+

CN117274783A - Data processing method, device, equipment and storage medium based on motion capture - Google Patents

Data processing method, device, equipment and storage medium based on motion capture Download PDF

Info

Publication number
CN117274783A
CN117274783A CN202311204606.2A CN202311204606A CN117274783A CN 117274783 A CN117274783 A CN 117274783A CN 202311204606 A CN202311204606 A CN 202311204606A CN 117274783 A CN117274783 A CN 117274783A
Authority
CN
China
Prior art keywords
joint
target
joints
elimination algorithm
jitter elimination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311204606.2A
Other languages
Chinese (zh)
Inventor
李丰果
陈睿智
刘豪杰
冯志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN202311204606.2A priority Critical patent/CN117274783A/en
Publication of CN117274783A publication Critical patent/CN117274783A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/98Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Image Analysis (AREA)

Abstract

The disclosure provides a data processing method, device, equipment and storage medium based on motion capture, relates to the technical field of image processing, and particularly relates to the field of computer vision and virtual reality. The specific implementation scheme is as follows: after observing the motion capture object to obtain the observed quantity of the motion parameters of the joints of the motion capture object, respectively adopting a first jitter elimination algorithm to process the observed quantity of the motion parameters of each joint to obtain a first reference quantity, and adopting a second jitter elimination algorithm to process the observed quantity of the motion parameters of each joint to obtain a second reference quantity. And selecting a target jitter elimination algorithm matched with the difference to correct the observed quantity of the motion parameter according to the difference between the first reference quantity and the second reference quantity. The motion speed state of the motion capture object is reflected through the difference between the results of two different jitter elimination algorithms, and then the matched target jitter elimination algorithm is selected based on the different motion speed states to correct the observed quantity of the motion parameters, so that the motion restoration degree of the motion capture object is improved.

Description

基于动作捕捉的数据处理方法、装置、设备以及存储介质Data processing methods, devices, equipment and storage media based on motion capture

技术领域Technical field

本公开涉及图像处理技术领域,具体为计算机视觉、虚拟现实技术领域,可应用于动画场景,尤其涉及基于动作捕捉的数据处理方法、装置、设备以及存储介质。The present disclosure relates to the field of image processing technology, specifically to the field of computer vision and virtual reality technology, which can be applied to animation scenes, and in particular to data processing methods, devices, equipment and storage media based on motion capture.

背景技术Background technique

动作捕捉技术可以通过光学、惯性和视觉等方法,对人体或者动物的身体体态特征、关节位置等动作状态进行捕捉,以获取运动数据。由于动作捕捉得到的原始运动数据普遍存在抖动、轨迹不平滑的问题,原始运动数据必须经过动画师手动精修或者经过后处理方法,才能够在一定程度上还原动作捕捉对象的动作。Motion capture technology can capture the body posture characteristics, joint positions and other action states of humans or animals through optical, inertial and visual methods to obtain motion data. Since the original motion data obtained by motion capture commonly suffers from jitter and uneven trajectories, the original motion data must be manually refined by animators or post-processed to restore the motion of the motion capture object to a certain extent.

发明内容Contents of the invention

本公开提供了一种基于动作捕捉的数据处理方法、装置、设备以及存储介质。The present disclosure provides a data processing method, device, equipment and storage medium based on motion capture.

根据本公开的一方面,提供了一种基于动作捕捉的数据处理方法,包括:According to one aspect of the present disclosure, a data processing method based on motion capture is provided, including:

对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量;Observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object;

对所述关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量;其中,所述第二抖动消除算法的平滑强度不同于所述第一抖动消除算法;The motion parameter observations of the joints are processed using a first jitter elimination algorithm to obtain the first reference quantity, and are processed using a second jitter elimination algorithm to obtain the second reference quantity; wherein, the second jitter elimination algorithm The smoothing strength is different from the first jitter elimination algorithm;

根据所述第一参考量和所述第二参考量之间的差异,选取与所述差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。According to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to correct the motion parameter observation.

根据本公开的另一方面,提供了一种基于动作捕捉的数据处理装置,包括:According to another aspect of the present disclosure, a data processing device based on motion capture is provided, including:

观测模块,用于对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量;An observation module, used to observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object;

处理模块,用于对所述关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量;其中,所述第二抖动消除算法的平滑强度不同于所述第一抖动消除算法;A processing module configured to process the motion parameter observations of the joint using a first jitter elimination algorithm to obtain a first reference quantity, and to process the motion parameter observations using a second jitter elimination algorithm to obtain a second reference quantity; wherein, the The smoothing strength of the second jitter removal algorithm is different from the first jitter cancellation algorithm;

修正模块,用于根据所述第一参考量和所述第二参考量之间的差异,选取与所述差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。A correction module, configured to select a target jitter elimination algorithm that matches the difference according to the difference between the first reference quantity and the second reference quantity to correct the motion parameter observation.

根据本公开的另一方面,提供了一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本公开第一方面实施例所述的方法。According to another aspect of the present disclosure, an electronic device is provided, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores information that can be used by the at least one processor. Execution instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the method described in the embodiment of the first aspect of the present disclosure.

根据本公开的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使计算机执行本公开第一方面实施例所述的方法。According to another aspect of the disclosure, there is provided a non-transitory computer-readable storage medium storing computer instructions for causing a computer to execute the method described in the embodiment of the first aspect of the disclosure.

根据本公开的另一方面,提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现本公开第一方面实施例所述的方法。According to another aspect of the disclosure, a computer program product is provided, including a computer program that, when executed by a processor, implements the method described in the embodiment of the first aspect of the disclosure.

本公开提供的基于动作捕捉的数据处理方法、装置、设备以及存储介质,通过对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量之后,对各关节的运动参数观测量,分别采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。根据第一参考量和所述第二参考量之间的差异,选取与差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。由于第二抖动消除算法的平滑强度不同于所述第一抖动消除算法,这两种不同的算法结果之间的差异,能够体现出动作捕捉对象的运动快慢状态,进而,基于不同的运动快慢状态选取匹配的目标抖动消除算法修正运动参数观测量,使得修正后的运动参数观测量能够平滑轨迹的同时保持动作原有的节奏,提高动作捕捉对象的动作还原度。The data processing method, device, equipment and storage medium based on motion capture provided by the present disclosure observe the motion capture object to obtain the motion parameter observations of the joints of the motion capture object, and then observe the motion parameters of each joint. The quantity is processed by using the first jitter elimination algorithm to obtain the first reference quantity, and is processed by using the second jitter elimination algorithm to obtain the second reference quantity. According to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to correct the motion parameter observation. Since the smoothing intensity of the second jitter elimination algorithm is different from the first jitter elimination algorithm, the difference between the results of these two different algorithms can reflect the motion speed state of the motion capture object, and further, based on the different motion speed states Select a matching target jitter elimination algorithm to correct the motion parameter observations, so that the corrected motion parameter observations can smooth the trajectory while maintaining the original rhythm of the action, and improve the action restoration of the motion capture object.

应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or important features of the embodiments of the disclosure, nor is it intended to limit the scope of the disclosure. Other features of the present disclosure will become readily understood from the following description.

附图说明Description of the drawings

附图用于更好地理解本方案,不构成对本公开的限定。其中:The accompanying drawings are used to better understand the present solution and do not constitute a limitation of the present disclosure. in:

图1为本公开实施例所提供的一种基于动作捕捉的数据处理方法的流程示意图;Figure 1 is a schematic flow chart of a data processing method based on motion capture provided by an embodiment of the present disclosure;

图2为关节示意图;Figure 2 is a schematic diagram of the joint;

图3为本公开实施例提供的另一种基于动作捕捉的数据处理方法的流程示意图;Figure 3 is a schematic flowchart of another data processing method based on motion capture provided by an embodiment of the present disclosure;

图4为本公开实施例提供的基于动作捕捉的数据处理方法的原理示意图;Figure 4 is a schematic diagram of the principle of a data processing method based on motion capture provided by an embodiment of the present disclosure;

图5为本公开实施例提供的另一种基于动作捕捉的数据处理方法的流程示意图;Figure 5 is a schematic flowchart of another data processing method based on motion capture provided by an embodiment of the present disclosure;

图6为本公开实施例提供的一种基于动作捕捉的数据处理装置600的结构示意图;Figure 6 is a schematic structural diagram of a motion capture-based data processing device 600 provided by an embodiment of the present disclosure;

图7示出了可以用来实施本公开的实施例的示例电子设备700的示意性框图。7 illustrates a schematic block diagram of an example electronic device 700 that may be used to implement embodiments of the present disclosure.

具体实施方式Detailed ways

以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present disclosure are described below with reference to the accompanying drawings, in which various details of the embodiments of the present disclosure are included to facilitate understanding and should be considered to be exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications can be made to the embodiments described herein without departing from the scope and spirit of the disclosure. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.

