+

CN117272778A - Design methods and devices for microwave passive components - Google Patents

Design methods and devices for microwave passive components Download PDF

Info

Publication number
CN117272778A
CN117272778A CN202310856674.0A CN202310856674A CN117272778A CN 117272778 A CN117272778 A CN 117272778A CN 202310856674 A CN202310856674 A CN 202310856674A CN 117272778 A CN117272778 A CN 117272778A
Authority
CN
China
Prior art keywords
design
neural network
reversible
microwave passive
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310856674.0A
Other languages
Chinese (zh)
Other versions
CN117272778B (en
Inventor
李晓春
武泽明
李正
毛军发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN202310856674.0A priority Critical patent/CN117272778B/en
Publication of CN117272778A publication Critical patent/CN117272778A/en
Application granted granted Critical
Publication of CN117272778B publication Critical patent/CN117272778B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/0895Weakly supervised learning, e.g. semi-supervised or self-supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种微波无源器件的设计方法和装置,方法包括:确定设计目标及设计参数范围;进行采样生成初始设计参数样本集XI和扩展样本集XU;对XI进行全波仿真计算,得到散射参数并从中提取出电磁特性数据集YI,得到初始设计数据集DI;将DI分为训练集和测试集,训练正向的多层感知机神经网络和高斯过程并计算测试误差;预测XU的设计性能;根据建模精度作为权重,选取其预测值的加权平均数作为扩展设计性能;将扩展设计性能及对应的扩展设计参数作为扩展设计数据集DE;利用DI和DE训练可逆神经网络;根据设计目标生成设计候选值,进行测试验证确定最终设计参数,实现了智能化设计。

The invention discloses a design method and device for microwave passive devices. The method includes: determining the design target and design parameter range; performing sampling to generate an initial design parameter sample set XI and an extended sample set XU ; performing full-wave analysis on XI Through simulation calculation, the scattering parameters are obtained and the electromagnetic characteristic data set Y I is extracted from it, and the initial design data set D I is obtained; D I is divided into a training set and a test set, and the forward multi-layer perceptron neural network and Gaussian process are trained and combined Calculate the test error; predict the design performance of D I and D E train the reversible neural network; generate design candidate values according to the design goals, conduct testing and verification to determine the final design parameters, and realize intelligent design.

Description

微波无源器件的设计方法和装置Design method and device for microwave passive components

技术领域Technical Field

本发明涉及一种微波无源器件的设计方法和装置,具体地说是一种基于半监督-可逆神经网络逆建模的微波无源器件的设计方法和装置,属于微波无源器件设计技术领域。The invention relates to a design method and device for a microwave passive device, in particular to a design method and device for a microwave passive device based on semi-supervised-reversible neural network inverse modeling, belonging to the technical field of microwave passive device design.

背景技术Background Art

随着微波与射频电路的发展,对微波无源器件的性能要求逐渐提高,为了适应微波与射频电路高性能要求,一些新颖的微波器件结构层出不穷,使得微波无源器件的设计问题日趋复杂。微波无源器件的性能通常与其物理和尺寸参数相关,传统微波器件的设计方法依赖于参数扫描,需要多次调用仿真软件对不同物理和尺寸参数的微波器件进行精确的数值计算,以优化出最合适的设计参数,这大大增加了微波无源器件的设计周期,提高了设计成本。不仅如此,微波器件的设计需要设计者对电磁场与微波技术有较深的理解,设计门槛较高。因此微波器件的智能化和自动化设计在如今变得十分必要。With the development of microwave and radio frequency circuits, the performance requirements for microwave passive devices are gradually increasing. In order to meet the high performance requirements of microwave and radio frequency circuits, some novel microwave device structures emerge in an endless stream, making the design problems of microwave passive devices increasingly complex. The performance of microwave passive devices is usually related to their physical and dimensional parameters. The design method of traditional microwave devices relies on parameter scanning, and it is necessary to call simulation software multiple times to perform precise numerical calculations on microwave devices with different physical and dimensional parameters in order to optimize the most suitable design parameters. This greatly increases the design cycle of microwave passive devices and increases the design cost. Not only that, the design of microwave devices requires designers to have a deep understanding of electromagnetic fields and microwave technology, and the design threshold is high. Therefore, the intelligent and automated design of microwave devices has become very necessary today.

逆建模设计方法已成为微波无源器件设计领域重要的发展方向。逆建模是相对于正向建模而言的,正向建模输入是设计参数,输出是设计指标,而逆建模指将设计目标看作模型的输入,设计参数看作模型的输出,通过模型直接从设计目标得到设计参数。因此逆建模设计方法是最为便捷且不依赖于专业知识的设计方法,目前逆建模方法主要依赖于多层感知机神经网络模型,相关研究证明多层感知机神经网络逆建模方法有一定的应用局限性。The inverse modeling design method has become an important development direction in the field of microwave passive device design. Inverse modeling is relative to forward modeling. The input of forward modeling is the design parameters, and the output is the design index. Inverse modeling refers to treating the design goal as the input of the model and the design parameters as the output of the model, and obtaining the design parameters directly from the design goal through the model. Therefore, the inverse modeling design method is the most convenient design method that does not rely on professional knowledge. At present, the inverse modeling method mainly relies on the multi-layer perceptron neural network model. Related research has shown that the multi-layer perceptron neural network inverse modeling method has certain application limitations.

第一个局限是使用多层感知机神经网络不适用于处理存在一对多问题的逆建模。微波无源器件逆设计的一对多问题指的是同一设计目标可能对应多组设计参数,多层感知机神经网络的原理是使模型预测的输出与数据集真实值的平方均值误差最小,因此当数据集中存在一对多问题时,使用神经网络直接进行逆建模会造成极大的误差。第二个局限是相对于正向建模而言,使用神经网络进行逆建模需要大量的数据集,而数据集的获取需要依赖全波仿真软件获取,这一过程十分耗时,尤其当微波器件结构复杂、设计参数多的情况下,神经网络逆建模所需数据集规模更大,时间耗费问题更加突出。The first limitation is that the use of multi-layer perceptron neural networks is not suitable for inverse modeling with one-to-many problems. The one-to-many problem in the inverse design of microwave passive devices refers to the fact that the same design goal may correspond to multiple sets of design parameters. The principle of the multi-layer perceptron neural network is to minimize the square mean error between the output predicted by the model and the true value of the data set. Therefore, when there is a one-to-many problem in the data set, using a neural network directly for inverse modeling will cause a huge error. The second limitation is that compared with forward modeling, the use of neural networks for inverse modeling requires a large number of data sets, and the acquisition of data sets needs to rely on full-wave simulation software. This process is very time-consuming, especially when the microwave device structure is complex and there are many design parameters. The data set required for neural network inverse modeling is larger, and the time consumption problem is more prominent.

发明内容Summary of the invention

为了解决上述问题,本发明提出了一种基于半监督-可逆神经网络逆建模的微波无源器件的设计方法和装置,能够利用可逆神经网络提高逆建模的精度,并提出半监督学习的方法提高生成数据集的效率,使设计者不依赖于经验知识,能够从设计目标直接获得设计参数,实现微波无源器件的智能化设计。In order to solve the above problems, the present invention proposes a design method and device for microwave passive components based on semi-supervised-reversible neural network inverse modeling, which can utilize reversible neural networks to improve the accuracy of inverse modeling, and proposes a semi-supervised learning method to improve the efficiency of generating data sets, so that designers do not rely on empirical knowledge and can directly obtain design parameters from design goals, thereby realizing intelligent design of microwave passive components.

本发明解决其技术问题采取的技术方案是:The technical solution adopted by the present invention to solve the technical problem is:

第一方面,本发明实施例提供的一种微波无源器件的设计方法,包括以下步骤:In a first aspect, an embodiment of the present invention provides a method for designing a microwave passive device, comprising the following steps:

确定待设计微波无源器件的设计目标,所述待设计微波无源器件为待改进性能的微波无源器件;Determining a design goal of a microwave passive device to be designed, wherein the microwave passive device to be designed is a microwave passive device whose performance is to be improved;

根据待设计微波无源器件的设计目标确定待设计微波无源器件的设计参数的允许范围,所述设计参数是微波无源器件的尺寸参数;Determining an allowable range of a design parameter of the microwave passive component to be designed according to a design goal of the microwave passive component to be designed, wherein the design parameter is a size parameter of the microwave passive component;

采用拉丁超立方采样法对待设计微波无源器件的设计参数进行采样,分别生成初始设计参数样本集XI和扩展设计参数样本集XUThe Latin hypercube sampling method is used to sample the design parameters of the microwave passive device to generate an initial design parameter sample set XI and an extended design parameter sample set XU respectively;

对初始设计参数样本集XI进行全波仿真计算,得到初始设计参数样本的散射参数,并从散射参数中提取出电磁特性数据集YI作为设计性能,得到初始设计数据集DI={XI,YI};Perform full-wave simulation calculation on the initial design parameter sample set XI to obtain the scattering parameters of the initial design parameter samples, and extract the electromagnetic characteristic data set YI from the scattering parameters as the design performance to obtain the initial design data set D I ={ XI , YI };

采用k-fold交叉验证方法将初始设计数据集DI分为训练集和测试集,训练正向的多层感知机神经网络FANN和高斯过程FGP,并分别计算多层感知机神经网络FANN和高斯过程FGP的测试误差;The k-fold cross-validation method is used to divide the initial design data set D I into a training set and a test set, and the forward multilayer perceptron neural network F ANN and Gaussian process F GP are trained, and the test errors of the multilayer perceptron neural network F ANN and Gaussian process F GP are calculated respectively;

如果测试误差不满足精度要求,则利用拉丁超立方采样继续向初始设计参数样本集XI添加样本,否则进入下一步;If the test error does not meet the accuracy requirement, Latin hypercube sampling is used to continue adding samples to the initial design parameter sample set XI , otherwise proceed to the next step;

利用多层感知机神经网络FANN和高斯过程FGP分别预测扩展设计参数样本集XU的设计性能;The design performance of the extended design parameter sample set X U is predicted by using multi-layer perceptron neural network F ANN and Gaussian process F GP respectively.

根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为扩展设计性能;将扩展设计性能及对应的扩展设计参数作为扩展设计数据集DEAccording to the modeling accuracy of the multi-layer perceptron neural network and the Gaussian process as weights, the weighted average of their predicted values is selected as the extended design performance; the extended design performance and the corresponding extended design parameters are used as the extended design data set DE ;

利用初始设计数据集DI和扩展设计数据集DE训练可逆神经网络;The reversible neural network is trained using the initial design dataset D I and the extended design dataset D E ;

使用可逆神经网络根据设计目标生成设计候选值,并利用多层感知机神经网络和高斯过程进行测试验证,选择测试误差最小的设计候选值作为最终的设计参数。A reversible neural network is used to generate design candidate values according to the design objectives, and a multilayer perceptron neural network and Gaussian process are used for test verification. The design candidate value with the smallest test error is selected as the final design parameter.

作为本实施例一种可能的实现方式,所述设计目标为微波无源器件的电磁特性,包括但不限于工作频带和工作频点处的回波损耗。所述工作频带包括微波无源器件工作带宽对应的上截止频率和下截止频率。As a possible implementation of this embodiment, the design target is the electromagnetic characteristics of the microwave passive device, including but not limited to the return loss at the working frequency band and the working frequency point. The working frequency band includes the upper cutoff frequency and the lower cutoff frequency corresponding to the working bandwidth of the microwave passive device.

