory unit state, h is the hidden state, σ is the sigmoid function, tanh is the hyperbolic tangent function, Wix is the weight matrix input to the input gate, Wih is the weight matrix from the hidden state to the input gate, Wfx is the weight matrix input to the forget gate, Wfh is the weight matrix from the hidden state to the forget gate, Wox is the weight matrix input to the output gate, Woh is the weight matrix from the hidden state to the output gate, Wcx is the weight matrix input to the memory unit, Wch is the weight matrix from the hidden state to the memory unit, bi is the bias of the input gate, bf is the bias of the forget gate, bo is the bias of the output gate, and bc is the bias of the memory unit;
引入注意力机制:利用注意力机制增强模型对时间序列数据中预定特征的关注度,自动识别并重点关注对预测结果影响较大的时间步骤或特征,注意力机制的计算公式为:Introducing the attention mechanism: The attention mechanism is used to enhance the model's attention to the predetermined features in the time series data, automatically identifying and focusing on the time steps or features that have a greater impact on the prediction results. The calculation formula of the attention mechanism is:
et,j=vT·tanh(We·[ht;hj]+be);e t,j = v T ·tanh(W e ·[h t ;h j ]+b e );
其中,et,j为时间点t与时间点j的注意力得分,αt,j为时间点t与时间点j的注意力权重,为时间点t的加权隐藏状态,v为注意力权重向量,We为注意力权重矩阵,be为注意力偏置,ht为时间点t的隐藏状态,hj为时间点j的隐藏状态; Among them, e t,j is the attention score of time point t and time point j, α t,j is the attention weight of time point t and time point j, is the weighted hidden state at time point t, v is the attention weight vector, We is the attention weight matrix, be is the attention bias, ht is the hidden state at time point t, and hj is the hidden state at time point j;
预测输出:基于注意力加权后的隐藏状态通过全连接层生成预测结果,包括未来的资源需求和流量变化趋势,公式为:其中,为时间点t+1的预测值,Wy为全连接层的权重矩阵,by为全连接层的偏置;Prediction output: hidden state based on attention weighting The prediction results are generated through the fully connected layer, including future resource requirements and traffic change trends. The formula is: in, is the predicted value at time point t+1, W y is the weight matrix of the fully connected layer, and by is the bias of the fully connected layer;
结果传输:将生成的预测结果,包括未来的资源需求和流量变化趋势,传输至资源优化方案生成单元,以供进一步的资源分配和路由调整;通过上述预测分析单元的详细设计和功能划分,能够基于特征提取单元提取的特征,采用长短期记忆网络(LSTM)进行高效的时间序列预测,并结合注意力机制提升预测的准确性和响应速度,通过生成包括未来资源需求和流量变化趋势的预测结果,为资源优化方案提供了准确和可靠的数据支持,提高了系统的预测精度和响应能力,增强了整体系统性能和稳定性。Result transmission: The generated prediction results, including future resource requirements and traffic change trends, are transmitted to the resource optimization plan generation unit for further resource allocation and routing adjustment. Through the detailed design and functional division of the above-mentioned prediction and analysis unit, it is possible to use the long short-term memory network (LSTM) for efficient time series prediction based on the features extracted by the feature extraction unit, and combine the attention mechanism to improve the accuracy and response speed of the prediction. By generating prediction results including future resource requirements and traffic change trends, it provides accurate and reliable data support for the resource optimization plan, improves the prediction accuracy and response capability of the system, and enhances the overall system performance and stability.