相关虚拟现实或者动画技术中,在进行动作捕捉时,为了解决数据抖动、轨迹不平滑的问题,目前行业内在后处理方法上普遍采用滤波的方法来降低抖动,这种方法会损失动作的还原度,增大动作延迟,使得快速动作的跟随性变差。In related virtual reality or animation technology, in order to solve the problems of data jitter and unsmooth trajectory when performing motion capture, filtering is commonly used in post-processing methods in the industry to reduce jitter. This method will lose the degree of restoration of the motion. , increasing the action delay, making the followability of fast actions worse.

为了在平滑的同时,保证一定的跟随性,本公开实施例中通过对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量之后,对各关节的运动参数观测量,分别采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。由于第二抖动消除算法的平滑强度不同于所述第一抖动消除算法,这两种不同的算法结果之间的差异,能够体现出动作捕捉对象的运动快慢状态,进而,基于不同的运动快慢状态选取匹配的目标抖动消除算法修正运动参数观测量,使得修正后的运动参数观测量能够平滑轨迹的同时保持动作原有的节奏,提高动作捕捉对象的动作还原度。In order to ensure a certain degree of followability while being smooth, in the embodiment of the present disclosure, the motion capture object is observed to obtain the motion parameter observations of the joints of the motion capture object, and then the motion parameter observations of each joint are: The first jitter elimination algorithm is used for processing to obtain the first reference quantity, and the second jitter elimination algorithm is used for processing to obtain the second reference quantity. Since the smoothing intensity of the second jitter elimination algorithm is different from the first jitter elimination algorithm, the difference between the results of these two different algorithms can reflect the motion speed state of the motion capture object, and further, based on the different motion speed states Select a matching target jitter elimination algorithm to correct the motion parameter observations, so that the corrected motion parameter observations can smooth the trajectory while maintaining the original rhythm of the action, and improve the action restoration of the motion capture object.

图1为本公开实施例所提供的一种基于动作捕捉的数据处理方法的流程示意图,本实施例所提供的方法,可以由动作捕捉设备执行,如图1所示,包括:Figure 1 is a schematic flow chart of a data processing method based on motion capture provided by an embodiment of the present disclosure. The method provided by this embodiment can be executed by a motion capture device, as shown in Figure 1, including:

步骤101,对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量。Step 101: Observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object.

其中,动作捕捉对象可以是人体或者动物。Among them, the motion capture object can be a human body or an animal.

动作捕捉技术包括光学、惯性和视觉等方法,获取人体或者动物的运动信息,本实施例中获取到的是与动作状态相关的关节的运动参数观测量。Motion capture technology includes optical, inertial and visual methods to obtain movement information of the human body or animals. In this embodiment, what is obtained is the observation of motion parameters of joints related to the action state.

运动参数观测量,如图2为关节示意图,运动参数观测量可以是图2中所示关节的运动速度、姿态、位置坐标和角度中的至少一个,本实施例中对此不作限定。如图2中,采用线条连接的关节属于同一关节运动链条。As for the motion parameter observation, Figure 2 is a schematic diagram of a joint. The motion parameter observation can be at least one of the movement speed, posture, position coordinates and angle of the joint shown in Figure 2, which is not limited in this embodiment. As shown in Figure 2, joints connected by lines belong to the same joint motion chain.

作为一种可能的实现方式,对所述动作捕捉对象观测关节位置,以得到各所述关节的关节位置坐标;基于各所述关节的关节位置坐标,确定各所述关节的关节角度;将位置坐标和/或关节角度作为所述运动参数观测量。As a possible implementation manner, joint positions of the motion capture object are observed to obtain the joint position coordinates of each joint; based on the joint position coordinates of each joint, the joint angle of each joint is determined; the position is Coordinates and/or joint angles serve as the motion parameter observations.

作为另一种可能的实现方式,对动作捕捉对象观测关节角度,以得到各所述关节的关节角度;采用运动学模型,基于各所述关节的关节角度识别各所述关节点的相对位置,以将相对位置和/或关节角度作为所述运动参数观测量。As another possible implementation method, observe the joint angles of the motion capture object to obtain the joint angles of each joint; use a kinematic model to identify the relative positions of each joint point based on the joint angles of each joint, Relative positions and/or joint angles are used as the observed motion parameters.

步骤102,对关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量,其中,所述第二抖动消除算法的平滑强度不同于所述第一抖动消除算法。Step 102: Use the first jitter elimination algorithm to process the joint motion parameter observations to obtain the first reference quantity, and use the second jitter elimination algorithm to process the joint movement parameter observations to obtain the second reference quantity, wherein the second jitter elimination algorithm The smoothing intensity of the algorithm differs from the first jitter removal algorithm.

作为一种可能的实现方式,第一抖动消除算法和第二抖动消除算法所采用的滤波阶数不同,即滤波公式的阶数不同。例如,第一抖动消除算法可以是基于一阶滤波的抖动消除算法,第二抖动消除算法可以是基于二阶滤波的抖动消除算法。As a possible implementation manner, the first jitter elimination algorithm and the second jitter elimination algorithm adopt different filtering orders, that is, the order of the filtering formulas is different. For example, the first jitter elimination algorithm may be a jitter elimination algorithm based on first-order filtering, and the second jitter elimination algorithm may be a jitter elimination algorithm based on second-order filtering.

作为另一种可能的实现方式,第一抖动消除算法和第二抖动消除算法所采用的滤波阶数相同,但滤波公式的参数不同。As another possible implementation manner, the first jitter elimination algorithm and the second jitter elimination algorithm use the same filtering order, but the parameters of the filter formula are different.

需要说明的是,第一抖动消除算法和第二抖动消除算法均是基于在观测到当前的运动参数观测量之前所观测到的历史运动参数,或者是历史进行防抖处理后得到运动参数,采用算法指定的滤波函数进行平滑,从而起到防抖的效果。It should be noted that the first jitter elimination algorithm and the second jitter elimination algorithm are both based on the historical motion parameters observed before the current motion parameter observation is observed, or the historical motion parameters are obtained after anti-shake processing, using The filter function specified by the algorithm is smoothed to achieve an anti-shake effect.

步骤103,根据第一参考量和第二参考量之间的差异,选取与差异匹配的目标抖动消除算法对运动参数观测量进行修正。Step 103: According to the difference between the first reference quantity and the second reference quantity, select a target jitter elimination algorithm that matches the difference to correct the motion parameter observations.

本实施例中,通过观测动作捕捉对象得到动作捕捉对象的关节的运动参数观测量之后,对各关节的运动参数观测量,分别采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。根据第一参考量和所述第二参考量之间的差异,选取与差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。通过两种不同的抖动消除算法结果之间的差异,体现出动作捕捉对象的运动快慢状态,进而,基于不同的运动快慢状态选取匹配的目标抖动消除算法修正运动参数观测量,提高动作捕捉对象的动作还原度。In this embodiment, after observing the motion capture object to obtain the motion parameter observations of the joints of the motion capture object, the motion parameter observations of each joint are processed using the first jitter elimination algorithm to obtain the first reference quantity, and using The second jitter elimination algorithm performs processing to obtain the second reference quantity. According to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to correct the motion parameter observation. The difference between the results of two different jitter elimination algorithms reflects the motion speed of the motion capture object. Then, based on the different motion speed states, a matching target jitter elimination algorithm is selected to correct the motion parameter observations and improve the accuracy of the motion capture object. Action restoration.

图3为本公开实施例提供的另一种基于动作捕捉的数据处理方法的流程示意图,如图3所示,包括:Figure 3 is a schematic flowchart of another data processing method based on motion capture provided by an embodiment of the present disclosure. As shown in Figure 3, it includes:

步骤301,对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量。Step 301: Observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object.

可选地,对动作捕捉对象观测关节角度,得到作为原始动捕数据的关节角度J。基于预先建立的运动学模型K,可以基于关节角度J确定关节的三维坐标位置P。Optionally, observe the joint angles of the motion capture object to obtain the joint angle J as the original motion capture data. Based on the pre-established kinematic model K, the three-dimensional coordinate position P of the joint can be determined based on the joint angle J.

其中,运动学模型K,是用于基于关节角度确定该关节的三维坐标位置的模型。Among them, the kinematic model K is a model used to determine the three-dimensional coordinate position of the joint based on the joint angle.

步骤302,对所述关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。Step 302: Use the first jitter elimination algorithm to process the observed motion parameters of the joints to obtain the first reference quantity, and use the second jitter elimination algorithm to process the motion parameter observations to obtain the second reference quantity.

其中,所述第二抖动消除算法的平滑强度不同于所述第一抖动消除算法。Wherein, the smoothing strength of the second jitter elimination algorithm is different from the first jitter elimination algorithm.

可选地,对关节角度J进行一阶滤波,一阶滤波能够缓解数据中明显的抖动,但是保持快速动作不受影响,得到关节角度J1。以及,对关节角度J进行二阶滤波,二阶滤波能够消除所有抖动,同时连带快速动作/大幅动作也会受到明显减弱或者运动幅度消失,得到关节角度J2。Optionally, perform first-order filtering on joint angle J. First-order filtering can alleviate the obvious jitter in the data, but keep fast movements unaffected, and obtain joint angle J1. And, perform a second-order filter on the joint angle J. The second-order filter can eliminate all jitter. At the same time, fast movements/large movements will also be significantly weakened or the range of motion disappears, and the joint angle J2 is obtained.

