+

CN117169801B - Electromagnetic environment monitoring and calibrating system, method, device and medium - Google Patents

Electromagnetic environment monitoring and calibrating system, method, device and medium Download PDF

Info

Publication number
CN117169801B
CN117169801B CN202311446615.2A CN202311446615A CN117169801B CN 117169801 B CN117169801 B CN 117169801B CN 202311446615 A CN202311446615 A CN 202311446615A CN 117169801 B CN117169801 B CN 117169801B
Authority
CN
China
Prior art keywords
data
calibration
test signal
parameters
environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311446615.2A
Other languages
Chinese (zh)
Other versions
CN117169801A (en
Inventor
王凡
刘旭
汪代均
张光云
刘冬
蒋波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Dechen Borui Technology Co ltd
Original Assignee
Chengdu Dechen Borui Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Dechen Borui Technology Co ltd filed Critical Chengdu Dechen Borui Technology Co ltd
Priority to CN202410392066.3A priority Critical patent/CN118311490A/en
Priority to CN202410296188.2A priority patent/CN118191438A/en
Priority to CN202311446615.2A priority patent/CN117169801B/en
Publication of CN117169801A publication Critical patent/CN117169801A/en
Application granted granted Critical
Publication of CN117169801B publication Critical patent/CN117169801B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Electromagnetism (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本说明书实施例提供一种电磁环境监测校准系统、方法、装置及介质,该方法基于电磁环境监测校准系统执行,该系统包括环境监测模块、参数确定模块、校准标准源、数据采集模块以及数据处理模块,该方法包括:获取环境数据;基于环境数据与切换后的射频通道信息,确定测试信号参数;测试信号参数至少包括测试信号的频率范围、频率分布以及不同电磁频率对应的测试力度;基于测试信号参数发出测试信号;采集测试信号对应的校准数据;以及基于校准数据,确定监测补偿参数。该方法通过电磁环境监测校准装置实现。该方法还通过计算机可读存储介质存储的计算机指令被读取后运行。本发明通过对电磁信号进行实时补偿与校准,可以有效保证监测数据的准确性。

The embodiments of this specification provide an electromagnetic environment monitoring and calibration system, method, device and medium. The method is executed based on the electromagnetic environment monitoring and calibration system. The system includes an environmental monitoring module, a parameter determination module, a calibration standard source, a data acquisition module and data processing. module, the method includes: obtaining environmental data; determining test signal parameters based on the environmental data and switched radio frequency channel information; the test signal parameters at least include the frequency range, frequency distribution and test intensity corresponding to different electromagnetic frequencies of the test signal; based on the test The signal parameters send out test signals; collect calibration data corresponding to the test signals; and determine monitoring compensation parameters based on the calibration data. This method is implemented through an electromagnetic environment monitoring and calibration device. The method also uses computer instructions stored in a computer-readable storage medium to be read and executed. The present invention can effectively ensure the accuracy of monitoring data by performing real-time compensation and calibration on electromagnetic signals.

Description

一种电磁环境监测校准系统、方法、装置及介质An electromagnetic environment monitoring and calibration system, method, device and medium

技术领域Technical field

本说明书涉及电磁环境监测技术领域,特别涉及一种电磁环境监测校准系统、方法、装置及介质。This specification relates to the technical field of electromagnetic environment monitoring, and in particular to an electromagnetic environment monitoring calibration system, method, device and medium.

背景技术Background technique

由于射电望远镜具有极高的灵敏度,极易受到来自外界和自身的无线电干扰,从而影响正常运行和科学产出,因此需要对射电望远镜所处的电磁环境进行监测。但由于电磁环境监测时,每次切换射频通道带来的频道频率的变化以及环境中电磁的变化,所引起的天线的增益和系统的损耗的变化,都可能会影响监测数据的准确性。因此,有必要提供一种电磁环境监测校准系统、方法、装置及介质。Because radio telescopes have extremely high sensitivity and are extremely susceptible to radio interference from the outside world and themselves, which affects normal operation and scientific output, it is necessary to monitor the electromagnetic environment in which radio telescopes are located. However, when monitoring the electromagnetic environment, changes in the channel frequency caused by each switch of the radio frequency channel and changes in the electromagnetic environment, resulting in changes in the antenna gain and system loss, may affect the accuracy of the monitoring data. Therefore, it is necessary to provide an electromagnetic environment monitoring and calibration system, method, device and medium.

发明内容Contents of the invention

为了切换射频通道时能够自动对监测数据进行校准,以确保监测数据的准确性,本说明书提供一种电磁环境监测校准系统、方法、装置及介质。In order to automatically calibrate the monitoring data when switching radio frequency channels to ensure the accuracy of the monitoring data, this specification provides an electromagnetic environment monitoring calibration system, method, device and medium.

本说明书一个或多个实施例提供一种电磁环境监测校准系统,所述系统包括:环境监测模块、参数确定模块、校准标准源、数据采集模块以及数据处理模块;所述环境监测模块被配置为获取环境数据;所述参数确定模块被配置为基于切换后的射频通道信息确定测试信号参数,所述测试信号参数包括测试信号的频率范围、频率分布以及不同电磁频率对应的测试力度;所述校准标准源被配置为基于所述测试信号参数发出所述测试信号;所述数据采集模块被配置为采集所述测试信号对应的校准数据;所述数据处理模块被配置为基于所述校准数据,确定监测补偿参数。One or more embodiments of this specification provide an electromagnetic environment monitoring and calibration system. The system includes: an environmental monitoring module, a parameter determination module, a calibration standard source, a data acquisition module, and a data processing module; the environmental monitoring module is configured as Obtain environmental data; the parameter determination module is configured to determine test signal parameters based on the switched radio frequency channel information, the test signal parameters include the frequency range, frequency distribution and test intensity corresponding to different electromagnetic frequencies of the test signal; the calibration The standard source is configured to send the test signal based on the test signal parameters; the data acquisition module is configured to collect calibration data corresponding to the test signal; the data processing module is configured to determine based on the calibration data Monitor compensation parameters.

本说明书一个或多个实施例提供一种电磁环境监测校准方法,基于电磁环境监测校准系统执行,所述系统包括环境监测模块、参数确定模块、校准标准源、数据采集模块以及数据处理模块,所述方法包括:获取环境数据;基于所述环境数据与切换后的射频通道信息,确定测试信号参数;所述测试信号参数至少包括测试信号的频率范围、频率分布以及不同电磁频率对应的测试力度;基于所述测试信号参数发出所述测试信号;采集所述测试信号对应的校准数据;以及基于所述校准数据,确定监测补偿参数。One or more embodiments of this specification provide an electromagnetic environment monitoring and calibration method, which is executed based on an electromagnetic environment monitoring and calibration system. The system includes an environmental monitoring module, a parameter determination module, a calibration standard source, a data acquisition module and a data processing module. The method includes: obtaining environmental data; determining test signal parameters based on the environmental data and switched radio frequency channel information; the test signal parameters at least include the frequency range, frequency distribution and test intensity corresponding to different electromagnetic frequencies of the test signal; Send the test signal based on the test signal parameters; collect calibration data corresponding to the test signal; and determine monitoring compensation parameters based on the calibration data.

本说明书一个或多个实施例提供一种电磁环境监测校准装置,所述装置包括至少一个存储器和至少一个处理器;所述至少一个存储器用于存储计算机指令;所述至少一个处理器用于执行所述计算机指令中的部分指令,以实现前述的方法。One or more embodiments of this specification provide an electromagnetic environment monitoring and calibration device. The device includes at least one memory and at least one processor; the at least one memory is used to store computer instructions; the at least one processor is used to execute the Some of the instructions in the computer instructions are used to implement the aforementioned method.

本说明书一个或多个实施例提供一种计算机可读存储介质,所述存储介质存储计算机指令,当计算机读取存储介质中的计算机指令后,计算机执行前述的方法。One or more embodiments of this specification provide a computer-readable storage medium that stores computer instructions. After the computer reads the computer instructions in the storage medium, the computer executes the foregoing method.

本说明书一些实施例带来的有益效果包括但不限于:(1)通过环境数据与切换后的射频通道信息,确定测试信号参数,并基于测试信号参数发出测试信号,以及通过采集测试信号对应的校准数据,并基于校准数据确定监测补偿参数,可以对电磁信号进行实时补偿与校准,从而可以有效保证监测数据的准确性;(2)基于不同电磁频率的历史影响度与历史监测数据的准确度,确定不同电磁频率的测试信号的历史可靠度,并对可靠度较低的电磁频率进行重点强化测试,可以有效提高校准结果的可靠程度;(3)通过对测试信号分段得到的天线增益数据和系统损耗数据来确定监测补偿参数,可以有效保证监测补偿参数的准确性;(4)基于天线信息和环境信息确定增益参数,综合考虑了天线信息与环境信息对增益参数的影响,可以使得到的增益参数更加准确,从而有利于提高天线增益数据的精确度;(5)基于有效环境数据分布构建环境影响图谱,并基于环境影响图谱和天线信息,通过训练好的增益分析模型确定增益参数,可以有效保证增益参数的准确性,从而可以为快速且准确地确定天线增益数据奠定基础。此外,采用联合训练的方式对增益分析模型进行训练,不仅可以减少训练所需的样本数量,而且还可以提高训练效率。The beneficial effects brought by some embodiments of this specification include but are not limited to: (1) Determining test signal parameters through environmental data and switched radio frequency channel information, and sending out test signals based on the test signal parameters, and collecting test signals corresponding to Calibration data, and determining monitoring compensation parameters based on the calibration data, can perform real-time compensation and calibration of electromagnetic signals, thereby effectively ensuring the accuracy of monitoring data; (2) Based on the historical influence of different electromagnetic frequencies and the accuracy of historical monitoring data , determine the historical reliability of test signals of different electromagnetic frequencies, and focus on strengthening testing of electromagnetic frequencies with lower reliability, which can effectively improve the reliability of calibration results; (3) Antenna gain data obtained by segmenting test signals Determining monitoring compensation parameters with system loss data can effectively ensure the accuracy of monitoring compensation parameters; (4) Determine gain parameters based on antenna information and environmental information, comprehensively considering the impact of antenna information and environmental information on gain parameters, so that The gain parameters are more accurate, which is helpful to improve the accuracy of antenna gain data; (5) Construct an environmental impact map based on the effective environmental data distribution, and determine the gain parameters through the trained gain analysis model based on the environmental impact map and antenna information, The accuracy of the gain parameters can be effectively guaranteed, thus laying the foundation for quickly and accurately determining antenna gain data. In addition, using joint training to train the gain analysis model can not only reduce the number of samples required for training, but also improve training efficiency.

附图说明Description of the drawings

本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:This specification is further explained by way of example embodiments, which are described in detail by means of the accompanying drawings. These embodiments are not limiting. In these embodiments, the same numbers represent the same structures, where:

图1是根据本说明书一些实施例所示的电磁环境监测校准系统的模块图;Figure 1 is a module diagram of an electromagnetic environment monitoring and calibration system according to some embodiments of this specification;

图2是根据本说明书一些实施例所示的电磁环境监测校准方法的示例性流程图;Figure 2 is an exemplary flow chart of an electromagnetic environment monitoring calibration method according to some embodiments of this specification;

图3是根据本说明书一些实施例所示的测试信号参数确定方法的示例性流程图;Figure 3 is an exemplary flow chart of a method for determining test signal parameters according to some embodiments of this specification;

图4是根据本说明书一些实施例所示的监测补偿参数确定方法的示例性流程图;Figure 4 is an exemplary flow chart of a monitoring compensation parameter determination method according to some embodiments of this specification;

图5是根据本说明书一些实施例所示的天线增益数据确定方法的示例性流程图;Figure 5 is an exemplary flow chart of a method for determining antenna gain data according to some embodiments of this specification;

图6是根据本说明书一些实施例所示的增益分析模型的示例性示意图。Figure 6 is an exemplary schematic diagram of a gain analysis model according to some embodiments of the present specification.

具体实施方式Detailed ways

为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to explain the technical solutions of the embodiments of this specification more clearly, the accompanying drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some examples or embodiments of this specification. For those of ordinary skill in the art, without exerting any creative efforts, this specification can also be applied to other applications based on these drawings. Other similar scenarios. Unless obvious from the locale or otherwise stated, the same reference numbers in the figures represent the same structure or operation.

应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。It will be understood that the terms "system", "apparatus", "unit" and/or "module" as used herein are a means of distinguishing between different components, elements, parts, portions or assemblies at different levels. However, said words may be replaced by other expressions if they serve the same purpose.