资源优化方案生成单元包括:The resource optimization solution generation unit includes:
数据整合:整合预测分析单元的输出数据,形成完整的预测视图,表示为:其中,Pt为时间点t上的预测视图,为时间点t+i的预测值;Data integration: Integrate the output data of the prediction analysis unit to form a complete prediction view, expressed as: Where Pt is the predicted view at time point t, is the predicted value at time point t+i;
目标函数定义:定义资源优化的目标函数,包括资源利用率最大化和服务质量最优化,目标函数表示为:其中,U为优化目标函数,Rt+i为时间点t+i的资源利用率,Qt+i为时间点t+i的服务质量损失,α和β为权重系数;Objective function definition: Define the objective function of resource optimization, including maximizing resource utilization and optimizing service quality. The objective function is expressed as: Among them, U is the optimization objective function, R t+i is the resource utilization at time point t+i, Q t+i is the service quality loss at time point t+i, α and β are weight coefficients;
约束条件设置:设置资源分配的约束条件,确保资源分配在合理范围内,约束条件公式为:Rmin≤Rt+i≤Rmax,其中,Rmin为资源利用率下限,Rmax为资源利用率上限;Constraint setting: Set the resource allocation constraints to ensure that the resource allocation is within a reasonable range. The constraint formula is: R min ≤ R t+i ≤ R max , where R min is the lower limit of resource utilization and R max is the upper limit of resource utilization;
优化计算:采用遗传算法进行优化计算,生成最优的资源分配和路由策略;遗传算法的计算过程包括以下步骤:Optimization calculation: Genetic algorithm is used for optimization calculation to generate the optimal resource allocation and routing strategy; the calculation process of genetic algorithm includes the following steps:
步骤1:随机生成一组初始资源分配策略作为种群,表示为: 其中,S0为初始种群,si为第i个资源分配策略,m为种群大小;Step 1: Randomly generate a set of initial resource allocation strategies as the population, expressed as: Among them, S 0 is the initial population, s i is the i-th resource allocation strategy, and m is the population size;
步骤2:根据目标函数计算每个资源分配策略的适应度,公式为: 其中,F(si)为第i个策略的适应度值,Rsi,t+j和Qsi,t+j分别为第i个策略在时间点t+j的资源利用率和服务质量损失;Step 2: Calculate the fitness of each resource allocation strategy based on the objective function. The formula is: Where F(s i ) is the fitness value of the i-th strategy, R si,t+j and Q si,t+j are the resource utilization and service quality loss of the i-th strategy at time point t+j, respectively;
步骤3:根据适应度值选择适应度高的策略进行繁殖,生成下一代种群;Step 3: Select a strategy with high fitness according to the fitness value for reproduction to generate the next generation population;
步骤4:对选择的策略进行交叉操作,生成新的资源分配策略,公式为: 其中,sp和sq为父代策略,snew为新的资源分配策略;Step 4: Perform cross-operation on the selected strategies to generate a new resource allocation strategy. The formula is: Among them, s p and s q are parent strategies, and s new is the new resource allocation strategy;
步骤5:对新生成的策略进行变异操作,增加种群的多样性,表示为:smutated=mutate(snew),其中,smutated为变异后的策略;Step 5: Perform mutation operation on the newly generated strategy to increase the diversity of the population, expressed as: s mutated = mutate(s new ), where s mutated is the mutated strategy;
步骤6:重复步骤2至步骤5,直至满足终止条件,获得最优资源分配策略。Step 6: Repeat steps 2 to 5 until the termination condition is met and the optimal resource allocation strategy is obtained.
方案输出:将最优资源分配和路由策略作为资源优化方案输出,传输至决策支持优化模块,以供进一步的资源分配和路由调整;资源优化方案生成单元通过数据整合、目标函数定义、约束条件设置和遗传算法的优化计算,生成了最优的资源分配和路由策略,为决策支持优化模块提供了可靠的资源优化方案。Solution output: The optimal resource allocation and routing strategy is output as a resource optimization solution and transmitted to the decision support optimization module for further resource allocation and routing adjustment; the resource optimization solution generation unit generates the optimal resource allocation and routing strategy through data integration, objective function definition, constraint setting and genetic algorithm optimization calculation, providing a reliable resource optimization solution for the decision support optimization module.