采用运动学模型K,对J1计算得到关节点的3D位置P1,相类似地,采用运动学模型K,对J2计算得到关节点的3D位置P2。Using the kinematic model K, the 3D position P1 of the joint point is calculated for J1. Similarly, the 3D position P2 of the joint point is calculated for J2 using the kinematic model K.

为了在消除数据抖动的同时不影响快速动作的运动效果,提出了一阶滤波和二阶滤波相结合的方法。In order to eliminate data jitter without affecting the motion effect of fast movements, a method that combines first-order filtering and second-order filtering is proposed.

需要说明的是,前述J,J1,J2,P,P1和P2可以为三维空间中表征角度或坐标的向量。综合考虑多种运动参数,提高识别准确性。It should be noted that the aforementioned J, J1, J2, P, P1 and P2 may be vectors representing angles or coordinates in a three-dimensional space. Comprehensively consider multiple motion parameters to improve recognition accuracy.

步骤301和步骤302具体可以参考前述实施例中的步骤101和步骤102。本实施例中对此不再赘述。For details of step 301 and step 302, reference may be made to step 101 and step 102 in the previous embodiment. This will not be described again in this embodiment.

步骤303,在观测得到所述运动参数观测量的关节为多个的情况下,基于多个关节中属于同一关节运动链的至少两个目标关节,生成第一矩阵和第二矩阵,以及生成第三矩阵。Step 303: When there are multiple joints from which the motion parameter observation is observed, generate a first matrix and a second matrix based on at least two target joints belonging to the same joint kinematic chain among the multiple joints, and generate a third matrix. Three matrices.

其中,第一矩阵中各行向量与目标关节对应,用于指示对应目标关节在三维空间中的第一参考量。Each row vector in the first matrix corresponds to the target joint and is used to indicate the first reference quantity of the corresponding target joint in the three-dimensional space.

第二矩阵中各行向量与目标关节对应,用于指示对应目标关节在三维空间中的第二参考量。Each row vector in the second matrix corresponds to the target joint and is used to indicate the second reference quantity of the corresponding target joint in the three-dimensional space.

第三矩阵中各行向量与目标关节对应,用于指示对应目标关节在三维空间的运动参数观测量。Each row vector in the third matrix corresponds to the target joint and is used to indicate the observed motion parameter of the corresponding target joint in the three-dimensional space.

可选地,预先设置关节运动链,表征父节点的运动通常对带来子节点的运动,如胳膊上的所有关节组成一个关节运动链。同一关节运动链上的关节运动会互相影响,不同运动链上的运动之间影响不大。本实施例中,基于同一关节运动链上的关节综合考虑,以识别运动快慢状态,有助于提高识别准确性。Optionally, a joint kinematic chain is set in advance to represent that the movement of a parent node usually brings about the movement of a child node, for example, all joints on an arm form a joint kinematic chain. Joint motions on the same joint kinematic chain will affect each other, while motions on different kinematic chains will have little influence on each other. In this embodiment, the joints on the same joint kinematic chain are comprehensively considered to identify the movement speed, which helps to improve the identification accuracy.

例如,关节运动链C上基于各关节的J,J1,J2,P,P1和P2,生成第一矩阵[J1]和[P1],第二矩阵[J2]和[P2],第三矩阵[J]和[P]。其中,[J1]各行对应各关节的J1,J1为表征角度的行向量。[P1]、[J2]、[P2]、[J]和[P]的生成方式与[J1]类似,行向量均对应各关节,区别仅在于行向量分别为P1、J2、P2、J和P,此处不再赘述。For example, based on J, J1, J2, P, P1 and P2 of each joint on joint kinematic chain C, the first matrix [J1] and [P1], the second matrix [J2] and [P2], the third matrix [ J] and [P]. Among them, each row of [J1] corresponds to J1 of each joint, and J1 is a row vector representing the angle. [P1], [J2], [P2], [J] and [P] are generated in a similar way to [J1]. The row vectors correspond to each joint. The only difference is that the row vectors are P1, J2, P2, J and P, I won’t go into details here.

进一步地,根据所述多个关节之间的父子关系,确定属于同一关节运动链的至少两个目标关节。如图2所示,采用同一线条连接的关节,为属于同一关节运动链的目标关节。在运动过程中,这些关节会存在一些联动关系,即关节之间的角度或位置会相互影响,因此,基于同一关节运动链上的目标关节共同识别是否处于快速或慢速状态会得到更加准确的识别结果,提高识别准确性。Further, at least two target joints belonging to the same joint kinematic chain are determined based on the parent-child relationship between the multiple joints. As shown in Figure 2, joints connected by the same line are target joints belonging to the same joint kinematic chain. During the movement, these joints will have some linkage relationships, that is, the angles or positions between the joints will affect each other. Therefore, based on the joint identification of the target joints on the same joint kinematic chain whether they are in a fast or slow state, a more accurate result will be obtained. Recognition results and improve recognition accuracy.

步骤304,将所述第一矩阵与所述第二矩阵之间的距离,以及将所述第三矩阵与所述第二矩阵之间的距离进行加权求和,以得到距离值。Step 304: Perform a weighted summation of the distance between the first matrix and the second matrix and the distance between the third matrix and the second matrix to obtain a distance value.

将第一矩阵、第二矩阵和第三矩阵代入判定条件,判断运动链处于快速或慢速状态。具体判定条件可以为:Substitute the first matrix, the second matrix and the third matrix into the judgment conditions to judge whether the kinematic chain is in a fast or slow state. Specific judgment conditions can be:

H=R1×F1([J1]–[J2])+R2×F2([P1]–[P2])+R3×F1([J]–[J2])+R4×F2([P]–[P2])。H=R1×F1([J1]–[J2])+R2×F2([P1]–[P2])+R3×F1([J]–[J2])+R4×F2([P]–[ P2]).

其中,F1([J1]–[J2])表示[J1]和[J2]之间的球面距离,F2([P1]–[P2])表示[P1]和[P2]之间的欧式距离。相类似地,F1([J]–[J2])表示[J]和[J2]之间的球面距离,F2([P]–[P2])表示[P]和[P2]之间的欧式距离。Among them, F1([J1]–[J2]) represents the spherical distance between [J1] and [J2], and F2([P1]–[P2]) represents the Euclidean distance between [P1] and [P2]. Similarly, F1([J]–[J2]) represents the spherical distance between [J] and [J2], and F2([P]–[P2]) represents the Euclidean distance between [P] and [P2] distance.

R1至R4是对应分项的权重。R1 to R4 are the weights of the corresponding sub-items.

将第一矩阵、第二矩阵和第三矩阵代入判定条件,得到距离值H。在本实施例中,不仅基于两种不同抖动消除算法之间的结果差异得到用于快慢状态识别的距离值H,而且还引入了原始的运动参数观测量,比较两种抖动消除算法之中平滑强度较强的一种抖动消除算法的结果差异,从而使得距离值H与快慢状态之间的相关性更强。Substituting the first matrix, the second matrix and the third matrix into the judgment condition, the distance value H is obtained. In this embodiment, not only the distance value H used for fast and slow state identification is obtained based on the difference in results between two different jitter elimination algorithms, but also the original motion parameter observations are introduced to compare the smoothness of the two jitter elimination algorithms. The difference in the results of a stronger jitter elimination algorithm makes the correlation between the distance value H and the speed state stronger.

步骤305,根据距离值,选取匹配的目标抖动消除算法对运动参数观测量进行修正。Step 305: According to the distance value, select a matching target jitter elimination algorithm to correct the motion parameter observations.

可选地,基于所述距离值所属的取值区间,选取所述取值区间对应的目标抖动消除算法对所述运动参数观测量进行修正。Optionally, based on the value interval to which the distance value belongs, a target jitter elimination algorithm corresponding to the value interval is selected to correct the motion parameter observation.

例如,当H大于阈值h时,判定为快速运动状态,适用一阶滤波;反之,判定为二阶滤波。For example, when H is greater than the threshold h, it is determined to be in a fast motion state, and first-order filtering is applied; otherwise, it is determined to be second-order filtering.

需要说明的是,本领域技术人员可以理解,H的取值范围还可以划分为多阶段,例如,进一步划分为对应低低速、中低速、高低速、中速、高低速、高中速、高高速等等的多个更加细化的取值区间,每个取值区间配置有对应的目标抖动消除算法对所述运动参数观测量进行修正,以使得抖动消除算法更加精准。It should be noted that those skilled in the art can understand that the value range of H can also be divided into multiple stages, for example, further divided into corresponding low and low speeds, medium and low speeds, high and low speeds, medium speeds, high and low speeds, medium and high speeds, and high and high speeds. There are multiple more detailed value intervals, and each value interval is configured with a corresponding target jitter elimination algorithm to correct the motion parameter observations, so as to make the jitter elimination algorithm more accurate.

在一种可能的实现方式中,运动参数观测量是关节角度,图4为本公开实施例提供的基于动作捕捉的数据处理方法的原理示意图,如图4所示,将观测到的关节角度输入到运动学模型,得到关节的位置坐标。针对属于同一关节运动链中的目标关节,采用一阶滤波和二阶滤波方式分别对目标关节的位置坐标进行滤波。根据同一关节运动链中每个目标关节的一阶滤波和二阶滤波之间的差异,判断动作捕捉对象的运动状态是快速还是慢速状态。In a possible implementation, the observed motion parameter is a joint angle. Figure 4 is a schematic diagram of the principle of a data processing method based on motion capture provided by an embodiment of the present disclosure. As shown in Figure 4, the observed joint angle is input Go to the kinematic model and obtain the position coordinates of the joints. For target joints belonging to the same joint kinematic chain, first-order filtering and second-order filtering are used to filter the position coordinates of the target joint respectively. Based on the difference between the first-order filter and the second-order filter of each target joint in the same joint kinematic chain, it is judged whether the motion state of the motion capture object is fast or slow.

在快速的运动状态下,需要抖动消除效果轻微但不影响快速动作的抖动消除算法,从而如图4所示,在快速的运动状态下选择采用一阶滤波算法对目标关节的位置坐标进行滤波,以消除抖动影响的同时不影响快速动作。In a fast motion state, a jitter elimination algorithm that has a slight jitter elimination effect but does not affect fast movements is needed. Therefore, as shown in Figure 4, a first-order filtering algorithm is selected to filter the position coordinates of the target joint in a fast motion state. This eliminates the effects of jitter without affecting fast movements.

在慢速的运动状态下,需要抖动消除效果明显但影响快速动作的抖动消除算法,从而如图4所示,在慢速的运动状态下选择采用二阶滤波算法对目标关节的位置坐标进行滤波,以消除抖动影响而不必担心其对快速动作的影响。In the slow motion state, a jitter elimination algorithm with obvious jitter elimination effect but affecting fast movements is needed. Therefore, as shown in Figure 4, a second-order filtering algorithm is selected to filter the position coordinates of the target joint in the slow motion state. , to eliminate the effects of jitter without worrying about its impact on fast movements.

本实施例中,通过观测动作捕捉对象得到动作捕捉对象的关节的运动参数观测量之后,对各关节的运动参数观测量,分别采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。根据第一参考量和所述第二参考量之间的差异,选取与差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。通过两种不同的抖动消除算法结果之间的差异,体现出动作捕捉对象的运动快慢状态,进而,基于不同的运动快慢状态选取匹配的目标抖动消除算法修正运动参数观测量,提高动作捕捉对象的动作还原度。In this embodiment, after observing the motion capture object to obtain the motion parameter observations of the joints of the motion capture object, the motion parameter observations of each joint are processed using the first jitter elimination algorithm to obtain the first reference quantity, and using The second jitter elimination algorithm performs processing to obtain the second reference quantity. According to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to correct the motion parameter observation. The difference between the results of two different jitter elimination algorithms reflects the motion speed of the motion capture object. Then, based on the different motion speed states, a matching target jitter elimination algorithm is selected to correct the motion parameter observations and improve the accuracy of the motion capture object. Action restoration.

图5为本公开实施例提供的另一种基于动作捕捉的数据处理方法的流程示意图,如图5所示,包括:Figure 5 is a schematic flowchart of another data processing method based on motion capture provided by an embodiment of the present disclosure. As shown in Figure 5, it includes:

步骤501,对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量。Step 501: Observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object.

步骤502,对所述关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。Step 502: Use the first jitter elimination algorithm to process the observed motion parameters of the joints to obtain the first reference quantity, and use the second jitter elimination algorithm to process the motion parameter observations to obtain the second reference quantity.

其中,所述第二抖动消除算法的平滑强度高于所述第一抖动消除算法。Wherein, the smoothing strength of the second jitter elimination algorithm is higher than that of the first jitter elimination algorithm.

步骤501和步骤502具体可以参考前述实施例中的步骤101和步骤102。本实施例中对此不再赘述。For details of step 501 and step 502, reference may be made to step 101 and step 102 in the previous embodiment. This will not be described again in this embodiment.

步骤503,在观测得到所述运动参数观测量的关节为多个的情况下,对多个所述关节中属于同一关节运动链的至少两个目标关节,将所述差异与阈值比较。Step 503: When there are multiple joints for which the motion parameter observation is observed, compare the difference with a threshold for at least two target joints belonging to the same joint kinematic chain among the multiple joints.

进一步地,基于关节运动链与阈值之间的对应关系,确定各所述目标关节所属的关节运动链对应的所述阈值。Further, based on the corresponding relationship between the joint kinematic chain and the threshold value, the threshold value corresponding to the joint kinematic chain to which each of the target joints belongs is determined.

进一步地,根据所述多个关节之间的父子关系,确定属于同一关节运动链的至少两个目标关节。如图2所示,采用同一线条连接的关节,为属于同一关节运动链的目标关节。在运动过程中,这些关节会存在一些联动关系,即关节之间的角度或位置会相互影响,因此,基于同一关节运动链上的目标关节共同识别是否处于快速或慢速状态会得到更加准确的识别结果,提高识别准确性。Further, at least two target joints belonging to the same joint kinematic chain are determined based on the parent-child relationship between the multiple joints. As shown in Figure 2, joints connected by the same line are target joints belonging to the same joint kinematic chain. During the movement, these joints will have some linkage relationships, that is, the angles or positions between the joints will affect each other. Therefore, based on the joint identification of the target joints on the same joint kinematic chain whether they are in a fast or slow state, a more accurate result will be obtained. Recognition results and improve recognition accuracy.

步骤504,在至少两个所述目标关节中至少设定个数的目标关节满足所述差异大于所述阈值,选取所述第一抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第一参考量修正所述运动参数观测量。Step 504: If at least a set number of target joints among at least two target joints satisfy that the difference is greater than the threshold, select the first jitter elimination algorithm as the target jitter elimination algorithm to use the joints. The first reference quantity of each target joint in the kinematic chain corrects the observed motion parameter.

步骤505,在至少两个所述目标关节中少于所述设定个数的目标关节满足所述差异大于所述阈值,选取所述第二抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第二参考量修正所述运动参数观测量。Step 505: If the target joints of at least two target joints that are less than the set number satisfy that the difference is greater than the threshold, select the second jitter elimination algorithm as the target jitter elimination algorithm to use The second reference quantity of each target joint in the joint kinematic chain corrects the observed motion parameter.

根据差异与阈值之间的关系,确定采用所述关节运动链中各目标关节的第二参考量或者第一参考量修正所述运动参数观测量,在提高动作捕捉对象的动作还原度的同时,计算量也较少,仅需要计算两种抖动消除算法进而比较差异,即可选取两种之中适宜算法进行抖动消除。According to the relationship between the difference and the threshold, it is determined to use the second reference quantity or the first reference quantity of each target joint in the joint kinematic chain to correct the motion parameter observation, while improving the motion restoration degree of the motion capture object, The amount of calculation is also small. You only need to calculate two jitter elimination algorithms and compare the differences, and then you can select the appropriate algorithm among the two for jitter elimination.

本实施例中,通过观测动作捕捉对象得到动作捕捉对象的关节的运动参数观测量之后,对各关节的运动参数观测量,分别采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。根据第一参考量和所述第二参考量之间的差异,选取与差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。通过两种不同的抖动消除算法结果之间的差异,体现出动作捕捉对象的运动快慢状态,进而,基于不同的运动快慢状态选取匹配的目标抖动消除算法修正运动参数观测量,提高动作捕捉对象的动作还原度。In this embodiment, after observing the motion capture object to obtain the motion parameter observations of the joints of the motion capture object, the motion parameter observations of each joint are processed using the first jitter elimination algorithm to obtain the first reference quantity, and using The second jitter elimination algorithm performs processing to obtain the second reference quantity. According to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to correct the motion parameter observation. The difference between the results of two different jitter elimination algorithms reflects the motion speed of the motion capture object. Then, based on the different motion speed states, a matching target jitter elimination algorithm is selected to correct the motion parameter observations and improve the accuracy of the motion capture object. Action restoration.

图6为本公开实施例提供的一种基于动作捕捉的数据处理装置600的结构示意图,如图6所示,包括:观测模块601、处理模块602,以及修正模块603。Figure 6 is a schematic structural diagram of a data processing device 600 based on motion capture provided by an embodiment of the present disclosure. As shown in Figure 6, it includes: an observation module 601, a processing module 602, and a correction module 603.

观测模块601,用于对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量。The observation module 601 is used to observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object.

处理模块602,用于对所述关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量;其中,所述第二抖动消除算法的平滑强度不同于所述第一抖动消除算法。The processing module 602 is used to process the motion parameter observations of the joints using a first jitter elimination algorithm to obtain a first reference quantity, and use a second jitter elimination algorithm to process the motion parameter observations to obtain a second reference quantity; wherein, The smoothing intensity of the second jitter elimination algorithm is different from that of the first jitter cancellation algorithm.

修正模块603,用于根据所述第一参考量和所述第二参考量之间的差异,选取与所述差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。The correction module 603 is configured to select a target jitter elimination algorithm that matches the difference according to the difference between the first reference quantity and the second reference quantity to correct the motion parameter observation.

作为一种可能的实现方式,修正模块603包括:As a possible implementation, the correction module 603 includes:

生成单元,用于在观测得到所述运动参数观测量的关节为多个的情况下,基于多个所述关节中属于同一关节运动链的至少两个目标关节,生成第一矩阵和第二矩阵,其中,所述第一矩阵中各行向量与目标关节对应,用于指示对应目标关节在三维空间中的所述第一参考量,所述第二矩阵中各行向量与所述目标关节对应,用于指示对应目标关节在所述三维空间中的所述第二参考量。A generation unit configured to generate a first matrix and a second matrix based on at least two target joints belonging to the same joint kinematic chain among the plurality of joints when the motion parameter observation value is observed to be multiple joints. , wherein each row vector in the first matrix corresponds to the target joint and is used to indicate the first reference quantity of the corresponding target joint in the three-dimensional space, and each row vector in the second matrix corresponds to the target joint, using To indicate the second reference quantity corresponding to the target joint in the three-dimensional space.

选取单元,用于根据所述第一矩阵与所述第二矩阵之间的距离,选取所述目标抖动消除算法对所述运动参数观测量进行修正。A selection unit configured to select the target jitter elimination algorithm to correct the motion parameter observation according to the distance between the first matrix and the second matrix.

可选地,选取单元,用于:基于所述至少两个目标关节,生成第三矩阵,其中,所述第三矩阵中各行向量与目标关节对应,用于指示对应目标关节在所述三维空间的所述运动参数观测量;将所述第一矩阵与所述第二矩阵之间的距离,以及将所述第三矩阵与所述第二矩阵之间的距离进行加权求和,以得到距离值;根据所述距离值,选取匹配的目标抖动消除算法对所述运动参数观测量进行修正。Optionally, a unit is selected to: generate a third matrix based on the at least two target joints, wherein each row vector in the third matrix corresponds to the target joint and is used to indicate the position of the corresponding target joint in the three-dimensional space. The motion parameter observations; perform a weighted summation of the distance between the first matrix and the second matrix, and the distance between the third matrix and the second matrix to obtain the distance value; according to the distance value, select a matching target jitter elimination algorithm to correct the motion parameter observation.

选取单元,用于:基于所述距离值所属的取值区间,选取所述取值区间对应的目标抖动消除算法对所述运动参数观测量进行修正。A selection unit configured to: based on the value interval to which the distance value belongs, select a target jitter elimination algorithm corresponding to the value interval to correct the motion parameter observation.

作为另一种可能的实现方式,第二抖动消除算法的平滑强度高于所述第一抖动消除算法,基于此,修正模块603,用于:As another possible implementation, the smoothing intensity of the second jitter elimination algorithm is higher than that of the first jitter elimination algorithm. Based on this, the correction module 603 is used to:

在观测得到所述运动参数观测量的关节为多个的情况下,对多个所述关节中属于同一关节运动链的至少两个目标关节,将所述差异与阈值比较;When there are multiple joints from which the motion parameter observation is obtained, compare the difference with a threshold for at least two target joints belonging to the same joint kinematic chain among the multiple joints;

在至少两个所述目标关节中至少设定个数的目标关节满足所述差异大于所述阈值,选取所述第一抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第一参考量修正所述运动参数观测量;When at least a set number of target joints among at least two target joints satisfy that the difference is greater than the threshold, the first jitter elimination algorithm is selected as the target jitter elimination algorithm to use the joint kinematic chain. The first reference quantity of each target joint corrects the observed motion parameter;

在至少两个所述目标关节中少于所述设定个数的目标关节满足所述差异大于所述阈值,选取所述第二抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第二参考量修正所述运动参数观测量。If less than the set number of target joints among at least two target joints satisfy that the difference is greater than the threshold, the second jitter elimination algorithm is selected as the target jitter elimination algorithm to use the joints The second reference quantity of each target joint in the kinematic chain corrects the observed motion parameter.

可选地,修正模块,还用于:基于关节运动链与阈值之间的对应关系,确定各所述目标关节所属的关节运动链对应的所述阈值。Optionally, the correction module is further configured to: determine the threshold corresponding to the joint kinematic chain to which each target joint belongs based on the correspondence between the joint kinematic chain and the threshold.

可选地,基于动作捕捉的数据处理装置600还包括确定模块,用于根据所述多个关节之间的父子关系,确定属于同一关节运动链的至少两个目标关节。Optionally, the motion capture-based data processing device 600 further includes a determination module configured to determine at least two target joints belonging to the same joint kinematic chain based on the parent-child relationship between the multiple joints.

在一些可能的实施例中,观测模块601,用于:In some possible embodiments, the observation module 601 is used to:

对所述动作捕捉对象观测关节角度,以得到各所述关节的关节角度;Observe the joint angles of the motion capture object to obtain the joint angles of each joint;

采用运动学模型,基于各所述关节的关节角度识别各所述关节点的相对位置,以将所述相对位置和所述关节角度作为所述运动参数观测量。A kinematics model is used to identify the relative position of each joint point based on the joint angle of each joint, so that the relative position and the joint angle are used as the motion parameter observations.

或者,在另一些可能的实施例中,观测模块601,用于:Or, in other possible embodiments, the observation module 601 is used to:

对所述动作捕捉对象观测关节位置,以得到各所述关节的关节位置坐标;Observe the joint positions of the motion capture object to obtain the joint position coordinates of each joint;

基于各所述关节的关节位置坐标,确定各所述关节的关节角度;Determine the joint angle of each joint based on the joint position coordinates of each joint;

将所述位置坐标和所述关节角度作为所述运动参数观测量。The position coordinates and the joint angles are used as the motion parameter observations.

本实施例中,通过观测动作捕捉对象得到动作捕捉对象的关节的运动参数观测量之后,对各关节的运动参数观测量,分别采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量。根据第一参考量和所述第二参考量之间的差异,选取与差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。通过两种不同的抖动消除算法结果之间的差异,体现出动作捕捉对象的运动快慢状态,进而,基于不同的运动快慢状态选取匹配的目标抖动消除算法修正运动参数观测量,提高动作捕捉对象的动作还原度。In this embodiment, after observing the motion capture object to obtain the motion parameter observations of the joints of the motion capture object, the motion parameter observations of each joint are processed using the first jitter elimination algorithm to obtain the first reference quantity, and using The second jitter elimination algorithm performs processing to obtain the second reference quantity. According to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to correct the motion parameter observation. The difference between the results of two different jitter elimination algorithms reflects the motion speed of the motion capture object. Then, based on the different motion speed states, a matching target jitter elimination algorithm is selected to correct the motion parameter observations and improve the accuracy of the motion capture object. Action restoration.

根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。According to embodiments of the present disclosure, the present disclosure also provides an electronic device, a readable storage medium, and a computer program product.

图7示出了可以用来实施本公开的实施例的示例电子设备700的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。7 illustrates a schematic block diagram of an example electronic device 700 that may be used to implement embodiments of the present disclosure. Electronic devices are intended to refer to various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital assistants, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are examples only and are not intended to limit implementations of the disclosure described and/or claimed herein.

如图7所示,设备700包括计算单元701,其可以根据存储在ROM(Read-OnlyMemory,只读存储器)702中的计算机程序或者从存储单元708加载到RAM(Random AccessMemory,随机访问/存取存储器)703中的计算机程序,来执行各种适当的动作和处理。在RAM703中,还可存储设备700操作所需的各种程序和数据。计算单元701、ROM 702以及RAM 703通过总线704彼此相连。I/O(Input/Output,输入/输出)接口705也连接至总线704。As shown in Figure 7, the device 700 includes a computing unit 701, which can be loaded into a RAM (Random Access Memory) according to a computer program stored in a ROM (Read-Only Memory) 702 or from a storage unit 708. The computer program in the memory) 703 to perform various appropriate actions and processes. In the RAM 703, various programs and data required for the operation of the device 700 can also be stored. Computing unit 701, ROM 702 and RAM 703 are connected to each other via bus 704. I/O (Input/Output, input/output) interface 705 is also connected to bus 704.