如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。As shown in this specification and claims, words such as "a", "an", "an" and/or "the" do not specifically refer to the singular and may include the plural unless the context clearly indicates an exception. Generally speaking, the terms "comprising" and "comprising" only imply the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list. The method or apparatus may also include other steps or elements.

本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。Flowcharts are used in this specification to illustrate operations performed by systems according to embodiments of this specification. It should be understood that preceding or following operations are not necessarily performed in exact order. Instead, the steps can be processed in reverse order or simultaneously. At the same time, you can add other operations to these processes, or remove a step or steps from these processes.

图1是根据本说明书一些实施例所示的电磁环境监测校准系统的模块图。Figure 1 is a module diagram of an electromagnetic environment monitoring and calibration system according to some embodiments of this specification.

如图1所示,电磁环境监测校准系统100可以包括环境监测模块110、参数确定模块120、校准标准源130、数据采集模块140以及数据处理模块150。As shown in FIG. 1 , the electromagnetic environment monitoring and calibration system 100 may include an environment monitoring module 110 , a parameter determination module 120 , a calibration standard source 130 , a data acquisition module 140 and a data processing module 150 .

环境监测模块110是指用于对电磁环境进行实时监测,以获取环境数据的模块。The environmental monitoring module 110 refers to a module used to monitor the electromagnetic environment in real time to obtain environmental data.

参数确定模块120是指用于确定电磁环境监测相关数据的模块。在一些实施例中,参数确定模块120可以用于基于切换后的射频通道信息确定测试信号参数。其中,测试信号参数包括测试信号的频率范围、频率分布以及不同电磁频率对应的测试力度。The parameter determination module 120 refers to a module used to determine data related to electromagnetic environment monitoring. In some embodiments, the parameter determination module 120 may be used to determine test signal parameters based on the switched radio frequency channel information. Among them, the test signal parameters include the frequency range, frequency distribution and test intensity corresponding to different electromagnetic frequencies of the test signal.

在一些实施例中,参数确定模块120还可以进一步用于:基于切换后的射频通道信息,确定基础信号参数;基于环境数据,确定增强信号参数;以及基于基础信号参数与增强信号参数,确定测试信号参数。In some embodiments, the parameter determination module 120 may be further configured to: determine basic signal parameters based on the switched radio frequency channel information; determine enhanced signal parameters based on environmental data; and determine test parameters based on the basic signal parameters and enhanced signal parameters. signal parameters.

校准标准源130是指用于发出测试信号的信号发射装置或设备。在一些实施例中,校准标准源130可以用于基于测试信号参数发出测试信号。The calibration standard source 130 refers to a signal emitting device or equipment used to emit test signals. In some embodiments, calibration standard source 130 may be used to generate test signals based on test signal parameters.

数据采集模块140是指用于采集与电磁环境监测相关的数据的模块。在一些实施例中,数据采集模块140可以用于采集测试信号对应的校准数据。The data collection module 140 refers to a module used to collect data related to electromagnetic environment monitoring. In some embodiments, the data collection module 140 can be used to collect calibration data corresponding to the test signal.

数据处理模块150是指用于对与电磁环境监测相关的数据进行处理的模块。在一些实施例中,数据处理模块150可以用于基于校准数据,确定监测补偿参数。The data processing module 150 refers to a module used to process data related to electromagnetic environment monitoring. In some embodiments, the data processing module 150 may be used to determine monitoring compensation parameters based on the calibration data.

在一些实施例中,数据处理模块150还可以进一步用于:基于校准数据与切换后的射频通道信息,确定天线增益数据;基于天线增益数据、测试信号参数以及校准数据,确定系统损耗数据;以及基于天线增益数据与系统损耗数据,确定监测补偿参数。In some embodiments, the data processing module 150 may be further configured to: determine antenna gain data based on calibration data and switched radio frequency channel information; determine system loss data based on antenna gain data, test signal parameters and calibration data; and Based on the antenna gain data and system loss data, the monitoring compensation parameters are determined.

在一些实施例中,数据处理模块150还可以进一步用于:获取天线信息;基于天线信息与环境数据,确定增益参数;以及基于增益参数,通过预设方法确定天线增益数据。In some embodiments, the data processing module 150 may be further configured to: obtain antenna information; determine gain parameters based on the antenna information and environmental data; and determine antenna gain data through a preset method based on the gain parameters.

关于环境监测模块、参数确定模块、校准标准源、数据采集模块以及数据处理模块的更多内容,可以参见本说明书其他部分的相关描述。For more information about the environmental monitoring module, parameter determination module, calibration standard source, data acquisition module and data processing module, please refer to the relevant descriptions in other parts of this manual.

需要注意的是,以上对于电磁环境监测校准系统100及其模块的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接。在一些实施例中,图1中披露的环境监测模块110、参数确定模块120、校准标准源130、数据采集模块140和数据处理模块150可以是一个系统中的不同模块,也可以是一个模块实现上述的两个或两个以上模块的功能。例如,各个模块可以共用一个存储模块,各个模块也可以分别具有各自的存储模块。诸如此类的变形,均在本说明书的保护范围之内。It should be noted that the above description of the electromagnetic environment monitoring and calibration system 100 and its modules is only for convenience of description and does not limit this description to the scope of the embodiments. It can be understood that for those skilled in the art, after understanding the principle of the system, it is possible to arbitrarily combine various modules or form a subsystem to connect with other modules without departing from this principle. In some embodiments, the environmental monitoring module 110, parameter determination module 120, calibration standard source 130, data acquisition module 140 and data processing module 150 disclosed in Figure 1 can be different modules in a system, or can be implemented by one module. The functions of two or more modules mentioned above. For example, each module can share a storage module, or each module can have its own storage module. Such deformations are within the scope of this manual.

图2是根据本说明书一些实施例所示的电磁环境监测校准方法的示例性流程图。如图2所示,流程200包括下述步骤。在一些实施例中,流程200可以由电磁环境监测校准系统执行。Figure 2 is an exemplary flow chart of an electromagnetic environment monitoring calibration method according to some embodiments of this specification. As shown in Figure 2, process 200 includes the following steps. In some embodiments, process 200 may be performed by an electromagnetic environment monitoring calibration system.

步骤210,获取环境数据。Step 210: Obtain environmental data.

由于射电望远镜具有极高的灵敏度,极易受到来自外界和自身的无线电干扰,从而影响正常运行和科学产出,因此需要对电磁环境进行监测。环境数据是指电磁环境监测时所获取到的相关数据。在一些实施例中,环境数据可以包括环境噪音数据、环境障碍物数据、环境震动数据、环境大气数据以及电磁干扰源数据等。Because radio telescopes have extremely high sensitivity and are extremely susceptible to radio interference from the outside world and themselves, which affects normal operation and scientific output, it is necessary to monitor the electromagnetic environment. Environmental data refers to relevant data obtained during electromagnetic environment monitoring. In some embodiments, the environmental data may include environmental noise data, environmental obstacle data, environmental vibration data, environmental atmospheric data, electromagnetic interference source data, etc.

其中,环境噪音数据可以反映电磁环境监测时的噪音情况,如噪音源等。环境障碍物数据可以反映电磁环境监测时的障碍物情况。障碍物是指对电磁辐射传播产生影响或干扰的物体,如建筑物、树木等。环境震动数据可以反映电磁环境监测时的震动情况,如大型机械运行所造成的地面震动情况等。环境大气数据可以反映电磁环境监测时的大气情况,如大气的温度、湿度、气压等。电磁干扰源数据可以反映电磁环境监测时的电磁干扰源情况,如电磁干扰源的位置等。电磁干扰源是指能够产生电磁辐射的设备或装置。例如,电磁干扰源可以包括电塔、基站、广播电台等。Among them, environmental noise data can reflect the noise situation during electromagnetic environment monitoring, such as noise sources. Environmental obstacle data can reflect the obstacle conditions during electromagnetic environment monitoring. Obstacles refer to objects that affect or interfere with the propagation of electromagnetic radiation, such as buildings, trees, etc. Environmental vibration data can reflect vibration conditions during electromagnetic environment monitoring, such as ground vibration conditions caused by the operation of large machinery. Environmental atmospheric data can reflect the atmospheric conditions during electromagnetic environment monitoring, such as atmospheric temperature, humidity, air pressure, etc. Electromagnetic interference source data can reflect the situation of electromagnetic interference sources during electromagnetic environment monitoring, such as the location of electromagnetic interference sources. Electromagnetic interference sources refer to equipment or devices that can produce electromagnetic radiation. For example, sources of electromagnetic interference may include electrical towers, base stations, broadcast stations, etc.

在一些实施例中,环境数据可以通过环境监测模块获取。在一些实施例中,环境监测模块可以包括多种传感器,每种传感器用于获取环境数据中的一种数据。例如,环境监测模块可以包括声音传感器,用于获取环境声音数据。又例如,环境监测模块可以包括视觉传感器,用于获取环境障碍物数据。又例如,环境监测模块可以包括震动传感器,用于获取环境震动数据。再例如,环境监测模块可以包括温湿度传感器、气压计等,分别用于获取环境大气数据。In some embodiments, environmental data may be obtained through an environmental monitoring module. In some embodiments, the environment monitoring module may include multiple sensors, each sensor being used to acquire one type of environmental data. For example, the environment monitoring module may include a sound sensor for acquiring environmental sound data. For another example, the environment monitoring module may include a visual sensor for acquiring data on environmental obstacles. For another example, the environment monitoring module may include a vibration sensor for acquiring environmental vibration data. For another example, the environmental monitoring module may include temperature and humidity sensors, barometers, etc., respectively used to obtain environmental atmospheric data.

在一些实施例中,环境监测模块可以通过第一预设表确定电磁干扰源数据。示例性地,由于不同的射频通道的天线可以接收不同方向的电磁信号,因此可以基于天线方向与电磁干扰源构建第一预设表,天线方向与电磁干扰源的位置和数量存在对应关系,根据切换后的射频通道的天线方向即可确定电磁干扰源数据。其中,电磁干扰源的位置可以理解为电磁干扰源在电磁环境中的实际位置。在一些实施例中,电磁干扰源的位置和数量可以由人工提前输入至电磁环境监测系统。In some embodiments, the environment monitoring module may determine the electromagnetic interference source data through the first preset table. For example, since antennas of different radio frequency channels can receive electromagnetic signals in different directions, a first preset table can be constructed based on the antenna direction and the electromagnetic interference source. There is a corresponding relationship between the antenna direction and the location and number of the electromagnetic interference source. According to The antenna direction of the switched radio frequency channel can determine the electromagnetic interference source data. Among them, the location of the electromagnetic interference source can be understood as the actual location of the electromagnetic interference source in the electromagnetic environment. In some embodiments, the location and number of electromagnetic interference sources can be manually input into the electromagnetic environment monitoring system in advance.

需要说明的是,多种传感器可以相互独立设置,也可以集成设置于环境监测模块内,能够实现获取环境数据的功能即可。It should be noted that a variety of sensors can be set independently of each other, or can be integrated and set in the environmental monitoring module, as long as they can achieve the function of obtaining environmental data.

步骤220,基于环境数据与切换后的射频通道信息,确定测试信号参数。Step 220: Determine the test signal parameters based on the environmental data and the switched radio frequency channel information.

由于电磁环境监测时是通过射频通道进行监测的,不同的射频通道监测不同电磁频率的电磁信号,因此在对不同电磁频率的电磁信号进行监测时需要切换射频通道。切换是转换射频通道的方式,可以将一个射频通道转换为另一个射频通道。Since the electromagnetic environment is monitored through radio frequency channels, and different radio frequency channels monitor electromagnetic signals of different electromagnetic frequencies, it is necessary to switch radio frequency channels when monitoring electromagnetic signals of different electromagnetic frequencies. Switching is a way of converting RF channels from one RF channel to another.

切换后的射频通道信息是指与切换后的射频通道相关的信息。在一些实施例中,切换后的射频通道信息可以包括切换后的射频通道对应的天线信息、调制方式、功率限制等。The switched radio frequency channel information refers to information related to the switched radio frequency channel. In some embodiments, the switched radio frequency channel information may include antenna information, modulation mode, power limit, etc. corresponding to the switched radio frequency channel.