决策支持优化模块包括网络状况评估单元、业务需求评估单元和策略调整单元;其中:The decision support optimization module includes a network status assessment unit, a business demand assessment unit and a strategy adjustment unit; among which:
网络状况评估单元:用于实时评估当前网络状况,包括带宽利用率、存储利用率和计算能力利用率的参数,网络状况评估公式为:其中,Nt为时间点t的网络状况评估结果,Bt为带宽利用率,St为存储利用率,Ct为计算能力利用率;Network status evaluation unit: used to evaluate the current network status in real time, including parameters of bandwidth utilization, storage utilization, and computing power utilization. The network status evaluation formula is: Wherein, Nt is the network status evaluation result at time point t, Bt is the bandwidth utilization, St is the storage utilization, and Ct is the computing power utilization;
业务需求评估单元:用于评估当前业务需求,包括各业务应用的优先级、实时流量需求和服务质量要求;业务需求评估公式为:其中,Dt为时间点t的业务需求评估结果,Pt为各业务应用的优先级,Tt为实时流量需求,Qt为服务质量要求;Business demand assessment unit: used to assess current business needs, including the priority of each business application, real-time traffic demand and service quality requirements; the business demand assessment formula is: Where Dt is the service demand assessment result at time point t, Pt is the priority of each service application, Tt is the real-time traffic demand, and Qt is the service quality requirement;
策略调整单元:用于结合网络状况评估结果和业务需求评估结果,基于智能预测分析模块提供的资源优化方案,动态调整资源分配策略和路由路径;具体包括以下步骤:Policy adjustment unit: used to dynamically adjust resource allocation strategy and routing path based on resource optimization scheme provided by intelligent prediction analysis module in combination with network status assessment results and business demand assessment results; specifically includes the following steps:
首先,整合网络状况评估结果和业务需求评估结果,形成综合评估视图,具体表示为:其中,Et为时间点t的综合评估视图;First, integrate the network status assessment results and business demand assessment results to form a comprehensive assessment view, which is specifically expressed as follows: Where, E t is the comprehensive evaluation view at time point t;
然后,基于综合评估视图和资源优化方案,计算最优资源分配策略和路由路径,策略计算公式为:St=argmax(α·UR,t+β·UQ,t-γ·Ct),其中,St为时间点t的资源分配策略,UR,t为资源利用率收益,UQ,t为服务质量收益,Ct为调整成本,α,β和γ为权重系数;Then, based on the comprehensive evaluation view and resource optimization scheme, the optimal resource allocation strategy and routing path are calculated. The strategy calculation formula is: S t = argmax(α· UR,t +β· UQ,t -γ· Ct ), where S t is the resource allocation strategy at time point t, UR,t is the resource utilization benefit, UQ ,t is the service quality benefit, C t is the adjustment cost, and α, β and γ are weight coefficients;
最后,将计算得到的最优资源分配策略和路由路径作为调整方案输出,传输至动态资源调度模块,以供执行资源分配和路由调整;决策支持优化模块通过网络状况评估单元、业务需求评估单元和策略调整单元的协同工作,利用智能预测分析模块提供的资源优化方案,结合当前网络状况和业务需求,动态调整资源分配策略和路由路径,确保了资源的高效利用和服务质量的优化。Finally, the calculated optimal resource allocation strategy and routing path are output as adjustment plans and transmitted to the dynamic resource scheduling module for executing resource allocation and routing adjustments. The decision support optimization module uses the resource optimization plan provided by the intelligent prediction analysis module through the collaborative work of the network status assessment unit, the business demand assessment unit and the policy adjustment unit, and combines the current network status and business needs to dynamically adjust the resource allocation strategy and routing path, ensuring efficient utilization of resources and optimization of service quality.