作为本实施例一种可能的实现方式,所述初始设计参数样本集XI为:As a possible implementation of this embodiment, the initial design parameter sample set XI is:

XI={x1,x2,…,xm} Xi = { x1 , x2 , ..., xm }

其中,m为初始设计参数样本数,x1,x2,…,xm为初始设计参数样本;Among them, m is the number of initial design parameter samples, x 1 ,x 2 ,…,x m are initial design parameter samples;

所述扩展设计参数样本集XU为:The extended design parameter sample set X U is:

XU={xm+1,xm+2,…,xm+n}X U ={x m+1 ,x m+2 ,…,x m+n }

其中,n为扩展设计参数样本数,xm+1,xm+2,…,xm+n为扩展设计参数样本;Wherein, n is the number of extended design parameter samples, x m+1 ,x m+2 ,…,x m+n are extended design parameter samples;

所述电磁特性数据集YI为:The electromagnetic property data set Y I is:

YI={y1,y2,…,ym}Y I ={y 1 ,y 2 ,…,y m }

其中,y1,y2,…,ym为电磁特性。Among them, y 1 ,y 2 ,…,y m are electromagnetic properties.

作为本实施例一种可能的实现方式,所述设计性能的计算公式为:As a possible implementation of this embodiment, the calculation formula of the design performance is:

其中,xi为初始设计参数样本或扩展设计参数样本,为多层感知机神经网络的预测值,为高斯过程的预测值。Among them, xi is the initial design parameter sample or the extended design parameter sample, is the predicted value of the multilayer perceptron neural network, is the predicted value of the Gaussian process.

作为本实施例一种可能的实现方式,所述设计性能的计算公式为:As a possible implementation of this embodiment, the calculation formula of the design performance is:

其中,yi为利用多层感知机神经网络和高斯过程预测的设计性能,eANN为多层感知机神经网络的测试误差,eGP为高斯过程的测试误差。Among them, yi is the design performance predicted by multilayer perceptron neural network and Gaussian process, eANN is the test error of multilayer perceptron neural network, and eGP is the test error of Gaussian process.

作为本实施例一种可能的实现方式,所述可逆神经网络由可逆块构成:As a possible implementation of this embodiment, the reversible neural network is composed of reversible blocks:

hi+1=gi(hi)hi +1 = gi ( hi )

其中,hi代表第i个可逆块正向过程输入,hi+1代表第i个可逆块的正向过程gi(·)的输出;Where, hi represents the input of the forward process of the i-th reversible block, and hi +1 represents the output of the forward process g i (·) of the i-th reversible block;

正向过程gi(·)的具体计算过程为先将hi按照维度分为[hi 1:d,hi d+1:D],再用下式计算:The specific calculation process of the forward process g i (·) is to first divide hi into [ hi 1:d , hi d+1:D ] according to the dimension, and then calculate it using the following formula:

s(·)和t(·)由任意的神经网络构成,并且都是从d维到D-d维的映射;⊙是元素乘积符号;s(·) and t(·) are composed of arbitrary neural networks and are both mappings from d dimensions to D-d dimensions; ⊙ is the element-wise product symbol;

可逆块的逆向过程为:The reverse process of the reversible block is:

变量转换定理定义hi+1到hi的概率分布变化:The variable conversion theorem defines the change in probability distribution from hi +1 to hi :

其中,是gi(hi)的雅可比行列式:in, is the Jacobian of g i (h i ):

其中,Id是d×d的单位矩阵,是对角线元素为的对角矩阵。Where Id is the d×d identity matrix, The diagonal elements are The diagonal matrix of .

作为本实施例一种可能的实现方式,所述可逆神经网络的训练为采用反向传播算法最小化可逆神经网络的损失函数进行训练可逆神经网络参数θINNAs a possible implementation of this embodiment, the training of the reversible neural network is to use a back propagation algorithm to minimize the loss function of the reversible neural network to train the reversible neural network parameters θ INN :

其中,XT为训练集设计参数,Xpred为可逆神经网络逆向过程得到的设计参数,b为训练集大小,为可逆神经网络正向过程针对训练集第i个设计参数得到的预测值,yi为相应的真实值;Z为先验分布,Zpred为可逆神经网络正向过程的预测值,MMD为最大均值误差;Among them, XT is the training set design parameter, Xpred is the design parameter obtained by the inverse process of the reversible neural network, b is the training set size, is the predicted value obtained by the reversible neural network forward process for the i-th design parameter in the training set, yi is the corresponding true value; Z is the prior distribution, Zpred is the predicted value of the reversible neural network forward process, and MMD is the maximum mean error;

假定数据分布P={p1,p2,…,pb}和Q={q1,q2,…,qb},则MMD的计算公式为:Assuming data distribution P = {p 1 ,p 2 ,…,p b } and Q = {q 1 ,q 2 ,…,q b }, the calculation formula of MMD is:

其中,k(·)为核函数;Among them, k(·) is the kernel function;

采用逆多二次径向基函数作为核函数:The inverse multi-quadratic radial basis function is used as the kernel function:

其中,ε为超参数,r1=pi,r2=pj,或,r1=qi,r2=qjWhere ε is a hyperparameter, r 1 = p i , r 2 = p j , or r 1 = q i , r 2 = q j ;

当损失函数值收敛后,将θINN作为可逆神经网络的参数,得到FINN模型。When the loss function value converges, θ INN is used as the parameter of the reversible neural network to obtain the F INN model.

作为本实施例一种可能的实现方式,所述使用可逆神经网络根据设计目标生成设计候选值,包括:As a possible implementation of this embodiment, the method of using a reversible neural network to generate design candidate values according to a design goal includes:

令h1=x以及hN=[y,z],其中z满足标准高斯分布;Let h 1 = x and h N = [y, z], where z satisfies the standard Gaussian distribution;

可逆神经网络将z的分布转化为条件概率分布p(x|y),使可逆神经网络能够在给定设计目标y下依靠概率采样的方法得到多组设计候选值x;The reversible neural network transforms the distribution of z into a conditional probability distribution p(x|y), so that the reversible neural network can obtain multiple sets of design candidate values x by probability sampling under a given design target y;

基于高斯分布采样g个z,将采样的z和目标y作为可逆神经网络的输入,代入下式:Based on the Gaussian distribution, sample g z and the target y as the input of the reversible neural network and substitute them into the following formula:

x=FINN(y,z)x=F INN (y,z)

得到g个设计候选值。G design candidate values are obtained.

作为本实施例一种可能的实现方式,所述利用多层感知机神经网络和高斯过程进行测试验证的过程为:As a possible implementation of this embodiment, the process of testing and verifying using a multi-layer perceptron neural network and a Gaussian process is as follows:

将生成的g个设计候选值通过训练的多层感知机神经网络FANN和高斯过程FGP计算电磁性能,并计算电磁性能与目标电磁性能的误差:The electromagnetic performance of the generated g design candidate values is calculated through the trained multi-layer perceptron neural network F ANN and Gaussian process F GP , and the error between the electromagnetic performance and the target electromagnetic performance is calculated:

其中,为第j个设计候选值对应的多层感知机神经网络的输出和高斯过程的输出。in, and The output of the multilayer perceptron neural network and the output of the Gaussian process corresponding to the j-th design candidate value.

第二方面,本发明实施例提供的一种微波无源器件的设计装置,包括:In a second aspect, an embodiment of the present invention provides a design device for a microwave passive device, comprising:

设计目标确定模块,用于确定待设计微波无源器件的设计目标,所述待设计微波无源器件为待改进性能的微波无源器件;A design target determination module, used to determine a design target of a microwave passive device to be designed, wherein the microwave passive device to be designed is a microwave passive device whose performance is to be improved;

设计参数范围确定模块,用于根据待设计微波无源器件的设计目标确定待设计微波无源器件的设计参数的允许范围,所述设计参数是微波无源器件的尺寸参数;A design parameter range determination module, used to determine the allowable range of the design parameters of the microwave passive device to be designed according to the design target of the microwave passive device to be designed, wherein the design parameters are the size parameters of the microwave passive device;

设计参数样本集生成模块,用于采用拉丁超立方采样法对待设计微波无源器件的设计参数进行采样,分别生成初始设计参数样本集XI和扩展设计参数样本集XUA design parameter sample set generation module, used for sampling the design parameters of the microwave passive device to be designed by using the Latin hypercube sampling method, and generating an initial design parameter sample set XI and an extended design parameter sample set XU respectively;

全波仿真计算模块,用于对初始设计参数样本集XI进行全波仿真计算,得到初始设计参数样本的散射参数,并从散射参数中提取出电磁特性数据集YI作为设计性能,得到初始设计数据集DI={XI,YI};A full-wave simulation calculation module is used to perform full-wave simulation calculation on the initial design parameter sample set XI to obtain the scattering parameters of the initial design parameter samples, and extract the electromagnetic characteristic data set YI from the scattering parameters as the design performance to obtain the initial design data set D I ={ XI , YI };

测试误差计算模块,用于采用k-fold交叉验证方法将初始设计数据集DI分为训练集和测试集,训练正向的多层感知机神经网络FANN和高斯过程FGP,并分别计算多层感知机神经网络FANN和高斯过程FGP的测试误差;A test error calculation module is used to divide the initial design data set DI into a training set and a test set by using a k-fold cross-validation method, train a forward multi-layer perceptron neural network F ANN and a Gaussian process F GP , and calculate the test errors of the multi-layer perceptron neural network F ANN and the Gaussian process F GP respectively;

测试误差判断模块,用于判断测试误差是否满足精度要求,如果不满足精度要求则利用拉丁超立方采样继续向初始设计参数样本集XI添加样本,否则进入下一步;The test error judgment module is used to judge whether the test error meets the accuracy requirement. If it does not meet the accuracy requirement, Latin hypercube sampling is used to continue adding samples to the initial design parameter sample set XI , otherwise it proceeds to the next step;

设计性能预测模块,用于利用多层感知机神经网络FANN和高斯过程FGP分别预测扩展设计参数样本集XU的设计性能;A design performance prediction module is used to predict the design performance of the extended design parameter sample set XU by using a multi-layer perceptron neural network FAN and a Gaussian process FGP ;

扩展设计数据集确定模块,用于根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为扩展设计性能;将扩展设计性能及对应的扩展设计参数作为扩展设计数据集DEThe extended design data set determination module is used to select the weighted average of the predicted values as the extended design performance according to the modeling accuracy of the multi-layer perceptron neural network and the Gaussian process as weights; and the extended design performance and the corresponding extended design parameters are used as the extended design data set DE ;

可逆神经网络训练模块,用于利用初始设计数据集DI和扩展设计数据集DE训练可逆神经网络;A reversible neural network training module, used for training a reversible neural network using an initial design data set D I and an extended design data set D E ;

最终设计参数确定模块,用于使用可逆神经网络根据设计目标生成设计候选值,并利用多层感知机神经网络和高斯过程进行测试验证,选择测试误差最小的设计候选值作为最终的设计参数。The final design parameter determination module is used to use a reversible neural network to generate design candidate values according to the design objectives, and use a multi-layer perceptron neural network and a Gaussian process for test verification, and select the design candidate value with the smallest test error as the final design parameter.