天线信息是指与切换后的射频通道对应的天线相关的信息。例如,天线信息可以包括天线类型、天线接收频率范围、天线方向、天线外形参数(半径、深度、曲率等)等。Antenna information refers to information related to the antenna corresponding to the switched radio frequency channel. For example, the antenna information may include antenna type, antenna receiving frequency range, antenna direction, antenna shape parameters (radius, depth, curvature, etc.), etc.

在一些实施例中,射频通道信息可以提前预设并与射频通道存在对应关系,即不同的射频通道对应不同的射频通道信息,当电磁环境监测校准系统通过切换不同的射频通道以实现电磁环境监测时,参数确定模块可以自动获取切换后的射频通道信息。In some embodiments, the radio frequency channel information can be preset in advance and has a corresponding relationship with the radio frequency channel, that is, different radio frequency channels correspond to different radio frequency channel information. When the electromagnetic environment monitoring calibration system switches different radio frequency channels to achieve electromagnetic environment monitoring , the parameter determination module can automatically obtain the switched radio frequency channel information.

测试信号参数是指与测试信号相关的参数。在一些实施例中,测试信号参数可以包括测试信号的频率范围、频率分布以及不同电磁频率对应的测试力度等。Test signal parameters refer to parameters related to the test signal. In some embodiments, the test signal parameters may include the frequency range, frequency distribution, and test intensity corresponding to different electromagnetic frequencies of the test signal.

测试信号是指校准标准源发出的,用于校准监测数据的信号。其中,监测数据可以是射频通道在进行电磁环境监测时所获取到的信号数据。The test signal refers to the signal sent by the calibration standard source and used to calibrate the monitoring data. The monitoring data may be signal data obtained by radio frequency channels during electromagnetic environment monitoring.

测试信号的频率范围是指测试信号的电磁频率值的范围。例如,测试信号的频率范围可以是30GHz~40GHz等。The frequency range of the test signal refers to the range of the electromagnetic frequency value of the test signal. For example, the frequency range of the test signal can be 30GHz~40GHz, etc.

测试信号的频率分布可以反映测试信号的电磁频率的分布情况。在一些实施例中,测试信号的频率分布可以是均匀分布,如测试信号的电磁频率为30GHz、30.2GHz、30.4GHz等。在一些实施例中,测试信号的频率分布可以是非均匀分布,如测试信号的电磁频率为30GHz、30.2GHz、30.7GHz等。The frequency distribution of the test signal can reflect the distribution of the electromagnetic frequency of the test signal. In some embodiments, the frequency distribution of the test signal may be uniformly distributed, for example, the electromagnetic frequency of the test signal is 30 GHz, 30.2 GHz, 30.4 GHz, etc. In some embodiments, the frequency distribution of the test signal may be non-uniform distribution, for example, the electromagnetic frequency of the test signal is 30 GHz, 30.2 GHz, 30.7 GHz, etc.

不同电磁频率对应的测试力度是指不同电磁频率的测试信号对应的测试次数。测试次数越多,表明测试力度越大,测试信号对应的校准数据越精准。The test intensity corresponding to different electromagnetic frequencies refers to the number of tests corresponding to test signals of different electromagnetic frequencies. The greater the number of tests, the greater the intensity of the test and the more accurate the calibration data corresponding to the test signal.

在一些实施例中,测试信号参数还可以包括测试信号的发射功率。当同一电磁频率的测试信号进行多次测试时,该电磁频率的测试信号的发射功率可以不同。在一些实施例中,测试信号的发射功率可以根据天线信息(如天线接收频率范围)均匀设置。In some embodiments, the test signal parameters may also include the transmission power of the test signal. When the test signal of the same electromagnetic frequency is tested multiple times, the transmit power of the test signal of the electromagnetic frequency can be different. In some embodiments, the transmission power of the test signal can be set uniformly according to the antenna information (such as the antenna reception frequency range).

在一些实施例中,基于环境数据与切换后的射频通道信息,参数确定模块可以基于多种方式确定测试信号参数。例如,参数确定模块可以通过第二预设表确定测试信号参数。其中,第二预设表可以基于环境数据、切换后的射频通道信息与历史数据中校准效果较好的校准数据对应的测试信号参数构建。In some embodiments, based on the environmental data and the switched radio frequency channel information, the parameter determination module can determine the test signal parameters in a variety of ways. For example, the parameter determination module may determine the test signal parameters through the second preset table. The second preset table can be constructed based on the environmental data, the switched radio frequency channel information and the test signal parameters corresponding to the calibration data with better calibration effect in the historical data.

更多关于如何确定测试信号参数的更多内容,可以参见图3及其相关描述。For more information on how to determine the test signal parameters, see Figure 3 and its related description.

步骤230,基于测试信号参数发出测试信号。Step 230: Send a test signal based on the test signal parameters.

在一些实施例中,基于测试信号参数,校准标准源可以自动发出测试信号。在一些实施例中,基于测试信号参数,电磁环境监测校准系统可以生成控制指令,以控制校准标准源发出测试信号。示例性地,电磁环境监测校准系统可以包括控制模块,基于测试信号参数,控制模块可以生成控制指令(如信号发出指令),当校准标准源接收到该控制指令后立即发出相应的测试信号。In some embodiments, the calibration standard source can automatically emit test signals based on test signal parameters. In some embodiments, based on the test signal parameters, the electromagnetic environment monitoring calibration system can generate control instructions to control the calibration standard source to emit test signals. For example, the electromagnetic environment monitoring and calibration system may include a control module. Based on the test signal parameters, the control module may generate a control instruction (such as a signal sending instruction). When the calibration standard source receives the control instruction, it immediately sends out a corresponding test signal.

步骤240,采集测试信号对应的校准数据。Step 240: Collect calibration data corresponding to the test signal.

校准数据是指数据采集模块采集到的测试信号对应的信号数据。在一些实施例中,校准数据可以包括数据采集模块采集到的电磁频率、电磁功率、电磁信号的能量以及电磁信号的波长等。可以理解地,不同的测试信号对应不同的校准数据。在一些实施例中,校准数据可以通过数据采集模块进行采集。例如,数据采集模块可以通过切换后的射频通道的天线采集校准数据。Calibration data refers to the signal data corresponding to the test signal collected by the data acquisition module. In some embodiments, the calibration data may include electromagnetic frequency, electromagnetic power, energy of the electromagnetic signal, wavelength of the electromagnetic signal, etc. collected by the data acquisition module. Understandably, different test signals correspond to different calibration data. In some embodiments, calibration data may be collected through a data collection module. For example, the data acquisition module can collect calibration data through the antenna of the switched radio frequency channel.

关于校准数据的更多内容,可以参见本说明书其他部分的相关说明(如图4及其相关描述)。For more information about calibration data, please refer to the relevant instructions in other parts of this manual (Figure 4 and its related descriptions).

步骤250,基于校准数据,确定监测补偿参数。Step 250: Determine monitoring compensation parameters based on the calibration data.

监测补偿参数是指用于对电磁信号的相关参数进行校准补偿的参数。例如,监测补偿参数至少可以包括功率补偿参数。Monitoring compensation parameters refer to parameters used to calibrate and compensate the relevant parameters of electromagnetic signals. For example, monitoring compensation parameters may include at least power compensation parameters.

在一些实施例中,基于校准数据,数据处理模块可以通过多种方式确定监测补偿参数。示例性地,数据处理模块可以对校准数据与其对应的测试信号参数进行比较,得到校准标准源发出的测试信号与数据采集模块采集到的校准数据之间的电磁功率差值,并将该电磁功率差值确定为相应的功率补偿参数。例如,频率30GHz的电磁信号的发射功率为200W,校准数据中的电磁功率为180W,则该射频通道下频率30GHz的电磁信号的功率补偿参数为20W。In some embodiments, based on the calibration data, the data processing module may determine the monitoring compensation parameters in a variety of ways. For example, the data processing module can compare the calibration data with its corresponding test signal parameters, obtain the electromagnetic power difference between the test signal sent by the calibration standard source and the calibration data collected by the data acquisition module, and convert the electromagnetic power into The difference is determined as the corresponding power compensation parameter. For example, if the transmit power of an electromagnetic signal with a frequency of 30 GHz is 200W and the electromagnetic power in the calibration data is 180W, then the power compensation parameter of the electromagnetic signal with a frequency of 30 GHz in the radio frequency channel is 20W.

关于如何确定监测补偿参数的更多内容,可以参见图4及其相关描述。For more information on how to determine the monitoring compensation parameters, see Figure 4 and its related description.

本说明书一些实施例,通过环境数据与切换后的射频通道信息,确定测试信号参数,并基于测试信号参数发出测试信号,以及通过采集测试信号对应的校准数据,并基于校准数据确定监测补偿参数,可以对电磁信号进行实时补偿与校准,从而可以有效保证监测数据的准确性。Some embodiments of this specification determine test signal parameters through environmental data and switched radio frequency channel information, and send out test signals based on the test signal parameters, and collect calibration data corresponding to the test signals, and determine monitoring compensation parameters based on the calibration data. Real-time compensation and calibration of electromagnetic signals can be performed, thus effectively ensuring the accuracy of monitoring data.

图3是根据本说明书一些实施例所示的测试信号参数确定方法的示例性流程图。如图3所示,流程300包括下述步骤。在一些实施例中,流程300可以由参数确定模块执行。FIG. 3 is an exemplary flow chart of a method for determining test signal parameters according to some embodiments of this specification. As shown in Figure 3, process 300 includes the following steps. In some embodiments, process 300 may be performed by a parameter determination module.

步骤310,基于切换后的射频通道信息,确定基础信号参数。Step 310: Determine basic signal parameters based on the switched radio frequency channel information.

基础信号参数是指测试信号参数的初始值或初始范围。可以理解地,基础信号参数可以包括测试信号的基础频率范围、基础频率分布以及不同电磁频率对应的基础测试力度等。Basic signal parameters refer to the initial values or initial ranges of test signal parameters. It can be understood that the basic signal parameters may include the basic frequency range of the test signal, the basic frequency distribution, and the basic test intensity corresponding to different electromagnetic frequencies.

在一些实施例中,参数确定模块可以将切换后的射频通道信息中的天线接收频率范围确定为测试信号的基础频率范围。In some embodiments, the parameter determination module may determine the antenna reception frequency range in the switched radio frequency channel information as the basic frequency range of the test signal.

在一些实施例中,参数确定模块可以对测试信号的基础频率范围按照预设规则进行划分,以确定测试信号的基础频率分布。其中,预设规则是指预先设定的频率划分规则。例如,预设规则可以包括等间隔(如相邻两个频率之间间隔0.2 GHz)或非等间隔(如相邻两个频率之间依次间隔0.2 GHz、0.4 GH等)划分。在一些实施例中,不同电磁频率对应的基础测试力度可以由人工预设确定,不同电磁频率对应的基础测试力度可以是相同的。In some embodiments, the parameter determination module can divide the basic frequency range of the test signal according to preset rules to determine the basic frequency distribution of the test signal. Among them, the preset rules refer to preset frequency division rules. For example, the preset rules may include equal intervals (such as 0.2 GHz between two adjacent frequencies) or unequal intervals (such as 0.2 GHz, 0.4 GH, etc. between two adjacent frequencies). In some embodiments, the basic testing intensity corresponding to different electromagnetic frequencies can be determined by manual preset, and the basic testing intensity corresponding to different electromagnetic frequencies can be the same.

步骤320,基于环境数据,确定增强信号参数。Step 320: Determine enhanced signal parameters based on environmental data.

增强信号参数是指用于强化测试效果的测试信号参数。在一些实施例中,增强信号参数可以理解为在基础信号参数的基础上对某些重点电磁频率的测试信号加大测试力度。可以理解地,增强信号参数可以包括重点电磁频率对应的测试力度增加值。Enhanced signal parameters refer to test signal parameters used to enhance the test effect. In some embodiments, enhancing signal parameters can be understood as increasing test intensity for test signals of certain key electromagnetic frequencies based on basic signal parameters. It can be understood that the enhanced signal parameters may include increased test intensity values corresponding to key electromagnetic frequencies.