动态资源调度模块包括资源配置单元、路由调整单元和执行监控单元;其中:The dynamic resource scheduling module includes a resource configuration unit, a routing adjustment unit and an execution monitoring unit; wherein:
资源配置单元:用于接收决策支持优化模块生成的资源分配方案,并根据该方案实时调整网络资源配置,资源配置公式为:Rt+1=Rt+ΔRt其中,Rt+1为时间点t+1的资源配置,Rt为时间点t的资源配置,ΔRt为根据资源分配方案计算的资源调整量;Resource configuration unit: used to receive the resource allocation plan generated by the decision support optimization module, and adjust the network resource configuration in real time according to the plan. The resource configuration formula is: R t+1 =R t +ΔR t , where R t+1 is the resource configuration at time point t+1, R t is the resource configuration at time point t, and ΔR t is the resource adjustment amount calculated according to the resource allocation plan;
路由调整单元:用于接收决策支持优化模块生成的路由调整方案,并根据该方案动态调整网络路由路径,路由调整公式为:Route adjustment unit: used to receive the route adjustment plan generated by the decision support optimization module and dynamically adjust the network routing path according to the plan. The route adjustment formula is:
Pt+1=argmin(CP,t+1+β·DP,t+1),其中,Pt+1为时间点t+1的路由路径,CP,t+1为时间点t+1的路由成本,DP,t+1为时间点t+1的路由延迟,β为权重系数;P t+1 = argmin( CP,t+1 + β·DP ,t+1 ), where P t+1 is the routing path at time point t+1, CP,t+1 is the routing cost at time point t+1, DP,t+1 is the routing delay at time point t+1, and β is the weight coefficient;
执行监控单元:用于监控资源配置和路由调整的执行效果,确保调整过程中网络的稳定性和服务质量,执行监控公式为:其中,Mt为时间点t的执行监控指标,Qi,t为时间点t第i个服务质量参数,n为服务质量参数的数量;通过上述动态资源调度模块的详细设计和功能划分,能够执行决策支持优化模块生成的资源分配和路由调整方案,具体通过动态资源调度算法实时调整网络资源配置,通过资源配置、路由调整和执行监控的协同工作,确保了资源的高效利用和网络的稳定性,为动态资源管理提供了准确和可靠的执行支持,提高了系统的整体性能和稳定性。Execution monitoring unit: used to monitor the execution effect of resource configuration and routing adjustment to ensure network stability and service quality during the adjustment process. The execution monitoring formula is: Among them, Mt is the execution monitoring indicator at time point t, Qi ,t is the i-th service quality parameter at time point t, and n is the number of service quality parameters. Through the detailed design and functional division of the above dynamic resource scheduling module, the resource allocation and routing adjustment schemes generated by the decision support optimization module can be executed. Specifically, the network resource configuration is adjusted in real time through the dynamic resource scheduling algorithm. Through the collaborative work of resource configuration, routing adjustment and execution monitoring, the efficient utilization of resources and the stability of the network are ensured, which provides accurate and reliable execution support for dynamic resource management and improves the overall performance and stability of the system.
反馈优化模块包括数据收集单元、模型调整单元和策略优化单元;其中:The feedback optimization module includes a data collection unit, a model adjustment unit and a strategy optimization unit; wherein:
数据收集单元:用于持续收集动态资源调度模块提供的调整后网络运行数据,包括资源利用率、服务质量和网络性能的参数,收集的数据用于后续分析和优化;Data collection unit: used to continuously collect the adjusted network operation data provided by the dynamic resource scheduling module, including resource utilization, service quality and network performance parameters. The collected data is used for subsequent analysis and optimization;
模型调整单元:用于基于数据收集单元提供的运行数据,对智能预测分析模块的混合模型进行调整和优化,具体先计算预测结果与实际运行数据之间的误差,公式为:其中,Et为时间点t的预测误差,为时间点t+i的预测值,yt+i为时间点t+i的实际值,n为预测数据点的数量;然后基于计算的误差,通过优化算法(如梯度下降算法)调整混合模型的参数,更新模型以提高预测精度;Model adjustment unit: used to adjust and optimize the hybrid model of the intelligent prediction analysis module based on the operation data provided by the data collection unit. Specifically, the error between the prediction result and the actual operation data is calculated first. The formula is: Where Et is the prediction error at time point t, is the predicted value at time point t+i, y t+i is the actual value at time point t+i, and n is the number of predicted data points; then, based on the calculated error, the parameters of the hybrid model are adjusted through an optimization algorithm (such as a gradient descent algorithm) to update the model to improve the prediction accuracy;