本发明实施例的技术方案可以具有的有益效果如下:The technical solution of the embodiment of the present invention may have the following beneficial effects:

本发明实施例的技术方案的一种微波无源器件的设计方法,A method for designing a microwave passive device according to the technical solution of an embodiment of the present invention,

本发明利用可逆神经网络提高逆建模的精度,并提出半监督学习的方法提高生成数据集的效率,使设计者不依赖于经验知识,能够从设计目标直接获得设计参数,实现了微波无源器件的智能化设计;本发明利用半监督可逆神经网络来进行微波无源器件的设计,可逆神经网络能够通过概率采样的方法在给定设计性能条件下直接生成多组设计候选值,从而避免了工程师的经验参与,极大的提高了设计效率;本发明还提出半监督学习方法,提高了生成用于可逆神经网络训练的数据集的效率,其次提出新的验证方法代替使用全波仿真验证设计参数,极大的提高了验证效率。The present invention utilizes a reversible neural network to improve the accuracy of inverse modeling, and proposes a semi-supervised learning method to improve the efficiency of generating a data set, so that the designer does not rely on empirical knowledge and can directly obtain design parameters from the design target, thereby realizing the intelligent design of microwave passive components; the present invention utilizes a semi-supervised reversible neural network to design microwave passive components, and the reversible neural network can directly generate multiple groups of design candidate values under given design performance conditions through a probability sampling method, thereby avoiding the experience participation of engineers and greatly improving the design efficiency; the present invention also proposes a semi-supervised learning method to improve the efficiency of generating a data set for reversible neural network training, and secondly proposes a new verification method to replace the use of full-wave simulation to verify the design parameters, thereby greatly improving the verification efficiency.

本发明的应用场景是固定结构的微波无源器件参数设计,根据不同的设计性能确定微波无源器件的设计参数,通过半监督学习提高数据集获取的效率,并训练可逆神经网络以学习微波无源器件设计目标与设计参数之间的关系;可逆神经网络依据设计目标生成设计候选值,设计候选值经过验证模块之后可以得到准确的设计参数。The application scenario of the present invention is the parameter design of microwave passive devices with fixed structures. The design parameters of microwave passive devices are determined according to different design performances. The efficiency of data set acquisition is improved through semi-supervised learning, and a reversible neural network is trained to learn the relationship between the design objectives and design parameters of microwave passive devices. The reversible neural network generates design candidate values according to the design objectives, and the design candidate values can obtain accurate design parameters after passing through a verification module.

本发明将可逆神经网络引入微波无源器件的逆建模,解决了逆建模中存在的一对多问题,从而提高了逆建模的精度。本发明将微波无源器件的设计问题转化为逆建模问题,即将设计目标看作模型的输入,设计参数看作模型的输出,通过模型直接从设计目标得到设计参数。本发明采用可逆神经网络,通过学习微波无源器件的给定设计性能下设计参数的分布,通过概率采样的方法生成设计参数,从而能够提供多组参数,可以智能地解决逆建模中的一对多问题。The present invention introduces a reversible neural network into the inverse modeling of microwave passive devices, solves the one-to-many problem existing in the inverse modeling, and thus improves the accuracy of the inverse modeling. The present invention transforms the design problem of microwave passive devices into an inverse modeling problem, that is, the design target is regarded as the input of the model, the design parameters are regarded as the output of the model, and the design parameters are directly obtained from the design target through the model. The present invention adopts a reversible neural network, learns the distribution of design parameters under given design performance of microwave passive devices, generates design parameters through a probability sampling method, thereby being able to provide multiple groups of parameters, and can intelligently solve the one-to-many problem in the inverse modeling.

本发明将半监督学习方法引入来提高生成数据集的效率。本发明采用正向模型为逆建模提供数据集,具体为利用从全波仿真软件获得的小样本数据集训练出多层感知机神经网络和高斯过程作为正向模型,然后利用正向模型预测更多无设计性能数据的设计性能,即预测设计参数的设计性能,从而为逆建模提供更大的数据集。本发明通过半监督学习方法获得数据集,明显减少了时间,从而提高了生成数据集的效率。The present invention introduces a semi-supervised learning method to improve the efficiency of generating a data set. The present invention uses a forward model to provide a data set for inverse modeling, specifically using a small sample data set obtained from full-wave simulation software to train a multi-layer perceptron neural network and a Gaussian process as a forward model, and then uses the forward model to predict more design performance without design performance data, that is, predict the design performance of design parameters, thereby providing a larger data set for inverse modeling. The present invention obtains a data set through a semi-supervised learning method, which significantly reduces the time, thereby improving the efficiency of generating a data set.

本发明运用之前训练好的多层感知机神经网络和高斯过程作为正向模型,将可逆神经网络生成的参数送入两个正向模型进行交叉验证,从而提高了验证效率和精度。The present invention uses the previously trained multi-layer perceptron neural network and Gaussian process as forward models, and sends the parameters generated by the reversible neural network to the two forward models for cross-validation, thereby improving the verification efficiency and accuracy.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是根据一示例性实施例示出的一种微波无源器件的设计方法的流程图;FIG1 is a flow chart of a method for designing a microwave passive component according to an exemplary embodiment;

图2是根据一示例性实施例示出的一种可逆神经网络的示意图;FIG2 is a schematic diagram of a reversible neural network according to an exemplary embodiment;

图3是根据一示例性实施例示出的一种可逆神经网络基本单元互耦仿射层的示意图;Fig. 3 is a schematic diagram of a mutually coupled affine layer of a basic unit of a reversible neural network according to an exemplary embodiment;

图4是根据一示例性实施例示出的一种利用本发明所述装置进行微波无源器件的设计流程图;FIG4 is a flow chart showing a design of a microwave passive device using the apparatus of the present invention according to an exemplary embodiment;

图5是根据一示例性实施例示出的一种腔体滤波器的结构示意图;FIG5 is a schematic structural diagram of a cavity filter according to an exemplary embodiment;

图6是根据一示例性实施例示出的一种使用本发明所述方法得到的设计参数对应的设计性能和目标设计性能的对比示意图。Fig. 6 is a schematic diagram showing a comparison between a design performance corresponding to a design parameter obtained by using the method of the present invention and a target design performance according to an exemplary embodiment.

具体实施方式DETAILED DESCRIPTION

下面结合附图与实施例对本发明做进一步说明:The present invention will be further described below in conjunction with the accompanying drawings and embodiments:

为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本发明省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本发明。In order to clearly illustrate the technical features of the present solution, the present invention is described in detail below through specific implementation methods and in conjunction with the accompanying drawings. The disclosure below provides many different embodiments or examples for realizing different structures of the present invention. In order to simplify the disclosure of the present invention, the components and settings of specific examples are described below. In addition, the present invention may repeat reference numbers and/or letters in different examples. This repetition is for the purpose of simplification and clarity, and does not itself indicate the relationship between the various embodiments and/or settings discussed. It should be noted that the components illustrated in the accompanying drawings are not necessarily drawn to scale. The present invention omits the description of known components and processing techniques and processes to avoid unnecessary limitations on the present invention.

如图1所示,本发明实施例提供的一种微波无源器件的设计方法,包括以下步骤:As shown in FIG1 , a design method for a microwave passive device provided by an embodiment of the present invention includes the following steps:

确定待设计微波无源器件的设计目标,所述待设计微波无源器件为待改进性能的微波无源器件;Determining a design goal of a microwave passive device to be designed, wherein the microwave passive device to be designed is a microwave passive device whose performance is to be improved;

根据待设计微波无源器件的设计目标确定待设计微波无源器件的设计参数的允许范围,所述设计参数是微波无源器件的尺寸参数;Determining an allowable range of a design parameter of the microwave passive component to be designed according to a design goal of the microwave passive component to be designed, wherein the design parameter is a size parameter of the microwave passive component;

采用拉丁超立方采样法对待设计微波无源器件的设计参数进行采样,分别生成初始设计参数样本集XI和扩展设计参数样本集XUThe Latin hypercube sampling method is used to sample the design parameters of the microwave passive device to generate an initial design parameter sample set XI and an extended design parameter sample set XU respectively;

对初始设计参数样本集XI进行全波仿真计算,得到初始设计参数样本的散射参数,并从散射参数中提取出电磁特性数据集YI作为设计性能,得到初始设计数据集DI={XI,YI};Perform full-wave simulation calculation on the initial design parameter sample set XI to obtain the scattering parameters of the initial design parameter samples, and extract the electromagnetic characteristic data set YI from the scattering parameters as the design performance to obtain the initial design data set D I ={ XI , YI };

采用k-fold交叉验证方法将初始设计数据集DI分为训练集和测试集,训练正向的多层感知机神经网络FANN和高斯过程FGP,并分别计算多层感知机神经网络FANN和高斯过程FGP的测试误差;The k-fold cross-validation method is used to divide the initial design data set D I into a training set and a test set, and the forward multilayer perceptron neural network F ANN and Gaussian process F GP are trained, and the test errors of the multilayer perceptron neural network F ANN and Gaussian process F GP are calculated respectively;

如果测试误差不满足精度要求,则利用拉丁超立方采样继续向初始设计参数样本集XI添加样本,否则进入下一步;If the test error does not meet the accuracy requirement, Latin hypercube sampling is used to continue adding samples to the initial design parameter sample set XI , otherwise proceed to the next step;

利用多层感知机神经网络FANN和高斯过程FGP分别预测扩展设计参数样本集XU的设计性能;The design performance of the extended design parameter sample set X U is predicted by using multi-layer perceptron neural network F ANN and Gaussian process F GP respectively.

根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为扩展设计性能;将扩展设计性能及对应的扩展设计参数作为扩展设计数据集DEAccording to the modeling accuracy of the multi-layer perceptron neural network and the Gaussian process as weights, the weighted average of their predicted values is selected as the extended design performance; the extended design performance and the corresponding extended design parameters are used as the extended design data set DE ;

利用初始设计数据集DI和扩展设计数据集DE训练可逆神经网络;The reversible neural network is trained using the initial design dataset D I and the extended design dataset D E ;

使用可逆神经网络根据设计目标生成设计候选值,并利用多层感知机神经网络和高斯过程进行测试验证,选择测试误差最小的设计候选值作为最终的设计参数。A reversible neural network is used to generate design candidate values according to the design objectives, and a multilayer perceptron neural network and Gaussian process are used for test verification. The design candidate value with the smallest test error is selected as the final design parameter.

本发明采用拉丁超立方采样的方法能够有效反应样本空间的信息,通过拉丁超立方采样获得初始数据集和扩展数据集的设计参数,为后续建模坐铺垫;通过全波仿真得到m个设计参数样本的散射参数,并从散射参数中提取出电磁特性YI={y1,y2,…,ym},并将其作为设计性能,得到初始有设计性能数据集DI={XI,YI},这样可以获得初始数据集,为正向建模提供了数据集;计算多层感知机神经网络和高斯过程的测试误差是为了训练出多层感知机神经网络和高斯过程作为正向模型,为扩展数据集和验证设计参数提供了依据;通过测试误差的判断,确保能够训练出精度符合要求的多层感知机神经网络和高斯过程,从而确保得到的设计参数的正确性;利用多层感知机神经网络和高斯过程分别预测n个设计参数样本的设计性能,是为了得到待设计微波无源器件的设计性能;选取其预测值的加权平均数作为扩展设计性能,方便获得最终的扩展数据集,并确保数据集的精度;通过训练可逆神经网络训练出可逆神经网络,得到多组设计候选值,并选择误差最小的设计候选值作为最终的设计参数。The present invention adopts the Latin hypercube sampling method to effectively reflect the information of the sample space, obtains the design parameters of the initial data set and the extended data set through Latin hypercube sampling, and paves the way for subsequent modeling; obtains the scattering parameters of m design parameter samples through full-wave simulation, and extracts the electromagnetic characteristics Y I ={y 1 ,y 2 ,…,y m } from the scattering parameters, and uses them as the design performance to obtain the initial design performance data set D I ={X I ,Y I }, so that the initial data set can be obtained, which provides a data set for forward modeling; the test errors of the multilayer perceptron neural network and Gaussian process are calculated in order to train the multilayer perceptron neural network and Gaussian process as forward models, which provide a basis for expanding the data set and verifying the design parameters; through the judgment of the test error, it is ensured that the multilayer perceptron neural network and Gaussian process with the required accuracy can be trained, so as to ensure the correctness of the obtained design parameters; the design performance of n design parameter samples are predicted by using the multilayer perceptron neural network and Gaussian process respectively, in order to obtain the design performance of the microwave passive device to be designed; the weighted average of the predicted values is selected as the extended design performance, which is convenient for obtaining the final extended data set and ensuring the accuracy of the data set; the reversible neural network is trained by training the reversible neural network to obtain multiple groups of design candidate values, and the design candidate value with the smallest error is selected as the final design parameter.