在一些实施例中,基于环境数据,参数确定模块可以通过历史数据确定重点电磁频率,进而确定增强信号参数。示例性地,参数确定模块可以基于历史数据,确定满足预设条件的历史环境数据下,该射频通道监测到的数据量超过预设阈值的电磁信号所对应的电磁频率作为重点电磁频率;再相应增加重点电磁频率对应的测试力度,使重点电磁频率对应的最终测试力度大于重点电磁频率对应的基础测试力度即可。其中,预设条件是指预先设定的相似度判断条件。例如,预设条件可以是与当前环境数据的相似度不小于相似度阈值等。需要说明的是,重点电磁频率对应的测试力度增加值可以根据实际情况确定。In some embodiments, based on environmental data, the parameter determination module can determine key electromagnetic frequencies through historical data, and then determine the enhanced signal parameters. For example, the parameter determination module can determine, based on historical data, the electromagnetic frequency corresponding to the electromagnetic signal whose data amount exceeds the preset threshold under the historical environmental data that meets the preset conditions as the key electromagnetic frequency; and then respond accordingly It is enough to increase the testing intensity corresponding to key electromagnetic frequencies so that the final testing intensity corresponding to key electromagnetic frequencies is greater than the basic testing intensity corresponding to key electromagnetic frequencies. Among them, the preset conditions refer to preset similarity judgment conditions. For example, the preset condition may be that the similarity to the current environment data is not less than a similarity threshold, etc. It should be noted that the increased value of test intensity corresponding to key electromagnetic frequencies can be determined based on actual conditions.

在一些实施例中,基于环境数据确定增强信号参数还可以包括:基于历史监测效果,确定不同电磁频率的测试信号在相同环境数据下的历史可靠度;以及基于该历史可靠度,确定增强信号参数。In some embodiments, determining the enhanced signal parameters based on environmental data may also include: determining the historical reliability of test signals of different electromagnetic frequencies under the same environmental data based on historical monitoring effects; and determining the enhanced signal parameters based on the historical reliability. .

历史监测效果可以反映历史监测数据的准确度。例如,历史监测数据的准确度越高,则历史监测效果越好。The historical monitoring effect can reflect the accuracy of historical monitoring data. For example, the higher the accuracy of historical monitoring data, the better the historical monitoring effect.

历史监测数据是指每个射频通道在进行电磁环境监测时,检测到的多个电磁频率的电磁信号。历史监测数据的准确度可以反映历史监测数据与环境中真实电磁干扰数据的符合程度。Historical monitoring data refers to the electromagnetic signals of multiple electromagnetic frequencies detected by each radio frequency channel during electromagnetic environment monitoring. The accuracy of historical monitoring data can reflect the degree of consistency between the historical monitoring data and the real electromagnetic interference data in the environment.

在一些实施例中,历史监测数据的准确度可以基于射电天文望远镜的历史观测数据确定。例如,参数确定模块可以通过分析射电天文望远镜历史观测数据中的信噪比与预期信噪比的差异来判断历史监测数据的准确度。例如,射电天文望远镜历史观测数据的信噪比与预期信噪比的差异越大,则历史监测数据的准确度越低。其中,预期信噪比是指预先设定的信噪比值。在一些实施例中,预期信噪比可以是经验值、实验值或模拟值等。In some embodiments, the accuracy of historical monitoring data may be determined based on historical observation data of radio astronomy telescopes. For example, the parameter determination module can determine the accuracy of historical monitoring data by analyzing the difference between the signal-to-noise ratio in historical observation data of radio astronomical telescopes and the expected signal-to-noise ratio. For example, the greater the difference between the signal-to-noise ratio of historical observation data of radio astronomical telescopes and the expected signal-to-noise ratio, the lower the accuracy of historical monitoring data. Among them, the expected signal-to-noise ratio refers to the preset signal-to-noise ratio value. In some embodiments, the expected signal-to-noise ratio may be an empirical value, an experimental value, a simulated value, or the like.

测试信号的历史可靠度是指历史数据中,在相同环境数据下不同电磁频率的测试信号得到的校准结果的可靠程度。在一些实施例中,测试信号的历史可靠度可以通过该测试信号得到的监测补偿参数对电磁信号进行补偿后,历史监测数据的准确度确定。可以理解地,历史监测数据的准确度越高,监测补偿参数越准确,测试信号的历史可靠度也越高。The historical reliability of test signals refers to the reliability of calibration results obtained from test signals of different electromagnetic frequencies under the same environmental data in historical data. In some embodiments, the historical reliability of the test signal can be determined by the accuracy of the historical monitoring data after compensating the electromagnetic signal with the monitoring compensation parameters obtained from the test signal. Understandably, the higher the accuracy of historical monitoring data, the more accurate the monitoring compensation parameters, and the higher the historical reliability of the test signal.

在一些实施例中,基于测试信号的历史可靠度,参数确定模块可以将历史可靠度低于可靠度阈值的测试信号对应的电磁频率作为重点电磁频率。其中,可靠度阈值是指预先设定的可靠度值。在一些实施例中,可靠度阈值可以由人工设定。In some embodiments, based on the historical reliability of the test signal, the parameter determination module may use the electromagnetic frequency corresponding to the test signal whose historical reliability is lower than the reliability threshold as the key electromagnetic frequency. The reliability threshold refers to a preset reliability value. In some embodiments, the reliability threshold may be set manually.

在一些实施例中,重点电磁频率对应的测试力度增加值(增强信号参数)相关于该重点电磁频率的测试信号的历史可靠度,历史可靠度越低,该重点电磁频率对应的测试力度越大。示例性地,重点电磁频率对应的测试力度增加值可以为重点电磁频率的历史可靠度与其对应的基础测试力度的乘积的整数值。In some embodiments, the increased value (enhanced signal parameter) of the test intensity corresponding to the key electromagnetic frequency is related to the historical reliability of the test signal of the key electromagnetic frequency. The lower the historical reliability, the greater the test intensity corresponding to the key electromagnetic frequency. . For example, the increased value of the test intensity corresponding to the key electromagnetic frequency may be an integer value of the product of the historical reliability of the key electromagnetic frequency and its corresponding basic test intensity.

本说明书一些实施例,基于环境数据和历史监测效果,确定不同电磁频率的测试信号的历史可靠度,并针对历史可靠度较低的电磁频率进行重点强化测试,有利于提高校准结果的可靠程度。Some embodiments of this specification determine the historical reliability of test signals of different electromagnetic frequencies based on environmental data and historical monitoring effects, and conduct focused and intensive testing on electromagnetic frequencies with low historical reliability, which is beneficial to improving the reliability of calibration results.

在一些实施例中,基于环境数据与历史监测效果,确定不同电磁频率的测试信号的历史可靠度还可以包括:获取切换后的射频通道的历史监测数据及历史监测数据的准确度;基于不同电磁频率的历史监测数据量的占比,确定不同电磁频率的历史影响度;以及基于不同电磁频率的历史影响度、历史监测数据的准确度,确定不同电磁频率的测试信号的历史可靠度。In some embodiments, based on environmental data and historical monitoring effects, determining the historical reliability of test signals of different electromagnetic frequencies may also include: obtaining historical monitoring data of the switched radio frequency channel and the accuracy of the historical monitoring data; based on different electromagnetic frequencies. The proportion of historical monitoring data of frequency determines the historical influence of different electromagnetic frequencies; and based on the historical influence of different electromagnetic frequencies and the accuracy of historical monitoring data, the historical reliability of test signals of different electromagnetic frequencies is determined.

在一些实施例中,历史监测数据与历史监测数据的准确度存在对应关系,一个历史监测数据对应有一个历史监测数据的准确度。在一些实施例中,参数确定模块可以基于历史数据,获取切换后的射频通道的历史监测数据,及历史监测数据的准确度。In some embodiments, there is a corresponding relationship between the historical monitoring data and the accuracy of the historical monitoring data, and one historical monitoring data corresponds to the accuracy of the historical monitoring data. In some embodiments, the parameter determination module can obtain historical monitoring data of the switched radio frequency channel based on historical data, and the accuracy of the historical monitoring data.

不同电磁频率的历史监测数据量的占比是指每个电磁频率的监测数据的数量在整个射频通道的监测数据的总数量中的比值。在一些实施例中,参数确定模块可以通过对每个电磁频率的监测数据的数量与整个射频通道的监测数据的总数量进行对比,得到各个电磁频率的历史监测数据量的占比。The proportion of historical monitoring data of different electromagnetic frequencies refers to the ratio of the number of monitoring data of each electromagnetic frequency to the total number of monitoring data of the entire radio frequency channel. In some embodiments, the parameter determination module can obtain the proportion of the historical monitoring data volume of each electromagnetic frequency by comparing the quantity of monitoring data of each electromagnetic frequency with the total quantity of monitoring data of the entire radio frequency channel.

不同电磁频率的历史影响度是指不同电磁频率的监测数据在整个电磁环境监测中的影响程度。在一些实施例中,不同电磁频率的历史影响度可以通过不同电磁频率的历史监测数据量的占比进行表示。电磁频率的历史监测数据量的占比越低,则表明该电磁频率的电磁信号在电磁环境中越少,对整个电磁环境监测的影响越小,也就是说该电磁频率的历史影响度越小。The historical influence of different electromagnetic frequencies refers to the degree of influence of monitoring data of different electromagnetic frequencies on the entire electromagnetic environment monitoring. In some embodiments, the historical influence of different electromagnetic frequencies can be represented by the proportion of historical monitoring data amounts of different electromagnetic frequencies. The lower the proportion of historical monitoring data of electromagnetic frequency, the less electromagnetic signals of this electromagnetic frequency are in the electromagnetic environment, and the smaller the impact on the entire electromagnetic environment monitoring. In other words, the smaller the historical impact of this electromagnetic frequency. .

在一些实施例中,基于不同电磁频率的历史影响度、历史监测数据的准确度,参数确定模块可以通过计算确定不同电磁频率的测试信号的历史可靠度。In some embodiments, based on the historical influence of different electromagnetic frequencies and the accuracy of historical monitoring data, the parameter determination module can determine the historical reliability of test signals of different electromagnetic frequencies through calculation.

在一些实施例中,电磁频率的测试信号的历史可靠度可以正相关于该电磁频率的历史影响度以及该电磁频率的历史监测数据的平均准确度。例如,电磁频率P的测试信号的历史可靠度=电磁频率P的历史影响度×电磁频率P的历史监测数据的平均准确度。其中,电磁频率P的历史监测数据的平均准确度可以基于电磁频率P的多个历史监测数据的准确度确定。In some embodiments, the historical reliability of the test signal of the electromagnetic frequency may be positively related to the historical influence of the electromagnetic frequency and the average accuracy of the historical monitoring data of the electromagnetic frequency. For example, the historical reliability of the test signal of electromagnetic frequency P = the historical influence of electromagnetic frequency P × the average accuracy of the historical monitoring data of electromagnetic frequency P. Among them, the average accuracy of the historical monitoring data of the electromagnetic frequency P can be determined based on the accuracy of multiple historical monitoring data of the electromagnetic frequency P.

需要说明的是,不同电磁频率的测试信号的历史可靠度还可以通过其他计算方法或第三预设表等方式确定,能够体现出电磁频率的历史影响度越大、历史监测数据的准确度越高,则相应电磁频率的历史可靠度越大的关系即可。It should be noted that the historical reliability of test signals of different electromagnetic frequencies can also be determined through other calculation methods or third preset tables, which can reflect that the greater the historical influence of electromagnetic frequencies, the greater the accuracy of historical monitoring data. The higher the historical reliability of the corresponding electromagnetic frequency is, the greater the relationship is.

本说明书一些实施例,基于不同电磁频率的历史影响度与历史监测数据的准确度,确定不同电磁频率的测试信号的历史可靠度,进一步考虑了不同电磁频率的监测数据在整个电磁环境监测中的影响程度,从而可以在一定程度上保证不同电磁频率的测试信号的历史可靠度的合理性,以进一步提高校准结果的可靠程度。Some embodiments of this specification determine the historical reliability of test signals of different electromagnetic frequencies based on the historical influence of different electromagnetic frequencies and the accuracy of historical monitoring data, and further consider the role of monitoring data of different electromagnetic frequencies in the entire electromagnetic environment monitoring. The degree of influence can be ensured to a certain extent to ensure the rationality of the historical reliability of test signals of different electromagnetic frequencies, so as to further improve the reliability of the calibration results.

步骤330,基于基础信号参数与增强信号参数,确定测试信号参数。Step 330: Determine the test signal parameters based on the basic signal parameters and enhanced signal parameters.