策略优化单元:用于通过不断试错和学习,优化资源调度和路由策略,具体先应用强化学习算法,通过试错过程学习最优的资源调度和路由策略,强化学习的奖励函数表示为:Rt=α·UR,t+β·UQ,t-γ·Ct,其中,Rt为时间点t的奖励值,UR,t为资源利用率收益,UQ,t为服务质量收益,Ct为调整成本,α,β和γ为权重系数;接着基于奖励函数的反馈,调整资源调度和路由策略,以提高整体系统性能;通过上述反馈优化模块的详细设计和功能划分,能够基于分析结果对智能预测分析模块的混合模型进行高效的调整和优化,形成闭环优化机制,通过数据收集、误差计算、模型更新和试错学习的协同工作,优化资源调度和路由策略,确保系统的长期稳定性和高效性,各单元的协同工作,提高了系统的自适应能力和整体性能,为动态资源管理提供了持续的优化支持。Policy optimization unit: used to optimize resource scheduling and routing strategies through continuous trial and error and learning. Specifically, the reinforcement learning algorithm is first applied to learn the optimal resource scheduling and routing strategies through the trial and error process. The reward function of reinforcement learning is expressed as: R t = α· UR,t + β·U Q,t -γ·C t , where R t is the reward value at time point t, UR,t is the resource utilization benefit, U Q,t is the service quality benefit, C t is the adjustment cost, and α, β and γ are weight coefficients; then, based on the feedback of the reward function, the resource scheduling and routing strategies are adjusted to improve the overall system performance; through the detailed design and functional division of the above feedback optimization module, the hybrid model of the intelligent prediction analysis module can be efficiently adjusted and optimized based on the analysis results to form a closed-loop optimization mechanism. Through the collaborative work of data collection, error calculation, model updating and trial and error learning, the resource scheduling and routing strategies are optimized to ensure the long-term stability and efficiency of the system. The collaborative work of each unit improves the system's adaptability and overall performance, and provides continuous optimization support for dynamic resource management.
一种网络集成动态资源路由管理方法,包括以下步骤:A network integrated dynamic resource routing management method comprises the following steps:
S1:实时监控网络资源的使用情况,包括带宽、存储和计算能力,并生成资源使用报告;S1: Monitor the usage of network resources in real time, including bandwidth, storage, and computing power, and generate resource usage reports;
S2:从不同的网络节点采集实时数据,并对采集数据进行预处理以消除噪声和冗余信息,同时进行多源数据融合,提高数据质量;S2: Collect real-time data from different network nodes, pre-process the collected data to eliminate noise and redundant information, and perform multi-source data fusion to improve data quality;
S3:采用结合卷积神经网络和长短期记忆网络的混合模型,并结合注意力机制,对S2预处理后的数据进行多维度分析,以预测资源需求和流量变化趋势,生成资源优化方案;S3: A hybrid model combining convolutional neural networks and long short-term memory networks, combined with an attention mechanism, performs multi-dimensional analysis on the data pre-processed by S2 to predict resource demand and traffic change trends and generate resource optimization plans;
S4:利用S3的资源优化方案,结合当前网络状况和业务需求,动态调整资源分配策略和路由路径;S4: Use the resource optimization solution of S3 to dynamically adjust resource allocation strategies and routing paths based on current network conditions and business needs;
S5:执行S4中生成的资源分配和路由调整方案,并通过动态资源调度算法实时调整网络资源配置,并监控执行效果,确保调整过程中的网络稳定性和服务质量;S5: Execute the resource allocation and routing adjustment plan generated in S4, adjust the network resource configuration in real time through the dynamic resource scheduling algorithm, and monitor the execution effect to ensure network stability and service quality during the adjustment process;
S6:持续收集S5调整后的网络运行数据,并分析执行效果,根据分析结果对S3中的混合模型进行调整和优化,形成闭环优化机制,并通过不断试错和学习,优化资源调度和路由策略。S6: Continue to collect network operation data adjusted by S5 and analyze the execution effect. Adjust and optimize the hybrid model in S3 based on the analysis results to form a closed-loop optimization mechanism. Optimize resource scheduling and routing strategies through continuous trial and error and learning.
