+

CN117725122A - An order synchronization method for business management platform - Google Patents

An order synchronization method for business management platform Download PDF

Info

Publication number
CN117725122A
CN117725122A CN202311792622.8A CN202311792622A CN117725122A CN 117725122 A CN117725122 A CN 117725122A CN 202311792622 A CN202311792622 A CN 202311792622A CN 117725122 A CN117725122 A CN 117725122A
Authority
CN
China
Prior art keywords
data
order
synchronization
unified
management platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311792622.8A
Other languages
Chinese (zh)
Inventor
徐欢
王伟东
王路权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Quanwang Digital Commerce Technology Co ltd
Original Assignee
Beijing Quanwang Digital Commerce Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Quanwang Digital Commerce Technology Co ltd filed Critical Beijing Quanwang Digital Commerce Technology Co ltd
Priority to CN202311792622.8A priority Critical patent/CN117725122A/en
Publication of CN117725122A publication Critical patent/CN117725122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

An order synchronization method of a service management platform, comprising: s1, establishing a unified data interface standard, wherein the unified data interface standard comprises data field mapping, format conversion rules and interface protocols so as to realize consistency and compatibility of different data sources; s2, inputting the original order data into a conversion module, and carrying out formatting and structuring treatment through unified standards; s3, cleaning, correcting, combining and verifying the formatted data in a data processing module; s4, based on an event-driven data synchronization mechanism, ensuring that data in a service management platform can be updated in real time; and S5, the analysis module carries out deep analysis on the synchronous data and generates a customized report. By integrating unified data interface standards, efficient data conversion, real-time synchronization mechanisms and deep data analysis and report generation, the efficiency and accuracy of data processing are greatly improved, and the quick response capability to market dynamics is enhanced, so that the data management efficiency and market competitiveness of enterprises are enhanced as a whole.

Description

一种业务管理平台的订单同步方法An order synchronization method for business management platform

技术领域Technical field

本发明涉及企业管理领域,特别是一种业务管理平台的订单同步方法。The invention relates to the field of enterprise management, in particular to an order synchronization method of a business management platform.

背景技术Background technique

在当前的商业环境中,企业普遍利用多个电子商务平台来增加其市场覆盖率和销售额。这些平台各自具有独立的操作系统和数据接口,使得企业能够在广泛的市场中推广和销售其产品。然而,这种多元化的销售策略带来了复杂的数据管理挑战,特别是在订单处理和客户数据管理方面。In the current business environment, it is common for businesses to utilize multiple e-commerce platforms to increase their market coverage and sales. These platforms each have independent operating systems and data interfaces, allowing companies to promote and sell their products in a wide range of markets. However, this diversified sales strategy brings complex data management challenges, especially when it comes to order processing and customer data management.

由于不同平台的数据接口和格式各异,企业在尝试整合这些数据以获得全面的销售视图时面临重大障碍。这种数据的不一致性导致了销售记录的不精确、库存状态的误差和客户服务的低效。此外,现有系统在实时数据同步方面的不足进一步加剧了这些问题,影响了企业对市场趋势的快速响应能力和策略决策的准确性。Because data interfaces and formats vary across platforms, companies face significant obstacles when trying to integrate this data to gain a comprehensive view of sales. This data inconsistency leads to inaccuracies in sales records, discrepancies in inventory status, and inefficiencies in customer service. In addition, the existing system's deficiencies in real-time data synchronization further exacerbated these problems, affecting the company's ability to respond quickly to market trends and the accuracy of strategic decisions.

为了克服这些挑战,迫切需要一种能够高效整合多平台数据的方法,以便企业能够有效管理其在不同电子商务平台上的销售活动。这种方法应该能够标准化不同数据源的接口,实现实时的数据同步,从而提供准确、一致的销售和库存信息。To overcome these challenges, there is an urgent need for a method that can efficiently integrate multi-platform data so that enterprises can effectively manage their sales activities on different e-commerce platforms. This approach should be able to standardize interfaces to different data sources and enable real-time data synchronization to provide accurate and consistent sales and inventory information.

发明内容Contents of the invention

为了克服现有技术的上述缺点,本发明的目的是:In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to:

提出了一种创新的业务管理平台订单同步方法。该方法包括开发统一的数据接口标准,以便将来自不同电子商务平台的数据无缝集成。此外,本发明采用先进的数据同步技术,确保所有平台的信息实时更新,最大程度减少信息滞后和错误。通过这种方法,企业可以实现对多平台销售活动的有效管理,提高决策的准确性和市场响应速度。An innovative order synchronization method for business management platform is proposed. The approach includes developing unified data interface standards to seamlessly integrate data from different e-commerce platforms. In addition, the present invention adopts advanced data synchronization technology to ensure that information on all platforms is updated in real time, minimizing information lag and errors. Through this method, enterprises can achieve effective management of multi-platform sales activities, improve decision-making accuracy and market response speed.

本发明解决其技术问题所采用的技术方案是:The technical solutions adopted by the present invention to solve the technical problems are:

一种业务管理平台的订单同步方法,包括:An order synchronization method for a business management platform, including:

S1:创建统一的数据接口标准;S1: Create a unified data interface standard;

S2:将订单数据输入转化模块,通过统一的数据接口标准转化为平台数据;S2: Input the order data into the conversion module and convert it into platform data through unified data interface standards;

S3:将平台数据输入至处理模块进行数据处理;S3: Input platform data to the processing module for data processing;

S4:同步模块进行实时的数据更新和同步;S4: Synchronization module performs real-time data update and synchronization;

S5:分析模块对沉淀数据进行分析并输入至报告模块生成报告;S5: The analysis module analyzes the precipitation data and inputs it into the report module to generate a report;

所述S1中统一的数据接口标准包括数据字段的映射、格式转换规则和接口协议,实现不同来源数据的一致性和兼容性,简化后续数据处理和同步的复杂度,减少数据转换错误和信息丢失的风险,提高数据集成的效率和可靠性。The unified data interface standard in S1 includes data field mapping, format conversion rules and interface protocols to achieve consistency and compatibility of data from different sources, simplify the complexity of subsequent data processing and synchronization, and reduce data conversion errors and information loss. reduce risks and improve the efficiency and reliability of data integration.

所述S2中输入各销售平台的原始订单数据至转化模块,应用上述统一的数据接口标准对销售平台数据进行格式化和结构化处理,应用统一的数据接口标准对数据进行格式化和结构化处理为后续的数据处理和同步打下基础,使不同平台的订单数据能够在单一系统中高效处理,增强数据的一致性和可操作性。Input the original order data of each sales platform into the conversion module in the S2, apply the above unified data interface standard to format and structure the sales platform data, and apply the unified data interface standard to format and structure the data. It lays the foundation for subsequent data processing and synchronization, so that order data from different platforms can be efficiently processed in a single system, enhancing data consistency and operability.

所述S3具体包括在数据处理模块中对格式化后的数据进行清洗、校正、合并和验证,以提升数据质量。这一步骤的目的是消除错误和重复,为数据同步和分析提供准确、可靠的基础,从而增加数据分析的准确性和可信度。The S3 specifically includes cleaning, correcting, merging and verifying the formatted data in the data processing module to improve data quality. The purpose of this step is to eliminate errors and duplications and provide an accurate and reliable basis for data synchronization and analysis, thereby increasing the accuracy and credibility of data analysis.

所述S4实现基于事件驱动的数据同步机制,确保业务管理平台中的数据能够实时更新,以反映最新状态。实时同步的主要作用是提供即时的业务洞察,减少因数据滞后导致的运营风险,同时提高对市场变化的快速响应能力。The S4 implements an event-driven data synchronization mechanism to ensure that data in the business management platform can be updated in real time to reflect the latest status. The main function of real-time synchronization is to provide immediate business insights, reduce operational risks caused by data lag, and improve the ability to respond quickly to market changes.

所述S5在分析模块中对同步的数据进行深入分析,并生成定制化的报告。这个过程的核心是通过详实的数据分析来支持更好的决策制定,增强业务决策的数据驱动性,并提升企业对市场动态的适应能力和竞争优势。The S5 performs in-depth analysis of synchronized data in the analysis module and generates customized reports. The core of this process is to support better decision-making through detailed data analysis, enhance the data-driven nature of business decisions, and improve the enterprise's adaptability to market dynamics and competitive advantage.

作为本发明的进一步改进:所述开发统一的应用程序编程接口(API)具体包括:RESTful API设计,识别并定义API将处理的主要资源,并为每种资源设计端点,为每个端点指定标准的HTTP方法,明确每种方法的具体操作和预期行为,定义查询参数和过滤选项,允许用户自定义请求,规定标准的HTTP状态码用于不同情况的响应,定义错误处理机制和错误响应格式;设计GraphQL模式,明确类型、查询和变更,嵌套查询和多资源聚合。As a further improvement of the present invention: the development of a unified application programming interface (API) specifically includes: RESTful API design, identifying and defining the main resources that the API will handle, and designing endpoints for each resource, and specifying standards for each endpoint. HTTP methods, clarify the specific operations and expected behaviors of each method, define query parameters and filtering options, allow users to customize requests, specify standard HTTP status codes for responses in different situations, define error handling mechanisms and error response formats; Design GraphQL schema, clarify types, queries and changes, nested queries and multi-resource aggregation.

作为本发明的进一步改进:所述S2将订单数据输入转化模块的具体方法为,建立与电子商务平台的接口连接,自动收集原始订单数据,设计数据导入机制,允许手动上传或通过自动化方式定期从各平台获取数据;设计转化模块,能够处理大量数据,并支持并行处理,为不同的电子商务平台设计特定的插件或适配器,用于处理各自独特的数据格式。As a further improvement of the present invention: the specific method for S2 to input order data into the conversion module is to establish an interface connection with the e-commerce platform, automatically collect original order data, and design a data import mechanism to allow manual uploading or regular automatic uploading from Obtain data from each platform; design a conversion module that can process large amounts of data and support parallel processing. Design specific plug-ins or adapters for different e-commerce platforms to process their own unique data formats.

作为本发明的进一步改进:在所述转化模块中应用所述的数据接口标准,将订单数据转换成统一的格式,根据所述映射规则,将订单数据中的字段转换为通用数据模型中对应的字段;然后执行数据清洗操作,包括去除重复记录、修正错误数据、填充缺失值,验证转化后的数据,建立错误处理机制,用于识别和纠正转化过程中的异常或错误。As a further improvement of the present invention: the data interface standard is applied in the conversion module to convert the order data into a unified format, and according to the mapping rules, the fields in the order data are converted into corresponding fields in the general data model. fields; then perform data cleaning operations, including removing duplicate records, correcting erroneous data, filling missing values, verifying the transformed data, and establishing an error handling mechanism to identify and correct anomalies or errors during the transformation process.

作为本发明的进一步改进:所述S3将平台数据输入至处理模块进行数据处理的具体方法为,进行数据清洗,识别并删除不符合标的数据记录,对缺失的数据采用使用平均值、中位数或基于预测模型的估算,检测和删除重复的数据项,确保所有数据遵循统一的格式,将数据合并成一个统一的数据集,检查数据集是否完整,包括所有必要的字段和记录。As a further improvement of the present invention: the specific method for S3 to input platform data to the processing module for data processing is to perform data cleaning, identify and delete data records that do not meet the criteria, and use average and median values for missing data. Or based on prediction model estimation, detect and remove duplicate data items, ensure that all data follows a unified format, merge data into a unified data set, and check that the data set is complete and includes all necessary fields and records.

作为本发明的进一步改进:所述数据处理还包括数据校正,对数据集进行一致性检查,使得所有记录都遵循相同的逻辑和格式标准,评估数据质量,识别数据质量问题的根源,持续改进数据处理流程;对数据进行聚合,优化数据存储结构和索引,确保数据检索和访问的高效性,实施数据备份机制,确保数据的安全性和可恢复性。As a further improvement of the present invention: the data processing also includes data correction, conducting consistency checks on the data set so that all records follow the same logic and format standards, evaluating data quality, identifying the root causes of data quality problems, and continuously improving the data Processing process; aggregate data, optimize data storage structure and index, ensure efficient data retrieval and access, implement data backup mechanism to ensure data security and recoverability.

作为本发明的进一步改进:所述S4同步模块进行实时的数据更新和同步的具体方法为,设计实时同步架构,采用事件驱动的方法,当源数据发生变化时,触发同步流程,使用消息队列缓冲和传输数据更新事件,识别和同步自上次更新后发生变化的数据,而非整个数据集,当出现数据冲突时,实施预先定义的解决策略。As a further improvement of the present invention: the specific method for the S4 synchronization module to perform real-time data update and synchronization is to design a real-time synchronization architecture and adopt an event-driven method. When the source data changes, the synchronization process is triggered and the message queue buffer is used. and transmit data update events, identifying and synchronizing data that has changed since the last update, rather than the entire data set, and implementing predefined resolution strategies when data conflicts arise.

作为本发明的进一步改进:所述同步模块可以完成实时数据捕获:配置CDC工具连接到电商平台订单数据库,设置需要捕获变更的数据库表和字段,并配置处理数据变更程序,在电商平台订单数据库中部署事件监听器,用于监控数据变化,数据变化将触发同步流程,设置通知机制,一旦监听到相关事件,即向消息队列发送通知。As a further improvement of the present invention: the synchronization module can complete real-time data capture: configure the CDC tool to connect to the e-commerce platform order database, set the database tables and fields that need to capture changes, and configure the data change processing program. Deploy event listeners in the database to monitor data changes. Data changes will trigger the synchronization process and set up a notification mechanism. Once relevant events are monitored, notifications will be sent to the message queue.

与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

本发明为一种业务管理平台的订单同步方法,通过创建统一数据接口标准、开发高效数据转化模块、实现实时数据同步、进行深入的数据分析及报告生成,以及应用流处理框架来处理大规模实时数据流。这些功能共同协作,旨在简化数据处理流程,提高数据的准确性和一致性,确保数据的实时更新,为决策者提供洞察力强的业务信息,并增强企业对复杂数据处理需求的应对能力,从而在整体上提升企业的数据管理效率和市场竞争力。The invention is an order synchronization method for a business management platform. It processes large-scale real-time data by creating a unified data interface standard, developing an efficient data conversion module, realizing real-time data synchronization, conducting in-depth data analysis and report generation, and applying a stream processing framework. data flow. These capabilities work together to simplify data processing processes, improve data accuracy and consistency, ensure real-time updates of data, provide decision makers with insightful business information, and enhance the enterprise's ability to respond to complex data processing needs. Thereby improving the data management efficiency and market competitiveness of the enterprise as a whole.

附图说明Description of the drawings

图1为本发明的方法流程图。Figure 1 is a flow chart of the method of the present invention.

具体实施方式Detailed ways

现结合附图说明与实施例对本发明进一步说明:The present invention will now be further described in conjunction with the accompanying drawings and examples:

本发明的详细描述:Detailed description of the invention:

S1为了创建统一的数据接口标准,可按照以下细化的方案设计进行:首先创建统一的数据接口标准,分析现有数据格式和要求,调研市场上主流的电子商务平台,收集它们的数据接口文档和格式要求,比较不同平台的数据格式,识别它们之间的主要差异和共同点;设计通用数据模型,基于收集的信息,设计一个通用的数据模型,涵盖所有必要的字段,如订单号、商品详情、价格、客户信息等,确保数据模型足够灵活,能够容纳不同平台的特定信息;制定转换规则,为每个电子商务平台的独特数据格式制定映射规则,以便将其转换为通用数据模型,制定数据格式化和验证规则,确保转换后的数据准确且符合标准;接口协议开发,开发一套统一的应用程序编程接口(API),以便其他系统能够轻松地访问和使用转换后的数据,编写清晰的API文档,包括使用指南和示例代码;兼容性和扩展性测试,在多个电子商务平台上测试数据接口标准的兼容性和有效性,确保设计的标准具有良好的扩展性,可以适应市场和技术的变化;实施反馈机制,从最终用户和开发人员那里收集关于数据接口标准的反馈,根据反馈调整和优化数据接口标准,确保其持续满足用户需求。In order to create a unified data interface standard, S1 can follow the following detailed plan design: first create a unified data interface standard, analyze existing data formats and requirements, research mainstream e-commerce platforms in the market, and collect their data interface documents and format requirements, compare the data formats of different platforms, and identify the main differences and commonalities between them; design a general data model based on the collected information, design a general data model covering all necessary fields, such as order number, product details, prices, customer information, etc., ensure that the data model is flexible enough to accommodate the specific information of different platforms; formulate conversion rules to formulate mapping rules for the unique data formats of each e-commerce platform to convert them into a common data model, formulate Data formatting and validation rules to ensure that the converted data is accurate and compliant with standards; interface protocol development to develop a unified application programming interface (API) so that other systems can easily access and use the converted data, written clearly API documentation, including usage guides and sample codes; compatibility and scalability testing, testing the compatibility and effectiveness of data interface standards on multiple e-commerce platforms to ensure that the designed standards have good scalability and can adapt to the market and Changes in technology; implement a feedback mechanism to collect feedback on data interface standards from end users and developers, adjust and optimize data interface standards based on feedback, and ensure that they continue to meet user needs.

进一步地,接口规范标准的开发具体如下:RESTful API设计,识别并定义API将处理的主要资源(如订单、客户、产品等),并为每种资源设计端点,为每个端点指定标准的HTTP方法(GET,POST,PUT,DELETE等),明确每种方法的具体操作和预期行为,定义查询参数和过滤选项,允许用户自定义请求(如排序、过滤特定字段),规定标准的HTTP状态码用于不同情况的响应,定义错误处理机制和错误响应格式;设计GraphQL模式,明确类型、查询和变更,确保GraphQL查询能够灵活处理复杂的数据检索需求,如嵌套查询和多资源聚合,考虑如何优化GraphQL查询,避免过度获取数据和潜在的性能问题。Further, the development of interface specification standards is as follows: RESTful API design, identify and define the main resources that the API will handle (such as orders, customers, products, etc.), and design endpoints for each resource, specifying standard HTTP for each endpoint Methods (GET, POST, PUT, DELETE, etc.), clarify the specific operations and expected behaviors of each method, define query parameters and filtering options, allow users to customize requests (such as sorting, filtering specific fields), and specify standard HTTP status codes Used for responses in different situations, define error handling mechanisms and error response formats; design GraphQL patterns, clarify types, queries, and changes to ensure that GraphQL queries can flexibly handle complex data retrieval requirements, such as nested queries and multi-resource aggregation, and consider how Optimize GraphQL queries to avoid over-fetching data and potential performance issues.

更进一步地,还包括对接口规范标准的测试和验证,方法如下:接口测试案例编写,针对每个API端点和方法,定义具体的测试场景,包括正常流程和边缘案例,确保测试覆盖不同类型的输入,并验证输出是否符合预期,包括对API的安全性和访问权限进行测试,确保只有授权用户可以访问敏感数据;自动化测试脚本,选择适合的自动化测试工具,如Postman(主要针对RESTfulAPI)或Selenium(适用于更复杂的端到端测试),根据定义的测试案例编写自动化测试脚本,将自动化测试脚本集成到持续集成/持续部署(CI/CD)流程中,确保每次更新都能自动运行测试。Furthermore, it also includes testing and verification of interface specifications and standards. The method is as follows: Interface test case writing, defining specific test scenarios for each API endpoint and method, including normal processes and edge cases, to ensure that the tests cover different types of Input and verify whether the output meets expectations, including testing the security and access permissions of the API to ensure that only authorized users can access sensitive data; automate test scripts and choose appropriate automated testing tools, such as Postman (mainly for RESTful API) or Selenium (Suitable for more complex end-to-end testing), write automated test scripts based on defined test cases, and integrate automated test scripts into the continuous integration/continuous deployment (CI/CD) process to ensure that tests can be automatically run for each update .

S2对于将订单数据输入转化模块并进行格式化处理这一步骤,可以遵循以下细化的方案设计:数据收集和输入,建立与各电子商务平台的接口连接,以便自动收集原始订单数据,设计一个数据导入机制,允许手动上传或通过自动化方式定期从各平台获取数据;设计转化模块,开发一个高效的转化模块,能够处理大量数据,并且支持并行处理以提高效率,考虑为不同的电子商务平台设计特定的插件或适配器,用于处理各自独特的数据格式;应用数据接口标准,在转化模块中应用之前定义的统一数据接口标准,将原始数据转换成统一的格式,根据映射规则,将原始数据中的字段转换为通用数据模型中对应的字段;数据格式化和清洗,执行数据清洗操作,包括去除重复记录、修正错误数据、填充缺失值等,确保所有数据都符合预定的格式标准,比如日期和时间格式、货币单位等;数据验证和错误处理,验证转化后的数据是否符合预期的结构和内容,建立一个错误处理机制,以识别和纠正转化过程中的异常或错误。For the step of inputting order data into the conversion module and formatting it, S2 can follow the following detailed plan design: data collection and input, establishing interface connections with various e-commerce platforms to automatically collect original order data, and designing an Data import mechanism allows manual uploading or regular acquisition of data from various platforms through automation; design conversion module and develop an efficient conversion module that can handle large amounts of data and support parallel processing to improve efficiency. Consider designing for different e-commerce platforms Specific plug-ins or adapters are used to process their own unique data formats; apply data interface standards, apply the previously defined unified data interface standards in the conversion module, convert the original data into a unified format, and convert the original data into a unified format according to the mapping rules. Convert the fields into corresponding fields in the common data model; data formatting and cleaning, perform data cleaning operations, including removing duplicate records, correcting erroneous data, filling missing values, etc., to ensure that all data conforms to predetermined format standards, such as dates and Time format, currency unit, etc.; data verification and error handling, verify whether the converted data conforms to the expected structure and content, and establish an error handling mechanism to identify and correct anomalies or errors during the conversion process.

进一步地,S2还包括数据预处理,方法如下:格式标准化,确定需要标准化的关键字段,如日期和时间、货币单位、尺寸单位等,为每种类型的数据定义统一的格式化规则。例如,日期和时间可以统一为ISO8601标准,开发脚本或使用数据处理工具,自动将原始数据转换为统一的格式。Furthermore, S2 also includes data preprocessing, the method is as follows: format standardization, determine the key fields that need to be standardized, such as date and time, currency unit, size unit, etc., and define unified formatting rules for each type of data. For example, dates and times can be unified to the ISO8601 standard, and scripts can be developed or data processing tools can be used to automatically convert raw data into a unified format.

更进一步地,还包括数据转化逻辑的设计,方法如下:映射规则应用,为每个数据源定义详细的字段映射规则,确定源字段如何对应到目标模型的字段,在数据转化模块中实现这些映射逻辑,可能需要编写特定的代码或脚本;动态转化处理,开发能够根据数据源特定属性(如平台类型、数据格式)动态调整的转化逻辑,为不同的数据源开发特定的插件或适配器,以处理特殊的数据格式或结构。Furthermore, it also includes the design of data transformation logic. The method is as follows: mapping rule application, defining detailed field mapping rules for each data source, determining how the source fields correspond to the fields of the target model, and implementing these mappings in the data transformation module. Logic, which may require writing specific codes or scripts; dynamic conversion processing, developing conversion logic that can be dynamically adjusted according to specific attributes of the data source (such as platform type, data format), and developing specific plug-ins or adapters for different data sources to process Special data format or structure.

更进一步地,还包括数据校验和格式化:数据完整性校验,确定哪些字段是必需的,哪些是可选的,编写代码或使用工具自动检查每条记录是否包含所有必需字段;数据格式最终确认,根据统一数据模型的要求,明确最终数据的格式、类型和范围规范,开发后处理脚本,确保所有数据严格符合这些规范。Furthermore, it also includes data verification and formatting: data integrity verification, determining which fields are required and which are optional, writing code or using tools to automatically check whether each record contains all required fields; data format Final confirmation, according to the requirements of the unified data model, clarify the format, type and scope specifications of the final data, and develop post-processing scripts to ensure that all data strictly conforms to these specifications.

S3对于将格式化后的平台数据输入到数据处理模块进行清洗、校正、合并和验证,以下是详细的方案设计:数据清洗,识别并删除不符合标准或明显错误的数据记录,对缺失的数据采用合适的方法填充,如使用平均值、中位数或基于预测模型的估算,检测和删除重复的数据项,确保数据的唯一性;数据校正,确保所有数据遵循统一的格式,例如日期时间格式、货币单位等,验证数据是否符合业务逻辑和预定范围,比如检查订单金额是否为正值;数据合并,将来自不同电子商务平台的数据合并成一个统一的数据集,保持数据完整性和一致性,确保合并过程中相关字段的对齐,例如客户ID、产品编号等;数据验证,检查数据集是否完整,包括所有必要的字段和记录,对数据的准确性进行验证,确认转换和处理过程中没有引入错误;性能优化,优化数据处理算法和流程,确保处理速度和效率,确保系统能够处理大量数据,不受性能瓶颈限制。S3 inputs the formatted platform data into the data processing module for cleaning, correction, merging and verification. The following is the detailed plan design: data cleaning, identifying and deleting data records that do not meet the standards or obvious errors, and cleaning the missing data. Use appropriate methods to populate, such as using mean, median or prediction model-based estimates, detect and remove duplicate data items to ensure the uniqueness of data; data correction to ensure that all data follows a uniform format, such as date-time format , currency units, etc., to verify whether the data conforms to the business logic and predetermined range, such as checking whether the order amount is a positive value; data merging, merging data from different e-commerce platforms into a unified data set to maintain data integrity and consistency , ensure the alignment of relevant fields during the merge process, such as customer ID, product number, etc.; data verification, check whether the data set is complete, including all necessary fields and records, verify the accuracy of the data, and confirm that there are no Introducing errors; performance optimization, optimizing data processing algorithms and processes to ensure processing speed and efficiency, ensuring that the system can handle large amounts of data without being restricted by performance bottlenecks.

进一步地,数据清晰包括:数据清洗,应用统计方法和算法识别并处理异常值,如使用IQR(四分位数间距)来识别和处理离群点,对数据进行规范化处理,例如,统一文本数据的大小写、去除多余的空格和标点符号,对缺失值采用适当的策略,如使用平均值、中位数填充,或应用更复杂的数据插补技术如K-最近邻(K-NN)插补;数据合并和关联,将不同源的数据合并成一个统一的数据集,处理好各数据源间的冲突和不一致性,识别不同数据集之间的关联关系,如订单数据与客户数据的关联,进行有效合并。Further, data clarity includes: data cleaning, applying statistical methods and algorithms to identify and process outliers, such as using IQR (interquartile range) to identify and process outliers, and standardizing data, for example, unifying text data. upper and lower case, remove extra spaces and punctuation marks, and use appropriate strategies for missing values, such as using mean, median filling, or applying more complex data imputation techniques such as K-nearest neighbor (K-NN) interpolation Complement; data merging and association, merging data from different sources into a unified data set, handling conflicts and inconsistencies between data sources, and identifying associations between different data sets, such as the association between order data and customer data. , for effective merging.

更进一步地,还包括数据校正,对数据集进行一致性检查,确保所有记录都遵循相同的逻辑和格式标准,定期评估数据质量,识别数据质量问题的根源,持续改进数据处理流程;数据加工和转换,根据需要对数据进行聚合,如按照时间段、地区或其他维度进行汇总,后续的数据分析和模型建立创建有用的特征,如从时间戳中提取出时间和日期部分;数据存储和备份,优化数据存储结构和索引,确保数据检索和访问的高效性,实施数据备份机制,确保数据的安全性和可恢复性。Furthermore, it also includes data correction, checking the consistency of the data set to ensure that all records follow the same logic and format standards, regularly evaluating data quality, identifying the root causes of data quality problems, and continuously improving the data processing process; data processing and Transformation, aggregation of data as needed, such as aggregation by time period, region or other dimensions, subsequent data analysis and model building to create useful features, such as extracting time and date parts from timestamps; data storage and backup, Optimize data storage structures and indexes to ensure efficient data retrieval and access, and implement data backup mechanisms to ensure data security and recoverability.

S4对于实现同步模块进行实时的数据更新和同步,以下是具体的方案设计:设计实时同步架构,采用事件驱动的方法,当源数据发生变化时(如新订单生成、订单状态更新等),自动触发同步流程,使用消息队列(如Kafka、RabbitMQ)来缓冲和传输数据更新事件,保证数据同步的高效和可靠性;数据更新机制,识别和同步自上次更新后发生变化的数据,而非整个数据集,以提高同步效率,当出现数据冲突(如同一数据在不同源的更新)时,实施预先定义的解决策略,如以最新时间戳的更新为准;性能优化,在数据源和目标系统之间实现负载均衡,确保在高负载情况下系统稳定运行,对频繁访问的数据实施缓存策略,减少对数据库的直接读写压力;监控和日志记录,建立一个实时监控系统,监控数据同步的状态和性能,及时发现并解决问题,记录数据同步的详细日志,包括时间戳、数据源、同步状态等,便于问题追踪和系统审计;安全性和数据一致性,确保在同步过程中数据的安全性,采用加密技术保护数据传输,采用适当的技术(如事务处理、锁机制等)来确保数据的一致性,防止数据同步过程中出现不一致的情况。S4 implements the synchronization module for real-time data update and synchronization. The following is the specific solution design: design a real-time synchronization architecture and adopt an event-driven approach. When the source data changes (such as new order generation, order status update, etc.), it automatically Trigger the synchronization process and use message queues (such as Kafka, RabbitMQ) to buffer and transmit data update events to ensure the efficiency and reliability of data synchronization; the data update mechanism identifies and synchronizes data that has changed since the last update, not the entire Data sets to improve synchronization efficiency. When data conflicts occur (such as updates of the same data in different sources), predefined resolution strategies are implemented, such as the update of the latest timestamp; performance optimization is performed between the data source and the target system. Achieve load balancing among them to ensure stable operation of the system under high load conditions. Implement caching strategies for frequently accessed data to reduce direct read and write pressure on the database; monitor and log records to establish a real-time monitoring system to monitor the status of data synchronization. and performance, discover and solve problems in a timely manner, record detailed logs of data synchronization, including timestamps, data sources, synchronization status, etc., to facilitate problem tracking and system auditing; security and data consistency, ensure the security of data during the synchronization process , Use encryption technology to protect data transmission, and use appropriate technologies (such as transaction processing, lock mechanisms, etc.) to ensure data consistency and prevent inconsistencies during data synchronization.

进一步地,同步模块可以完成实时数据捕获:变更数据捕获(CDC),根据源系统的类型和结构,选择合适的CDC工具,如Debezium或AWSDMS,配置CDC工具以连接到源数据库,设置必要的参数,如数据库URL、凭证等,指定需要捕获变更的数据库表和字段,并配置如何处理数据变更(新增、更新、删除);监听事件,在源系统中部署事件监听器,用于监控数据变化,定义何种类型的数据变化(如订单创建、更新等)将触发同步流程,设置通知机制,一旦监听到相关事件,即向消息队列发送通知。Further, the synchronization module can complete real-time data capture: Change Data Capture (CDC). According to the type and structure of the source system, select the appropriate CDC tool, such as Debezium or AWS DMS, configure the CDC tool to connect to the source database, and set the necessary parameters , such as database URLs, credentials, etc., specify the database tables and fields that need to capture changes, and configure how to handle data changes (add, update, delete); listen for events and deploy event listeners in the source system to monitor data changes , define what type of data changes (such as order creation, update, etc.) will trigger the synchronization process, set up a notification mechanism, and send notifications to the message queue once relevant events are monitored.

更进一步地,同步模块进行数据同步管道构建:消息队列集成,选择适合的消息队列系统,如Apache Kafka或RabbitMQ,并进行安装和配置,在消息队列系统中创建相应的主题或队列,用于存储和转发数据变更事件,配置数据源作为消息生产者,数据目标系统作为消费者,并建立连接;数据缓冲区设置,设计缓冲区,以临时存储大量的数据事件,防止数据源和目标系统间的处理速度差异导致数据丢失,根据数据流量和处理能力,实施合适的缓冲策略,如滑动窗口或批处理。Furthermore, the synchronization module constructs a data synchronization pipeline: message queue integration, selects a suitable message queue system, such as Apache Kafka or RabbitMQ, installs and configures it, and creates corresponding topics or queues in the message queue system for storage and forward data change events, configure the data source as the message producer, the data target system as the consumer, and establish a connection; set the data buffer and design the buffer to temporarily store a large number of data events to prevent conflicts between the data source and the target system Differences in processing speed lead to data loss. Depending on the data traffic and processing capabilities, implement a suitable buffering strategy such as sliding window or batch processing.

更进一步地,可以进行实时数据处理:流处理框架应用,选择合适的流处理框架,如Apache Flink或Spark Streaming,配置流处理框架,部署到适当的环境中,如云平台或本地服务器,定义数据流的处理逻辑,包括数据的接收、转换和输出;数据丰富和转换,实现数据丰富逻辑,如从其他系统拉取额外信息与事件数据结合,根据需要对数据进行转换,比如格式调整、字段映射、数据聚合等。Furthermore, real-time data processing can be carried out: stream processing framework application, select an appropriate stream processing framework, such as Apache Flink or Spark Streaming, configure the stream processing framework, deploy it to an appropriate environment, such as a cloud platform or a local server, and define the data Stream processing logic, including data reception, conversion and output; data enrichment and conversion, implementing data enrichment logic, such as pulling additional information from other systems and combining it with event data, and converting data as needed, such as format adjustment and field mapping , data aggregation, etc.

S5对于通过分析模块对沉淀数据进行分析并将结果输入至报告模块以生成报告,以下是具体的方案设计:构建数据分析模块,建立一个多维数据模型,以支持复杂的数据分析,如时间序列分析、客户行为分析等,集成高级分析工具和算法,如机器学习模型、统计分析方法,以揭示数据中的趋势和模式;数据分析流程,自动化处理流程,从沉淀数据中提取关键信息和指标,结合历史数据和实时数据,进行全面的业务分析,包括销售趋势、客户偏好、库存优化等;报告模块设计,开发一个报告生成模块,允许用户根据需要选择不同的报告模板和指标,报告生成过程中,可以动态地插入图表、文本解析和关键指标;可视化和用户界面,利用图表、图形和仪表板等可视化手段,使报告内容直观易懂,提供交互式界面,使用户能够根据自己的需求定制报告内容;性能优化和扩展性,优化数据处理算法,确保即使是复杂的分析也能快速完成,设计模块时考虑未来可能的扩展,如添加新的分析方法或报告模板;安全性和合规性,确保分析和报告生成过程符合数据保护法规,尤其是在处理敏感数据时,实施严格的访问控制和权限管理,确保只有授权用户才能访问报告生成模块。For S5 to analyze precipitation data through the analysis module and input the results into the report module to generate reports, the following is the specific solution design: build a data analysis module and establish a multi-dimensional data model to support complex data analysis, such as time series analysis , customer behavior analysis, etc., integrating advanced analysis tools and algorithms, such as machine learning models and statistical analysis methods, to reveal trends and patterns in data; data analysis processes, automated processing processes, extract key information and indicators from precipitated data, and combine Historical data and real-time data are used to conduct comprehensive business analysis, including sales trends, customer preferences, inventory optimization, etc.; report module design is to develop a report generation module that allows users to choose different report templates and indicators as needed. During the report generation process, Charts, text parsing and key indicators can be dynamically inserted; visualization and user interface use visual means such as charts, graphs and dashboards to make the report content intuitive and easy to understand, and provide an interactive interface so that users can customize the report content according to their own needs. ; Performance optimization and scalability, optimizing data processing algorithms to ensure that even complex analyzes can be completed quickly, and considering possible future expansion when designing modules, such as adding new analysis methods or report templates; Security and compliance, ensuring The analysis and report generation process complies with data protection regulations, especially when handling sensitive data. Strict access control and rights management are implemented to ensure that only authorized users can access the report generation module.

进一步地,分析模型的选择和构建方法如下:数据集分析,基于预定的分析目标,选择合适的数据集进行分析,选择适用的统计模型或机器学习算法,例如回归分析、聚类、决策树等,构建模型并使用数据集进行训练和调优,以提高模型的准确性和可靠性;数据可视化,使用图表工具(如Matplotlib、Seaborn)进行数据可视化,探索数据分布、关联和趋势,提供数据的统计摘要,如均值、中位数、标准差等。Furthermore, the selection and construction methods of analysis models are as follows: data set analysis, based on the predetermined analysis goals, select appropriate data sets for analysis, and select applicable statistical models or machine learning algorithms, such as regression analysis, clustering, decision trees, etc. , build a model and use data sets for training and tuning to improve the accuracy and reliability of the model; data visualization, use charting tools (such as Matplotlib, Seaborn) for data visualization, explore data distribution, correlation and trends, and provide data Statistical summaries such as mean, median, standard deviation, etc.

进一步地,报告模型的开发方法如下:报告模板设计,设计报告的基本框架,包括标题、摘要、主体、结论等部分,确定报告的视觉设计元素,如颜色方案、字体、图表样式等,使用报告生成工具(如Microsoft Word模板、LaTeX)创建报告模板;动态报告生成,开发一个报告生成系统,允许从分析模块自动提取数据和分析结果,实现动态内容插入机制,如基于用户选择的参数自动更新图表和文本,设计用户界面,让用户可以轻松选择不同的报告模板和数据视图。Further, the development method of the report model is as follows: report template design, design the basic framework of the report, including title, summary, body, conclusion and other parts, determine the visual design elements of the report, such as color scheme, font, chart style, etc., use the report Generating tools (such as Microsoft Word templates, LaTeX) to create report templates; dynamic report generation, developing a report generation system that allows automatic extraction of data and analysis results from the analysis module, and implementing dynamic content insertion mechanisms, such as automatically updating charts based on user-selected parameters and text, design the user interface to allow users to easily select different report templates and data views.

本发明的主要功能:Main functions of the invention:

1.统一数据接口标准的创建:将不同电子商务平台的数据定义一个共同的标准和格式。这样做的有益效果是简化了数据处理流程,减少了数据转换错误,提高了不同数据源之间的兼容性和整合效率。1. Creation of unified data interface standards: define a common standard and format for data from different e-commerce platforms. The beneficial effect of this is to simplify the data processing process, reduce data conversion errors, and improve the compatibility and integration efficiency between different data sources.

2.高效的数据转化模块:将各电子商务平台的原始订单数据转换成统一的格式,并进行清洗和标准化处理。它的有益效果是提升了数据的准确性和一致性,为后续的数据分析和应用提供了可靠的基础。2. Efficient data conversion module: Convert the original order data of each e-commerce platform into a unified format, and perform cleaning and standardization processing. Its beneficial effect is to improve the accuracy and consistency of data and provide a reliable foundation for subsequent data analysis and application.

3.实时数据同步模块:捕获源数据中的变更事件并实时更新到业务管理平台。这一功能的有益效果是确保了数据的实时性和准确性,使企业能够快速响应市场变化和客户需求。3. Real-time data synchronization module: captures change events in source data and updates them to the business management platform in real time. The beneficial effect of this function is to ensure the real-time and accuracy of data, allowing enterprises to quickly respond to market changes and customer needs.

4.数据分析和报告生成:对同步的数据进行深入分析,并根据分析结果生成直观的报告。它的有益效果是为决策者提供了洞察力强的业务信息,支持基于数据的决策,增强了企业的策略规划和市场竞争能力。4. Data analysis and report generation: Conduct in-depth analysis of synchronized data and generate intuitive reports based on the analysis results. Its beneficial effect is to provide decision-makers with insightful business information, support data-based decision-making, and enhance the company's strategic planning and market competitiveness.

5.流处理框架的应用:实时处理和转换数据流,以支持复杂的数据处理需求。这个功能的有益效果是提高了处理大规模实时数据的能力,保证了数据处理的灵活性和扩展性。5. Application of stream processing framework: process and convert data streams in real time to support complex data processing requirements. The beneficial effect of this function is to improve the ability to process large-scale real-time data and ensure the flexibility and scalability of data processing.

通过这些创新功能,该发明为企业提供了一个全面、高效且可靠的解决方案,用于管理和分析来自不同电子商务平台的复杂数据集,从而提升整体业务运营效率和决策质量。Through these innovative features, the invention provides enterprises with a comprehensive, efficient and reliable solution for managing and analyzing complex data sets from different e-commerce platforms, thereby improving overall business operation efficiency and decision-making quality.

综上所述,本领域的普通技术人员阅读本发明文件后,根据本发明的技术方案和技术构思无需创造性脑力劳动而作出其他各种相应的变换方案,均属于本发明所保护的范围。To sum up, after reading the document of the present invention, those of ordinary skill in the art can make various other corresponding transformation schemes based on the technical solutions and technical concepts of the present invention without creative mental effort, which all fall within the scope of protection of the present invention.

Claims (8)

1.一种业务管理平台的订单同步方法,其特征在于,包括以下步骤:1. An order synchronization method for a business management platform, which is characterized by including the following steps: S1:创建统一的数据接口标准;S1: Create a unified data interface standard; S2:将订单数据输入转化模块,通过统一的数据接口标准转化为平台数据;S2: Input the order data into the conversion module and convert it into platform data through unified data interface standards; S3:将平台数据输入至处理模块进行数据处理;S3: Input platform data to the processing module for data processing; S4:同步模块进行实时的数据更新和同步;S4: Synchronization module performs real-time data update and synchronization; S5:分析模块对沉淀数据进行分析并输入至报告模块生成报告;S5: The analysis module analyzes the precipitation data and inputs it into the report module to generate a report; 所述S1创建统一的数据接口标准的具体方法为:对订单数据格式和要求的分析,收集订单数据接口文档,识别订单数据格式的差异和共同点,设计包含所有必要字段的通用数据模型,为不同电商的订单数据格式制定映射规则,并制定数据格式化和验证规则,开发统一的应用程序编程接口(API),用于业务管理平台对转换后的电商数据的使用,进行接口标准的兼容性和有效性测试,以确保其在不同电商系统中的适用性。The specific method for S1 to create a unified data interface standard is to: analyze the order data format and requirements, collect order data interface documents, identify differences and commonalities in order data formats, and design a common data model containing all necessary fields for Develop mapping rules for different e-commerce order data formats, formulate data formatting and verification rules, and develop a unified application programming interface (API) for the business management platform to use the converted e-commerce data and implement interface standards. Compatibility and validity testing to ensure its applicability in different e-commerce systems. 2.根据权利要求1所述的一种业务管理平台的订单同步方法,其特征在于,所述开发统一的应用程序编程接口(API)具体包括:RESTful API设计,识别并定义API将处理的主要资源,并为每种资源设计端点,为每个端点指定标准的HTTP方法,明确每种方法的具体操作和预期行为,定义查询参数和过滤选项,允许用户自定义请求,规定标准的HTTP状态码用于不同情况的响应,定义错误处理机制和错误响应格式;设计GraphQL模式,明确类型、查询和变更,嵌套查询和多资源聚合。2. The order synchronization method of a business management platform according to claim 1, characterized in that the development of a unified application programming interface (API) specifically includes: RESTful API design, identifying and defining the main tasks that the API will handle. resources, and design endpoints for each resource, specify standard HTTP methods for each endpoint, clarify the specific operations and expected behaviors of each method, define query parameters and filtering options, allow users to customize requests, and specify standard HTTP status codes Used for responses in different situations, define error handling mechanisms and error response formats; design GraphQL patterns, clarify types, queries and changes, nested queries and multi-resource aggregation. 3.根据权利要求1所述的一种业务管理平台的订单同步方法,其特征在于,所述S2将订单数据输入转化模块的具体方法为,建立与电子商务平台的接口连接,自动收集原始订单数据,设计数据导入机制,允许手动上传或通过自动化方式定期从各平台获取数据;设计转化模块,能够处理大量数据,并支持并行处理,为不同的电子商务平台设计特定的插件或适配器,用于处理各自独特的数据格式。3. An order synchronization method for a business management platform according to claim 1, characterized in that the specific method for the S2 to input the order data into the conversion module is to establish an interface connection with the e-commerce platform and automatically collect the original orders. Data, design a data import mechanism that allows manual uploading or regular acquisition of data from various platforms through automated means; design a conversion module that can handle large amounts of data and support parallel processing, and design specific plug-ins or adapters for different e-commerce platforms. Handle their own unique data formats. 4.根据权利要求3所述的一种业务管理平台的订单同步方法,其特征在于,在所述转化模块中应用所述的数据接口标准,将订单数据转换成统一的格式,根据所述映射规则,将订单数据中的字段转换为通用数据模型中对应的字段;然后执行数据清洗操作,包括去除重复记录、修正错误数据、填充缺失值,验证转化后的数据,建立错误处理机制,用于识别和纠正转化过程中的异常或错误。4. The order synchronization method of a business management platform according to claim 3, characterized in that the data interface standard is applied in the conversion module to convert the order data into a unified format, and according to the mapping Rules to convert the fields in the order data into corresponding fields in the general data model; then perform data cleaning operations, including removing duplicate records, correcting erroneous data, filling in missing values, verifying the converted data, and establishing an error handling mechanism for Identify and correct anomalies or errors in the conversion process. 5.根据权利要求1所述的一种业务管理平台的订单同步方法,其特征在于,所述S3将平台数据输入至处理模块进行数据处理的具体方法为,进行数据清洗,识别并删除不符合标的数据记录,对缺失的数据采用使用平均值、中位数或基于预测模型的估算,检测和删除重复的数据项,确保所有数据遵循统一的格式,将数据合并成一个统一的数据集,检查数据集是否完整,包括所有必要的字段和记录。5. The order synchronization method of a business management platform according to claim 1, characterized in that the specific method for the S3 to input platform data to the processing module for data processing is to perform data cleaning, identify and delete inconsistencies. Target data records, use mean, median or prediction model-based estimation for missing data, detect and remove duplicate data items, ensure that all data follows a unified format, merge data into a unified data set, check The data set is complete, including all necessary fields and records. 6.根据权利要求5所述的一种业务管理平台的订单同步方法,其特征在于,所述数据处理还包括数据校正,对数据集进行一致性检查,使得所有记录都遵循相同的逻辑和格式标准,评估数据质量,识别数据质量问题的根源,持续改进数据处理流程;对数据进行聚合,优化数据存储结构和索引,确保数据检索和访问的高效性,实施数据备份机制,确保数据的安全性和可恢复性。6. An order synchronization method for a business management platform according to claim 5, characterized in that the data processing also includes data correction, and a consistency check is performed on the data set so that all records follow the same logic and format. Standards, evaluate data quality, identify the root causes of data quality problems, and continuously improve data processing processes; aggregate data, optimize data storage structures and indexes, ensure the efficiency of data retrieval and access, and implement data backup mechanisms to ensure data security and recoverability. 7.根据权利要求1所述的一种业务管理平台的订单同步方法,其特征在于,所述S4同步模块进行实时的数据更新和同步的具体方法为,设计实时同步架构,采用事件驱动的方法,当源数据发生变化时,触发同步流程,使用消息队列缓冲和传输数据更新事件,识别和同步自上次更新后发生变化的数据,而非整个数据集,当出现数据冲突时,实施预先定义的解决策略。7. The order synchronization method of a business management platform according to claim 1, characterized in that the specific method for the S4 synchronization module to perform real-time data update and synchronization is to design a real-time synchronization architecture and adopt an event-driven method. , when the source data changes, trigger the synchronization process, use the message queue to buffer and transmit data update events, identify and synchronize the data that has changed since the last update, rather than the entire data set, and implement pre-defined solution strategy. 8.根据权利要求7所述的一种业务管理平台的订单同步方法,其特征在于,所述同步模块可以完成实时数据捕获:配置CDC工具连接到电商平台订单数据库,设置需要捕获变更的数据库表和字段,并配置处理数据变更程序,在电商平台订单数据库中部署事件监听器,用于监控数据变化,数据变化将触发同步流程,设置通知机制,一旦监听到相关事件,即向消息队列发送通知。8. The order synchronization method of a business management platform according to claim 7, characterized in that the synchronization module can complete real-time data capture: configure the CDC tool to connect to the e-commerce platform order database, and set the database that needs to capture changes. Tables and fields, and configure the data change processing program. Deploy event listeners in the e-commerce platform order database to monitor data changes. Data changes will trigger the synchronization process. Set up a notification mechanism. Once relevant events are monitored, the message queue will be sent to the message queue. Send notification.
CN202311792622.8A 2023-12-25 2023-12-25 An order synchronization method for business management platform Pending CN117725122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311792622.8A CN117725122A (en) 2023-12-25 2023-12-25 An order synchronization method for business management platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311792622.8A CN117725122A (en) 2023-12-25 2023-12-25 An order synchronization method for business management platform

Publications (1)

Publication Number Publication Date
CN117725122A true CN117725122A (en) 2024-03-19

Family

ID=90208735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311792622.8A Pending CN117725122A (en) 2023-12-25 2023-12-25 An order synchronization method for business management platform

Country Status (1)

Country Link
CN (1) CN117725122A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118035358A (en) * 2024-03-20 2024-05-14 成都九洲电子信息系统股份有限公司 A method for intelligent synchronization of heterogeneous database data
CN118394663A (en) * 2024-06-25 2024-07-26 深圳华锐分布式技术股份有限公司 Universal interface automatic test method, device, computer equipment and storage medium
CN118410106A (en) * 2024-06-28 2024-07-30 天津南大通用数据技术股份有限公司 Cross-data source real-time synchronization method based on time line mapping
CN118628072A (en) * 2024-08-14 2024-09-10 深圳市固美特科技有限公司 The method of sending and receiving documents based on ERP system
CN118673182A (en) * 2024-08-20 2024-09-20 北京紫云智能科技有限公司 Emergency data standardization system and method based on data virtualization
CN119829661A (en) * 2024-12-09 2025-04-15 首都机场集团有限公司 Method for realizing automatic docking of system asset cards based on trend analysis
CN120045619A (en) * 2024-12-26 2025-05-27 北京智享嘉网络信息技术有限公司 Enterprise multi-source data real-time synchronization system based on data center
CN120124596A (en) * 2025-01-20 2025-06-10 赛迪顾问股份有限公司 A document generation system and method based on big data model
CN120295816A (en) * 2025-06-11 2025-07-11 山东浪潮智能生产技术有限公司 Remote data reporting method, system and medium for remote storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050015619A1 (en) * 2003-07-14 2005-01-20 Wing Lee Integration infrastrucuture
CN116302487A (en) * 2023-02-07 2023-06-23 南京博雅区块链研究院有限公司 DOMA-based data center system and construction method
CN116882931A (en) * 2023-07-18 2023-10-13 深圳市百慧文化发展有限公司 Purchase, sale and deposit management system and data processing method thereof
CN117132351A (en) * 2023-08-15 2023-11-28 深圳市酷开网络科技股份有限公司 Order information processing method and related equipment
CN117172214A (en) * 2023-11-02 2023-12-05 企查查科技股份有限公司 API file conversion method, system and computer storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050015619A1 (en) * 2003-07-14 2005-01-20 Wing Lee Integration infrastrucuture
CN116302487A (en) * 2023-02-07 2023-06-23 南京博雅区块链研究院有限公司 DOMA-based data center system and construction method
CN116882931A (en) * 2023-07-18 2023-10-13 深圳市百慧文化发展有限公司 Purchase, sale and deposit management system and data processing method thereof
CN117132351A (en) * 2023-08-15 2023-11-28 深圳市酷开网络科技股份有限公司 Order information processing method and related equipment
CN117172214A (en) * 2023-11-02 2023-12-05 企查查科技股份有限公司 API file conversion method, system and computer storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孔令飞: "《企业级Go项目开发实战》", vol. 1, 31 January 2023, 机械工业出版社, pages: 336 - 341 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118035358A (en) * 2024-03-20 2024-05-14 成都九洲电子信息系统股份有限公司 A method for intelligent synchronization of heterogeneous database data
CN118035358B (en) * 2024-03-20 2025-02-25 成都九洲电子信息系统股份有限公司 A method for intelligent synchronization of heterogeneous database data
CN118394663A (en) * 2024-06-25 2024-07-26 深圳华锐分布式技术股份有限公司 Universal interface automatic test method, device, computer equipment and storage medium
CN118410106A (en) * 2024-06-28 2024-07-30 天津南大通用数据技术股份有限公司 Cross-data source real-time synchronization method based on time line mapping
CN118410106B (en) * 2024-06-28 2024-09-20 天津南大通用数据技术股份有限公司 Cross-data source real-time synchronization method based on time line mapping
CN118628072A (en) * 2024-08-14 2024-09-10 深圳市固美特科技有限公司 The method of sending and receiving documents based on ERP system
CN118673182A (en) * 2024-08-20 2024-09-20 北京紫云智能科技有限公司 Emergency data standardization system and method based on data virtualization
CN119829661A (en) * 2024-12-09 2025-04-15 首都机场集团有限公司 Method for realizing automatic docking of system asset cards based on trend analysis
CN120045619A (en) * 2024-12-26 2025-05-27 北京智享嘉网络信息技术有限公司 Enterprise multi-source data real-time synchronization system based on data center
CN120124596A (en) * 2025-01-20 2025-06-10 赛迪顾问股份有限公司 A document generation system and method based on big data model
CN120295816A (en) * 2025-06-11 2025-07-11 山东浪潮智能生产技术有限公司 Remote data reporting method, system and medium for remote storage
CN120295816B (en) * 2025-06-11 2025-09-16 山东浪潮智能生产技术有限公司 Remote data reporting method, system and medium for remote database

Similar Documents

Publication Publication Date Title
CN117725122A (en) An order synchronization method for business management platform
EP4339802A2 (en) Methods and apparatus for integrated management of structured data from various sources and having various formats
CN106933205A (en) Distributed industrial performance monitoring and analysis platform
CN114880240B (en) Automatic test system and method for equipment of Internet of things, storage medium and equipment
WO2015039046A1 (en) Data flow exploration
CN114880405A (en) Data lake-based data processing method and system
CN118210791A (en) Big data cleaning method and big data acquisition system based on AI training
Shekhar Integrating data from geographically diverse non-sap systems into sap hana: Implementation of master data management, reporting, and forecasting model
CN118312548B (en) Data asset assessment method based on multi-source multi-dimensional data quality
CN114281877A (en) A data management system and method
CN117575791A (en) Novel multisource real-time transaction quotation data receiving and processing method
CN119088933A (en) A method for processing official document data in a large model scenario
CN119940715A (en) Intelligent accounting data management and compliance system and method
CN118585541A (en) A multi-port data source extraction optimization model and method
CN118626551B (en) Multi-dimensional data analysis method and system based on application platform
CN119088652A (en) An alarm reminder tool for visual management of the entire task process
WO2024261779A2 (en) System for financial analysis based on artificial intelligence with easy report interpretations
CN119005659A (en) Business process management system and method based on visualization technology
CN120257967B (en) Automatic verification method and device for deviation of clinical test scheme and computer equipment
Munawar Extract Transform Loading (ETL) Based Data Quality for Data Warehouse Development
CN118568625B (en) Monitoring device and method applied to auditing system
Portenlänger et al. Analysis of the Ability of the OSLC Standard to Improve Data Traceability in System Development
US12314150B1 (en) Systems and methods for real-time mapping and visualization generation of system components in software systems
CN119336827B (en) Processing method and device for multi-mode data acquisition of intelligent manufacturing system
Hristova Optimizing Cloud Data Management With Ai-Driven Solutions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载