作为本实施例一种可能的实现方式,所述设计目标为微波无源器件的电磁特性,包括但不限于工作频带和工作频点处的回波损耗。所述工作频带包括微波无源器件工作带宽对应的上截止频率和下截止频率。As a possible implementation of this embodiment, the design target is the electromagnetic characteristics of the microwave passive device, including but not limited to the return loss at the working frequency band and the working frequency point. The working frequency band includes the upper cutoff frequency and the lower cutoff frequency corresponding to the working bandwidth of the microwave passive device.

作为本实施例一种可能的实现方式,所述初始设计参数样本集XI为:As a possible implementation of this embodiment, the initial design parameter sample set XI is:

XI={x1,x2,…,xm} Xi = { x1 , x2 , ..., xm }

其中,m为初始设计参数样本数,x1,x2,…,xm为初始设计参数样本;Among them, m is the number of initial design parameter samples, x 1 ,x 2 ,…,x m are initial design parameter samples;

所述扩展设计参数样本集XU为:The extended design parameter sample set X U is:

XU={xm+1,xm+2,…,xm+n}X U ={x m+1 ,x m+2 ,…,x m+n }

其中,n为扩展设计参数样本数,xm+1,xm+2,…,xm+n为扩展设计参数样本;Wherein, n is the number of extended design parameter samples, x m+1 ,x m+2 ,…,x m+n are extended design parameter samples;

所述电磁特性数据集YI为:The electromagnetic property data set Y I is:

YI={y1,y2,…,ym}Y I ={y 1 ,y 2 ,…,y m }

其中,y1,y2,…,ym为电磁特性。Among them, y 1 ,y 2 ,…,y m are electromagnetic properties.

作为本实施例一种可能的实现方式,所述设计性能的计算公式为:As a possible implementation of this embodiment, the calculation formula of the design performance is:

其中,xi为初始设计参数样本或扩展设计参数样本,为多层感知机神经网络的预测值,为高斯过程的预测值。Among them, xi is the initial design parameter sample or the extended design parameter sample, is the predicted value of the multilayer perceptron neural network, is the predicted value of the Gaussian process.

作为本实施例一种可能的实现方式,所述设计性能的计算公式为:As a possible implementation of this embodiment, the calculation formula of the design performance is:

其中,yi为利用多层感知机神经网络和高斯过程预测的设计性能,eANN为多层感知机神经网络的测试误差,eGP为高斯过程的测试误差。Among them, yi is the design performance predicted by multilayer perceptron neural network and Gaussian process, eANN is the test error of multilayer perceptron neural network, and eGP is the test error of Gaussian process.

作为本实施例一种可能的实现方式,所述可逆神经网络由可逆块构成:As a possible implementation of this embodiment, the reversible neural network is composed of reversible blocks:

hi+1=gi(hi)hi +1 = gi ( hi )

其中,hi代表第i个可逆块正向过程输入,hi+1代表第i个可逆块的正向过程gi(·)的输出;Where, hi represents the input of the forward process of the i-th reversible block, and hi +1 represents the output of the forward process g i (·) of the i-th reversible block;

正向过程gi(·)的具体计算过程为先将hi按照维度分为[hi 1:d,hi d+1:D],再用下式计算:The specific calculation process of the forward process g i (·) is to first divide hi into [ hi 1:d , hi d+1:D ] according to the dimension, and then calculate it using the following formula:

s(·)和t(·)由任意的神经网络构成,并且都是从d维到D-d维的映射;⊙是元素乘积符号;s(·) and t(·) are composed of arbitrary neural networks and are both mappings from d dimensions to D-d dimensions; ⊙ is the element-wise product symbol;

可逆块的逆向过程为:The reverse process of the reversible block is:

变量转换定理定义hi+1到hi的概率分布变化:The variable conversion theorem defines the change in probability distribution from hi +1 to hi :

其中,是gi(hi)的雅可比行列式:in, is the Jacobian of g i (h i ):

其中,Id是d×d的单位矩阵,是对角线元素为的对角矩阵。Where Id is the d×d identity matrix, The diagonal elements are The diagonal matrix of .

作为本实施例一种可能的实现方式,所述可逆神经网络的训练为采用反向传播算法最小化可逆神经网络的损失函数进行训练可逆神经网络参数θINNAs a possible implementation of this embodiment, the training of the reversible neural network is to use a back propagation algorithm to minimize the loss function of the reversible neural network to train the reversible neural network parameters θ INN :

其中,XT为训练集设计参数,Xpred为可逆神经网络逆向过程得到的设计参数,b为训练集大小,为可逆神经网络正向过程针对训练集第i个设计参数得到的预测值,yi为相应的真实值;Z为先验分布,Zpred为可逆神经网络正向过程的预测值,MMD为最大均值误差;Among them, XT is the training set design parameter, Xpred is the design parameter obtained by the inverse process of the reversible neural network, b is the training set size, is the predicted value obtained by the reversible neural network forward process for the i-th design parameter in the training set, yi is the corresponding true value; Z is the prior distribution, Zpred is the predicted value of the reversible neural network forward process, and MMD is the maximum mean error;

假定数据分布P={p1,p2,…,pb}和Q={q1,q2,…,qb},则MMD的计算公式为:Assuming data distribution P = {p 1 ,p 2 ,…,p b } and Q = {q 1 ,q 2 ,…,q b }, the calculation formula of MMD is:

其中,k(·)为核函数;Among them, k(·) is the kernel function;

采用逆多二次径向基函数作为核函数:The inverse multi-quadratic radial basis function is used as the kernel function:

其中,ε为超参数,r1=pi,r2=pj,或,r1=qi,r2=qjWhere ε is a hyperparameter, r 1 = p i , r 2 = p j , or r 1 = q i , r 2 = q j ;

当损失函数值收敛后,将θINN作为可逆神经网络的参数,得到FINN模型。When the loss function value converges, θ INN is used as the parameter of the reversible neural network to obtain the F INN model.

作为本实施例一种可能的实现方式,所述使用可逆神经网络根据设计目标生成设计候选值,包括:As a possible implementation of this embodiment, the method of using a reversible neural network to generate design candidate values according to a design goal includes:

令h1=x以及hN=[y,z],其中z满足标准高斯分布;Let h 1 = x and h N = [y, z], where z satisfies the standard Gaussian distribution;

可逆神经网络将z的分布转化为条件概率分布p(x|y),使可逆神经网络能够在给定设计目标y下依靠概率采样的方法得到多组设计候选值x;The reversible neural network transforms the distribution of z into a conditional probability distribution p(x|y), so that the reversible neural network can obtain multiple sets of design candidate values x by probability sampling under a given design target y.

基于高斯分布采样g个z,将采样的z和目标y作为可逆神经网络的输入,代入下式:Based on the Gaussian distribution, sample g z and the target y as the input of the reversible neural network and substitute them into the following formula:

x=FINN(y,z)x=F INN (y,z)

得到g个设计候选值。G design candidate values are obtained.

作为本实施例一种可能的实现方式,所述利用多层感知机神经网络和高斯过程进行测试验证的过程为:As a possible implementation of this embodiment, the process of testing and verifying using a multi-layer perceptron neural network and a Gaussian process is as follows:

将生成的g个设计候选值通过训练的多层感知机神经网络FANN和高斯过程FGP计算电磁性能,并计算电磁性能与目标电磁性能的误差:The electromagnetic performance of the generated g design candidate values is calculated through the trained multi-layer perceptron neural network F ANN and Gaussian process F GP , and the error between the electromagnetic performance and the target electromagnetic performance is calculated:

其中,为第j个设计候选值对应的多层感知机神经网络的输出和高斯过程的输出。in, and The output of the multilayer perceptron neural network and the output of the Gaussian process corresponding to the j-th design candidate value.

本发明的应用场景是固定结构的微波无源器件参数设计,利用本发明所述方法可以根据不同的设计性能确定微波无源器件的设计参数,本发明所述设计性能指的是微波无源器件的电磁特性,包括但不限于工作频带、工作频点处的回波损耗等电磁性能;设计参数指的是微波无源器件的尺寸参数。本发明所述方法通过半监督学习提高数据集获取的效率,并训练可逆神经网络以学习微波无源器件设计目标与设计参数之间的关系。可逆神经网络可以依据设计目标生成设计候选值,设计候选值经过验证模块之后得到准确的设计参数。The application scenario of the present invention is the parameter design of microwave passive devices with fixed structures. The method described in the present invention can be used to determine the design parameters of microwave passive devices according to different design performances. The design performance described in the present invention refers to the electromagnetic characteristics of microwave passive devices, including but not limited to electromagnetic performances such as return loss at the operating frequency band and operating frequency point; the design parameters refer to the size parameters of microwave passive devices. The method described in the present invention improves the efficiency of data set acquisition through semi-supervised learning, and trains a reversible neural network to learn the relationship between the design objectives and design parameters of microwave passive devices. The reversible neural network can generate design candidate values based on the design objectives, and the design candidate values can obtain accurate design parameters after passing through the verification module.

如图2所示,本发明实施例提供的一种微波无源器件的设计装置,包括:As shown in FIG2 , a microwave passive device design device provided by an embodiment of the present invention includes:

设计目标确定模块,用于确定待设计微波无源器件的设计目标,所述待设计微波无源器件为待改进性能的微波无源器件;A design target determination module, used to determine a design target of a microwave passive device to be designed, wherein the microwave passive device to be designed is a microwave passive device whose performance is to be improved;

设计参数范围确定模块,用于根据待设计微波无源器件的设计目标确定待设计微波无源器件的设计参数的允许范围,所述设计参数是微波无源器件的尺寸参数;A design parameter range determination module, used to determine the allowable range of the design parameters of the microwave passive device to be designed according to the design target of the microwave passive device to be designed, wherein the design parameters are the size parameters of the microwave passive device;

设计参数样本集生成模块,用于采用拉丁超立方采样法对待设计微波无源器件的设计参数进行采样,分别生成初始设计参数样本集XI和扩展设计参数样本集XUA design parameter sample set generation module, used for sampling the design parameters of the microwave passive device to be designed by using the Latin hypercube sampling method, and generating an initial design parameter sample set XI and an extended design parameter sample set XU respectively;

全波仿真计算模块,用于对初始设计参数样本集XI进行全波仿真计算,得到初始设计参数样本的散射参数,并从散射参数中提取出电磁特性数据集YI作为设计性能,得到初始设计数据集DI={XI,YI};A full-wave simulation calculation module is used to perform full-wave simulation calculation on the initial design parameter sample set XI to obtain the scattering parameters of the initial design parameter samples, and extract the electromagnetic characteristic data set YI from the scattering parameters as the design performance to obtain the initial design data set D I ={ XI , YI };

测试误差计算模块,用于采用k-fold交叉验证方法将初始设计数据集DI分为训练集和测试集,训练正向的多层感知机神经网络FANN和高斯过程FGP,并分别计算多层感知机神经网络FANN和高斯过程FGP的测试误差;A test error calculation module is used to divide the initial design data set DI into a training set and a test set by using a k-fold cross-validation method, train a forward multi-layer perceptron neural network F ANN and a Gaussian process F GP , and calculate the test errors of the multi-layer perceptron neural network F ANN and the Gaussian process F GP respectively;

测试误差判断模块,用于判断测试误差是否满足精度要求,如果不满足精度要求则利用拉丁超立方采样继续向初始设计参数样本集XI添加样本,否则进入下一步;The test error judgment module is used to judge whether the test error meets the accuracy requirement. If it does not meet the accuracy requirement, Latin hypercube sampling is used to continue adding samples to the initial design parameter sample set XI , otherwise it proceeds to the next step;

设计性能预测模块,用于利用多层感知机神经网络FANN和高斯过程FGP分别预测扩展设计参数样本集XU的设计性能;A design performance prediction module is used to predict the design performance of the extended design parameter sample set XU by using a multi-layer perceptron neural network FAN and a Gaussian process FGP ;

扩展设计数据集确定模块,用于根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为扩展设计性能;将扩展设计性能及对应的扩展设计参数作为扩展设计数据集DEThe extended design data set determination module is used to select the weighted average of the predicted values as the extended design performance according to the modeling accuracy of the multi-layer perceptron neural network and the Gaussian process as weights; and the extended design performance and the corresponding extended design parameters are used as the extended design data set DE ;

可逆神经网络训练模块,用于利用初始设计数据集DI和扩展设计数据集DE训练可逆神经网络;A reversible neural network training module, used for training a reversible neural network using an initial design data set D I and an extended design data set D E ;

最终设计参数确定模块,用于使用可逆神经网络根据设计目标生成设计候选值,并利用多层感知机神经网络和高斯过程进行测试验证,选择测试误差最小的设计候选值作为最终的设计参数。The final design parameter determination module is used to use a reversible neural network to generate design candidate values according to the design objectives, and use a multi-layer perceptron neural network and a Gaussian process for test verification, and select the design candidate value with the smallest test error as the final design parameter.

如图3和图4所示,本发明所述可逆神经网络由可逆块构成,可逆块由互耦仿射层构成,可逆块的计算包含正向过程和逆向过程。令D维向量hi代表第i个可逆块正向过程输入,hi+1代表第i个可逆块的正向过程gi(·)的输出,则有:As shown in Figures 3 and 4, the reversible neural network of the present invention is composed of reversible blocks, which are composed of mutually coupled affine layers. The calculation of the reversible block includes a forward process and a reverse process. Let the D-dimensional vector hi represent the input of the forward process of the i-th reversible block, and hi +1 represent the output of the forward process g i (·) of the i-th reversible block, then:

hi+1=gi(hi)hi +1 = gi ( hi )

正向过程gi(·)的具体计算过程为先将hi按照维度分为[hi 1:d,hi d+1:D],再用下式计算:The specific calculation process of the forward process g i (·) is to first divide hi into [ hi 1:d , hi d+1:D ] according to the dimension, and then calculate it using the following formula:

s(·)和t(·)由任意的神经网络构成,并且都是从d维到D-d维的映射;⊙是元素乘积符号;s(·) and t(·) are composed of arbitrary neural networks and are both mappings from d dimensions to D-d dimensions; ⊙ is the element-wise product symbol;

可逆块的逆向过程为:The reverse process of the reversible block is:

变量转换定理定义了hi+1到hi的概率分布变化:The variable conversion theorem defines the change in probability distribution from hi +1 to hi :

其中是gi(hi)的雅可比行列式。该雅可比行列式为:in is the Jacobian of g i (h i ). The Jacobian is:

其中Id是d×d的单位矩阵,是对角线元素为的对角矩阵。可以发现,雅可比行列式不需要计算s(·)和t(·)的导数,从而简化了可逆神经网络的计算。where I d is the d×d identity matrix, The diagonal elements are It can be found that the Jacobian determinant does not need to calculate the derivatives of s(·) and t(·), thus simplifying the calculation of the reversible neural network.

如果令h1=x以及hN=[y,z],其中z满足标准高斯分布,那么可逆神经网络可以将z的分布转化为条件概率分布p(x|y),从而使可逆神经网络能够在给定设计目标下依靠概率采样的方法得到多组设计候选值。If h 1 = x and h N = [y, z], where z satisfies the standard Gaussian distribution, then the reversible neural network can transform the distribution of z into a conditional probability distribution p(x|y), thereby enabling the reversible neural network to obtain multiple sets of design candidate values by probability sampling under given design objectives.

确定待设计微波无源器件的设计目标以及设计参数的允许范围后;如图5所示,利用本发明所述装置进行微波无源器件的设计过程如下。After determining the design target of the microwave passive device to be designed and the allowable range of the design parameters; as shown in FIG5 , the design process of the microwave passive device using the apparatus of the present invention is as follows.

步骤1:通过拉丁超立方对待设计微波无源器件的设计参数进行采样,分别生成m个设计参数样本XI={x1,x2,…,xm}和n个设计参数样本XU={xm+1,xm+2,…,xm+n}。拉丁超立方采样的方法能够有效反应样本空间的信息,通过拉丁超立方采样获得初始数据集和扩展数据集的设计参数,为后续建模坐铺垫。Step 1: Sample the design parameters of the microwave passive device to be designed through Latin hypercube, and generate m design parameter samples XI = { x1 , x2 , ..., xm } and n design parameter samples XU = { xm+1 , xm+2 , ..., xm +n }. The Latin hypercube sampling method can effectively reflect the information of the sample space. The design parameters of the initial data set and the extended data set are obtained through Latin hypercube sampling, which lays the foundation for subsequent modeling.

步骤2:通过全波仿真软件得到m个设计参数样本的散射参数,并从散射参数中提取出电磁特性YI={y1,y2,…,ym},并将其作为设计性能。得到初始有设计性能数据集DI={XI,YI}。该步骤可以获得初始数据集,为步骤3正向建模提供了数据集。Step 2: Obtain the scattering parameters of m design parameter samples through full-wave simulation software, and extract the electromagnetic characteristics Y I = {y 1 , y 2 , …, y m } from the scattering parameters, and use them as the design performance. Obtain the initial design performance data set D I = {X I , Y I }. This step can obtain the initial data set, which provides a data set for forward modeling in step 3.

步骤3:基于DI,采用k-fold交叉验证方法将DI分为训练集和测试集训练正向的多层感知机神经网络FANN和高斯过程FGP,计算多层感知机神经网络和高斯过程的测试误差。该步骤目的是为了训练出多层感知机神经网络和高斯过程作为正向模型,为步骤5扩展数据集和步骤9验证设计参数提供了依据。Step 3: Based on DI , the k-fold cross-validation method is used to divide DI into training set and test set to train the forward multi-layer perceptron neural network F ANN and Gaussian process F GP , and calculate the test error of the multi-layer perceptron neural network and Gaussian process. The purpose of this step is to train the multi-layer perceptron neural network and Gaussian process as forward models, which provides a basis for expanding the data set in step 5 and verifying the design parameters in step 9.

步骤4:如果测试误差不满足精度范围,则利用拉丁超立方采样继续向XI添加样本;如果满足精度要求,则转入步骤5。该步骤的目的是确保能够训练出精度符合要求的多层感知机神经网络和高斯过程,从而确保步骤6和步骤9的结果正确。Step 4: If the test error does not meet the accuracy range, continue to add samples to XI using Latin hypercube sampling; if the accuracy requirement is met, proceed to step 5. The purpose of this step is to ensure that a multilayer perceptron neural network and Gaussian process that meet the accuracy requirements can be trained, thereby ensuring that the results of steps 6 and 9 are correct.

步骤5:利用多层感知机神经网络和高斯过程分别预测n个设计参数样本的设计性能。采用下式得到设计性能:Step 5: Use the multi-layer perceptron neural network and Gaussian process to predict the design performance of n design parameter samples respectively. The design performance is obtained using the following formula:

该步骤的目的是得到步骤1中没有设计性能的设计参数的设计性能。The purpose of this step is to obtain the design performance of the design parameters that did not have design performance in step 1.

步骤6:根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为样本设计性能。将其得到设计性能y及其对应的x作为扩展的数据集DEStep 6: Based on the modeling accuracy of the multilayer perceptron neural network and the Gaussian process as weights, the weighted average of their predicted values is selected as the sample design performance. The obtained design performance y and its corresponding x are used as the extended data set DE .

根据步骤3中得到多层感知机神经网络FANN和高斯过程FGP对应的测试集误差eANN和eGP,计算样本设计性能为:According to the test set errors e ANN and e GP corresponding to the multilayer perceptron neural network F ANN and Gaussian process F GP obtained in step 3, the sample design performance is calculated as:

该步骤目的是获得最终的扩展数据集,并确保数据集的精度。The purpose of this step is to obtain the final extended dataset and ensure the accuracy of the dataset.

步骤7:基于DI和DE训练可逆神经网络。Step 7: Train a reversible neural network based on D I and D E.

令hi代表第i个可逆块正向过程输入,hi+1代表第i个可逆块的正向过程gi(·)的输出,则有:Let hi represent the input of the forward process of the i-th reversible block, and hi +1 represent the output of the forward process g i (·) of the i-th reversible block, then:

hi+1=gi(hi)hi +1 = gi ( hi )

变量转换定理定义了hi+1到hi的概率分布变化:The variable conversion theorem defines the change in probability distribution from hi +1 to hi :

其中是gi(hi)的雅可比行列式。如果h1=x以及hN=[y,z],令z满足标准高斯分布,那么可逆神经网络相当于将z的分布转化为条件概率分布p(x|y),从而使可逆神经网络能够在给定电磁响应(y)下依靠概率采样的方法得到多组设计参数(x)。in is the Jacobian determinant of g i (h i ). If h 1 = x and h N = [y, z], and z satisfies the standard Gaussian distribution, then the reversible neural network is equivalent to converting the distribution of z into a conditional probability distribution p(x|y), so that the reversible neural network can obtain multiple sets of design parameters (x) by probability sampling under a given electromagnetic response (y).

训练可逆神经网络参数θINN的方法具体为采用反向传播算法最小化可逆神经网络的损失函数,即The method for training the reversible neural network parameter θ INN is to use the back propagation algorithm to minimize the loss function of the reversible neural network, that is,

其中XT为训练集设计参数,Xpred为可逆神经网络逆向过程得到的设计参数,b为训练集大小,为可逆神经网络正向过程针对训练集第i个设计参数得到的预测值,yi为相应的真实值。Z为先验分布,Zpred为可逆神经网络正向过程的预测值,MMD为最大均值误差,假定数据分布P={p1,p2,…,pb}和Q={q1,q2,…,qb},MMD的计算公式为:Where XT is the training set design parameter, Xpred is the design parameter obtained by the inverse process of the reversible neural network, b is the training set size, is the predicted value obtained by the reversible neural network forward process for the i-th design parameter of the training set, and yi is the corresponding true value. Z is the prior distribution, Zpred is the predicted value of the reversible neural network forward process, and MMD is the maximum mean error. Assuming that the data distribution P={ p1 , p2 ,…, pb } and Q={ q1 , q2 ,…, qb }, the calculation formula of MMD is:

k(·)为核函数,在本发明中选择为逆多二次径向基函数。其表达式为:k(·) is a kernel function, which is selected as an inverse multi-quadratic radial basis function in the present invention. Its expression is:

其中ε为超参数,可通过网格搜索法得到。通过采用Adam算法优化可逆神经网络的损失函数,可以训练可逆神经网络参数θINN。当损失函数值收敛后,可将θINN可作为可逆神经网络的参数,得到FINN模型。Where ε is a hyperparameter, which can be obtained by grid search. By using the Adam algorithm to optimize the loss function of the reversible neural network, the reversible neural network parameter θ INN can be trained. When the loss function value converges, θ INN can be used as the parameter of the reversible neural network to obtain the F INN model.

该步骤的目的为训练出可逆神经网络,用于步骤8生成设计候选值。The purpose of this step is to train a reversible neural network for use in step 8 to generate design candidate values.

步骤8:使用可逆神经网络根据设计目标生成g个设计候选值。Step 8: Use a reversible neural network to generate g design candidate values according to the design goal.

先基于高斯分布采样g个z,将采样的z和目标y作为可逆神经网络的输入,根据公式x=FINN(y,z)输出g个设计候选值。First, g z are sampled based on Gaussian distribution, and the sampled z and target y are used as inputs of the reversible neural network. According to the formula x=F INN (y, z), g design candidate values are output.

该步骤的目的是得到多组设计候选值,以供步骤9筛选。The purpose of this step is to obtain multiple sets of design candidate values for screening in step 9.

步骤9:利用多层感知机神经网络和高斯过程验证:Step 9: Verify using multi-layer perceptron neural network and Gaussian process:

将步骤8中生成的g个设计候选值通过步骤3训练的多层感知机神经网络FANN和高斯过程FGP计算其电磁性能,并计算电磁性能与目标电磁性能的误差,即:The electromagnetic performance of the g design candidate values generated in step 8 is calculated by the multilayer perceptron neural network F ANN and Gaussian process F GP trained in step 3, and the error between the electromagnetic performance and the target electromagnetic performance is calculated, that is:

其中为第j个设计候选值对应的多层感知机神经网络的输出和高斯过程的输出。in and The output of the multilayer perceptron neural network and the output of the Gaussian process corresponding to the j-th design candidate value.

选择误差最小的设计候选值作为最终的设计参数。The design candidate with the smallest error is selected as the final design parameter.

上述步骤1-步骤7可以训练出在给定的微波无源器件结构下,根据设计性能能够直接得到设计候选值的可逆神经网络和能够用于验证设计候选值的多层感知机神经网络与高斯过程。步骤8-9为具体的如何用可逆神经网络和多层感知机神经网络与高斯过得到设计参数的方法。本发明的应用场景是固定结构的微波无源器件参数设计,根据不同的设计性能确定微波无源器件的设计参数,通过半监督学习提高数据集获取的效率,并训练可逆神经网络以学习微波无源器件设计目标与设计参数之间的关系;可逆神经网络依据设计目标生成设计候选值,设计候选值经过验证模块之后可以得到准确的设计参数。The above steps 1 to 7 can train a reversible neural network that can directly obtain design candidate values according to design performance under a given microwave passive device structure, and a multilayer perceptron neural network and Gaussian process that can be used to verify the design candidate values. Steps 8-9 are specific methods for how to use reversible neural networks and multilayer perceptron neural networks and Gaussian processes to obtain design parameters. The application scenario of the present invention is the parameter design of microwave passive devices with fixed structures. The design parameters of microwave passive devices are determined according to different design performances. The efficiency of data set acquisition is improved through semi-supervised learning, and a reversible neural network is trained to learn the relationship between the design objectives and design parameters of microwave passive devices; the reversible neural network generates design candidate values according to the design objectives, and the design candidate values can obtain accurate design parameters after passing through the verification module.

如图6所示,利用本发明所示方法设计一款腔体滤波器,图6中,L1,L2为腔体滤波器的谐振腔的长度,W1,W2为谐振腔之间的间距,a和b为波导的长和宽,需要固定,本例中使用WR-75波导,a为19.05mm,b为9.525mm;t为谐振腔的宽度,该滤腔体滤波器包含四个设计参数[L1,L2,W1,W2,t];设计性能指标为带宽11.85-12.15GHz,回波损耗S11在带宽内最大值为-20dB。该腔体滤波器的设计步骤如下:As shown in FIG6 , a cavity filter is designed using the method shown in the present invention. In FIG6 , L 1 , L 2 are the lengths of the resonant cavity of the cavity filter, W 1 , W 2 are the spacings between the resonant cavities, a and b are the length and width of the waveguide, which need to be fixed. In this example, a WR-75 waveguide is used, a is 19.05 mm, b is 9.525 mm; t is the width of the resonant cavity, and the cavity filter includes four design parameters [L 1 , L 2 , W 1 , W 2 , t]; the design performance index is a bandwidth of 11.85-12.15 GHz, and the maximum value of the return loss S 11 within the bandwidth is -20 dB. The design steps of the cavity filter are as follows:

步骤a1:运用拉丁超立方采样将x=[L1,L2,W1,W2,t]分成10层,生成160组初始设计参数XI,和600组扩展设计参数XU。其中,L1的范围为12-18mm,L2的范围是12-18mm,W1的范围是6-12mm,W2的范围是6-12mm,t的范围是1-3mm。Step a1: Use Latin hypercube sampling to divide x = [L 1 , L 2 , W 1 , W 2 , t] into 10 layers, generate 160 sets of initial design parameters XI and 600 sets of extended design parameters XU , where the range of L1 is 12-18 mm, the range of L2 is 12-18 mm, the range of W1 is 6-12 mm, the range of W2 is 6-12 mm, and the range of t is 1-3 mm.

步骤a2:通过全波仿真软件得到设计参数XI对应的散射参数并提取出工作带宽对应的上截止频率、下截止频率和回波损耗(S11)在工作频段最大值作为设计指标y=[fL,fH,S11max],得到数据集的设计性能YI,进而得到初始数据集DI={XI,YI}。Step a2: Obtain the scattering parameters corresponding to the design parameters XI through full-wave simulation software and extract the upper cutoff frequency, lower cutoff frequency and the maximum value of the return loss ( S11 ) in the working frequency band corresponding to the working bandwidth as the design index y = [ fL , fH , S11max ], obtain the design performance YI of the data set, and then obtain the initial data set DI = { XI , YI }.

步骤a3:基于DI,采用k-fold交叉验证方法训练多层感知机神经网络和高斯过程模型,计算多层感知机神经网络和高斯过程的测试误差。Step a3: Based on D I , the multilayer perceptron neural network and Gaussian process model are trained using the k-fold cross-validation method, and the test errors of the multilayer perceptron neural network and Gaussian process are calculated.

步骤a4:若测试误差不满足精度范围,则利用拉丁超立方采样继续向XI添加样本;若精度满足要求,则转向步骤a5。该具体实施例中,初始数据集已可以训练出符合精度的多层感知机神经网络和高斯过程,故不需要额外添加样本。Step a4: If the test error does not meet the accuracy range, continue to add samples to XI using Latin hypercube sampling; if the accuracy meets the requirements, go to step a5. In this specific embodiment, the initial data set can already train a multilayer perceptron neural network and Gaussian process that meet the accuracy, so there is no need to add additional samples.

步骤a5:利用训练好的多层感知机神经网络和高斯过程模型预测扩展设计参数XU的工作带宽对应的上截止频率、下截止频率和回波损耗(S11)最大值。Step a5: Use the trained multi-layer perceptron neural network and Gaussian process model to predict the upper cutoff frequency, lower cutoff frequency and maximum value of return loss (S 11 ) corresponding to the working bandwidth of the extended design parameter X U .

步骤a6:根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为样本设计性能。将其得到设计性能y及其对应的x作为扩展的数据集DEStep a6: Based on the modeling accuracy of the multilayer perceptron neural network and the Gaussian process as weights, the weighted average of their predicted values is selected as the sample design performance. The obtained design performance y and its corresponding x are used as the extended data set DE .

步骤a7:基于DI和DE训练可逆神经网络。Step a7: Train a reversible neural network based on D I and D E.

步骤a8:基于给定的目标设计性能y=[11.85,12.15,-20],从高斯分布中随机采样100组z,将y和z作为可逆神经网络的输入,得到100组设计候选值。使用本发明所提出方法得到的设计参数对应的设计性能和目标设计性能如图7所示,图7中,虚线为设计目标,实线为所提方法给出的设计性能。Step a8: Based on the given target design performance y = [11.85, 12.15, -20], randomly sample 100 groups of z from the Gaussian distribution, use y and z as the input of the reversible neural network, and obtain 100 groups of design candidate values. The design performance and target design performance corresponding to the design parameters obtained by the method proposed in the present invention are shown in Figure 7, in which the dotted line is the design target and the solid line is the design performance given by the proposed method.

步骤a9:利用多层感知机神经网络和高斯过程验证,选择误差最小的设计候选值x=[13.6024,14.9591,9.4705,6.3201,1.5187](mm)作为最终的设计参数。Step a9: Using the multilayer perceptron neural network and Gaussian process verification, the design candidate value x = [13.6024, 14.9591, 9.4705, 6.3201, 1.5187] (mm) with the smallest error is selected as the final design parameter.

使用多层感知机神经网络进行逆建模的精度与所提方法的精度对比如表1所示,表1:The comparison of the accuracy of inverse modeling using a multilayer perceptron neural network and the accuracy of the proposed method is shown in Table 1. Table 1:

具体对比方法为计算各自方法所得设计参数的设计性能与目标设计性能的均方误差。值得注意的是,本发明所示方法的均方误差计算方式为计算设计候选值对应设计性能与目标性能的均方误差,而非最终验证后得到设计参数对应设计性能与目标性能的均方误差。The specific comparison method is to calculate the mean square error between the design performance of the design parameters obtained by each method and the target design performance. It is worth noting that the mean square error calculation method of the method shown in the present invention is to calculate the mean square error between the design performance corresponding to the design candidate value and the target performance, rather than the mean square error between the design performance corresponding to the design parameters and the target performance obtained after the final verification.

本发明将可逆神经网络引入微波无源器件的逆建模,解决了逆建模中存在的一对多问题,从而提高了逆建模的精度。本发明将微波无源器件的设计问题转化为逆建模问题,即将设计目标看作模型的输入,设计参数看作模型的输出,通过模型直接从设计目标得到设计参数。逆建模中存在一对多问题,即相同设计性能对应多组设计参数,传统建模方法会遇到阻碍。如果采用公开号为CN109284541A、专利名称为《一种用于微波无源器件的神经网络多物理建模方法》的专利中多层感知机神经网络进行逆建模,由于其建模过程是使神经网络预测值与真实值间误差最小,当存在一对多问题时,多层感知机神经网络的输出值会是设计性能对应的多组设计参数的平均值,从而造成很大的误差。本发明采用可逆神经网络,通过学习微波无源器件的给定设计性能下设计参数的分布,通过概率采样的方法生成设计参数,从而能够提供多组参数,可以智能地解决逆建模中的一对多问题,从而提高了逆建模的精度。The present invention introduces a reversible neural network into the inverse modeling of microwave passive devices, solves the one-to-many problem existing in the inverse modeling, and thus improves the accuracy of the inverse modeling. The present invention converts the design problem of microwave passive devices into an inverse modeling problem, that is, the design target is regarded as the input of the model, the design parameter is regarded as the output of the model, and the design parameter is directly obtained from the design target through the model. There is a one-to-many problem in inverse modeling, that is, the same design performance corresponds to multiple sets of design parameters, and the traditional modeling method will encounter obstacles. If the multi-layer perceptron neural network in the patent with the publication number of CN109284541A and the patent name of "A neural network multi-physics modeling method for microwave passive devices" is used for inverse modeling, because its modeling process is to minimize the error between the neural network prediction value and the true value, when there is a one-to-many problem, the output value of the multi-layer perceptron neural network will be the average value of multiple sets of design parameters corresponding to the design performance, thereby causing a large error. The present invention adopts a reversible neural network, by learning the distribution of design parameters under the given design performance of microwave passive devices, generating design parameters by the method of probability sampling, so that multiple sets of parameters can be provided, and the one-to-many problem in inverse modeling can be intelligently solved, thereby improving the accuracy of inverse modeling.