本发明旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。The present invention is intended to cover all such substitutions, modifications and variations that fall within the broad scope of the appended claims. Therefore, any omissions, modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention should be included in the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410863425.9A CN118590430A (en) | 2024-06-29 | 2024-06-29 | A network integrated dynamic resource routing management system and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410863425.9A CN118590430A (en) | 2024-06-29 | 2024-06-29 | A network integrated dynamic resource routing management system and method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN118590430A true CN118590430A (en) | 2024-09-03 |
Family
ID=92536822
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410863425.9A Pending CN118590430A (en) | 2024-06-29 | 2024-06-29 | A network integrated dynamic resource routing management system and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118590430A (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118802801A (en) * | 2024-09-13 | 2024-10-18 | 中雄科技集团股份有限公司 | A performance dynamic allocation optimization method and system based on computing power |
| CN118863484A (en) * | 2024-09-26 | 2024-10-29 | 晋江市数产互联科技有限公司 | A real-time production collaborative processing method for supply chain platform |
| CN118984273A (en) * | 2024-10-11 | 2024-11-19 | 四川省交通勘察设计研究院有限公司 | A network controller and network switching device configuration method |
| CN119005643A (en) * | 2024-10-23 | 2024-11-22 | 杭州沃德水泵制造有限公司 | Intelligent water supply system based on big data |
| CN119012240A (en) * | 2024-10-22 | 2024-11-22 | 江苏南通鑫业网络科技有限公司 | Telecommunication service information processing system |
| CN119071755A (en) * | 2024-11-06 | 2024-12-03 | 南昌理工学院 | A facility agriculture monitoring system based on adaptive wireless communication |
| CN119126652A (en) * | 2024-11-12 | 2024-12-13 | 华中数控(南京)研究院有限公司 | An integrated dual-channel control system for a numerical control system |
| CN119182667A (en) * | 2024-11-22 | 2024-12-24 | 八维通科技有限公司 | Network resource optimization method and system based on user terminal computing power monitoring |
| CN119179552A (en) * | 2024-11-22 | 2024-12-24 | 国网浙江省电力有限公司衢州供电公司 | Self-adaptive container expansion method, system, equipment and medium |
| CN119211157A (en) * | 2024-11-26 | 2024-12-27 | 江西星牛信息技术有限公司 | A collaborative communication service support system and working method thereof |
| CN119277453A (en) * | 2024-12-06 | 2025-01-07 | 深圳市友恺通信技术有限公司 | A network resource scheduling management system and method based on 5G communication |
| CN119336516A (en) * | 2024-12-20 | 2025-01-21 | 广东奥飞数据科技股份有限公司 | Hyper-converged computing power scheduling method and system based on prediction model |
| CN119383116A (en) * | 2024-11-06 | 2025-01-28 | 北京中航通用科技有限公司 | Redundancy damage detection method, device and electronic equipment for redundant network |
| CN119402967A (en) * | 2024-11-04 | 2025-02-07 | 国网山东省电力公司营销服务中心(计量中心) | A method and system for dispatching electric power services based on 5G communication classification |
| CN119484313A (en) * | 2024-11-11 | 2025-02-18 | 北京中航通用科技有限公司 | Parameter adjustment method, device and electronic device for adaptive network environment |
| CN119496651A (en) * | 2024-11-15 | 2025-02-21 | 广东电网有限责任公司广州供电局 | A method, system and electronic device for operation management of network security equipment |
| CN119603301A (en) * | 2024-11-19 | 2025-03-11 | 河北首科远拓科技有限公司 | A communication transmission control cabinet based on big data |
| CN119676851A (en) * | 2024-11-18 | 2025-03-21 | 西安电子科技大学 | An on-demand service strategy system for air-space-ground scenarios based on user demand analysis |
| CN119721558A (en) * | 2024-11-27 | 2025-03-28 | 智慧工场创新科技(东台)有限公司 | A circuit board production management system and method |
| CN119743496A (en) * | 2024-12-27 | 2025-04-01 | 常州瀚森科技股份有限公司 | A data service system based on the Internet |