设备700中的多个部件连接至I/O接口705,包括:输入单元706,例如键盘、鼠标等;输出单元707,例如各种类型的显示器、扬声器等;存储单元708,例如磁盘、光盘等;以及通信单元709,例如网卡、调制解调器、无线通信收发机等。通信单元709允许设备700通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Multiple components in the device 700 are connected to the I/O interface 705, including: an input unit 706, such as a keyboard, a mouse, etc.; an output unit 707, such as various types of displays, speakers, etc.; a storage unit 708, such as a magnetic disk, optical disk, etc. ; and communication unit 709, such as a network card, modem, wireless communication transceiver, etc. The communication unit 709 allows the device 700 to exchange information/data with other devices through computer networks such as the Internet and/or various telecommunications networks.

计算单元701可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元701的一些示例包括但不限于CPU(Centra lProcessing Unit,中央处理单元)、GPU(Graphic Processing Units,图形处理单元)、各种专用的AI(Artificial Intelligence,人工智能)计算芯片、各种运行机器学习模型算法的计算单元、DSP(Digita lSignalProcessor,数字信号处理器)、以及任何适当的处理器、控制器、微控制器等。计算单元701执行上文所描述的各个方法和处理。例如,在一些实施例中,基于动作捕捉的数据处理方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元708。在一些实施例中,计算机程序的部分或者全部可以经由ROM 702和/或通信单元709而被载入和/或安装到设备700上。当计算机程序加载到RAM 703并由计算单元701执行时,可以执行上文描述的方法的一个或多个步骤。备选地,在其他实施例中,计算单元701可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行基于动作捕捉的数据处理方法。Computing unit 701 may be a variety of general and/or special purpose processing components having processing and computing capabilities. Some examples of the computing unit 701 include, but are not limited to, CPU (Central Processing Unit), GPU (Graphic Processing Units), various dedicated AI (Artificial Intelligence, artificial intelligence) computing chips, various running The computing unit of the machine learning model algorithm, DSP (Digital Signal Processor, digital signal processor), and any appropriate processor, controller, microcontroller, etc. The computing unit 701 performs the various methods and processes described above. For example, in some embodiments, the motion capture-based data processing method may be implemented as a computer software program, which is tangibly embodied in a machine-readable medium, such as the storage unit 708. In some embodiments, part or all of the computer program may be loaded and/or installed onto device 700 via ROM 702 and/or communication unit 709 . When the computer program is loaded into RAM 703 and executed by computing unit 701, one or more steps of the method described above may be performed. Alternatively, in other embodiments, the computing unit 701 may be configured to perform the motion capture-based data processing method in any other suitable manner (eg, by means of firmware).

本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、FPGA(Field Programmable Gate Array,现场可编程门阵列)、ASIC(Application-Specific Integrated Circuit,专用集成电路)、ASSP(ApplicationSpecific Standard Product,专用标准产品)、SOC(System On Chip,芯片上系统的系统)、CPLD(Complex Programmable Logic Device,复杂可编程逻辑设备)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and technologies described above in this article can be implemented in digital electronic circuit systems, integrated circuit systems, FPGA (Field Programmable Gate Array, field programmable gate array), ASIC (Application-Specific Integrated Circuit, application-specific integrated circuit) , ASSP (ApplicationSpecific Standard Product, dedicated standard product), SOC (System On Chip, system on chip), CPLD (Complex Programmable Logic Device, complex programmable logic device), computer hardware, firmware, software, and/or they realized in a combination. These various embodiments may include implementation in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor The processor, which may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device. An output device.

用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program code for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, special-purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions specified in the flowcharts and/or block diagrams/ The operation is implemented. The program code may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.

在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、RAM、ROM、EPROM(Electrically Programmable Read-Only-Memory,可擦除可编程只读存储器)或快闪存储器、光纤、CD-ROM(CompactDisc Read-Only Memory,便捷式紧凑盘只读存储器)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of this disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include electrical connections based on one or more wires, laptop disks, hard disks, RAM, ROM, EPROM (Electrically Programmable Read-Only-Memory, erasable programmable read-only memory) Or flash memory, optical fiber, CD-ROM (CompactDisc Read-Only Memory, portable compact disk read-only memory), optical storage device, magnetic storage device, or any suitable combination of the above.

为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(Cathode-Ray Tube,阴极射线管)或者LCD(Liquid Crystal Display,液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。In order to provide interaction with a user, the systems and techniques described herein may be implemented on a computer having a display device (eg, CRT (Cathode-Ray Tube, cathode ray tube)) or LCD ( Liquid Crystal Display (liquid crystal display) monitor); and a keyboard and pointing device (eg, a mouse or a trackball) through which a user can provide input to the computer. Other kinds of devices may also be used to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and may be provided in any form, including Acoustic input, voice input or tactile input) to receive input from the user.

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:LAN(LocalArea Network,局域网)、WAN(Wide Area Network,广域网)、互联网和区块链网络。The systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: LAN (Local Area Network), WAN (Wide Area Network), the Internet, and blockchain networks.

计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务("Virtual Private Server",或简称"VPS")中,存在的管理难度大,业务扩展性弱的缺陷。服务器也可以为分布式系统的服务器,或者是结合了区块链的服务器。Computer systems may include clients and servers. Clients and servers are generally remote from each other and typically interact over a communications network. A client and server relationship is created by computer programs running on corresponding computers and having a client-server relationship with each other. The server can be a cloud server, also known as cloud computing server or cloud host. It is a host product in the cloud computing service system to solve the problem of traditional physical host and VPS service ("Virtual Private Server", or "VPS" for short) Among them, there are defects such as difficult management and weak business scalability. The server can also be a distributed system server or a server combined with a blockchain.

其中,需要说明的是,人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,既有硬件层面的技术也有软件层面的技术。人工智能硬件技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理等技术;人工智能软件技术主要包括计算机视觉技术、语音识别技术、自然语言处理技术以及机器学习/深度学习、大数据处理技术、知识图谱技术等几大方向。Among them, it should be noted that artificial intelligence is the study of using computers to simulate certain human thinking processes and intelligent behaviors (such as learning, reasoning, thinking, planning, etc.). It has both hardware-level technology and software-level technology. Artificial intelligence hardware technology generally includes technologies such as sensors, dedicated artificial intelligence chips, cloud computing, distributed storage, big data processing, etc.; artificial intelligence software technology mainly includes computer vision technology, speech recognition technology, natural language processing technology, and machine learning/depth Learning, big data processing technology, knowledge graph technology and other major directions.

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that various forms of the process shown above may be used, with steps reordered, added or deleted. For example, each step described in the present disclosure can be executed in parallel, sequentially, or in a different order. As long as the desired results of the technical solution disclosed in the present disclosure can be achieved, there is no limitation here.

上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the scope of the present disclosure. It will be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions are possible depending on design requirements and other factors. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of this disclosure shall be included in the protection scope of this disclosure.

Claims (21)