本发明将半监督学习方法引入来提高生成数据集的效率。传统获取数据集的方法为使用随机生成设计参数的方式,并将所有设计参数带入到全波仿真软件进行计算,来获得对应的电磁性能,即设计性能值。由于全波仿真时间较长,因此获取设计参数对应的设计性能较为缓慢。而本发明采用正向模型为逆建模提供数据集,具体为利用从全波仿真软件获得的小样本数据集训练出多层感知机神经网络和高斯过程作为正向模型,然后利用正向模型预测更多无设计性能数据的设计性能,即预测设计参数的设计性能,从而为逆建模提供更大的数据集。本发明通过半监督学习方法获得数据集,明显减少了时间,从而提高了生成数据集的效率。The present invention introduces a semi-supervised learning method to improve the efficiency of generating a data set. The traditional method of obtaining a data set is to use a method of randomly generating design parameters, and bring all the design parameters into the full-wave simulation software for calculation to obtain the corresponding electromagnetic performance, that is, the design performance value. Since the full-wave simulation time is long, it is relatively slow to obtain the design performance corresponding to the design parameters. The present invention uses a forward model to provide a data set for inverse modeling, specifically, a multi-layer perceptron neural network and a Gaussian process are trained using a small sample data set obtained from the full-wave simulation software as a forward model, and then the forward model is used to predict more design performance without design performance data, that is, to predict the design performance of the design parameters, thereby providing a larger data set for inverse modeling. The present invention obtains a data set through a semi-supervised learning method, which significantly reduces the time, thereby improving the efficiency of generating a data set.

本发明提出了验证设计参数方法。传统的验证需要将设计参数送入全波仿真软件进行验证,较为耗时。而本发明运用之前训练好的多层感知机神经网络和高斯过程作为正向模型,将可逆神经网络生成的参数送入两个正向模型进行交叉验证,从而提高了验证效率和精度。The present invention proposes a method for verifying design parameters. Traditional verification requires that the design parameters be sent to full-wave simulation software for verification, which is relatively time-consuming. The present invention uses a previously trained multi-layer perceptron neural network and a Gaussian process as a forward model, and sends the parameters generated by a reversible neural network to two forward models for cross-validation, thereby improving verification efficiency and accuracy.

本发明训练出在给定的微波无源器件结构下,根据设计性能能够直接得到设计候选值的可逆神经网络和能够用于验证设计候选值的多层感知机神经网络与高斯过程。The present invention trains a reversible neural network that can directly obtain a design candidate value according to the design performance under a given microwave passive device structure, and a multi-layer perceptron neural network and a Gaussian process that can be used to verify the design candidate value.

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit it. Although the present invention has been described in detail with reference to the above embodiments, ordinary technicians in the relevant field should understand that the specific implementation methods of the present invention can still be modified or replaced by equivalents, and any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention should be covered within the scope of protection of the claims of the present invention.

Claims (10)

1.一种微波无源器件的设计方法,其特征在于,包括以下步骤:1. A method for designing a microwave passive device, characterized in that it comprises the following steps: 确定待设计微波无源器件的设计目标,所述待设计微波无源器件为待改进性能的微波无源器件;Determining a design goal of a microwave passive device to be designed, wherein the microwave passive device to be designed is a microwave passive device whose performance is to be improved; 根据待设计微波无源器件的设计目标确定待设计微波无源器件的设计参数的允许范围,所述设计参数是微波无源器件的尺寸参数;Determining an allowable range of a design parameter of the microwave passive component to be designed according to a design goal of the microwave passive component to be designed, wherein the design parameter is a size parameter of the microwave passive component; 采用拉丁超立方采样法对待设计微波无源器件的设计参数进行采样,分别生成初始设计参数样本集XI和扩展设计参数样本集XUThe Latin hypercube sampling method is used to sample the design parameters of the microwave passive device to generate an initial design parameter sample set XI and an extended design parameter sample set XU respectively; 对初始设计参数样本集XI进行全波仿真计算,得到初始设计参数样本的散射参数,并从散射参数中提取出电磁特性数据集YI作为设计性能,得到初始设计数据集DI={XI,YI};Perform full-wave simulation calculation on the initial design parameter sample set XI to obtain the scattering parameters of the initial design parameter samples, and extract the electromagnetic characteristic data set YI from the scattering parameters as the design performance to obtain the initial design data set D I ={ XI , YI }; 采用k-fold交叉验证方法将初始设计数据集DI分为训练集和测试集,训练正向的多层感知机神经网络FANN和高斯过程FGP,并分别计算多层感知机神经网络FANN和高斯过程FGP的测试误差;The k-fold cross-validation method is used to divide the initial design data set D I into a training set and a test set, and the forward multilayer perceptron neural network F ANN and Gaussian process F GP are trained, and the test errors of the multilayer perceptron neural network F ANN and Gaussian process F GP are calculated respectively; 如果测试误差不满足精度要求,则利用拉丁超立方采样继续向初始设计参数样本集XI添加样本,否则进入下一步;If the test error does not meet the accuracy requirement, Latin hypercube sampling is used to continue adding samples to the initial design parameter sample set XI , otherwise proceed to the next step; 利用多层感知机神经网络FANN和高斯过程FGP分别预测扩展设计参数样本集XU的设计性能;The design performance of the extended design parameter sample set X U is predicted by using multi-layer perceptron neural network F ANN and Gaussian process F GP respectively. 根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为扩展设计性能;将扩展设计性能及对应的扩展设计参数作为扩展设计数据集DEAccording to the modeling accuracy of the multi-layer perceptron neural network and the Gaussian process as weights, the weighted average of their predicted values is selected as the extended design performance; the extended design performance and the corresponding extended design parameters are used as the extended design data set DE ; 利用初始设计数据集DI和扩展设计数据集DE训练可逆神经网络;The reversible neural network is trained using the initial design dataset D I and the extended design dataset D E ; 使用可逆神经网络根据设计目标生成设计候选值,并利用多层感知机神经网络和高斯过程进行测试验证,选择测试误差最小的设计候选值作为最终的设计参数。A reversible neural network is used to generate design candidate values according to the design objectives, and a multilayer perceptron neural network and Gaussian process are used for test verification. The design candidate value with the smallest test error is selected as the final design parameter. 2.根据权利要求1所述的微波无源器件的设计方法,其特征在于,所述设计目标为微波无源器件的电磁特性,包括但不限于工作频带和工作频点处的回波损耗。2. The design method of a microwave passive device according to claim 1 is characterized in that the design target is the electromagnetic characteristics of the microwave passive device, including but not limited to the return loss at the operating frequency band and the operating frequency point. 3.根据权利要求1所述的微波无源器件的设计方法,其特征在于,所述初始设计参数样本集XI为:3. The method for designing a microwave passive device according to claim 1, wherein the initial design parameter sample set XI is: XI={x1,x2,…,xm} Xi = { x1 , x2 , ..., xm } 其中,m为初始设计参数样本数,x1,x2,…,xm为初始设计参数样本;Among them, m is the number of initial design parameter samples, x 1 ,x 2 ,…,x m are initial design parameter samples; 所述扩展设计参数样本集XU为:The extended design parameter sample set X U is: XU={xm+1,xm+2,…,xm+n}X U ={x m+1 ,x m+2 ,…,x m+n } 其中,n为扩展设计参数样本数,xm+1,xm+2,…,xm+n为扩展设计参数样本;Wherein, n is the number of extended design parameter samples, x m+1 ,x m+2 ,…,x m+n are extended design parameter samples; 所述电磁特性数据集YI为:The electromagnetic property data set Y I is: YI={y1,y2,…,ym}Y I ={y 1 ,y 2 ,…,y m } 其中,y1,y2,…,ym为电磁特性。Among them, y 1 ,y 2 ,…,y m are electromagnetic properties. 4.根据权利要求1所述的微波无源器件的设计方法,其特征在于,所述设计性能的计算公式为:4. The method for designing a microwave passive device according to claim 1, wherein the calculation formula for the design performance is: 其中,xi为初始设计参数样本或扩展设计参数样本,为多层感知机神经网络的预测值,为高斯过程的预测值。Among them, xi is the initial design parameter sample or the extended design parameter sample, is the predicted value of the multilayer perceptron neural network, is the predicted value of the Gaussian process. 5.根据权利要求4所述的微波无源器件的设计方法,其特征在于,所述设计性能的计算公式为:5. The method for designing a microwave passive device according to claim 4, wherein the calculation formula for the design performance is: 其中,yi为利用多层感知机神经网络和高斯过程预测的设计性能,eANN为多层感知机神经网络的测试误差,eGP为高斯过程的测试误差。Among them, yi is the design performance predicted by multilayer perceptron neural network and Gaussian process, eANN is the test error of multilayer perceptron neural network, and eGP is the test error of Gaussian process. 6.根据权利要求1-5任意一项所述的微波无源器件的设计方法,其特征在于,所述可逆神经网络由可逆块构成:6. The method for designing a microwave passive device according to any one of claims 1 to 5, characterized in that the reversible neural network is composed of reversible blocks: hi+1=gi(hi)hi +1 = gi ( hi ) 其中,hi代表第i个可逆块正向过程输入,hi+1代表第i个可逆块的正向过程gi(·)的输出;Where, hi represents the input of the forward process of the i-th reversible block, and hi +1 represents the output of the forward process g i (·) of the i-th reversible block; 正向过程gi(·)的具体计算过程为先将hi按照维度分为[hi 1:d,hi d+1:D],再用下式计算:The specific calculation process of the forward process g i (·) is to first divide hi into [ hi 1:d , hi d+1:D ] according to the dimension, and then calculate it using the following formula: s(·)和t(·)由任意的神经网络构成,并且都是从d维到D-d维的映射;⊙是元素乘积符号;s(·) and t(·) are composed of arbitrary neural networks and are both mappings from d dimensions to D-d dimensions; ⊙ is the element-wise product symbol; 可逆块的逆向过程为:The reverse process of the reversible block is: 变量转换定理定义hi+1到hi的概率分布变化:The variable conversion theorem defines the change in probability distribution from hi +1 to hi : 其中,是gi(hi)的雅可比行列式:in, is the Jacobian of g i (h i ): 其中,Id是d×d的单位矩阵,是对角线元素为的对角矩阵。Where Id is the d×d identity matrix, The diagonal elements are The diagonal matrix of . 7.根据权利要求6所述的微波无源器件的设计方法,其特征在于,所述可逆神经网络的训练为采用反向传播算法最小化可逆神经网络的损失函数进行训练可逆神经网络参数θINN7. The method for designing a microwave passive device according to claim 6, wherein the training of the reversible neural network is to use a back propagation algorithm to minimize the loss function of the reversible neural network to train the reversible neural network parameter θ INN : 其中,XT为训练集设计参数,Xpred为可逆神经网络逆向过程得到的设计参数,b为训练集大小,为可逆神经网络正向过程针对训练集第i个设计参数得到的预测值,yi为相应的真实值;Z为先验分布,Zpred为可逆神经网络正向过程的预测值,MMD为最大均值误差;Among them, XT is the training set design parameter, Xpred is the design parameter obtained by the inverse process of the reversible neural network, b is the training set size, is the predicted value obtained by the reversible neural network forward process for the i-th design parameter in the training set, yi is the corresponding true value; Z is the prior distribution, Zpred is the predicted value of the reversible neural network forward process, and MMD is the maximum mean error; 假定数据分布P={p1,p2,…,pb}和Q={q1,q2,…,qb},则MMD的计算公式为:Assuming data distribution P = {p 1 ,p 2 ,…,p b } and Q = {q 1 ,q 2 ,…,q b }, the calculation formula of MMD is: 其中,k(·)为核函数;Among them, k(·) is the kernel function; 采用逆多二次径向基函数作为核函数:The inverse multi-quadratic radial basis function is used as the kernel function: 其中,ε为超参数,r1=pi,r2=pj,或,r1=qi,r2=qjWhere ε is a hyperparameter, r 1 = p i , r 2 = p j , or r 1 = q i , r 2 = q j ; 当损失函数值收敛后,将θINN作为可逆神经网络的参数,得到FINN模型。When the loss function value converges, θ INN is used as the parameter of the reversible neural network to obtain the F INN model. 8.根据权利要求7所述的微波无源器件的设计方法,其特征在于,所述使用可逆神经网络根据设计目标生成设计候选值,包括:8. The method for designing a microwave passive device according to claim 7, wherein the step of generating design candidate values according to a design goal using a reversible neural network comprises: 令h1=x以及hN=[y,z],其中z满足标准高斯分布;Let h 1 = x and h N = [y, z], where z satisfies the standard Gaussian distribution; 可逆神经网络将z的分布转化为条件概率分布p(x|y),使可逆神经网络能够在给定设计目标y下依靠概率采样的方法得到多组设计候选值x;The reversible neural network transforms the distribution of z into a conditional probability distribution p(x|y), so that the reversible neural network can obtain multiple sets of design candidate values x by probability sampling under a given design target y; 基于高斯分布采样g个z,将采样的z和目标y作为可逆神经网络的输入,代入下式:Based on the Gaussian distribution, sample g z and the target y as the input of the reversible neural network and substitute them into the following formula: x=FINN(y,z)x=F INN (y,z) 得到g个设计候选值。G design candidate values are obtained. 9.根据权利要求8所述的微波无源器件的设计方法,其特征在于,所述利用多层感知机神经网络和高斯过程进行测试验证的过程为:9. The method for designing a microwave passive device according to claim 8, characterized in that the process of testing and verifying by using a multi-layer perceptron neural network and a Gaussian process is: 将生成的g个设计候选值通过训练的多层感知机神经网络FANN和高斯过程FGP计算电磁性能,并计算电磁性能与目标电磁性能的误差:The electromagnetic performance of the generated g design candidate values is calculated through the trained multi-layer perceptron neural network F ANN and Gaussian process F GP , and the error between the electromagnetic performance and the target electromagnetic performance is calculated: 其中,为第j个设计候选值对应的多层感知机神经网络的输出和高斯过程的输出。in, and The output of the multilayer perceptron neural network and the output of the Gaussian process corresponding to the j-th design candidate value. 10.一种微波无源器件的设计装置,其特征在于,包括:10. A design device for a microwave passive device, comprising: 设计目标确定模块,用于确定待设计微波无源器件的设计目标,所述待设计微波无源器件为待改进性能的微波无源器件;A design target determination module, used to determine a design target of a microwave passive device to be designed, wherein the microwave passive device to be designed is a microwave passive device whose performance is to be improved; 设计参数范围确定模块,用于根据待设计微波无源器件的设计目标确定待设计微波无源器件的设计参数的允许范围,所述设计参数是微波无源器件的尺寸参数;A design parameter range determination module, used to determine the allowable range of the design parameters of the microwave passive device to be designed according to the design target of the microwave passive device to be designed, wherein the design parameters are the size parameters of the microwave passive device; 设计参数样本集生成模块,用于采用拉丁超立方采样法对待设计微波无源器件的设计参数进行采样,分别生成初始设计参数样本集XI和扩展设计参数样本集XUA design parameter sample set generation module, used for sampling the design parameters of the microwave passive device to be designed by using the Latin hypercube sampling method, and generating an initial design parameter sample set XI and an extended design parameter sample set XU respectively; 全波仿真计算模块,用于对初始设计参数样本集XI进行全波仿真计算,得到初始设计参数样本的散射参数,并从散射参数中提取出电磁特性数据集YI作为设计性能,得到初始设计数据集DI={XI,YI};A full-wave simulation calculation module is used to perform full-wave simulation calculation on the initial design parameter sample set XI to obtain the scattering parameters of the initial design parameter samples, and extract the electromagnetic characteristic data set YI from the scattering parameters as the design performance to obtain the initial design data set D I ={ XI , YI }; 测试误差计算模块,用于采用k-fold交叉验证方法将初始设计数据集DI分为训练集和测试集,训练正向的多层感知机神经网络FANN和高斯过程FGP,并分别计算多层感知机神经网络FANN和高斯过程FGP的测试误差;A test error calculation module is used to divide the initial design data set DI into a training set and a test set by using a k-fold cross-validation method, train a forward multi-layer perceptron neural network F ANN and a Gaussian process F GP , and calculate the test errors of the multi-layer perceptron neural network F ANN and the Gaussian process F GP respectively; 测试误差判断模块,用于判断测试误差是否满足精度要求,如果不满足精度要求则利用拉丁超立方采样继续向初始设计参数样本集XI添加样本,否则进入下一步;The test error judgment module is used to judge whether the test error meets the accuracy requirement. If it does not meet the accuracy requirement, Latin hypercube sampling is used to continue adding samples to the initial design parameter sample set XI , otherwise it proceeds to the next step; 设计性能预测模块,用于利用多层感知机神经网络FANN和高斯过程FGP分别预测扩展设计参数样本集XU的设计性能;A design performance prediction module is used to predict the design performance of the extended design parameter sample set XU by using a multi-layer perceptron neural network FAN and a Gaussian process FGP ; 扩展设计数据集确定模块,用于根据多层感知机神经网络和高斯过程的建模精度作为权重,选取其预测值的加权平均数作为扩展设计性能;将扩展设计性能及对应的扩展设计参数作为扩展设计数据集DEThe extended design data set determination module is used to select the weighted average of the predicted values as the extended design performance according to the modeling accuracy of the multi-layer perceptron neural network and the Gaussian process as weights; and the extended design performance and the corresponding extended design parameters are used as the extended design data set DE ; 可逆神经网络训练模块,用于利用初始设计数据集DI和扩展设计数据集DE训练可逆神经网络;A reversible neural network training module, used for training a reversible neural network using an initial design data set D I and an extended design data set D E ; 最终设计参数确定模块,用于使用可逆神经网络根据设计目标生成设计候选值,并利用多层感知机神经网络和高斯过程进行测试验证,选择测试误差最小的设计候选值作为最终的设计参数。The final design parameter determination module is used to use a reversible neural network to generate design candidate values according to the design objectives, and use a multi-layer perceptron neural network and a Gaussian process for test verification, and select the design candidate value with the smallest test error as the final design parameter.
CN202310856674.0A 2023-07-12 2023-07-12 Design method and device of microwave passive device Active CN117272778B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310856674.0A CN117272778B (en) 2023-07-12 2023-07-12 Design method and device of microwave passive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310856674.0A CN117272778B (en) 2023-07-12 2023-07-12 Design method and device of microwave passive device