| CN119760496A (en) * | 2024-11-23 | 2025-04-04 | 西北工业大学 | A runtime performance evaluation method for IMU perception resources based on spatiotemporal prediction |
| CN119766756A (en) * | 2025-01-02 | 2025-04-04 | 北京领雾科技有限公司 | Multi-strategy-based distributed network resource dynamic allocation method and system |
| CN120123973A (en) * | 2025-02-19 | 2025-06-10 | 北京航云科创科技有限公司 | A computer intelligent service management system and method based on network big data |
| CN119760496B (en) * | 2024-11-23 | 2025-10-17 | 西北工业大学 | IMU (inertial measurement Unit) perception resource operation time performance assessment method based on space-time prediction |
-
2024
- 2024-06-29 CN CN202410863425.9A patent/CN118590430A/en active Pending
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118802801A (en) * | 2024-09-13 | 2024-10-18 | 中雄科技集团股份有限公司 | A performance dynamic allocation optimization method and system based on computing power |
| CN118863484A (en) * | 2024-09-26 | 2024-10-29 | 晋江市数产互联科技有限公司 | A real-time production collaborative processing method for supply chain platform |
| CN118863484B (en) * | 2024-09-26 | 2025-01-07 | 晋江市数产互联科技有限公司 | A real-time production collaborative processing method for supply chain platform |
| CN118984273A (en) * | 2024-10-11 | 2024-11-19 | 四川省交通勘察设计研究院有限公司 | A network controller and network switching device configuration method |
| CN119012240A (en) * | 2024-10-22 | 2024-11-22 | 江苏南通鑫业网络科技有限公司 | Telecommunication service information processing system |
| CN119005643A (en) * | 2024-10-23 | 2024-11-22 | 杭州沃德水泵制造有限公司 | Intelligent water supply system based on big data |
| CN119402967A (en) * | 2024-11-04 | 2025-02-07 | 国网山东省电力公司营销服务中心(计量中心) | A method and system for dispatching electric power services based on 5G communication classification |
| CN119071755B (en) * | 2024-11-06 | 2025-06-17 | 南昌理工学院 | A facility agriculture monitoring system based on adaptive wireless communication |
| CN119071755A (en) * | 2024-11-06 | 2024-12-03 | 南昌理工学院 | A facility agriculture monitoring system based on adaptive wireless communication |
| CN119383116A (en) * | 2024-11-06 | 2025-01-28 | 北京中航通用科技有限公司 | Redundancy damage detection method, device and electronic equipment for redundant network |
| CN119484313A (en) * | 2024-11-11 | 2025-02-18 | 北京中航通用科技有限公司 | Parameter adjustment method, device and electronic device for adaptive network environment |
| CN119126652A (en) * | 2024-11-12 | 2024-12-13 | 华中数控(南京)研究院有限公司 | An integrated dual-channel control system for a numerical control system |
| CN119496651A (en) * | 2024-11-15 | 2025-02-21 | 广东电网有限责任公司广州供电局 | A method, system and electronic device for operation management of network security equipment |
| CN119676851A (en) * | 2024-11-18 | 2025-03-21 | 西安电子科技大学 | An on-demand service strategy system for air-space-ground scenarios based on user demand analysis |
| CN119603301B (en) * | 2024-11-19 | 2025-08-22 | 河北首科远拓科技有限公司 | A communication transmission control cabinet based on big data |
| CN119603301A (en) * | 2024-11-19 | 2025-03-11 | 河北首科远拓科技有限公司 | A communication transmission control cabinet based on big data |
| CN119182667A (en) * | 2024-11-22 | 2024-12-24 | 八维通科技有限公司 | Network resource optimization method and system based on user terminal computing power monitoring |
| CN119179552A (en) * | 2024-11-22 | 2024-12-24 | 国网浙江省电力有限公司衢州供电公司 | Self-adaptive container expansion method, system, equipment and medium |
| CN119760496B (en) * | 2024-11-23 | 2025-10-17 | 西北工业大学 | IMU (inertial measurement Unit) perception resource operation time performance assessment method based on space-time prediction |
| CN119760496A (en) * | 2024-11-23 | 2025-04-04 | 西北工业大学 | A runtime performance evaluation method for IMU perception resources based on spatiotemporal prediction |
| CN119211157A (en) * | 2024-11-26 | 2024-12-27 | 江西星牛信息技术有限公司 | A collaborative communication service support system and working method thereof |
| CN119211157B (en) * | 2024-11-26 | 2025-03-14 | 江西星牛信息技术有限公司 | Cooperative communication service supporting system and working method thereof |