在一些实施例中,基于基础信号参数与增强信号参数,参数确定模块可以通过对基础信号参数与增强信号参数进行合并,并将合并后得到的参数作为测试信号参数。例如,基础信号参数为(X1,Y1,Z1),增强信号参数为(X1,Y1,Z2),则测试信号参数可以为(X1,Y1,Z1+Z2)。In some embodiments, based on the basic signal parameters and the enhanced signal parameters, the parameter determination module may merge the basic signal parameters and the enhanced signal parameters, and use the combined parameters as test signal parameters. For example, if the basic signal parameters are (X 1 , Y 1 , Z 1 ) and the enhanced signal parameters are (X 1 , Y 1 , Z 2 ), then the test signal parameters can be (X 1 , Y 1 , Z 1 + Z 2 ).

在本说明书的一些实施例中,基于不同电磁频率的历史影响度与历史监测数据的准确度,确定不同电磁频率的测试信号的历史可靠度,并对可靠度较低的电磁频率进行重点强化测试,可以有效提高校准结果的可靠程度。In some embodiments of this specification, based on the historical influence of different electromagnetic frequencies and the accuracy of historical monitoring data, the historical reliability of the test signals of different electromagnetic frequencies is determined, and the electromagnetic frequencies with lower reliability are intensively tested. , which can effectively improve the reliability of calibration results.

图4是根据本说明书一些实施例所示的监测补偿参数确定方法的示例性流程图。如图4所示,流程400包括下述步骤。在一些实施例中,流程400可以由数据处理模块执行。Figure 4 is an exemplary flowchart of a monitoring compensation parameter determination method according to some embodiments of this specification. As shown in Figure 4, process 400 includes the following steps. In some embodiments, process 400 may be performed by a data processing module.

步骤410,基于校准数据与切换后的射频通道信息,确定天线增益数据。Step 410: Determine antenna gain data based on the calibration data and the switched radio frequency channel information.

天线增益数据是指与天线在特定方向上的辐射效率相关的数据。Antenna gain data refers to data related to the radiation efficiency of an antenna in a specific direction.

在一些实施例中,基于校准数据与切换后的射频通道信息,数据处理模块可以通过多种方式确定天线增益数据。In some embodiments, based on the calibration data and the switched radio frequency channel information, the data processing module can determine the antenna gain data in various ways.

在一些实施例中,数据处理模块可以根据切换后的射频通道信息中的天线信息(如天线类型、天线性能、天线外形参数(半径、深度、曲率、天线长度等)等),确定对应的天线增益公式,并基于对应的天线增益公式与天线信息,确定天线增益数据。In some embodiments, the data processing module can determine the corresponding antenna based on the antenna information (such as antenna type, antenna performance, antenna shape parameters (radius, depth, curvature, antenna length, etc.)) in the switched radio frequency channel information. Gain formula, and determine the antenna gain data based on the corresponding antenna gain formula and antenna information.

天线增益公式是指用于确定天线增益数据的计算公式。在一些实施例中,数据处理模块可以根据天线类型,确定天线增益公式。例如,对于抛物面天线,天线增益公式可以为,其中,/>为天线增益数据;D为抛物面直径,基于天线信息(如天线外形参数)确定;/>为电磁信号的波长,基于校准数据确定;4.5为经验数据。又例如,对于直立全向天线,天线增益公式可以为/>,其中,/>为天线增益数据;L为天线长度,基于天线信息确定;/>为电磁信号的波长;2为经验数据。The antenna gain formula refers to the calculation formula used to determine the antenna gain data. In some embodiments, the data processing module may determine the antenna gain formula according to the antenna type. For example, for a parabolic antenna, the antenna gain formula can be , where,/> is the antenna gain data; D is the diameter of the paraboloid, determined based on the antenna information (such as antenna shape parameters);/> is the wavelength of the electromagnetic signal, determined based on calibration data; 4.5 is empirical data. As another example, for an upright omnidirectional antenna, the antenna gain formula can be/> , where,/> is the antenna gain data; L is the antenna length, determined based on the antenna information;/> is the wavelength of the electromagnetic signal; 2 is the empirical data.

在一些实施例中,根据相应的天线增益公式,数据处理模块通过将天线信息中的相应数据(如天线信息、校准数据等)代入相应的天线增益公式,即可得到天线增益数据。In some embodiments, according to the corresponding antenna gain formula, the data processing module can obtain the antenna gain data by substituting corresponding data (such as antenna information, calibration data, etc.) in the antenna information into the corresponding antenna gain formula.

关于如何确定天线增益数据的更多内容,可以参见图5-图6及其相关描述。For more information on how to determine antenna gain data, see Figures 5-6 and their related descriptions.

步骤420,基于天线增益数据、测试信号参数以及校准数据,确定系统损耗数据。Step 420: Determine system loss data based on the antenna gain data, test signal parameters and calibration data.

系统损耗数据是指电磁环境监测校准系统的能量损耗。在一些实施例中,系统损耗数据可以包括从信号源(如校准标准源)到接收器(如数据采集模块)之间所有元件或模块的能量损失。System loss data refers to the energy loss of the electromagnetic environment monitoring and calibration system. In some embodiments, system loss data may include energy losses in all components or modules from the signal source (such as a calibration standard source) to the receiver (such as a data acquisition module).

在一些实施例中,数据处理模块可以基于天线增益数据、测试信号参数以及校准数据,通过计算得到系统损耗数据。In some embodiments, the data processing module can calculate the system loss data based on the antenna gain data, test signal parameters, and calibration data.

在一些实施例中,系统损耗数据可以与天线增益数据以及测试信号参数中的测试信号的发射功率正相关,与校准数据中的电磁信号的能量负相关。示例性的计算公式包括:系统损耗数据=测试信号的发射功率+天线增益数据-电磁信号的能量。关于测试信号的发射功率与电磁信号的能量的获取方式,可以参见图2及其相关描述。In some embodiments, the system loss data may be positively correlated with the transmit power of the test signal in the antenna gain data and test signal parameters, and negatively correlated with the energy of the electromagnetic signal in the calibration data. An exemplary calculation formula includes: system loss data = transmission power of test signal + antenna gain data - energy of electromagnetic signal. Regarding the acquisition method of the transmission power of the test signal and the energy of the electromagnetic signal, please refer to Figure 2 and its related description.

在一些实施例中,基于天线增益数据、测试信号参数以及校准数据,确定系统损耗数据还可以包括:根据测试信号参数对测试信号进行分段,得到分段信号;并基于分段信号参数、分段信号对应的校准数据及天线增益数据,确定分段信号对应的系统损耗数据。In some embodiments, based on the antenna gain data, test signal parameters and calibration data, determining the system loss data may also include: segmenting the test signal according to the test signal parameters to obtain segmented signals; and based on the segmented signal parameters, segmentation Calibration data and antenna gain data corresponding to the segment signal, and determine system loss data corresponding to the segment signal.

分段信号是指根据测试信号参数对测试信号进行均匀分段后得到的信号。在一些实施例中,数据处理模块可以根据测试信号参数中测试信号的频率分布对测试信号进行均匀分段,使得每个分段中的测试信号的频率段范围大小一致,以得到分段信号。The segmented signal refers to the signal obtained by evenly segmenting the test signal according to the test signal parameters. In some embodiments, the data processing module can uniformly segment the test signal according to the frequency distribution of the test signal in the test signal parameters, so that the frequency range of the test signal in each segment is consistent to obtain segmented signals.

示例性地,测试信号参数中测试信号的频率范围为30GHz~40GHz,测试信号的频率分布为30GHz、32GHz、34GHz、36GHz、38GHz、40GHz,则每个分段中的测试信号的频率段范围分别为30GHz~32GHz、32GHz~34GHz、34GHz~36GHz、36GHz~38GHz、38GHz~40GHz。For example, in the test signal parameters, the frequency range of the test signal is 30GHz~40GHz, and the frequency distribution of the test signal is 30GHz, 32GHz, 34GHz, 36GHz, 38GHz, and 40GHz. Then the frequency range of the test signal in each segment is respectively It is 30GHz~32GHz, 32GHz~34GHz, 34GHz~36GHz, 36GHz~38GHz, 38GHz~40GHz.

分段信号参数是指分段信号相应的测试信号参数。在一些实施例中,基于分段信号参数、分段信号对应的校准数据及天线增益数据确定分段信号对应的系统损耗数据的方法,与上述基于天线增益数据、测试信号参数以及校准数据确定系统损耗数据的方法类似,此处不再赘述。在一些实施例中,每个分段信号对应的系统损耗数据也可以用于表征电磁环境监测校准系统的能量损耗。Segmented signal parameters refer to the test signal parameters corresponding to the segmented signal. In some embodiments, the method of determining the system loss data corresponding to the segmented signal based on the segmented signal parameters, the calibration data corresponding to the segmented signal, and the antenna gain data is the same as the method for determining the system loss data based on the antenna gain data, test signal parameters, and calibration data. The method of losing data is similar and will not be described again here. In some embodiments, the system loss data corresponding to each segmented signal can also be used to characterize the energy loss of the electromagnetic environment monitoring and calibration system.

可以理解地,不同的分段信号对应不同的系统损耗数据,分段越窄,得到的系统损耗数据越精确,从而可以为后续确定更准确的监测补偿参数奠定基础,但同时这会导致系统运算压力较大、运算效率较低,因而通过对测试信号进行合理分段,确定分段信号对应的系统损耗数据,在提高系统损耗数据的精确度的同时,也可以兼顾系统的运算压力,提高运算效率。Understandably, different segmented signals correspond to different system loss data. The narrower the segmentation, the more accurate the system loss data obtained, which can lay the foundation for subsequent determination of more accurate monitoring compensation parameters, but at the same time this will lead to system calculations. The pressure is high and the computing efficiency is low. Therefore, by reasonably segmenting the test signal and determining the system loss data corresponding to the segmented signals, while improving the accuracy of the system loss data, it can also take into account the system's computing pressure and improve the computing efficiency. efficiency.

在一些实施例中,上述对测试信号进行分段还可以包括:基于不同电磁频率的测试信号的历史可靠度进行分段,历史可靠度越低的电磁频率的测试信号所属的分段越窄。In some embodiments, the above-mentioned segmentation of the test signal may also include: segmenting the test signal based on the historical reliability of different electromagnetic frequencies. The lower the historical reliability, the narrower the segment to which the test signal of the electromagnetic frequency belongs.

分段越窄是指历史可靠度越低的电磁频率的测试信号所属的分段的频率段范围越小。例如,常规的电磁频率的测试信号所属的分段的频率段范围大小是1GHz,而历史可靠度较低的电磁频率的测试信号所属的分段的频率段范围大小为0.5GHz。关于不同电磁频率的测试信号的历史可靠度的具体说明,可以参见图3及其相关描述。The narrower the segment is, the smaller the frequency range of the segment to which the test signal of the electromagnetic frequency with lower historical reliability belongs. For example, the frequency range of the segment to which a conventional electromagnetic frequency test signal belongs is 1 GHz, while the frequency range of the segment to which the electromagnetic frequency test signal with historically low reliability belongs is 0.5 GHz. For a detailed description of the historical reliability of test signals at different electromagnetic frequencies, please refer to Figure 3 and its related description.

本说明书一些实施例,基于不同电磁频率的测试信号的历史可靠度进行分段,可以使分段信号的系统损耗数据更具针对性,从而可以有效提高系统损耗数据的精确度。In some embodiments of this specification, segmentation based on the historical reliability of test signals at different electromagnetic frequencies can make the system loss data of the segmented signals more targeted, thereby effectively improving the accuracy of the system loss data.

步骤430,基于天线增益数据与系统损耗数据,确定监测补偿参数。Step 430: Determine monitoring compensation parameters based on the antenna gain data and system loss data.

在一些实施例中,数据处理模块可以通过计算系统损耗数据与天线增益数据之间的差值,并将两者之间的差值作为监测补偿参数。示例性地,分段信号对应的监测补偿参数=分段信号对应的系统损耗数据-分段信号对应的天线增益数据。In some embodiments, the data processing module may calculate the difference between the system loss data and the antenna gain data, and use the difference between the two as the monitoring compensation parameter. For example, the monitoring compensation parameter corresponding to the segmented signal = the system loss data corresponding to the segmented signal - the antenna gain data corresponding to the segmented signal.

在本说明书的一些实施例中,通过对测试信号分段得到的天线增益数据和系统损耗数据来确定监测补偿参数,可以有效保证监测补偿参数的准确性。In some embodiments of this specification, the monitoring compensation parameters are determined through the antenna gain data and system loss data obtained by segmenting the test signal, which can effectively ensure the accuracy of the monitoring compensation parameters.

图5是根据本说明书一些实施例所示的天线增益数据确定方法的示例性流程图。如图5所示,流程500包括下述步骤。在一些实施例中,流程500可以由数据处理模块执行。Figure 5 is an exemplary flowchart of a method for determining antenna gain data according to some embodiments of this specification. As shown in Figure 5, process 500 includes the following steps. In some embodiments, process 500 may be performed by a data processing module.

步骤510,获取天线信息。Step 510: Obtain antenna information.

关于天线信息的具体说明,可以参见图2及其相关描述。在一些实施例中,天线信息可以基于切换后的射频通道信息确定。For detailed description of antenna information, please refer to Figure 2 and its related description. In some embodiments, the antenna information may be determined based on the switched radio frequency channel information.

步骤520,基于天线信息与环境数据,确定增益参数。Step 520: Determine gain parameters based on the antenna information and environmental data.

增益参数是指天线增益公式中的参数。例如,对于抛物面天线,天线增益公式为,其中,参数4.5即为增益参数。Gain parameters refer to the parameters in the antenna gain formula. For example, for a parabolic antenna, the antenna gain formula is , where parameter 4.5 is the gain parameter.

在一些实施例中,不同的天线对应的增益参数不同,同样的天线在不同环境数据下的增益参数也会有所区别。在一些实施例中,基于天线信息与环境数据,数据处理模块可以通过第四预设表来确定增益参数。其中,第四预设表可以基于天线信息、环境数据与增益参数进行构建。In some embodiments, different antennas correspond to different gain parameters, and the same antenna also has different gain parameters under different environmental data. In some embodiments, based on the antenna information and environmental data, the data processing module may determine the gain parameter through a fourth preset table. Among them, the fourth preset table can be constructed based on antenna information, environmental data and gain parameters.

在一些实施例中,基于天线信息与环境数据,确定增益参数还可以包括:基于天线方向,确定天线对应的有效环境数据分布;并基于有效环境数据分布与天线信息,通过增益分析模型确定增益参数。In some embodiments, determining the gain parameters based on the antenna information and environmental data may also include: determining the effective environmental data distribution corresponding to the antenna based on the antenna direction; and determining the gain parameters through a gain analysis model based on the effective environmental data distribution and the antenna information. .

天线方向是指天线辐射或接收电磁信号的方向。在一些实施例中,天线方向可以基于天线信息确定。Antenna direction refers to the direction in which the antenna radiates or receives electromagnetic signals. In some embodiments, antenna direction may be determined based on antenna information.

有效环境数据分布可以用于表征各方向的环境数据对天线接收信号数据的有效影响。例如,对于同样频率和强度的噪音,天线正面的噪音与天线侧面的噪音对天线的影响是不同的。The effective environmental data distribution can be used to characterize the effective impact of environmental data in various directions on the signal data received by the antenna. For example, for noise of the same frequency and intensity, the noise on the front of the antenna and the noise on the side of the antenna have different effects on the antenna.

在一些实施例中,数据处理模块可以根据天线外形参数(半径、深度、曲率等)、各环境数据与天线的相对位置,通过利用算法模型、计算等方式确定有效环境数据分布。In some embodiments, the data processing module can determine the effective environmental data distribution by using algorithm models, calculations, etc. based on the antenna shape parameters (radius, depth, curvature, etc.) and the relative position of each environmental data and the antenna.

示例性地,对于环境数据中的某一个噪音源,可以先根据天线外形参数判断该环境噪音数据是否在该天线的辐射面中,若在天线的辐射面中,则可以将该环境噪音数据及其与天线辐射面正方向(天线中心的法向量)的夹角作为一个有效环境数据。由此,多个环境数据(包括环境噪音数据、环境震动数据等)及其与天线辐射面正方向的夹角即可组成有效环境数据分布。For example, for a certain noise source in the environmental data, you can first determine whether the environmental noise data is in the radiation surface of the antenna based on the antenna shape parameters. If it is in the radiation surface of the antenna, you can combine the environmental noise data with The angle between it and the positive direction of the antenna radiation surface (normal vector of the antenna center) is used as an effective environmental data. Therefore, multiple environmental data (including environmental noise data, environmental vibration data, etc.) and their angles with the positive direction of the antenna radiation surface can form an effective environmental data distribution.

在一些实施例中,数据处理模块可以通过增益分析模型对有效环境数据分布与天线信息进行处理,确定增益参数。In some embodiments, the data processing module can process the effective environmental data distribution and antenna information through a gain analysis model to determine the gain parameters.

增益分析模型是指用于基于有效环境数据分布与天线信息,确定增益参数的模型。在一些实施例中,增益分析模型可以是机器学习模型。例如,增益分析模型可以包括深度神经网络(Deep Neural Networks,DNN)模型、图神经网络(Graph Neural Networks,GNN)模型或其他自定义模型中的一种或多种的组合。The gain analysis model refers to a model used to determine gain parameters based on effective environmental data distribution and antenna information. In some embodiments, the gain analysis model may be a machine learning model. For example, the gain analysis model may include one or a combination of one or more of a Deep Neural Networks (DNN) model, a Graph Neural Networks (GNN) model, or other custom models.

在一些实施例中,增益分析模型的输入可以包括有效环境数据分布与天线信息,增益分析模型的输出可以包括增益参数。In some embodiments, the input of the gain analysis model may include effective environmental data distribution and antenna information, and the output of the gain analysis model may include gain parameters.

在一些实施例中,增益分析模型可以基于大量带有标签的训练样本训练得到。其中,训练样本可以包括样本有效环境数据分布和样本天线信息,标签可以包括训练样本对应的增益参数。训练样本可以基于历史数据确定,标签可以基于对历史数据中的不同环境数据和天线信息对应的增益参数进行统计确定。In some embodiments, the gain analysis model can be trained based on a large number of labeled training samples. The training samples may include sample effective environment data distribution and sample antenna information, and the labels may include gain parameters corresponding to the training samples. The training samples can be determined based on historical data, and the labels can be determined based on statistics of gain parameters corresponding to different environmental data and antenna information in the historical data.

在一些实施例中,数据处理模块可以将训练样本输入初始增益分析模型,通过训练迭代更新初始增益分析模型的参数,直到训练的模型满足预设训练条件,获取训练好的增益分析模型。其中,预设训练条件可以是损失函数小于阈值、收敛,或训练周期达到阈值。在一些实施例中,迭代更新模型的参数的方法可以包括随机梯度下降等常规的模型训练方法。In some embodiments, the data processing module can input training samples into the initial gain analysis model, update the parameters of the initial gain analysis model through training iterations, until the trained model meets the preset training conditions, and obtain the trained gain analysis model. Among them, the preset training condition can be that the loss function is less than the threshold, converges, or the training cycle reaches the threshold. In some embodiments, the method of iteratively updating the parameters of the model may include conventional model training methods such as stochastic gradient descent.

更多关于增益分析模型的更多内容,可以参见图6及其相关描述。For more information about the gain analysis model, see Figure 6 and its related description.

本说明书一些实施例,基于有效环境数据分布与天线信息,通过增益分析模型来确定增益参数,可以保证增益参数的准确性,而且也可以使增益参数更具针对性,从而可以提高天线增益数据的精确度。Some embodiments of this specification determine gain parameters through a gain analysis model based on effective environmental data distribution and antenna information, which can ensure the accuracy of the gain parameters, and can also make the gain parameters more targeted, thereby improving the accuracy of the antenna gain data. Accuracy.

步骤530,基于增益参数,通过预设方法确定天线增益数据。Step 530: Determine antenna gain data through a preset method based on the gain parameters.

预设方法是指预先设定的计算方法。在一些实施例中,预设方法可以包括天线增益公式。在一些实施例中,数据处理模块可以通过将增益参数代入相应的天线增益公式进行计算,得到天线增益数据。The default method refers to the preset calculation method. In some embodiments, the preset method may include an antenna gain formula. In some embodiments, the data processing module can calculate by substituting the gain parameters into the corresponding antenna gain formula to obtain the antenna gain data.

本说明书一些实施例,基于天线信息和环境信息确定增益参数,综合考虑了天线信息与环境信息对增益参数的影响,可以使得到的增益参数更加准确,从而有利于提高天线增益数据的精确度。Some embodiments of this specification determine gain parameters based on antenna information and environmental information, and comprehensively consider the impact of antenna information and environmental information on gain parameters, which can make the obtained gain parameters more accurate, thus helping to improve the accuracy of antenna gain data.

应当注意的是,上述有关流程200、流程300、流程400以及流程500的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程200、流程300、流程400以及流程500进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。It should be noted that the above descriptions of process 200, process 300, process 400, and process 500 are only for examples and illustrations, and do not limit the scope of application of this specification. For those skilled in the art, various modifications and changes can be made to the process 200, the process 300, the process 400 and the process 500 under the guidance of this description. However, such modifications and changes remain within the scope of this specification.

图6是根据本说明书一些实施例所示的增益分析模型的示例性示意图。Figure 6 is an exemplary schematic diagram of a gain analysis model according to some embodiments of the present specification.

如图6所示,增益分析模型可以包括环境嵌入层630和增益分析层650。在一些实施例中,基于有效环境数据分布与天线信息,通过增益分析模型确定增益参数可以包括:基于有效环境数据分布610,构建环境影响图谱620;将环境影响图谱620输入环境嵌入层630,确定环境影响特征640-1;以及将环境影响特征640-1与天线信息640-2输入增益分析层650,得到增益参数660。As shown in FIG. 6 , the gain analysis model may include an environment embedding layer 630 and a gain analysis layer 650 . In some embodiments, determining gain parameters through a gain analysis model based on effective environmental data distribution and antenna information may include: constructing an environmental impact map 620 based on the effective environmental data distribution 610; inputting the environmental impact map 620 into the environment embedding layer 630, determining Environmental impact characteristics 640-1; and inputting the environmental impact characteristics 640-1 and the antenna information 640-2 into the gain analysis layer 650 to obtain the gain parameters 660.

环境影响图谱620是指可以反映有效环境数据分布610的图谱。环境影响图谱620可以包括多个节点和多条边。在环境影响图谱620中,节点可以是指基于环境数据和天线生成的节点。节点的类型可以包括环境数据节点和天线节点。其中,环境数据节点可以根据环境数据类型划分为环境噪音数据节点、环境障碍物数据节点、环境震动数据节点等。The environmental impact map 620 refers to a map that can reflect the effective environmental data distribution 610. Environmental impact graph 620 may include multiple nodes and multiple edges. In the environmental impact map 620, nodes may refer to nodes generated based on environmental data and antennas. Types of nodes may include environment data nodes and antenna nodes. Among them, environmental data nodes can be divided into environmental noise data nodes, environmental obstacle data nodes, environmental vibration data nodes, etc. according to environmental data types.

环境数据节点是指以有效环境数据分布610中的环境数据生成的节点。示例性地,声音传感器监测到的每个噪音源(根据噪音的频率、强度、音色等参数区分不同噪音源)、震动传感器监测到的每个震动源(根据震动的振幅、频率、相位等参数区分不同震动源)、每个电磁干扰源等均可以作为环境数据节点。The environment data node refers to a node generated with the environment data in the effective environment data distribution 610. For example, each noise source monitored by the sound sensor (distinguish different noise sources according to the frequency, intensity, timbre and other parameters of the noise), and each vibration source monitored by the vibration sensor (based on the amplitude, frequency, phase and other parameters of the vibration) Differentiating different vibration sources), each electromagnetic interference source, etc. can be used as environmental data nodes.

例如,有效环境数据分布610中的多个环境噪音数据(对应多个噪音源),如环境噪音数据A1(对应噪音源A1)、环境噪音数据A2(对应噪音源A2),可以分别作为环境噪音数据节点a1、环境噪音数据节点a2。又例如,有效环境数据分布610中的多个环境震动数据(对应多个震动源),如环境震动数据A1(对应震动源B1)、环境震动数据B2(对应震动源B2),可以分别作为环境震动数据节点b1、环境震动数据节点b2。For example, multiple environmental noise data (corresponding to multiple noise sources) in the effective environmental data distribution 610, such as environmental noise data A1 (corresponding to noise source A1), environmental noise data A2 (corresponding to noise source A2), can be used as environmental noise respectively. Data node a1, environmental noise data node a2. For another example, multiple environmental vibration data (corresponding to multiple vibration sources) in the effective environmental data distribution 610, such as environmental vibration data A1 (corresponding to vibration source B1), environmental vibration data B2 (corresponding to vibration source B2), can be used as environment data respectively. Vibration data node b1, environment vibration data node b2.