Publications (2)

Publication Number Publication Date
CN117272778A true CN117272778A (en) 2023-12-22
CN117272778B CN117272778B (en) 2024-03-12

Family

ID=89207051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310856674.0A Active CN117272778B (en) 2023-07-12 2023-07-12 Design method and device of microwave passive device

Country Status (1)

Country Link
CN (1) CN117272778B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284541A (en) * 2018-08-31 2019-01-29 天津工业大学 A Neural Network Multiphysics Modeling Method for Microwave Passive Devices
WO2021007812A1 (en) * 2019-07-17 2021-01-21 深圳大学 Deep neural network hyperparameter optimization method, electronic device and storage medium
CN113962163A (en) * 2021-11-25 2022-01-21 电子科技大学 An optimization method, device and equipment for realizing efficient design of passive microwave devices
CN115809624A (en) * 2023-02-01 2023-03-17 北京大学 Automatic analysis design method for microstrip line transmission line of integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284541A (en) * 2018-08-31 2019-01-29 天津工业大学 A Neural Network Multiphysics Modeling Method for Microwave Passive Devices
WO2021007812A1 (en) * 2019-07-17 2021-01-21 深圳大学 Deep neural network hyperparameter optimization method, electronic device and storage medium
CN113962163A (en) * 2021-11-25 2022-01-21 电子科技大学 An optimization method, device and equipment for realizing efficient design of passive microwave devices
CN115809624A (en) * 2023-02-01 2023-03-17 北京大学 Automatic analysis design method for microstrip line transmission line of integrated circuit

Also Published As

Publication number Publication date
CN117272778B (en) 2024-03-12

Similar Documents

Publication Publication Date Title
CN113128119B (en) Filter Reverse Design and Optimization Method Based on Deep Learning
Feng et al. Parallel gradient-based EM optimization for microwave components using adjoint-sensitivity-based neuro-transfer function surrogate
Zhang et al. Optimization of high-speed channel for signal integrity with deep genetic algorithm
He et al. Hybrid method of artificial neural network and simulated annealing algorithm for optimizing wideband patch antennas
CN111898730A (en) A structure optimization design method using graph convolutional neural network structure acceleration
CN112989508B (en) Filter optimization design method based on deep learning algorithm
CN110750948B (en) Simulation circuit optimization algorithm based on multi-objective acquisition function integrated parallel Bayesian optimization
CN115809624B (en) An automatic analysis and design method for integrated circuit microstrip line transmission line
CN108182316B (en) Electromagnetic simulation method based on artificial intelligence and electromagnetic brain thereof
Zhang et al. Antenna optimization design based on deep Gaussian process model
CN113962163A (en) An optimization method, device and equipment for realizing efficient design of passive microwave devices
CN112257373B (en) Prediction method of return loss of serpentine PCB antenna based on three-body training algorithm
CN111709192B (en) Planar inverted F antenna resonant frequency prediction method based on semi-supervised learning
Zhou et al. Bayesian-inspired sampling for efficient machine-learning-assisted microwave component design
Kim et al. Bayesian exploration imitation learning-based contextual via design optimization method of pam-4-based high-speed serial link
Wei et al. Highly efficient automatic synthesis of a millimeter-wave on-chip deformable spiral inductor using a hybrid knowledge-guided and data-driven technique
Ding et al. Antenna Optimization Based on Auto‐Context Broad Learning System
CN115906303A (en) Planar microwave filter design method and device based on machine learning
Shen et al. Deep-Learning-Based Pre-Layout Parasitic Capacitance Prediction on SRAM Designs
CN103778281A (en) GaAs pHEMT pipe core nonlinear model parameter extraction method
CN117272778B (en) Design method and device of microwave passive device
CN118627572A (en) A neural network optimization method, system, device and medium for microwave filter
CN118171576A (en) A multi-frequency absorber and a method for customizing its resonance absorption characteristics
Hong et al. Optimizing a FPGA-based neural accelerator for small IoT devices
CN118471399A (en) Metamaterial electromagnetic response prediction method based on complex neural network and related equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载