| CN119721558A (en) * | 2024-11-27 | 2025-03-28 | 智慧工场创新科技(东台)有限公司 | A circuit board production management system and method |
| CN119277453A (en) * | 2024-12-06 | 2025-01-07 | 深圳市友恺通信技术有限公司 | A network resource scheduling management system and method based on 5G communication |
| CN119277453B (en) * | 2024-12-06 | 2025-02-25 | 深圳市友恺通信技术有限公司 | Network resource scheduling management system and method based on 5G communication |
| CN119336516B (en) * | 2024-12-20 | 2025-04-01 | 广东奥飞数据科技股份有限公司 | Super fusion calculation force scheduling method and system based on prediction model |
| CN119336516A (en) * | 2024-12-20 | 2025-01-21 | 广东奥飞数据科技股份有限公司 | Hyper-converged computing power scheduling method and system based on prediction model |
| CN119743496B (en) * | 2024-12-27 | 2025-08-12 | 常州瀚森科技股份有限公司 | Data service system based on Internet |
| CN119743496A (en) * | 2024-12-27 | 2025-04-01 | 常州瀚森科技股份有限公司 | A data service system based on the Internet |
| CN119766756A (en) * | 2025-01-02 | 2025-04-04 | 北京领雾科技有限公司 | Multi-strategy-based distributed network resource dynamic allocation method and system |
| CN120123973A (en) * | 2025-02-19 | 2025-06-10 | 北京航云科创科技有限公司 | A computer intelligent service management system and method based on network big data |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN118590430A (en) | A network integrated dynamic resource routing management system and method | |
| CN119576507B (en) | Automatic optimization method and system for big data distributed computing task based on AI | |
| CN119441832B (en) | Intelligent task alarm rule self-learning method and system based on supporting priority | |
| Wang et al. | Optimizing data placement for cost effective and high available multi-cloud storage | |
| US12388896B2 (en) | Method and system for computing power network scheduling service based on comprehensive weight decision of network performance | |
| CN115277789B (en) | Safety protection system and method for cascade hydropower station | |
| CN113037877A (en) | Optimization method for time-space data and resource scheduling under cloud edge architecture | |
| CN117972367B (en) | Data storage prediction method, data storage subsystem and intelligent computing platform | |
| CN120017608B (en) | Disaster recovery data recovery method and system for disaster recovery system | |
| CN118735222B (en) | Semantic large model-based power scene complex task scheduling decision method and system | |
| CN118233522A (en) | Service request optimization system and method based on digital twin | |
| CN115802366B (en) | Network traffic prediction method, device, computer equipment and medium | |
| CN120162213A (en) | Risk warning method, system and electronic equipment | |
| CN120186105A (en) | Real-time network traffic prediction and resource optimization allocation method and system based on spatiotemporal multimodal generation model | |
| CN118887012A (en) | A transaction supervision system based on risk control rule engine | |
| CN118365016A (en) | Method and system for predicting load of power exchange station by fusing Attention and CNN-GRU | |
| CN115086225B (en) | Method and monitoring device for determining optimal path of calculation and storage of power network | |
| CN114723085A (en) | Event information and fault management operation and maintenance control system | |
| CN120104308B (en) | Cloud platform resource scheduling optimization method and system based on multi-chip architecture | |
| Dong et al. | Spatial Data Analysis and Urban Functional Zoning Optimization in Smart City Development | |
| CN119960993B (en) | Distributed multi-node algorithm based and automatic data parallel method | |
| CN120256143B (en) | Online resource management system and method based on AI large model | |
| CN118631764B (en) | Communication method and system of intelligent equipment in service operation range | |
| CN119561829B (en) | Multi-agent-based deep reinforcement learning method and system | |
| CN120104308A (en) | Cloud platform resource scheduling optimization method and system based on multi-chip architecture |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |