+

CN118334594A - Target area security monitoring method and device, electronic equipment and readable medium - Google Patents

Target area security monitoring method and device, electronic equipment and readable medium Download PDF

Info

Publication number
CN118334594A
CN118334594A CN202410765718.3A CN202410765718A CN118334594A CN 118334594 A CN118334594 A CN 118334594A CN 202410765718 A CN202410765718 A CN 202410765718A CN 118334594 A CN118334594 A CN 118334594A
Authority
CN
China
Prior art keywords
image
object detection
surveillance video
abnormal object
video frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410765718.3A
Other languages
Chinese (zh)
Inventor
林伟建
何伟
彭文彬
罗江君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN MTN ELECTRONIC CO Ltd
Original Assignee
SHENZHEN MTN ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN MTN ELECTRONIC CO Ltd filed Critical SHENZHEN MTN ELECTRONIC CO Ltd
Priority to CN202410765718.3A priority Critical patent/CN118334594A/en
Publication of CN118334594A publication Critical patent/CN118334594A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

本公开的实施例公开了目标区域安全监控方法、装置、电子设备与可读介质。该方法的一具体实施方式包括:对于编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果;对于每两帧编码监控视频帧图像,执行如下处理步骤:确定两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;响应于确定帧图像变化检测结果满足预设变化条件,保留两帧编码监控视频帧图像中的后一帧编码监控视频帧图像;将各个待检测编码监控视频帧图像输入至图像异常对象检测模型中,得到图像异常对象检测结果组。该实施方式提升了视频图像检测的效率,可以及时检测出区域中的异常目标。

The embodiments of the present disclosure disclose a method, device, electronic device and readable medium for security monitoring of a target area. A specific implementation of the method includes: for every two frames of coded monitoring video frame images in a sequence of coded monitoring video frame images, image change detection is performed on the two frames of coded monitoring video frame images to obtain a frame image change detection result; for every two frames of coded monitoring video frame images, the following processing steps are performed: determining whether the frame image change detection results corresponding to the two frames of coded monitoring video frame images meet a preset change condition; in response to determining that the frame image change detection result meets the preset change condition, retaining the latter frame of the two frames of coded monitoring video frame images; inputting each coded monitoring video frame image to be detected into an image abnormal object detection model to obtain an image abnormal object detection result group. This implementation improves the efficiency of video image detection and can detect abnormal targets in the area in a timely manner.

Description

目标区域安全监控方法、装置、电子设备与可读介质Target area security monitoring method, device, electronic device and readable medium

技术领域Technical Field

本公开的实施例涉及视频监控领域,具体涉及目标区域安全监控方法、装置、电子设备与可读介质。Embodiments of the present disclosure relate to the field of video surveillance, and in particular to a method, device, electronic device, and readable medium for securely monitoring a target area.

背景技术Background technique

为了保证目标区域(例如,厂房/车间)的安全,通常会对目标区域进行视频监控。目前,对目标区域进行视频监控,通常采用的方式为:由监测人员时刻对监控视频进行查看,以确定是否有异常目标出现在目标区域。In order to ensure the safety of the target area (for example, a factory/workshop), the target area is usually monitored by video. At present, the method of monitoring the target area by video is usually: the monitoring personnel always check the monitoring video to determine whether there is any abnormal target in the target area.

然而,当采用上述方式对目标区域进行监控,经常会存在如下技术问题:需要时刻观测监控视频,效率较低。However, when the above method is used to monitor the target area, the following technical problems often occur: the monitoring video needs to be observed all the time, which is inefficient.

该背景技术部分中所公开的以上信息仅用于增强对本发明构思的背景的理解,并因此,其可包含并不形成本国的本领域普通技术人员已知的现有技术的信息。The above information disclosed in this Background section is only for enhancement of understanding of the background of the inventive concept and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.

发明内容Summary of the invention

本公开的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本公开的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。The content of this disclosure is used to introduce concepts in a brief form, which will be described in detail in the detailed implementation section below. The content of this disclosure is not intended to identify the key features or essential features of the technical solution claimed for protection, nor is it intended to limit the scope of the technical solution claimed for protection.

本公开的一些实施例提出了目标区域安全监控方法、装置、电子设备与计算机可读介质,来解决以上背景技术部分提到的技术问题中的一项或多项。Some embodiments of the present disclosure propose a target area security monitoring method, device, electronic device and computer-readable medium to solve one or more of the technical problems mentioned in the above background technology section.

第一方面,本公开的一些实施例提供了一种目标区域安全监控方法,该方法包括:控制相关联的摄像装置采集目标区域的监控视频数据;对上述监控视频数据进行编码处理,以生成编码监控视频数据;对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列;对于上述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对上述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果,其中,上述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度;对于每两帧编码监控视频帧图像,执行如下处理步骤:确定上述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;响应于确定上述帧图像变化检测结果满足预设变化条件,保留上述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像;将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组,其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果;根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。In a first aspect, some embodiments of the present disclosure provide a method for security monitoring of a target area, the method comprising: controlling an associated camera device to collect monitoring video data of a target area; encoding the monitoring video data to generate encoded monitoring video data; performing frame processing on the encoded monitoring video data to obtain a sequence of encoded monitoring video frame images; for every two frames of encoded monitoring video frame images in the sequence of encoded monitoring video frame images, performing image change detection on the two frames of encoded monitoring video frame images to obtain a frame image change detection result, wherein the frame image change detection result represents a degree of change between two frames of encoded monitoring video frame images; for every two frames of encoded monitoring video frame images The image is processed as follows: determining whether the frame image change detection results corresponding to the above two frames of coded surveillance video frame images meet the preset change conditions; in response to determining that the above frame image change detection results meet the preset change conditions, retaining the latter frame of the above two frames of coded surveillance video frame images as the coded surveillance video frame image to be detected; inputting each coded surveillance video frame image to be detected into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, wherein one coded surveillance video frame image to be detected corresponds to one image abnormal object detection result; and according to the above image abnormal object detection result group, controlling the associated alarm device to perform alarm processing.

第二方面,本公开的一些实施例提供了一种目标区域安全监控装置,包括:控制单元,被配置成控制相关联的摄像装置采集目标区域的监控视频数据;编码单元,被配置成对上述监控视频数据进行编码处理,以生成编码监控视频数据;分帧单元,被配置成对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列;检测单元,被配置成对于上述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对上述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果,其中,上述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度;确定单元,被配置成对于每两帧编码监控视频帧图像,执行如下处理步骤:确定上述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;响应于确定上述帧图像变化检测结果满足预设变化条件,保留上述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像;输入单元,被配置成将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组,其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果;告警单元,被配置成根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。In a second aspect, some embodiments of the present disclosure provide a target area security monitoring device, comprising: a control unit, configured to control an associated camera device to collect monitoring video data of a target area; an encoding unit, configured to perform encoding processing on the monitoring video data to generate encoded monitoring video data; a framing unit, configured to perform framing processing on the encoded monitoring video data to obtain a sequence of encoded monitoring video frame images; a detection unit, configured to perform image change detection on each two frames of encoded monitoring video frame images in the sequence of encoded monitoring video frame images to obtain a frame image change detection result, wherein the frame image change detection result indicates a degree of change between two frames of encoded monitoring video frame images; a determination unit, configured to perform image change detection on each two frames of encoded monitoring video frame images in the sequence of encoded monitoring video frame images to obtain a frame image change detection result, wherein the frame image change detection result indicates a degree of change between two frames of encoded monitoring video frame images; and a determination unit, configured to perform image change detection on each two frames of encoded monitoring video frame images in the sequence of encoded monitoring video frame images to obtain a frame image change detection result. The following processing steps are performed for every two frames of coded surveillance video frame images: determining whether the frame image change detection results corresponding to the above two frames of coded surveillance video frame images meet the preset change conditions; in response to determining that the above frame image change detection results meet the preset change conditions, retaining the latter frame of the above two frames of coded surveillance video frame images as the coded surveillance video frame image to be detected; an input unit is configured to input each coded surveillance video frame image to be detected into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, wherein one coded surveillance video frame image to be detected corresponds to one image abnormal object detection result; an alarm unit is configured to control the associated alarm device to perform alarm processing according to the above image abnormal object detection result group.

第三方面,本公开的一些实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现上述第一方面任一实现方式所描述的方法。In a third aspect, some embodiments of the present disclosure provide an electronic device comprising: one or more processors; a storage device on which one or more programs are stored, and when the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any implementation manner of the above-mentioned first aspect.

第四方面,本公开的一些实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,计算机程序被处理器执行时实现上述第一方面任一实现方式所描述的方法。In a fourth aspect, some embodiments of the present disclosure provide a computer-readable medium having a computer program stored thereon, wherein when the computer program is executed by a processor, the method described in any implementation manner of the above-mentioned first aspect is implemented.

本公开的上述各个实施例具有如下有益效果:通过本公开的一些实施例的目标区域安全监控方法,提升了视频图像检测的效率,可以及时检测出区域中的异常目标。具体来说,需要时刻观测监控视频,效率较低的原因在于:由监测人员时刻对监控视频进行查看,以确定是否有异常目标出现在目标区域。基于此,本公开的一些实施例的目标区域安全监控方法,首先,控制相关联的摄像装置采集目标区域的监控视频数据。其次,对上述监控视频数据进行编码处理,以生成编码监控视频数据。由此,可以实现对上述监控视频的压缩,可以更好地传输视频监控数据。接着,对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列。由此,便于逐帧检测图像。之后,对于上述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对上述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果。其中,上述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度。由此,可以确定两帧图像之间的像素变化。然后,对于每两帧编码监控视频帧图像,执行如下处理步骤:确定上述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;响应于确定上述帧图像变化检测结果满足预设变化条件,保留上述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像。由此,可以确定出存在像素变化的图像,以避免对每一帧图像进行检测,以提升检测效率。再然后,将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组,其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果。最后,根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。由此,提升了视频图像检测的效率,可以及时检测出区域中的异常目标。The above-mentioned embodiments of the present disclosure have the following beneficial effects: through the target area security monitoring method of some embodiments of the present disclosure, the efficiency of video image detection is improved, and abnormal targets in the area can be detected in time. Specifically, it is necessary to observe the monitoring video at all times, and the reason for the low efficiency is that the monitoring personnel check the monitoring video at all times to determine whether there are abnormal targets in the target area. Based on this, the target area security monitoring method of some embodiments of the present disclosure, first, controls the associated camera device to collect the monitoring video data of the target area. Secondly, the above-mentioned monitoring video data is encoded to generate encoded monitoring video data. In this way, the compression of the above-mentioned monitoring video can be achieved, and the video monitoring data can be better transmitted. Then, the above-mentioned encoded monitoring video data is frame-by-frame processed to obtain a sequence of encoded monitoring video frame images. In this way, it is convenient to detect images frame by frame. Afterwards, for every two frames of encoded monitoring video frame images in the above-mentioned sequence of encoded monitoring video frame images, image change detection is performed on the above-mentioned two frames of encoded monitoring video frame images to obtain a frame image change detection result. Among them, the above-mentioned frame image change detection result represents the degree of change between the two frames of encoded monitoring video frame images. In this way, the pixel change between the two frames of images can be determined. Then, for every two frames of coded surveillance video frame images, the following processing steps are performed: determine whether the frame image change detection results corresponding to the above two frames of coded surveillance video frame images meet the preset change conditions; in response to determining that the above frame image change detection results meet the preset change conditions, retain the latter frame of the above two frames of coded surveillance video frame images as the coded surveillance video frame image to be detected. Thus, the image with pixel changes can be determined to avoid detecting each frame image to improve the detection efficiency. Then, each coded surveillance video frame image to be detected is input into the pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, wherein one coded surveillance video frame image to be detected corresponds to one image abnormal object detection result. Finally, according to the above image abnormal object detection result group, the associated alarm device is controlled to perform alarm processing. Thus, the efficiency of video image detection is improved, and abnormal targets in the area can be detected in a timely manner.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。The above and other features, advantages and aspects of the embodiments of the present disclosure will become more apparent with reference to the following detailed description in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same or similar reference numerals represent the same or similar elements. It should be understood that the drawings are schematic and that components and elements are not necessarily drawn to scale.

图1是根据本公开的目标区域安全监控方法的一些实施例的流程图;FIG1 is a flow chart of some embodiments of a target area security monitoring method according to the present disclosure;

图2是根据本公开的目标区域安全监控装置的一些实施例的结构示意图;FIG2 is a schematic diagram of the structure of some embodiments of the target area security monitoring device according to the present disclosure;

图3是适于用来实现本公开的一些实施例的电子设备的结构示意图。FIG. 3 is a schematic diagram of the structure of an electronic device suitable for implementing some embodiments of the present disclosure.

具体实施方式Detailed ways

下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。Embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that the present disclosure can be implemented in various forms and should not be construed as being limited to the embodiments set forth herein. On the contrary, these embodiments are provided to provide a more thorough and complete understanding of the present disclosure. It should be understood that the drawings and embodiments of the present disclosure are only for exemplary purposes and are not intended to limit the scope of protection of the present disclosure.

另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。It should also be noted that, for ease of description, only the parts related to the invention are shown in the drawings. In the absence of conflict, the embodiments and features in the embodiments of the present disclosure may be combined with each other.

需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that the concepts such as "first" and "second" mentioned in the present disclosure are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.

需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present disclosure are illustrative rather than restrictive, and those skilled in the art should understand that unless otherwise clearly indicated in the context, it should be understood as "one or more".

本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present disclosure are only used for illustrative purposes and are not used to limit the scope of these messages or information.

下面将参考附图并结合实施例来详细说明本公开。The present disclosure will be described in detail below with reference to the accompanying drawings and in conjunction with embodiments.

图1是根据本公开的目标区域安全监控方法的一些实施例的流程图。示出了根据本公开的目标区域安全监控方法的一些实施例的流程100。该目标区域安全监控方法,包括以下步骤:FIG1 is a flow chart of some embodiments of the target area security monitoring method according to the present disclosure. A flow chart 100 of some embodiments of the target area security monitoring method according to the present disclosure is shown. The target area security monitoring method comprises the following steps:

步骤101,控制相关联的摄像装置采集目标区域的监控视频数据。Step 101: Control the associated camera device to collect monitoring video data of the target area.

在一些实施例中,目标区域安全监控方法的执行主体(例如计算设备)可以控制相关联的摄像装置采集目标区域的监控视频数据。摄像装置可以是设置在目标区域中的监控摄像头。目标区域可以是指需要时刻监控的区域。例如,目标区域可以是指工业园区,也可以是指生产车间,或者仓库。In some embodiments, the execution subject (e.g., computing device) of the target area security monitoring method may control the associated camera device to collect monitoring video data of the target area. The camera device may be a monitoring camera set in the target area. The target area may refer to an area that needs to be monitored at all times. For example, the target area may refer to an industrial park, a production workshop, or a warehouse.

步骤102,对上述监控视频数据进行编码处理,以生成编码监控视频数据。Step 102: Encode the monitoring video data to generate encoded monitoring video data.

在一些实施例中,上述执行主体可以对上述监控视频数据进行编码处理,以生成编码监控视频数据。In some embodiments, the execution entity may encode the surveillance video data to generate encoded surveillance video data.

实践中,上述执行主体可以通过以下步骤对上述监控视频数据进行编码处理:In practice, the execution subject may encode the surveillance video data by the following steps:

第一步,对上述监控视频数据进行预处理,得到预处理监控视频数据。可以对上述监控视频数据进行去噪、分辨率调整和色彩空间转换,得到预处理监控视频数据。The first step is to pre-process the monitoring video data to obtain pre-processed monitoring video data. The monitoring video data may be denoised, resolution adjusted, and color space converted to obtain pre-processed monitoring video data.

第二步,对上述预处理监控视频数据中的每帧监控视频图像进行宏块划分,得到图像像素宏块组集。其中,图像像素宏块组中的各个图像像素宏块对应一帧监控视频图像。可以以预设尺寸对上述监控视频图像进行像素划分,得到图像像素宏块组。其中,预设尺寸可以为用于将监控视频图像划分成各个图像像素宏块组的图像尺寸。例如,预设尺寸可以为32*32。这里,对于预设尺寸的具体设定,不作限定。上述图像像素宏块组中的图像像素宏块可以为上述监控视频图像的图像块。In the second step, each frame of the surveillance video image in the preprocessed surveillance video data is divided into macroblocks to obtain a set of image pixel macroblock groups. Each image pixel macroblock in the image pixel macroblock group corresponds to one frame of the surveillance video image. The surveillance video image can be pixel-divided at a preset size to obtain an image pixel macroblock group. The preset size can be an image size used to divide the surveillance video image into each image pixel macroblock group. For example, the preset size can be 32*32. Here, there is no limitation on the specific setting of the preset size. The image pixel macroblocks in the image pixel macroblock group can be image blocks of the surveillance video image.

第三步,对于上述图像像素宏块组集中的每个图像像素宏块组,执行如下处理步骤:In the third step, for each image pixel macroblock group in the above image pixel macroblock group set, the following processing steps are performed:

第一处理步骤,对上述图像像素宏块组中的各个图像像素宏块进行预测编码处理,以生成预测编码图像信息组。其中,上述预测编码图像信息组中的预测编码图像信息包括预测宏块和预测图像信息。可以对上述图像像素宏块组中的各个图像像素宏块进行帧间预测处理和帧内预测处理,得到预测编码图像信息组。其中,上述预测宏块可以为对图像像素宏块进行预测编码处理后的图像块。上述预测图像信息可以包括:预测宏块的全局运动矢量、帧间预测模式、编码模式。上述帧间预测模式可以为对图像像素宏块进行预测编码处理时采用的帧间预测方法。例如,运动补偿预测。上述编码模式可以为压缩编码。The first processing step is to perform prediction coding processing on each image pixel macroblock in the above-mentioned image pixel macroblock group to generate a prediction coding image information group. The prediction coding image information in the above-mentioned prediction coding image information group includes prediction macroblocks and prediction image information. Inter-frame prediction processing and intra-frame prediction processing can be performed on each image pixel macroblock in the above-mentioned image pixel macroblock group to obtain a prediction coding image information group. The above-mentioned prediction macroblock can be an image block after the image pixel macroblock is predicted and coded. The above-mentioned prediction image information may include: a global motion vector, an inter-frame prediction mode, and a coding mode of the prediction macroblock. The above-mentioned inter-frame prediction mode may be an inter-frame prediction method used when predicting and coding the image pixel macroblock. For example, motion compensated prediction. The above-mentioned coding mode may be compression coding.

第二处理步骤,对于上述图像像素宏块组中的每个图像像素宏块,执行以下步骤:In the second processing step, for each image pixel macroblock in the above image pixel macroblock group, the following steps are performed:

1、将上述预测编码图像信息组中对应上述图像像素宏块的预测编码图像信息确定为目标预测编码图像信息。1. Determine the predicted coded image information corresponding to the above-mentioned image pixel macroblock in the above-mentioned predicted coded image information group as the target predicted coded image information.

2、将上述目标预测编码图像信息包括的预测宏块确定为目标预测宏块。2. Determine the predicted macroblock included in the above target predicted coded image information as the target predicted macroblock.

3、将上述图像像素宏块与上述目标预测宏块的像素差值块确定为残差块。可以将上述图像像素宏块与上述目标预测宏块之间的各个像素差值确定为残差块。3. Determine the pixel difference block between the above image pixel macroblock and the above target prediction macroblock as a residual block. Each pixel difference between the above image pixel macroblock and the above target prediction macroblock can be determined as a residual block.

第三处理步骤,对所确定的各个残差块进行变换处理,得到频率系数组。可以对各个残差块进行离散余弦变换处理,得到频率系数组。频率系数可以为残差块经过离散余弦变换编码处理后得到的离散余弦变换系数。The third processing step is to transform each determined residual block to obtain a frequency coefficient group. Each residual block can be subjected to discrete cosine transform processing to obtain a frequency coefficient group. The frequency coefficient can be a discrete cosine transform coefficient obtained after the residual block is subjected to discrete cosine transform coding processing.

第四处理步骤,对上述频率系数组中的各个频率系数进行量化处理,得到量化频率系数组。可以对每个频率系数进行标量量化处理,得到量化频率系数。The fourth processing step is to perform quantization processing on each frequency coefficient in the above frequency coefficient group to obtain a quantized frequency coefficient group. Each frequency coefficient can be subjected to scalar quantization processing to obtain a quantized frequency coefficient.

第五处理步骤,对上述量化频率系数组中的各个量化频率系数进行编码处理,得到残差系数码流组。可以对每个量化频率系数进行熵编码处理。The fifth processing step is to encode each quantized frequency coefficient in the quantized frequency coefficient group to obtain a residual coefficient code stream group. Each quantized frequency coefficient may be entropy encoded.

第四步,对所得到的各个残差系数码流组、各个预测编码图像信息组中的各个预测图像信息和视频图像参数信息进行视频编码处理,得到编码监控视频数据。其中,上述视频参数信息可以包括每帧监控视频图像的宽度、高度、编码参数信息。编码监控视频数据可以为编码后的监控视频数据。上述编码参数信息可以为进行视频编码处理时设定的参数。例如,视频帧率为25帧。实践中,上述执行主体可以对所得到的各个残差系数码流组、各个预测编码图像信息组中的各个预测图像信息和视频参数信息进行高效率视频编码(HEVC)处理,得到编码监控视频数据。In the fourth step, video encoding is performed on each residual coefficient bitstream group obtained, each predicted image information in each predicted coded image information group, and video image parameter information to obtain encoded monitoring video data. The video parameter information may include the width, height, and encoding parameter information of each frame of monitoring video image. The encoded monitoring video data may be the encoded monitoring video data. The encoding parameter information may be a parameter set during video encoding. For example, the video frame rate is 25 frames. In practice, the execution subject may perform high-efficiency video coding (HEVC) processing on each residual coefficient bitstream group obtained, each predicted image information in each predicted coded image information group, and video parameter information to obtain encoded monitoring video data.

由此,可以实现对监控视频数据的压缩,可以提升监控视频数据的传输效率。In this way, the monitoring video data can be compressed and the transmission efficiency of the monitoring video data can be improved.

步骤103,对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列。Step 103: perform frame processing on the above-mentioned coded monitoring video data to obtain a coded monitoring video frame image sequence.

在一些实施例中,上述执行主体可以对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列。例如,上述执行主体可以按照预设的分帧时长,对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列。In some embodiments, the execution subject may perform frame processing on the coded surveillance video data to obtain a coded surveillance video frame image sequence. For example, the execution subject may perform frame processing on the coded surveillance video data according to a preset frame duration to obtain a coded surveillance video frame image sequence.

步骤104,对于上述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对上述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果。Step 104 : for every two frames of coded surveillance video frame images in the coded surveillance video frame image sequence, image change detection is performed on the two frames of coded surveillance video frame images to obtain a frame image change detection result.

在一些实施例中,上述执行主体可以对于上述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对上述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果。其中,上述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度。In some embodiments, the execution subject may perform image change detection on every two frames of the encoded surveillance video frame image in the encoded surveillance video frame image sequence to obtain a frame image change detection result, wherein the frame image change detection result indicates the degree of change between the two frames of the encoded surveillance video frame image.

例如,可以通过比对两帧编码监控视频帧图像之间的像素变化,将像素变化值确定为帧图像变化检测结果。即,帧图像变化检测结果可以表示两帧编码监控视频帧图像之间的像素变化值。For example, the pixel change value can be determined as the frame image change detection result by comparing the pixel change between two frames of coded surveillance video frames. That is, the frame image change detection result can represent the pixel change value between two frames of coded surveillance video frames.

实践中,上述执行主体可以将上述两帧编码监控视频帧图像输入至预先训练的图像变化检测模型中,得到帧图像变化检测结果。In practice, the execution entity may input the two encoded surveillance video frame images into a pre-trained image change detection model to obtain a frame image change detection result.

其中,图像变化检测模型可以是通过以下步骤训练得到的:The image change detection model can be trained by the following steps:

第一步,获取监控视频帧图像样本集。其中,监控视频帧图像样本包括:两帧连续的监控视频帧图像。The first step is to obtain a monitoring video frame image sample set, wherein the monitoring video frame image sample includes: two consecutive monitoring video frame images.

第二步,从上述监控视频帧图像样本集中选择出目标监控视频帧图像样本集。例如,可以随机从上述监控视频帧图像样本集中选择出一个监控视频帧图像样本,作为目标监控视频帧图像样本。The second step is to select a target surveillance video frame image sample set from the surveillance video frame image sample set. For example, a surveillance video frame image sample can be randomly selected from the surveillance video frame image sample set as the target surveillance video frame image sample.

第三步,将上述目标监控视频帧图像样本集包括的两帧连续的监控视频帧图像输入至初始图像变化检测模型中,得到初始图像变化检测结果。初始图像变化检测模型可以是预先训练的用于检测连续两帧视频图像之间像素变化的神经网络模型。例如,初始图像变化检测模型可以是未训练完成的卷积神经网络模型或深度神经网络模型。In the third step, the two consecutive surveillance video frames included in the target surveillance video frame image sample set are input into the initial image change detection model to obtain the initial image change detection result. The initial image change detection model can be a pre-trained neural network model for detecting pixel changes between two consecutive video frames. For example, the initial image change detection model can be an untrained convolutional neural network model or a deep neural network model.

第四步,确定上述初始图像变化检测结果与对应的图像变化样本标签之间的图像变化损失值。可以通过预设的损失函数,确定上述初始图像变化检测结果与对应的图像变化样本标签之间的图像变化损失值。例如,预设的损失函数可以是余弦相似度损失函数/交叉熵损失函数。The fourth step is to determine the image change loss value between the above-mentioned initial image change detection result and the corresponding image change sample label. The image change loss value between the above-mentioned initial image change detection result and the corresponding image change sample label can be determined by a preset loss function. For example, the preset loss function can be a cosine similarity loss function/cross entropy loss function.

第五步,响应于确定上述图像变化损失值小于等于预设图像变化损失值,将上述初始图像变化检测模型确定为训练完成的图像变化检测模型。In a fifth step, in response to determining that the image change loss value is less than or equal to a preset image change loss value, the initial image change detection model is determined as a trained image change detection model.

步骤105,对于每两帧编码监控视频帧图像,执行如下处理步骤:Step 105: for every two frames of encoded surveillance video frame images, perform the following processing steps:

步骤1051,确定上述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件。Step 1051 , determining whether the frame image change detection results corresponding to the above two frames of encoded surveillance video frame images meet a preset change condition.

在一些实施例中,上述执行主体可以确定上述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件。预设变化条件可以是:帧图像变化检测结果表示的像素变化值大于等于预设像素变化值。In some embodiments, the execution subject may determine whether the frame image change detection results corresponding to the two frames of encoded surveillance video frame images meet a preset change condition. The preset change condition may be: the pixel change value represented by the frame image change detection result is greater than or equal to a preset pixel change value.

步骤1052,响应于确定上述帧图像变化检测结果满足预设变化条件,保留上述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像。Step 1052, in response to determining that the above frame image change detection result meets the preset change condition, retaining the latter frame of the above two frames of encoded surveillance video frame image as the encoded surveillance video frame image to be detected.

在一些实施例中,上述执行主体可以响应于确定上述帧图像变化检测结果满足预设变化条件,保留上述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像。In some embodiments, the execution subject may, in response to determining that the frame image change detection result satisfies a preset change condition, retain the latter of the two encoded surveillance video frame images as the encoded surveillance video frame image to be detected.

可选地,获取监控视频图像训练样本组集。其中,每一监控视频图像训练样本组对应一个监控场景。监控场景可以表示不同的监控环境。例如,监控场景可以包括但不限于:室内场景、室外场景、雨天、阴天、晴天场景、或者昏暗的场景。Optionally, a surveillance video image training sample set is obtained. Each surveillance video image training sample set corresponds to a surveillance scene. The surveillance scene may represent different surveillance environments. For example, the surveillance scene may include but is not limited to: an indoor scene, an outdoor scene, a rainy day, a cloudy day, a sunny day scene, or a dim scene.

可选地,确定初始图像异常对象检测模型。其中,上述初始图像异常对象检测模型包括:初始图像异常对象检测网络组,每个初始图像异常对象检测网络对应一个监控场景。初始图像异常对象检测模型可以是指未经训练的目标检测模型。例如,初始图像异常对象检测模型可以是未经训练的R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等模型。初始图像异常对象检测网络可以是未经训练的R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD(SingleShot MultiBox Detector)等网络。Optionally, determine an initial image abnormal object detection model. The initial image abnormal object detection model includes: an initial image abnormal object detection network group, each initial image abnormal object detection network corresponds to a monitoring scene. The initial image abnormal object detection model may refer to an untrained target detection model. For example, the initial image abnormal object detection model may be an untrained R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD, etc. model. The initial image abnormal object detection network may be an untrained R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD (SingleShot MultiBox Detector) or other network.

可选地,对于上述初始图像异常对象检测网络组中的每个初始图像异常对象检测网络,执行如下训练步骤:Optionally, for each initial image abnormal object detection network in the above initial image abnormal object detection network group, perform the following training steps:

第一训练步骤,确定上述初始图像异常对象检测网络对应的监控视频图像训练样本组。即,确定与上述初始图像异常对象检测网络对应的监控场景相同的监控视频图像训练样本组。The first training step is to determine a surveillance video image training sample group corresponding to the above-mentioned initial image abnormal object detection network, that is, to determine a surveillance video image training sample group with the same surveillance scene as that corresponding to the above-mentioned initial image abnormal object detection network.

第二训练步骤,从上述监控视频图像训练样本组中选择出目标监控视频图像训练样本。可以随机从上述监控视频图像训练样本组中选择出一个监控视频图像训练样本作为目标监控视频图像训练样本。The second training step is to select a target surveillance video image training sample from the surveillance video image training sample group. A surveillance video image training sample can be randomly selected from the surveillance video image training sample group as the target surveillance video image training sample.

第三训练步骤,将上述目标监控视频图像训练样本包括的监控视频样本图像输入至上述初始图像异常对象检测网络中,得到初始图像异常对象检测结果。初始图像异常对象检测结果可以是指对于监控视频样本图像的异常对象检测结果。In the third training step, the monitoring video sample images included in the target monitoring video image training samples are input into the initial image abnormal object detection network to obtain the initial image abnormal object detection results. The initial image abnormal object detection results may refer to the abnormal object detection results for the monitoring video sample images.

第四训练步骤,确定上述初始图像异常对象检测结果与对应的样本标签之间的损失值。可以通过预设的损失函数,确定上述初始图像异常对象检测结果与对应的样本标签之间的损失值。例如,损失函数可以是合页损失函数或交叉熵损失函数。The fourth training step is to determine the loss value between the above-mentioned initial image abnormal object detection result and the corresponding sample label. The loss value between the above-mentioned initial image abnormal object detection result and the corresponding sample label can be determined by a preset loss function. For example, the loss function can be a hinge loss function or a cross entropy loss function.

第五训练步骤,响应于确定上述损失值小于等于预设损失值,将初始图像异常对象检测网络确定为训练完成的图像异常对象检测网络。In a fifth training step, in response to determining that the loss value is less than or equal to a preset loss value, the initial image abnormal object detection network is determined as a trained image abnormal object detection network.

可选地,将所确定的各个图像异常对象检测网络确定为图像异常对象检测模型。Optionally, each determined image abnormal object detection network is determined as an image abnormal object detection model.

可选地,训练步骤还可以包括:响应于确定上述损失值大于上述预设损失值,调整初始图像异常对象检测网络的模型参数,以及从未选择的各个监控视频图像训练样本中选择出目标监控视频图像训练样本,将调整后的初始图像异常对象检测网络作为初始图像异常对象检测网络,重新对初始图像异常对象检测网络进行训练。例如,可以对损失值和预设损失值求差值,得到损失差值。在此基础上,利用反向传播、随机梯度下降等方法将损失差值从模型的最后一层向前传递,以调整每一层的参数。当然根据需要,也可以采用网络冻结(dropout)的方法,对其中的一些层的网络参数保持不变,不进行调整,对此,不做任何限定。Optionally, the training step may also include: in response to determining that the above-mentioned loss value is greater than the above-mentioned preset loss value, adjusting the model parameters of the initial image abnormal object detection network, and selecting the target surveillance video image training sample from each unselected surveillance video image training sample, using the adjusted initial image abnormal object detection network as the initial image abnormal object detection network, and retraining the initial image abnormal object detection network. For example, the loss value and the preset loss value can be subtracted to obtain the loss difference. On this basis, the loss difference is passed forward from the last layer of the model using back propagation, stochastic gradient descent and other methods to adjust the parameters of each layer. Of course, according to needs, the network freezing (dropout) method can also be used to keep the network parameters of some layers unchanged and not adjust them. There is no limitation on this.

由此,可以提升了对于不同监控场景视频图像检测的准确性,提高了图像异常对象检测模型的鲁棒性。In this way, the accuracy of video image detection for different monitoring scenarios can be improved, and the robustness of the image abnormal object detection model can be improved.

步骤106,将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组。Step 106: input each of the encoded surveillance video frame images to be detected into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group.

在一些实施例中,上述执行主体可以将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组。其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果。图像异常对象检测模型可以是预先训练的用于检测监控视频帧图像中是否出现异常目标的神经网络模型。例如,图像异常对象检测模型可以是预先训练的目标检测模型。异常目标可以包括但不限于:动物、火光、漏水等异常目标。In some embodiments, the above-mentioned execution subject can input each coded surveillance video frame image to be detected into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group. Among them, one coded surveillance video frame image to be detected corresponds to one image abnormal object detection result. The image abnormal object detection model can be a pre-trained neural network model for detecting whether an abnormal target appears in a surveillance video frame image. For example, the image abnormal object detection model can be a pre-trained target detection model. Abnormal targets can include but are not limited to: animals, fire, water leaks and other abnormal targets.

步骤107,根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。Step 107: Control the associated alarm device to perform alarm processing according to the above-mentioned image abnormal object detection result group.

在一些实施例中,上述执行主体可以根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。In some embodiments, the execution subject may control the associated alarm device to perform alarm processing according to the abnormal image object detection result group.

实践中,上述执行主体可以对于上述图像异常对象检测结果组中的每个图像异常对象检测结果,执行如下处理步骤:In practice, the execution subject may perform the following processing steps for each abnormal image object detection result in the abnormal image object detection result group:

第一步,确定上述图像异常对象检测结果是否满足预设异常条件。预设异常条件可以是:图像异常对象检测结果表示监控视频帧图像中出现异常目标。The first step is to determine whether the above image abnormal object detection result meets a preset abnormal condition. The preset abnormal condition may be: the image abnormal object detection result indicates that an abnormal target appears in the surveillance video frame image.

第二步,响应于确定上述图像异常对象检测结果满足预设异常条件,生成对应上述图像异常对象检测结果的告警提示音。例如,可以生成表示出现异常目标的提示语音。The second step is to generate a warning tone corresponding to the abnormal object detection result in response to determining that the abnormal object detection result meets the preset abnormal condition. For example, a prompt tone indicating that an abnormal object has appeared can be generated.

第三步,控制上述告警设备播放上述告警提示音。告警设备可以是与上述执行主体通信连接的语音播放设备。The third step is to control the alarm device to play the alarm tone. The alarm device may be a voice playing device connected to the execution subject for communication.

进一步参考图2,作为对上述各图所示方法的实现,本公开提供了一种目标区域安全监控装置的一些实施例,这些目标区域安全监控装置实施例与图1所示的那些方法实施例相对应,该目标区域安全监控装置具体可以应用于各种电子设备中。Further referring to FIG. 2 , as an implementation of the methods shown in the above figures, the present disclosure provides some embodiments of a target area security monitoring device, which correspond to the method embodiments shown in FIG. 1 , and the target area security monitoring device can be specifically applied to various electronic devices.

如图2所示,一些实施例的目标区域安全监控装置200包括:控制单元201、编码单元202、分帧单元203、检测单元204、确定单元205、输入单元206和告警单元207。其中,控制单元201,被配置成控制相关联的摄像装置采集目标区域的监控视频数据;编码单元202,被配置成对上述监控视频数据进行编码处理,以生成编码监控视频数据;分帧单元203,被配置成对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列;检测单元204,被配置成对于上述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对上述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果,其中,上述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度;确定单元205,被配置成对于每两帧编码监控视频帧图像,执行如下处理步骤:确定上述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;响应于确定上述帧图像变化检测结果满足预设变化条件,保留上述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像;输入单元206,被配置成将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组,其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果;告警单元207,被配置成根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。As shown in FIG2 , the target area security monitoring device 200 of some embodiments includes: a control unit 201, an encoding unit 202, a framing unit 203, a detection unit 204, a determination unit 205, an input unit 206, and an alarm unit 207. The control unit 201 is configured to control the associated camera device to collect monitoring video data of the target area; the encoding unit 202 is configured to perform encoding processing on the above monitoring video data to generate encoded monitoring video data; the framing unit 203 is configured to perform framing processing on the above encoded monitoring video data to obtain an encoded monitoring video frame image sequence; the detection unit 204 is configured to perform image change detection on each two frames of the encoded monitoring video frame image in the above encoded monitoring video frame image sequence to obtain a frame image change detection result, wherein the frame image change detection result represents the degree of change between the two frames of the encoded monitoring video frame image; the determination unit 205 is configured to perform image change detection on each two frames of the encoded monitoring video frame image in the above encoded monitoring video frame image sequence to obtain a frame image change detection result, wherein the frame image change detection result represents the degree of change between the two frames of the encoded monitoring video frame image; the determination unit 205 is configured to perform image change detection on each two frames of the encoded monitoring video frame image Image, perform the following processing steps: determine whether the frame image change detection results corresponding to the above two frames of coded surveillance video frame images meet the preset change conditions; in response to determining that the above frame image change detection results meet the preset change conditions, retain the latter frame of the above two frames of coded surveillance video frame images as the coded surveillance video frame image to be detected; the input unit 206 is configured to input each coded surveillance video frame image to be detected into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, wherein one coded surveillance video frame image to be detected corresponds to one image abnormal object detection result; the alarm unit 207 is configured to control the associated alarm device to perform alarm processing according to the above image abnormal object detection result group.

可以理解的是,该目标区域安全监控装置200中记载的诸单元与参考图1描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作、特征以及产生的有益效果同样适用于目标区域安全监控装置200及其中包含的单元,在此不再赘述。It is understandable that the units recorded in the target area security monitoring device 200 correspond to the steps in the method described with reference to Figure 1. Therefore, the operations, features and beneficial effects described above for the method are also applicable to the target area security monitoring device 200 and the units contained therein, and will not be repeated here.

下面参考图3,其示出了适于用来实现本公开的一些实施例的电子设备(例如,计算设备)300的结构示意图。本公开的一些实施例中的电子设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图3示出的电子设备仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。Referring to FIG. 3 below, a schematic diagram of the structure of an electronic device (e.g., a computing device) 300 suitable for implementing some embodiments of the present disclosure is shown. The electronic devices in some embodiments of the present disclosure may include, but are not limited to, mobile terminals such as mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (e.g., vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc. The electronic device shown in FIG. 3 is only an example and should not impose any limitations on the functions and scope of use of the embodiments of the present disclosure.

如图3所示,电子设备300可以包括处理装置(例如中央处理器、图形处理器等)301,其可以根据存储在只读存储器(ROM)302中的程序或者从存储装置308加载到随机访问存储器(RAM)303中的程序而执行各种适当的动作和处理。在RAM303中,还存储有电子设备300操作所需的各种程序和任务数据。处理装置301、ROM302以及RAM 303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。As shown in FIG3 , the electronic device 300 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 301, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 302 or a program loaded from a storage device 308 into a random access memory (RAM) 303. In the RAM 303, various programs and task data required for the operation of the electronic device 300 are also stored. The processing device 301, the ROM 302, and the RAM 303 are connected to each other via a bus 304. An input/output (I/O) interface 305 is also connected to the bus 304.

通常,以下装置可以连接至I/O接口305:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置306;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置307;包括例如磁带、硬盘等的存储装置308;以及通信装置309。通信装置309可以允许电子设备300与其他设备进行无线或有线通信以交换任务数据。虽然图3示出了具有各种装置的电子设备300,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图3中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。Typically, the following devices may be connected to the I/O interface 305: input devices 306 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 307 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 308 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 309. The communication device 309 may allow the electronic device 300 to communicate wirelessly or wired with other devices to exchange task data. Although FIG. 3 shows an electronic device 300 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively. Each box shown in FIG. 3 may represent one device, or may represent multiple devices as needed.

特别地,根据本公开的一些实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的一些实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的一些实施例中,该计算机程序可以通过通信装置309从网络上被下载和安装,或者从存储装置308被安装,或者从ROM302被安装。在该计算机程序被处理装置301执行时,执行本公开的一些实施例的方法中限定的上述功能。In particular, according to some embodiments of the present disclosure, the process described above with reference to the flowchart can be implemented as a computer software program. For example, some embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart. In some such embodiments, the computer program can be downloaded and installed from the network through the communication device 309, or installed from the storage device 308, or installed from the ROM 302. When the computer program is executed by the processing device 301, the above-mentioned functions defined in the method of some embodiments of the present disclosure are executed.

需要说明的是,本公开的一些实施例中记载的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开的一些实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的一些实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的任务数据信号,其中承载了计算机可读的程序代码。这种传播的任务数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium recorded in some embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two. The computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In some embodiments of the present disclosure, a computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device. In some embodiments of the present disclosure, a computer-readable signal medium may include a mission data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. Such a propagated mission data signal may take a variety of forms, including but not limited to an electromagnetic signal, an optical signal, or any suitable combination of the above. Computer readable signal media may also be any computer readable medium other than computer readable storage media, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer readable medium may be transmitted using any appropriate medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.

在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText TransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字任务数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。In some embodiments, the client and the server may communicate using any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol), and may be interconnected with any form or medium of digital task data communication (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.

上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:控制相关联的摄像装置采集目标区域的监控视频数据;对上述监控视频数据进行编码处理,以生成编码监控视频数据;对上述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列;对于上述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对上述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果,其中,上述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度;对于每两帧编码监控视频帧图像,执行如下处理步骤:确定上述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;响应于确定上述帧图像变化检测结果满足预设变化条件,保留上述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像;将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组,其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果;根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。The above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or it may exist independently without being assembled into the electronic device. The above-mentioned computer-readable medium carries one or more programs. When the above-mentioned one or more programs are executed by the electronic device, the electronic device: controls the associated camera device to collect monitoring video data of the target area; encodes the above-mentioned monitoring video data to generate encoded monitoring video data; performs frame processing on the above-mentioned encoded monitoring video data to obtain a sequence of encoded monitoring video frame images; for every two frames of encoded monitoring video frame images in the above-mentioned sequence of encoded monitoring video frame images, performs image change detection on the above-mentioned two frames of encoded monitoring video frame images to obtain a frame image change detection result, wherein the above-mentioned frame image change detection result represents the degree of change between the two frames of encoded monitoring video frame images; for every two frames of encoded monitoring video frame images, The coded surveillance video frame images are processed as follows: determining whether the frame image change detection results corresponding to the above two frames of coded surveillance video frame images meet the preset change conditions; in response to determining that the above frame image change detection results meet the preset change conditions, retaining the latter frame of the above two frames of coded surveillance video frame images as the coded surveillance video frame image to be detected; inputting each of the coded surveillance video frame images to be detected into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, wherein one coded surveillance video frame image to be detected corresponds to one image abnormal object detection result; and according to the above image abnormal object detection result group, controlling the associated alarm device to perform alarm processing.

可以以一种或多种程序设计语言或其组合来编写用于执行本公开的一些实施例的操作的计算机程序代码,上述程序设计语言包括面向产品的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing the operations of some embodiments of the present disclosure may be written in one or more programming languages or a combination thereof, including product-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages such as "C" or similar programming languages. The program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).

附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标记的功能也可以以不同于附图中所标记的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the system, method and computer program product according to various embodiments of the present disclosure. In this regard, each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some implementations as replacements, the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.

描述于本公开的一些实施例中的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括:控制单元、编码单元、分帧单元、检测单元、确定单元、输入单元和告警单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,告警单元还可以被描述为“根据上述图像异常对象检测结果组,控制相关联的告警设备进行告警处理的单元”。The units described in some embodiments of the present disclosure may be implemented by software or by hardware. The described units may also be provided in a processor, for example, may be described as: a processor comprising: a control unit, an encoding unit, a framing unit, a detection unit, a determination unit, an input unit, and an alarm unit. The names of these units do not, in some cases, constitute limitations on the units themselves, for example, an alarm unit may also be described as "a unit that controls the associated alarm device to perform alarm processing according to the above-mentioned image abnormal object detection result group".

本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described above herein may be performed at least in part by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLDs), and the like.

以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above descriptions are only some preferred embodiments of the present disclosure and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the embodiments of the present disclosure is not limited to the technical solutions formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the above inventive concept. For example, the above features are replaced with (but not limited to) technical features with similar functions disclosed in the embodiments of the present disclosure.

Claims (8)

1.一种目标区域安全监控方法,包括:1. A target area security monitoring method, comprising: 控制相关联的摄像装置采集目标区域的监控视频数据;Controlling the associated camera device to collect monitoring video data of the target area; 对所述监控视频数据进行编码处理,以生成编码监控视频数据;Encoding the surveillance video data to generate encoded surveillance video data; 对所述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列;Performing frame processing on the encoded surveillance video data to obtain an encoded surveillance video frame image sequence; 对于所述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对所述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果,其中,所述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度;For every two frames of coded surveillance video frame images in the coded surveillance video frame image sequence, image change detection is performed on the two frames of coded surveillance video frame images to obtain a frame image change detection result, wherein the frame image change detection result represents a degree of change between the two frames of coded surveillance video frame images; 对于每两帧编码监控视频帧图像,执行如下处理步骤:For every two frames of encoded surveillance video frames, the following processing steps are performed: 确定所述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;Determine whether the frame image change detection results corresponding to the two frames of encoded surveillance video frame images meet a preset change condition; 响应于确定所述帧图像变化检测结果满足预设变化条件,保留所述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像;In response to determining that the frame image change detection result meets the preset change condition, retaining the latter frame of the two frames of coded surveillance video frame image as the coded surveillance video frame image to be detected; 将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组,其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果;Input each of the to-be-detected coded surveillance video frame images into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, wherein one to-be-detected coded surveillance video frame image corresponds to one image abnormal object detection result; 根据所述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。According to the image abnormal object detection result group, the associated alarm device is controlled to perform alarm processing. 2.根据权利要求1所述的方法,其中,所述根据所述图像异常对象检测结果组,控制相关联的告警设备进行告警处理,包括:2. The method according to claim 1, wherein the step of controlling the associated alarm device to perform alarm processing according to the image abnormal object detection result group comprises: 对于所述图像异常对象检测结果组中的每个图像异常对象检测结果,执行如下处理步骤:For each abnormal image object detection result in the abnormal image object detection result group, the following processing steps are performed: 确定所述图像异常对象检测结果是否满足预设异常条件;Determining whether the abnormal object detection result of the image meets a preset abnormal condition; 响应于确定所述图像异常对象检测结果满足预设异常条件,生成对应所述图像异常对象检测结果的告警提示音;In response to determining that the image abnormal object detection result meets a preset abnormal condition, generating an alarm prompt sound corresponding to the image abnormal object detection result; 控制所述告警设备播放所述告警提示音。Control the alarm device to play the alarm prompt tone. 3.根据权利要求1所述的方法,其中,在所述将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组之前,所述方法还包括:3. The method according to claim 1, wherein, before inputting each of the encoded surveillance video frame images to be detected into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, the method further comprises: 获取监控视频图像训练样本组集,其中,每一监控视频图像训练样本组对应一个监控场景;Obtaining a surveillance video image training sample group set, wherein each surveillance video image training sample group corresponds to a surveillance scene; 确定初始图像异常对象检测模型,其中,所述初始图像异常对象检测模型包括:初始图像异常对象检测网络组,每个初始图像异常对象检测网络对应一个监控场景;Determine an initial image abnormal object detection model, wherein the initial image abnormal object detection model includes: an initial image abnormal object detection network group, each initial image abnormal object detection network corresponds to a monitoring scene; 对于所述初始图像异常对象检测网络组中的每个初始图像异常对象检测网络,执行如下训练步骤:For each initial image abnormal object detection network in the initial image abnormal object detection network group, the following training steps are performed: 确定所述初始图像异常对象检测网络对应的监控视频图像训练样本组;Determine a surveillance video image training sample group corresponding to the initial image abnormal object detection network; 从所述监控视频图像训练样本组中选择出目标监控视频图像训练样本;Selecting a target surveillance video image training sample from the surveillance video image training sample group; 将所述目标监控视频图像训练样本包括的监控视频样本图像输入至所述初始图像异常对象检测网络中,得到初始图像异常对象检测结果;Inputting the surveillance video sample images included in the target surveillance video image training samples into the initial image abnormal object detection network to obtain the initial image abnormal object detection results; 确定所述初始图像异常对象检测结果与对应的样本标签之间的损失值;Determine a loss value between the initial image abnormal object detection result and the corresponding sample label; 响应于确定所述损失值小于等于预设损失值,将初始图像异常对象检测网络确定为训练完成的图像异常对象检测网络;In response to determining that the loss value is less than or equal to a preset loss value, determining the initial image abnormal object detection network as a trained image abnormal object detection network; 将所确定的各个图像异常对象检测网络确定为图像异常对象检测模型。The determined respective image abnormal object detection networks are determined as image abnormal object detection models. 4.根据权利要求3所述的方法,其中,所述训练步骤还包括:4. The method according to claim 3, wherein the training step further comprises: 响应于确定所述损失值大于所述预设损失值,调整初始图像异常对象检测网络的模型参数,以及从未选择的各个监控视频图像训练样本中选择出目标监控视频图像训练样本,将调整后的初始图像异常对象检测网络作为初始图像异常对象检测网络,重新对初始图像异常对象检测网络进行训练。In response to determining that the loss value is greater than the preset loss value, the model parameters of the initial image abnormal object detection network are adjusted, and a target surveillance video image training sample is selected from each unselected surveillance video image training sample, and the adjusted initial image abnormal object detection network is used as the initial image abnormal object detection network, and the initial image abnormal object detection network is retrained. 5.根据权利要求1所述的方法,其中,所述对所述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果,包括:5. The method according to claim 1, wherein the performing image change detection on the two frames of encoded surveillance video frame images to obtain the frame image change detection result comprises: 将所述两帧编码监控视频帧图像输入至预先训练的图像变化检测模型中,得到帧图像变化检测结果。The two frames of encoded surveillance video frame images are input into a pre-trained image change detection model to obtain a frame image change detection result. 6.一种目标区域安全监控装置,包括:6. A target area security monitoring device, comprising: 控制单元,被配置成控制相关联的摄像装置采集目标区域的监控视频数据;A control unit configured to control an associated camera device to collect monitoring video data of a target area; 编码单元,被配置成对所述监控视频数据进行编码处理,以生成编码监控视频数据;An encoding unit, configured to perform encoding processing on the monitoring video data to generate encoded monitoring video data; 分帧单元,被配置成对所述编码监控视频数据进行分帧处理,得到编码监控视频帧图像序列;A frame division unit is configured to perform frame division processing on the coded monitoring video data to obtain a coded monitoring video frame image sequence; 检测单元,被配置成对于所述编码监控视频帧图像序列中的每两帧编码监控视频帧图像,对所述两帧编码监控视频帧图像进行图像变化检测,得到帧图像变化检测结果,其中,所述帧图像变化检测结果表示两帧编码监控视频帧图像之间的变化度;a detection unit configured to perform image change detection on every two frames of coded surveillance video frame images in the coded surveillance video frame image sequence, and obtain a frame image change detection result, wherein the frame image change detection result indicates a degree of change between the two frames of coded surveillance video frame images; 确定单元,被配置成对于每两帧编码监控视频帧图像,执行如下处理步骤:确定所述两帧编码监控视频帧图像对应的帧图像变化检测结果是否满足预设变化条件;响应于确定所述帧图像变化检测结果满足预设变化条件,保留所述两帧编码监控视频帧图像中的后一帧编码监控视频帧图像,作为待检测编码监控视频帧图像;The determination unit is configured to perform the following processing steps for every two frames of coded surveillance video frame images: determining whether the frame image change detection results corresponding to the two frames of coded surveillance video frame images meet a preset change condition; in response to determining that the frame image change detection result meets the preset change condition, retaining the latter frame of the two frames of coded surveillance video frame images as the coded surveillance video frame image to be detected; 输入单元,被配置成将各个待检测编码监控视频帧图像输入至预先训练的图像异常对象检测模型中,得到图像异常对象检测结果组,其中,一个待检测编码监控视频帧图像对应一个图像异常对象检测结果;An input unit is configured to input each of the to-be-detected coded surveillance video frame images into a pre-trained image abnormal object detection model to obtain an image abnormal object detection result group, wherein one to-be-detected coded surveillance video frame image corresponds to one image abnormal object detection result; 告警单元,被配置成根据所述图像异常对象检测结果组,控制相关联的告警设备进行告警处理。The alarm unit is configured to control the associated alarm device to perform alarm processing according to the image abnormal object detection result group. 7.一种电子设备,包括:7. An electronic device comprising: 一个或多个处理器;one or more processors; 存储装置,其上存储有一个或多个程序,a storage device having one or more programs stored thereon, 当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-5中任一所述的方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the method according to any one of claims 1 to 5. 8.一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-5中任一所述的方法。8. A computer-readable medium having a computer program stored thereon, wherein when the computer program is executed by a processor, the method according to any one of claims 1 to 5 is implemented.
CN202410765718.3A 2024-06-14 2024-06-14 Target area security monitoring method and device, electronic equipment and readable medium Pending CN118334594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410765718.3A CN118334594A (en) 2024-06-14 2024-06-14 Target area security monitoring method and device, electronic equipment and readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410765718.3A CN118334594A (en) 2024-06-14 2024-06-14 Target area security monitoring method and device, electronic equipment and readable medium

Publications (1)

Publication Number Publication Date
CN118334594A true CN118334594A (en) 2024-07-12

Family

ID=91776300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410765718.3A Pending CN118334594A (en) 2024-06-14 2024-06-14 Target area security monitoring method and device, electronic equipment and readable medium

Country Status (1)

Country Link
CN (1) CN118334594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119027876A (en) * 2024-08-16 2024-11-26 首都儿科研究所附属儿童医院 Disinfection monitoring method, computer device and medium applied to ultraviolet disinfection vehicle
CN119131040A (en) * 2024-11-14 2024-12-13 之江实验室 A method, device, storage medium and equipment for online monitoring of single crystal optical fiber loss
CN119181039A (en) * 2024-08-30 2024-12-24 北京积加科技有限公司 Video monitoring control method, device, electronic equipment and computer readable medium
CN119364110A (en) * 2024-12-26 2025-01-24 浙江宇视科技有限公司 Video processing method, device, electronic device and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784015A (en) * 2004-12-02 2006-06-07 中国科学院计算技术研究所 Inage predicting encoding method in frame
CN111860286A (en) * 2020-07-14 2020-10-30 艾伯资讯(深圳)有限公司 Violent behavior detection method and system based on hybrid strategy and storage medium
CN112132847A (en) * 2020-09-27 2020-12-25 北京字跳网络技术有限公司 Model training method, image segmentation method, apparatus, electronic device and medium
CN112507842A (en) * 2020-12-01 2021-03-16 宁波多牛大数据网络技术有限公司 Video character recognition method and device based on key frame extraction
CN113111823A (en) * 2021-04-22 2021-07-13 广东工业大学 Abnormal behavior detection method and related device for building construction site
CN114724235A (en) * 2021-01-06 2022-07-08 普天信息技术有限公司 Abnormal behavior detection method and device, electronic equipment and storage medium
CN115937589A (en) * 2022-12-09 2023-04-07 北京字跳网络技术有限公司 Image detection method, device, computer equipment and storage medium
WO2023142550A1 (en) * 2022-01-27 2023-08-03 上海商汤智能科技有限公司 Abnormal event detection method and apparatus, computer device, storage medium, computer program, and computer program product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784015A (en) * 2004-12-02 2006-06-07 中国科学院计算技术研究所 Inage predicting encoding method in frame
CN111860286A (en) * 2020-07-14 2020-10-30 艾伯资讯(深圳)有限公司 Violent behavior detection method and system based on hybrid strategy and storage medium
CN112132847A (en) * 2020-09-27 2020-12-25 北京字跳网络技术有限公司 Model training method, image segmentation method, apparatus, electronic device and medium
CN112507842A (en) * 2020-12-01 2021-03-16 宁波多牛大数据网络技术有限公司 Video character recognition method and device based on key frame extraction
CN114724235A (en) * 2021-01-06 2022-07-08 普天信息技术有限公司 Abnormal behavior detection method and device, electronic equipment and storage medium
CN113111823A (en) * 2021-04-22 2021-07-13 广东工业大学 Abnormal behavior detection method and related device for building construction site
WO2023142550A1 (en) * 2022-01-27 2023-08-03 上海商汤智能科技有限公司 Abnormal event detection method and apparatus, computer device, storage medium, computer program, and computer program product
CN115937589A (en) * 2022-12-09 2023-04-07 北京字跳网络技术有限公司 Image detection method, device, computer equipment and storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119027876A (en) * 2024-08-16 2024-11-26 首都儿科研究所附属儿童医院 Disinfection monitoring method, computer device and medium applied to ultraviolet disinfection vehicle
CN119027876B (en) * 2024-08-16 2025-03-14 首都儿科研究所附属儿童医院 Disinfection monitoring method, computer device and medium applied to ultraviolet disinfection vehicle
CN119181039A (en) * 2024-08-30 2024-12-24 北京积加科技有限公司 Video monitoring control method, device, electronic equipment and computer readable medium
CN119131040A (en) * 2024-11-14 2024-12-13 之江实验室 A method, device, storage medium and equipment for online monitoring of single crystal optical fiber loss
CN119131040B (en) * 2024-11-14 2025-06-20 之江实验室 A method, device, storage medium and equipment for online monitoring of single crystal optical fiber loss
CN119364110A (en) * 2024-12-26 2025-01-24 浙江宇视科技有限公司 Video processing method, device, electronic device and storage medium

Similar Documents

Publication Publication Date Title
CN118334594A (en) Target area security monitoring method and device, electronic equipment and readable medium
CN113436620B (en) Training method of voice recognition model, voice recognition method, device, medium and equipment
CN111385576B (en) Video coding method and device, mobile terminal and storage medium
CN114257815B (en) Video transcoding method, device, server and medium
CN113327599B (en) Speech recognition method, device, medium and electronic equipment
CN118839868B (en) Hydraulic engineering management method and system based on digital twinning
CN110418134B (en) Video coding method and device based on video quality and electronic equipment
CN116562600B (en) Water supply control method, device, electronic equipment and computer readable medium
WO2024120396A1 (en) Video coding method and apparatus, and electronic device and storage medium
CN114208040A (en) Embedded depth compression for time series data
CN118354145B (en) Production workshop video monitoring method and device, electronic equipment and computer medium
CN117993709B (en) Method, device, apparatus and computer-readable medium for generating value risk information
CN119089013A (en) Package service recommendation method, device, equipment, storage medium and product
CN118660137A (en) Intelligent building monitoring system
CN115103191B (en) Image processing method, device, equipment and storage medium
CN114125443B (en) Video bit rate control method, device and electronic device
CN118413239A (en) Sewage pump online fault prediction method, system, electronic equipment and storage medium
CN117241092A (en) A video processing method, device, storage medium and electronic equipment
CN114237962B (en) Alarm root cause judging method, model training method, device, equipment and medium
CN118741177B (en) Method, device, electronic device and readable medium for adjusting surveillance video frame rate
US20250133213A1 (en) Video encoding method and apparatus, electronic device and storage medium
CN115801447B (en) Industrial safety-based flow analysis method and device and electronic equipment
CN118972596B (en) Video bit rate transmission control method, device, electronic device and medium
CN118887593B (en) Method, electronic device and medium for detecting unsafe behavior of operators in dynamic trajectory
CN115396672B (en) Bit stream storage method, device, electronic equipment and computer readable medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20240712

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载