1.一种基于动作捕捉的数据处理方法,包括:1. A data processing method based on motion capture, including: 对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量;Observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object; 对所述关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量;其中,所述第二抖动消除算法的平滑强度不同于所述第一抖动消除算法;The motion parameter observations of the joints are processed using a first jitter elimination algorithm to obtain the first reference quantity, and are processed using a second jitter elimination algorithm to obtain the second reference quantity; wherein, the second jitter elimination algorithm The smoothing strength is different from the first jitter elimination algorithm; 根据所述第一参考量和所述第二参考量之间的差异,选取与所述差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。According to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to correct the motion parameter observation. 2.根据权利要求1所述的方法,其中,所述根据所述第一参考量和所述第二参考量之间的差异,选取与所述差异匹配的目标抖动消除算法对所述运动参数观测量进行修正,包括:2. The method according to claim 1, wherein, according to the difference between the first reference quantity and the second reference quantity, a target jitter elimination algorithm matching the difference is selected to calculate the motion parameter Observations are corrected, including: 在观测得到所述运动参数观测量的关节为多个的情况下,基于多个所述关节中属于同一关节运动链的至少两个目标关节,生成第一矩阵和第二矩阵,其中,所述第一矩阵中各行向量与目标关节对应,用于指示对应目标关节在三维空间中的所述第一参考量,所述第二矩阵中各行向量与所述目标关节对应,用于指示对应目标关节在所述三维空间中的所述第二参考量;When there are multiple joints from which the motion parameter observation is obtained, a first matrix and a second matrix are generated based on at least two target joints belonging to the same joint kinematic chain among the plurality of joints, wherein: Each row vector in the first matrix corresponds to the target joint and is used to indicate the first reference quantity of the corresponding target joint in the three-dimensional space. Each row vector in the second matrix corresponds to the target joint and is used to indicate the corresponding target joint. the second reference quantity in the three-dimensional space; 根据所述第一矩阵与所述第二矩阵之间的距离,选取所述目标抖动消除算法对所述运动参数观测量进行修正。According to the distance between the first matrix and the second matrix, the target jitter elimination algorithm is selected to correct the motion parameter observations. 3.根据权利要求2所述的方法,其中,所述第二抖动消除算法的平滑强度高于所述第一抖动消除算法;所述根据所述第一矩阵与所述第二矩阵之间的距离,选取所述目标抖动消除算法对所述运动参数观测量进行修正,包括:3. The method according to claim 2, wherein the smoothing strength of the second jitter elimination algorithm is higher than that of the first jitter elimination algorithm; distance, select the target jitter elimination algorithm to correct the motion parameter observations, including: 基于所述至少两个目标关节,生成第三矩阵,其中,所述第三矩阵中各行向量与目标关节对应,用于指示对应目标关节在所述三维空间的所述运动参数观测量;Based on the at least two target joints, generate a third matrix, wherein each row vector in the third matrix corresponds to the target joint and is used to indicate the observed motion parameter of the corresponding target joint in the three-dimensional space; 将所述第一矩阵与所述第二矩阵之间的距离,以及将所述第三矩阵与所述第二矩阵之间的距离进行加权求和,以得到距离值;Perform a weighted summation of the distance between the first matrix and the second matrix and the distance between the third matrix and the second matrix to obtain a distance value; 根据所述距离值,选取匹配的目标抖动消除算法对所述运动参数观测量进行修正。According to the distance value, a matching target jitter elimination algorithm is selected to correct the motion parameter observations. 4.根据权利要求3所述的方法,其中,所述根据所述距离值,选取匹配的目标抖动消除算法对所述运动参数观测量进行修正,包括:4. The method according to claim 3, wherein selecting a matching target jitter elimination algorithm to correct the motion parameter observations according to the distance value includes: 基于所述距离值所属的取值区间,选取所述取值区间对应的目标抖动消除算法对所述运动参数观测量进行修正。Based on the value interval to which the distance value belongs, a target jitter elimination algorithm corresponding to the value interval is selected to correct the motion parameter observation. 5.根据权利要求1所述的方法,其中,所述第二抖动消除算法的平滑强度高于所述第一抖动消除算法,所述根据所述第一参考量和所述第二参考量之间的差异,选取与所述差异匹配的目标抖动消除算法对所述运动参数观测量进行修正,包括:5. The method according to claim 1, wherein the smoothing strength of the second jitter elimination algorithm is higher than that of the first jitter elimination algorithm, and the smoothing strength is higher than that of the first jitter elimination algorithm according to the first reference quantity and the second reference quantity. The difference between the differences is selected, and the target jitter elimination algorithm matching the difference is selected to correct the motion parameter observations, including: 在观测得到所述运动参数观测量的关节为多个的情况下,对多个所述关节中属于同一关节运动链的至少两个目标关节,将所述差异与阈值比较;When there are multiple joints from which the motion parameter observation is obtained, compare the difference with a threshold for at least two target joints belonging to the same joint kinematic chain among the multiple joints; 在至少两个所述目标关节中至少设定个数的目标关节满足所述差异大于所述阈值,选取所述第一抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第一参考量修正所述运动参数观测量;When at least a set number of target joints among at least two target joints satisfy that the difference is greater than the threshold, the first jitter elimination algorithm is selected as the target jitter elimination algorithm to use the joint kinematic chain. The first reference quantity of each target joint corrects the observed motion parameter; 在至少两个所述目标关节中少于所述设定个数的目标关节满足所述差异大于所述阈值,选取所述第二抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第二参考量修正所述运动参数观测量。If less than the set number of target joints among at least two target joints satisfy that the difference is greater than the threshold, the second jitter elimination algorithm is selected as the target jitter elimination algorithm to use the joints The second reference quantity of each target joint in the kinematic chain corrects the observed motion parameter. 6.根据权利要求5所述的方法,其中,所述方法还包括:6. The method of claim 5, wherein the method further comprises: 基于关节运动链与阈值之间的对应关系,确定各所述目标关节所属的关节运动链对应的所述阈值。Based on the correspondence between the joint kinematic chain and the threshold, the threshold corresponding to the joint kinematic chain to which each target joint belongs is determined. 7.根据权利要求2或5所述的方法,其中,所述方法,还包括:7. The method according to claim 2 or 5, wherein the method further includes: 根据所述多个关节之间的父子关系,确定属于同一关节运动链的至少两个目标关节。According to the parent-child relationship between the multiple joints, at least two target joints belonging to the same joint kinematic chain are determined. 8.根据权利要求1-6任一项所述的方法,其中,所述对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量,包括:8. The method according to any one of claims 1 to 6, wherein observing the motion capture object to obtain motion parameter observations of the joints of the motion capture object includes: 对所述动作捕捉对象观测关节角度,以得到各所述关节的关节角度;Observe the joint angles of the motion capture object to obtain the joint angles of each joint; 采用运动学模型,基于各所述关节的关节角度识别各所述关节点的相对位置,以将所述相对位置和所述关节角度作为所述运动参数观测量。A kinematics model is used to identify the relative position of each joint point based on the joint angle of each joint, so that the relative position and the joint angle are used as the motion parameter observations. 9.根据权利要求1-6任一项所述的方法,其中,所述对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量,包括:9. The method according to any one of claims 1 to 6, wherein observing the motion capture object to obtain motion parameter observations of the joints of the motion capture object includes: 对所述动作捕捉对象观测关节位置,以得到各所述关节的关节位置坐标;Observe the joint positions of the motion capture object to obtain the joint position coordinates of each joint; 基于各所述关节的关节位置坐标,确定各所述关节的关节角度;Determine the joint angle of each joint based on the joint position coordinates of each joint; 将所述位置坐标和所述关节角度作为所述运动参数观测量。The position coordinates and the joint angles are used as the motion parameter observations. 10.一种基于动作捕捉的数据处理装置,包括:10. A data processing device based on motion capture, including: 观测模块,用于对动作捕捉对象进行观测,以得到所述动作捕捉对象的关节的运动参数观测量;An observation module, used to observe the motion capture object to obtain motion parameter observations of the joints of the motion capture object; 处理模块,用于对所述关节的运动参数观测量,采用第一抖动消除算法进行处理以得到第一参考量,以及采用第二抖动消除算法进行处理以得到第二参考量;其中,所述第二抖动消除算法的平滑强度不同于所述第一抖动消除算法;A processing module configured to process the motion parameter observations of the joint using a first jitter elimination algorithm to obtain a first reference quantity, and to process the motion parameter observations using a second jitter elimination algorithm to obtain a second reference quantity; wherein, the The smoothing strength of the second jitter removal algorithm is different from the first jitter cancellation algorithm; 修正模块,用于根据所述第一参考量和所述第二参考量之间的差异,选取与所述差异匹配的目标抖动消除算法对所述运动参数观测量进行修正。A correction module, configured to select a target jitter elimination algorithm that matches the difference according to the difference between the first reference quantity and the second reference quantity to correct the motion parameter observation. 11.根据权利要求10所述的装置,其中,所述修正模块,包括:11. The device according to claim 10, wherein the correction module includes: 生成单元,用于在观测得到所述运动参数观测量的关节为多个的情况下,基于多个所述关节中属于同一关节运动链的至少两个目标关节,生成第一矩阵和第二矩阵,其中,所述第一矩阵中各行向量与目标关节对应,用于指示对应目标关节在三维空间中的所述第一参考量,所述第二矩阵中各行向量与所述目标关节对应,用于指示对应目标关节在所述三维空间中的所述第二参考量;A generation unit configured to generate a first matrix and a second matrix based on at least two target joints belonging to the same joint kinematic chain among the plurality of joints when the motion parameter observation value is observed to be multiple joints. , wherein each row vector in the first matrix corresponds to the target joint and is used to indicate the first reference quantity of the corresponding target joint in the three-dimensional space, and each row vector in the second matrix corresponds to the target joint, using To indicate the second reference quantity corresponding to the target joint in the three-dimensional space; 选取单元,用于根据所述第一矩阵与所述第二矩阵之间的距离,选取所述目标抖动消除算法对所述运动参数观测量进行修正。A selection unit configured to select the target jitter elimination algorithm to correct the motion parameter observation according to the distance between the first matrix and the second matrix. 12.根据权利要求11所述的装置,其中,所述选取单元,用于:12. The device according to claim 11, wherein the selecting unit is used for: 基于所述至少两个目标关节,生成第三矩阵,其中,所述第三矩阵中各行向量与目标关节对应,用于指示对应目标关节在所述三维空间的所述运动参数观测量;Based on the at least two target joints, generate a third matrix, wherein each row vector in the third matrix corresponds to the target joint and is used to indicate the observed motion parameter of the corresponding target joint in the three-dimensional space; 将所述第一矩阵与所述第二矩阵之间的距离,以及将所述第三矩阵与所述第二矩阵之间的距离进行加权求和,以得到距离值;Perform a weighted summation of the distance between the first matrix and the second matrix and the distance between the third matrix and the second matrix to obtain a distance value; 根据所述距离值,选取匹配的目标抖动消除算法对所述运动参数观测量进行修正。According to the distance value, a matching target jitter elimination algorithm is selected to correct the motion parameter observations. 13.根据权利要求12所述的装置,其中,所述选取单元,用于:13. The device according to claim 12, wherein the selecting unit is used for: 基于所述距离值所属的取值区间,选取所述取值区间对应的目标抖动消除算法对所述运动参数观测量进行修正。Based on the value interval to which the distance value belongs, a target jitter elimination algorithm corresponding to the value interval is selected to correct the motion parameter observation. 14.根据权利要求10所述的装置,其中,所述第二抖动消除算法的平滑强度高于所述第一抖动消除算法;所述修正模块,用于:14. The device according to claim 10, wherein the smoothing strength of the second jitter elimination algorithm is higher than that of the first jitter elimination algorithm; the correction module is configured to: 在观测得到所述运动参数观测量的关节为多个的情况下,对多个所述关节中属于同一关节运动链的至少两个目标关节,将所述差异与阈值比较;When there are multiple joints from which the motion parameter observation is obtained, compare the difference with a threshold for at least two target joints belonging to the same joint kinematic chain among the multiple joints; 在至少两个所述目标关节中至少设定个数的目标关节满足所述差异大于所述阈值,选取所述第一抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第一参考量修正所述运动参数观测量;When at least a set number of target joints among at least two target joints satisfy that the difference is greater than the threshold, the first jitter elimination algorithm is selected as the target jitter elimination algorithm to use the joint kinematic chain. The first reference quantity of each target joint corrects the observed motion parameter; 在至少两个所述目标关节中少于所述设定个数的目标关节满足所述差异大于所述阈值,选取所述第二抖动消除算法作为所述目标抖动消除算法,以采用所述关节运动链中各目标关节的第二参考量修正所述运动参数观测量。If less than the set number of target joints among at least two target joints satisfy that the difference is greater than the threshold, the second jitter elimination algorithm is selected as the target jitter elimination algorithm to use the joints The second reference quantity of each target joint in the kinematic chain corrects the observed motion parameter. 15.根据权利要求14所述的装置,其中,所述修正模块,还用于:15. The device according to claim 14, wherein the correction module is also used for: 基于关节运动链与阈值之间的对应关系,确定各所述目标关节所属的关节运动链对应的所述阈值。Based on the correspondence between the joint kinematic chain and the threshold, the threshold corresponding to the joint kinematic chain to which each target joint belongs is determined. 16.根据权利要求11或14所述的装置,其中,所述装置,还包括:16. The device according to claim 11 or 14, wherein the device further includes: 确定模块,用于根据所述多个关节之间的父子关系,确定属于同一关节运动链的至少两个目标关节。A determining module, configured to determine at least two target joints belonging to the same joint kinematic chain based on the parent-child relationship between the multiple joints. 17.根据权利要求10-15任一项所述的装置,其中,所述观测模块,用于:17. The device according to any one of claims 10-15, wherein the observation module is used for: 对所述动作捕捉对象观测关节角度,以得到各所述关节的关节角度;Observe the joint angles of the motion capture object to obtain the joint angles of each joint; 采用运动学模型,基于各所述关节的关节角度识别各所述关节点的相对位置,以将所述相对位置和所述关节角度作为所述运动参数观测量。A kinematics model is used to identify the relative position of each joint point based on the joint angle of each joint, so that the relative position and the joint angle are used as the motion parameter observations. 18.根据权利要求10-15任一项所述的装置,其中,所述观测模块,用于:18. The device according to any one of claims 10-15, wherein the observation module is used for: 对所述动作捕捉对象观测关节位置,以得到各所述关节的关节位置坐标;Observe the joint positions of the motion capture object to obtain the joint position coordinates of each joint; 基于各所述关节的关节位置坐标,确定各所述关节的关节角度;Determine the joint angle of each joint based on the joint position coordinates of each joint; 将所述位置坐标和所述关节角度作为所述运动参数观测量。The position coordinates and the joint angles are used as the motion parameter observations. 19.一种电子设备,包括:19. An electronic device, comprising: 至少一个处理器;以及at least one processor; and 与所述至少一个处理器通信连接的存储器;其中,a memory communicatively connected to the at least one processor; wherein, 所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-9中任一项所述的方法。The memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can perform any one of claims 1-9. Methods. 20.一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-9中任一项所述的方法。20. A non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to perform the method according to any one of claims 1-9. 21.一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-9中任一项所述的方法。21. A computer program product comprising a computer program which, when executed by a processor, implements the method according to any one of claims 1-9.
CN202311204606.2A 2023-09-18 2023-09-18 Data processing method, device, equipment and storage medium based on motion capture Pending CN117274783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311204606.2A CN117274783A (en) 2023-09-18 2023-09-18 Data processing method, device, equipment and storage medium based on motion capture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311204606.2A CN117274783A (en) 2023-09-18 2023-09-18 Data processing method, device, equipment and storage medium based on motion capture