在一些实施例中,数据处理模块可以通过对多个声音传感器监测到的环境噪音数据进行定位,以确定噪音源。例如,不同声音传感器监测到的同一个频率的声音方向,声音方向的交点就是声源位置(即噪音源)。需要说明的是,震动源的确定方法与上述噪音源的确定方法类似,此处不再赘述。In some embodiments, the data processing module can determine the source of the noise by locating environmental noise data monitored by multiple sound sensors. For example, if different sound sensors detect sound directions of the same frequency, the intersection point of the sound directions is the location of the sound source (i.e., the noise source). It should be noted that the method for determining the vibration source is similar to the method for determining the above-mentioned noise source, and will not be described again here.

在一些实施例中,环境数据节点的特征可以包括环境数据类型(如环境噪音数据、环境震动数据等)、环境数据内容(如噪音的频率、强度等数据,震动的振幅、相位、频率等数据,电磁干扰源类型等)。In some embodiments, the characteristics of the environmental data node may include environmental data type (such as environmental noise data, environmental vibration data, etc.), environmental data content (such as noise frequency, intensity, etc. data, vibration amplitude, phase, frequency, etc. data) , type of electromagnetic interference source, etc.).

天线节点是指以切换后的射频通道对应的天线生成的节点。在一些实施例中,天线节点的特征可以包括天线信息,如天线类型、天线性能、天线外形参数(半径、深度、曲率等)等。The antenna node refers to the node generated by the antenna corresponding to the switched radio frequency channel. In some embodiments, the characteristics of the antenna node may include antenna information, such as antenna type, antenna performance, antenna shape parameters (radius, depth, curvature, etc.), etc.

多个节点之间可以由边进行连接,边的特征可以反映节点之间的关系。在一些实施例中,环境影响图谱620的边可以包括第一类边。第一类边是指每个环境数据节点与天线节点之间存在的边。在一些实施例中,第一类边的特征可以反映相应的环境数据与天线之间的分布关系,如该环境数据与天线辐射面正方向的夹角等。Multiple nodes can be connected by edges, and the characteristics of edges can reflect the relationship between nodes. In some embodiments, the edges of environmental impact graph 620 may include edges of the first type. The first type of edge refers to the edge that exists between each environment data node and the antenna node. In some embodiments, the characteristics of the first type of edge can reflect the distribution relationship between the corresponding environmental data and the antenna, such as the angle between the environmental data and the positive direction of the antenna radiation surface, etc.

在一些实施例中,环境影响图谱620的边还可以包括第二类边。第二类边是指任意两个相同环境数据类型的环境数据节点之间存在的一条边。例如,环境噪音数据节点a1与环境噪音数据节点a2之间存在的一条边。又例如,环境震动数据节点b1与环境震动数据节点b2之间存在的一条边。In some embodiments, the edges of the environmental impact graph 620 may also include edges of the second type. The second type of edge refers to an edge that exists between any two environment data nodes of the same environment data type. For example, there is an edge between the environmental noise data node a1 and the environmental noise data node a2. For another example, there is an edge between the environmental vibration data node b1 and the environmental vibration data node b2.

在一些实施例中,第二类边的特征可以是第二类边两端连接的相同环境数据类型的两个环境数据之间的差值,以及两个环境数据与天线之间的分布关系的差值。In some embodiments, the characteristics of the second type of edge may be the difference between two environmental data of the same environmental data type connected at both ends of the second type of edge, and the distribution relationship between the two environmental data and the antenna. difference.

示例性地,环境噪音数据A1表示为(A11,A12,A13),其中A11为A1的噪音频率,A12为A1的噪音强度,A13为A1的噪音音色,环境噪音数据A1与天线辐射面正方向的夹角为β1;环境噪音数据A2表示为(A21,A22,A23),其中A21为A2的噪音频率,A22为A2的噪音强度,A23为A2的噪音音色,环境噪音数据A2与天线辐射面正方向的夹角为β2,那么环境噪音数据A1与环境噪音数据A2之间的差值可以为(A11-A21,A12-A22,A13-A23)或(A21-A11,A22-A12,A23-A13),环境噪音数据A1和环境噪音数据A2与天线之间的分布关系的差值可以为β12或β21For example, the environmental noise data A1 is expressed as (A 11 , A 12 , A 13 ), where A 11 is the noise frequency of A1, A 12 is the noise intensity of A1, A 13 is the noise timbre of A1, and the environmental noise data A1 The angle with the positive direction of the antenna radiation surface is β 1 ; the environmental noise data A2 is expressed as (A 21 , A 22 , A 23 ), where A 21 is the noise frequency of A2, A 22 is the noise intensity of A2, and A 23 is The noise timbre of A2, the angle between the ambient noise data A2 and the positive direction of the antenna radiation surface is β 2 , then the difference between the ambient noise data A1 and the ambient noise data A2 can be (A 11 -A 21 , A 12 -A 22 , A 13 -A 23 ) or (A 21 -A 11 , A 22 -A 12 , A 23 -A 13 ), the difference in the distribution relationship between the environmental noise data A1 and the environmental noise data A2 and the antenna can be β 12 or β 21 .

可以理解地,相同环境数据类型的两个环境数据之间可能会相互削弱或相互增强,因此将任意两个相同环境数据类型的环境数据节点之间存在的一条边作为第二类边,将每个环境数据节点与天线节点之间存在的边作为第一类边,构建环境影响图谱,可以综合考虑多个环境数据对增益参数的综合影响,以得到更为精确的增益参数。Understandably, two environmental data of the same environmental data type may weaken or enhance each other, so an edge existing between any two environmental data nodes of the same environmental data type is regarded as the second type of edge, and each The edges existing between each environmental data node and the antenna node are used as the first type of edges to construct the environmental impact map. The comprehensive impact of multiple environmental data on the gain parameters can be comprehensively considered to obtain more accurate gain parameters.

环境嵌入层630是指用于对环境影响图谱620进行处理,确定环境影响特征640-1的模型。在一些实施例中,环境嵌入层630可以是机器学习模型。例如,环境嵌入层630可以包括但不限于GNN模型等。The environment embedding layer 630 refers to a model used to process the environmental impact map 620 and determine the environmental impact characteristics 640-1. In some embodiments, environment embedding layer 630 may be a machine learning model. For example, the environment embedding layer 630 may include, but is not limited to, a GNN model and the like.

在一些实施例中,环境嵌入层630的输入可以包括环境影响图谱620,环境嵌入层630的输出可以包括环境影响特征640-1。In some embodiments, the input of the environment embedding layer 630 may include the environmental impact map 620, and the output of the environment embedding layer 630 may include the environmental impact feature 640-1.

增益分析层650是指用于对环境影响特征640-1和天线信息640-2进行处理,确定增益参数660的模型。在一些实施例中,增益分析层650可以是机器学习模型。例如,增益分析层650可以包括但不限于DNN模型等。The gain analysis layer 650 refers to a model used to process the environmental impact characteristics 640-1 and the antenna information 640-2 to determine the gain parameters 660. In some embodiments, gain analysis layer 650 may be a machine learning model. For example, the gain analysis layer 650 may include, but is not limited to, a DNN model and the like.

在一些实施例中,增益分析层650的输入可以包括环境影响特征640-1和天线信息640-2,增益分析层650的输出可以包括增益参数660。关于天线信息的具体内容,可以参见本说明书其他部分的相关描述(如图2及其相关描述)。In some embodiments, inputs to gain analysis layer 650 may include environmental impact characteristics 640-1 and antenna information 640-2, and outputs of gain analysis layer 650 may include gain parameters 660. For specific content of antenna information, please refer to the relevant descriptions in other parts of this manual (Figure 2 and its related descriptions).

在一些实施例中,增益分析模型可以通过对环境嵌入层630和增益分析层650进行联合训练获取。In some embodiments, the gain analysis model may be obtained by jointly training the environment embedding layer 630 and the gain analysis layer 650 .

在一些实施例中,数据处理模块可以基于大量带有标签的训练样本训练初始环境嵌入层和初始增益分析层。其中,训练样本可以包括基于样本有效环境数据分布确定的样本环境影响图谱和样本天线信息,该训练样本的获取方式与前述训练样本的获取方式相同。标签可以包括基于样本有效环境数据分布确定的样本环境影响图谱与样本天线信息对应的实际增益参数,标签可以基于人工标注等方式确定。In some embodiments, the data processing module may train the initial environment embedding layer and the initial gain analysis layer based on a large number of labeled training samples. The training sample may include a sample environmental impact map and sample antenna information determined based on the sample's effective environmental data distribution. The training sample is obtained in the same manner as the aforementioned training sample. The label may include the actual gain parameter corresponding to the sample environmental impact map determined based on the effective environmental data distribution of the sample and the sample antenna information. The label may be determined based on manual annotation or other methods.

示例性的训练过程包括:将样本环境影响图谱输入初始环境嵌入层,得到初始环境嵌入层输出的环境影响特征;将初始环境嵌入层输出的环境影响特征和样本天线信息输入初始增益分析层,得到初始增益分析层输出的增益参数;基于标签和初始增益分析层输出的增益参数构建损失函数,同步更新初始环境嵌入层和初始增益分析层的参数。通过参数更新,得到训练好的环境嵌入层和增益分析层。The exemplary training process includes: inputting the sample environmental impact map into the initial environment embedding layer to obtain the environmental impact characteristics output by the initial environment embedding layer; inputting the environmental impact characteristics output by the initial environment embedding layer and the sample antenna information into the initial gain analysis layer to obtain The gain parameter output by the initial gain analysis layer; construct a loss function based on the label and the gain parameter output by the initial gain analysis layer, and update the parameters of the initial environment embedding layer and the initial gain analysis layer simultaneously. Through parameter update, the trained environment embedding layer and gain analysis layer are obtained.

本说明书一些实施例,基于有效环境数据分布构建环境影响图谱,并基于环境影响图谱和天线信息,通过训练好的增益分析模型确定增益参数,可以有效保证增益参数的准确性,从而可以为快速且准确地确定天线增益数据奠定基础。此外,采用联合训练的方式对增益分析模型进行训练,不仅可以减少训练所需的样本数量,而且还可以提高训练效率。Some embodiments of this specification construct an environmental impact map based on effective environmental data distribution, and determine gain parameters through a trained gain analysis model based on the environmental impact map and antenna information, which can effectively ensure the accuracy of the gain parameters, thereby enabling fast and Lays the foundation for accurately determining antenna gain data. In addition, using joint training to train the gain analysis model can not only reduce the number of samples required for training, but also improve training efficiency.

本说明书一些实施例还提供一种电磁环境监测校准装置,该装置包括至少一个存储器和至少一个处理器。其中,至少一个存储器用于存储计算机指令,至少一个处理器用于执行计算机指令中的部分指令,以实现图2-图6中描述的方法。Some embodiments of this specification also provide an electromagnetic environment monitoring and calibration device, which includes at least one memory and at least one processor. Wherein, at least one memory is used to store computer instructions, and at least one processor is used to execute part of the computer instructions to implement the methods described in Figures 2-6.

本说明书一些实施例还提供一种计算机可读存储介质,该存储介质存储计算机指令,当计算机读取存储介质中的计算机指令后,计算机执行图2-图6中描述的方法。Some embodiments of this specification also provide a computer-readable storage medium that stores computer instructions. After the computer reads the computer instructions in the storage medium, the computer executes the method described in Figures 2-6.

上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。The basic concepts have been described above. It is obvious to those skilled in the art that the above detailed disclosure is only an example and does not constitute a limitation of this specification. Although not explicitly stated herein, various modifications, improvements, and corrections may be made to this specification by those skilled in the art. Such modifications, improvements, and corrections are suggested in this specification, and therefore such modifications, improvements, and corrections remain within the spirit and scope of the exemplary embodiments of this specification.

同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。At the same time, this specification uses specific words to describe the embodiments of this specification. For example, "one embodiment," "an embodiment," and/or "some embodiments" means a certain feature, structure, or characteristic related to at least one embodiment of this specification. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. . In addition, certain features, structures or characteristics in one or more embodiments of this specification may be appropriately combined.

此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。In addition, unless explicitly stated in the claims, the order of the processing elements and sequences, the use of numbers and letters, or the use of other names in this specification are not intended to limit the order of the processes and methods in this specification. Although the foregoing disclosure discusses by various examples some embodiments of the invention that are presently considered useful, it is to be understood that such details are for purposes of illustration only and that the appended claims are not limited to the disclosed embodiments. To the contrary, rights The claims are intended to cover all modifications and equivalent combinations consistent with the spirit and scope of the embodiments of this specification. For example, although the system components described above can be implemented through hardware devices, they can also be implemented through software-only solutions, such as installing the described system on an existing server or mobile device.