Publications (1)

Publication Number Publication Date
CN117274783A true CN117274783A (en) 2023-12-22

Family

ID=89209881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311204606.2A Pending CN117274783A (en) 2023-09-18 2023-09-18 Data processing method, device, equipment and storage medium based on motion capture

Country Status (1)

Country Link
CN (1) CN117274783A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101502099A (en) * 2006-05-09 2009-08-05 Nxp股份有限公司 Processing device with jitter extraction and equipment comprising such a device
CN104035557A (en) * 2014-05-22 2014-09-10 华南理工大学 Kinect action identification method based on joint activeness
CN110570455A (en) * 2019-07-22 2019-12-13 浙江工业大学 A full-body 3D pose tracking method for room VR
CN110782513A (en) * 2019-10-30 2020-02-11 北京中科深智科技有限公司 Method for real-time motion capture data debouncing composite algorithm
CN113706699A (en) * 2021-10-27 2021-11-26 腾讯科技(深圳)有限公司 Data processing method and device, electronic equipment and computer readable storage medium
CN114757855A (en) * 2022-06-16 2022-07-15 广州三七极耀网络科技有限公司 Method, device, equipment and storage medium for correcting action data
US20230144310A1 (en) * 2021-11-11 2023-05-11 Canon Kabushiki Kaisha Image capturing apparatus capable of obtaining high-quality image, method of controlling same, and storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101502099A (en) * 2006-05-09 2009-08-05 Nxp股份有限公司 Processing device with jitter extraction and equipment comprising such a device
CN104035557A (en) * 2014-05-22 2014-09-10 华南理工大学 Kinect action identification method based on joint activeness
CN110570455A (en) * 2019-07-22 2019-12-13 浙江工业大学 A full-body 3D pose tracking method for room VR
CN110782513A (en) * 2019-10-30 2020-02-11 北京中科深智科技有限公司 Method for real-time motion capture data debouncing composite algorithm
CN113706699A (en) * 2021-10-27 2021-11-26 腾讯科技(深圳)有限公司 Data processing method and device, electronic equipment and computer readable storage medium
US20230144310A1 (en) * 2021-11-11 2023-05-11 Canon Kabushiki Kaisha Image capturing apparatus capable of obtaining high-quality image, method of controlling same, and storage medium
CN114757855A (en) * 2022-06-16 2022-07-15 广州三七极耀网络科技有限公司 Method, device, equipment and storage medium for correcting action data

Similar Documents

Publication Publication Date Title
CN112785625B (en) Target tracking method, device, electronic equipment and storage medium
EP3968285A2 (en) Model training method and apparatus, keypoint positioning method and apparatus, device and medium
CN111832614A (en) Training method, device, electronic device and storage medium for target detection model
US12175792B2 (en) Method and apparatus for generating object model, electronic device and storage medium
CN113920273B (en) Image processing methods, devices, electronic equipment and storage media
CN114792355B (en) Virtual image generation method and device, electronic equipment and storage medium
CN114549710A (en) Virtual image generation method and device, electronic equipment and storage medium
CN113593043A (en) Point cloud three-dimensional reconstruction method and system based on generation countermeasure network
CN114274148A (en) A trajectory planning method, device, electronic device and storage medium
CN113035198B (en) Three-dimensional face lip movement control method, equipment and medium
CN118143940A (en) A robotic arm control method, device, equipment and storage medium based on visual large model
CN111833391B (en) Image depth information estimation method and device
US10791321B2 (en) Constructing a user's face model using particle filters
CN116129069A (en) Calculation method, device, electronic equipment and storage medium of planar area
CN114119990B (en) Method, device and computer program product for image feature point matching
CN109155004A (en) Model free control for intensified learning agency
CN114972587A (en) Expression-driven method, device, electronic device, and readable storage medium
CN117274783A (en) Data processing method, device, equipment and storage medium based on motion capture
CN114820908B (en) Virtual image generation method, device, electronic device and storage medium
CN117274370A (en) Three-dimensional pose determining method, three-dimensional pose determining device, electronic equipment and medium
CN114078184B (en) Data processing method, apparatus, electronic device and medium
CN116882482A (en) Training of virtual image generation model and virtual image generation method and device
CN116703963A (en) An AR tracking method, device, AR equipment and storage medium
CN113103239B (en) A method, device and storage medium for generating an attitude trajectory of a robot
CN112991179B (en) Method, apparatus, device and storage medium for outputting information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载