同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。Similarly, it should be noted that, in order to simplify the expression disclosed in this specification and thereby help understand one or more embodiments of the invention, in the previous description of the embodiments of this specification, multiple features are sometimes combined into one embodiment. accompanying drawings or descriptions thereof. However, this method of disclosure does not imply that the subject matter of the description requires more features than are mentioned in the claims. In fact, embodiments may have less than all features of a single disclosed embodiment.

一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。In some embodiments, numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about", "approximately" or "substantially" in some examples. Grooming. Unless otherwise stated, "about," "approximately," or "substantially" means that the stated number is allowed to vary by ±20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。Each patent, patent application, patent application publication and other material, such as articles, books, instructions, publications, documents, etc. cited in this specification is hereby incorporated by reference into this specification in its entirety. Application history documents that are inconsistent with or conflict with the contents of this specification are excluded, as are documents (currently or later appended to this specification) that limit the broadest scope of the claims in this specification. It should be noted that if there is any inconsistency or conflict between the descriptions, definitions, and/or the use of terms in the accompanying materials of this manual and the content described in this manual, the descriptions, definitions, and/or the use of terms in this manual shall prevail. .

最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。Finally, it should be understood that the embodiments described in this specification are only used to illustrate the principles of the embodiments of this specification. Other variations may also fall within the scope of this specification. Accordingly, by way of example and not limitation, alternative configurations of the embodiments of this specification may be considered consistent with the teachings of this specification. Accordingly, the embodiments of this specification are not limited to those expressly introduced and described in this specification.

Claims (4)

1.一种电磁环境监测校准系统,其特征在于,所述系统包括:环境监测模块、参数确定模块、校准标准源、数据采集模块以及数据处理模块;1. An electromagnetic environment monitoring and calibration system, characterized in that the system includes: an environmental monitoring module, a parameter determination module, a calibration standard source, a data acquisition module and a data processing module; 所述环境监测模块被配置为获取环境数据;The environmental monitoring module is configured to obtain environmental data; 所述参数确定模块被配置为基于切换后的射频通道信息确定测试信号参数,所述测试信号参数包括测试信号的频率范围、频率分布以及不同电磁频率对应的测试力度,所述不同电磁频率对应的测试力度为不同电磁频率的所述测试信号对应的测试次数;The parameter determination module is configured to determine test signal parameters based on the switched radio frequency channel information. The test signal parameters include the frequency range, frequency distribution and test intensity corresponding to different electromagnetic frequencies of the test signal. The test intensity corresponding to the different electromagnetic frequencies The test intensity is the number of tests corresponding to the test signals of different electromagnetic frequencies; 所述校准标准源被配置为基于所述测试信号参数发出所述测试信号;The calibration standard source is configured to emit the test signal based on the test signal parameters; 所述数据采集模块被配置为采集所述测试信号对应的校准数据;The data collection module is configured to collect calibration data corresponding to the test signal; 所述数据处理模块被配置为基于所述校准数据,确定监测补偿参数;The data processing module is configured to determine monitoring compensation parameters based on the calibration data; 所述数据处理模块进一步被配置为:The data processing module is further configured to: 基于所述校准数据与所述切换后的射频通道信息,确定天线增益数据;Determine antenna gain data based on the calibration data and the switched radio frequency channel information; 基于所述天线增益数据、所述测试信号参数以及所述校准数据,确定系统损耗数据;Determine system loss data based on the antenna gain data, the test signal parameters, and the calibration data; 基于所述天线增益数据与所述系统损耗数据,确定所述监测补偿参数;Determine the monitoring compensation parameters based on the antenna gain data and the system loss data; 所述数据处理模块进一步被配置为:The data processing module is further configured to: 获取天线信息;Get antenna information; 基于所述天线信息与所述环境数据,确定增益参数;Determine gain parameters based on the antenna information and the environmental data; 基于所述增益参数,通过预设方法确定所述天线增益数据;Based on the gain parameter, determine the antenna gain data through a preset method; 所述参数确定模块进一步被配置为:The parameter determination module is further configured as: 基于所述切换后的射频通道信息,确定基础信号参数;Based on the switched radio frequency channel information, determine basic signal parameters; 基于所述环境数据,确定增强信号参数,所述增强信号参数为用于强化测试效果的测试信号参数;Based on the environmental data, determine enhanced signal parameters, where the enhanced signal parameters are test signal parameters used to enhance the test effect; 基于所述基础信号参数与所述增强信号参数,确定所述测试信号参数。The test signal parameters are determined based on the basic signal parameters and the enhanced signal parameters. 2.一种电磁环境监测校准方法,其特征在于,基于如权利要求1所述的电磁环境监测校准系统执行,所述系统包括环境监测模块、参数确定模块、校准标准源、数据采集模块以及数据处理模块,所述方法包括:2. An electromagnetic environment monitoring and calibration method, characterized in that it is executed based on the electromagnetic environment monitoring and calibration system as claimed in claim 1, which system includes an environmental monitoring module, a parameter determination module, a calibration standard source, a data acquisition module and a data Processing module, the method includes: 基于所述环境监测模块获取环境数据;Obtain environmental data based on the environmental monitoring module; 基于所述环境数据与切换后的射频通道信息,通过所述参数确定模块确定测试信号参数;所述测试信号参数至少包括测试信号的频率范围、频率分布以及不同电磁频率对应的测试力度,所述不同电磁频率对应的测试力度为不同电磁频率的所述测试信号对应的测试次数;Based on the environmental data and the switched radio frequency channel information, the test signal parameters are determined through the parameter determination module; the test signal parameters at least include the frequency range, frequency distribution and test intensity corresponding to different electromagnetic frequencies of the test signal. The test intensity corresponding to different electromagnetic frequencies is the number of tests corresponding to the test signals of different electromagnetic frequencies; 基于所述测试信号参数,通过所述校准标准源发出所述测试信号;Based on the test signal parameters, send the test signal through the calibration standard source; 基于所述数据采集模块采集所述测试信号对应的校准数据;Collect calibration data corresponding to the test signal based on the data acquisition module; 基于所述校准数据,通过所述数据处理模块确定监测补偿参数;Based on the calibration data, determine monitoring compensation parameters through the data processing module; 所述基于所述校准数据,通过所述数据处理模块确定监测补偿参数包括:Determining monitoring compensation parameters through the data processing module based on the calibration data includes: 基于所述校准数据与所述切换后的射频通道信息,确定天线增益数据;Determine antenna gain data based on the calibration data and the switched radio frequency channel information; 基于所述天线增益数据、所述测试信号参数以及所述校准数据,确定系统损耗数据;Determine system loss data based on the antenna gain data, the test signal parameters, and the calibration data; 基于所述天线增益数据与所述系统损耗数据,确定所述监测补偿参数;Determine the monitoring compensation parameters based on the antenna gain data and the system loss data; 所述确定天线增益数据还包括:Determining the antenna gain data also includes: 获取天线信息;Get antenna information; 基于所述天线信息与所述环境数据,确定增益参数;Determine gain parameters based on the antenna information and the environmental data; 基于所述增益参数,通过预设方法确定所述天线增益数据;Based on the gain parameter, determine the antenna gain data through a preset method; 所述基于所述环境数据与切换后的射频通道信息,通过所述参数确定模块确定测试信号参数包括:Determining the test signal parameters through the parameter determination module based on the environmental data and the switched radio frequency channel information includes: 基于所述切换后的射频通道信息,确定基础信号参数;Based on the switched radio frequency channel information, determine basic signal parameters; 基于所述环境数据,确定增强信号参数,所述增强信号参数为用于强化测试效果的测试信号参数;Based on the environmental data, determine enhanced signal parameters, where the enhanced signal parameters are test signal parameters used to enhance the test effect; 基于所述基础信号参数与所述增强信号参数,确定所述测试信号参数。The test signal parameters are determined based on the basic signal parameters and the enhanced signal parameters. 3.一种电磁环境监测校准装置,其特征在于,包括至少一个存储器和至少一个处理器;3. An electromagnetic environment monitoring and calibration device, characterized in that it includes at least one memory and at least one processor; 所述至少一个存储器被配置为存储计算机指令;the at least one memory is configured to store computer instructions; 所述至少一个处理器被配置为执行所述计算机指令中的部分指令,以实现如权利要求2所述的方法。The at least one processor is configured to execute part of the computer instructions to implement the method of claim 2. 4.一种计算机可读存储介质,其特征在于,所述存储介质存储计算机指令,当计算机读取存储介质中的计算机指令后,计算机执行如权利要求2所述的方法。4. A computer-readable storage medium, characterized in that the storage medium stores computer instructions. After the computer reads the computer instructions in the storage medium, the computer executes the method of claim 2.
CN202311446615.2A 2023-11-02 2023-11-02 Electromagnetic environment monitoring and calibrating system, method, device and medium Active CN117169801B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202410392066.3A CN118311490A (en) 2023-11-02 2023-11-02 Electromagnetic environment monitoring compensation parameter determining method and system
CN202410296188.2A CN118191438A (en) 2023-11-02 2023-11-02 Test signal parameter determining method and system for electromagnetic environment monitoring
CN202311446615.2A CN117169801B (en) 2023-11-02 2023-11-02 Electromagnetic environment monitoring and calibrating system, method, device and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311446615.2A CN117169801B (en) 2023-11-02 2023-11-02 Electromagnetic environment monitoring and calibrating system, method, device and medium

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202410296188.2A Division CN118191438A (en) 2023-11-02 2023-11-02 Test signal parameter determining method and system for electromagnetic environment monitoring
CN202410392066.3A Division CN118311490A (en) 2023-11-02 2023-11-02 Electromagnetic environment monitoring compensation parameter determining method and system

Publications (2)

Publication Number Publication Date
CN117169801A CN117169801A (en) 2023-12-05
CN117169801B true CN117169801B (en) 2024-03-19

Family

ID=88947236

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202410392066.3A Pending CN118311490A (en) 2023-11-02 2023-11-02 Electromagnetic environment monitoring compensation parameter determining method and system
CN202311446615.2A Active CN117169801B (en) 2023-11-02 2023-11-02 Electromagnetic environment monitoring and calibrating system, method, device and medium
CN202410296188.2A Pending CN118191438A (en) 2023-11-02 2023-11-02 Test signal parameter determining method and system for electromagnetic environment monitoring

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202410392066.3A Pending CN118311490A (en) 2023-11-02 2023-11-02 Electromagnetic environment monitoring compensation parameter determining method and system

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202410296188.2A Pending CN118191438A (en) 2023-11-02 2023-11-02 Test signal parameter determining method and system for electromagnetic environment monitoring

Country Status (1)

Country Link
CN (3) CN118311490A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368586B (en) * 2023-12-08 2024-03-19 成都德辰博睿科技有限公司 Radio astronomical environment electromagnetic monitoring method, system, device and storage medium
CN119310354B (en) * 2024-04-02 2025-08-05 成都德辰博睿科技有限公司 A parameter analysis system and method for electromagnetic monitoring
CN120275728B (en) * 2025-06-06 2025-08-19 南京华鹄科技发展有限公司 Parameter measurement method for frequency modulation monitoring antenna

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064902A (en) * 2006-04-25 2007-10-31 大唐移动通信设备有限公司 Method for real-time calibrating intelligent antenna
CN102780518A (en) * 2011-05-09 2012-11-14 华为技术有限公司 Calibration method and device of antenna gain
CN103117781A (en) * 2013-02-01 2013-05-22 华中科技大学 Method and device for antenna array calibration under complex electromagnetic environment
CN106803774A (en) * 2015-11-26 2017-06-06 北京信威通信技术股份有限公司 Antenna and radio-frequency channel calibration system and method
CN107959533A (en) * 2016-10-17 2018-04-24 华为技术有限公司 A kind of wireless device and radio-frequency channel calibration method
CN108768548A (en) * 2018-06-12 2018-11-06 Oppo广东移动通信有限公司 Radio frequency calibration method, device, mobile terminal and computer readable storage medium
CN109088679A (en) * 2018-08-31 2018-12-25 京信通信系统(中国)有限公司 Active Arrays calibration system, method, apparatus and Active Arrays system
WO2019165842A1 (en) * 2018-03-02 2019-09-06 京信通信系统(中国)有限公司 Method, device and equipment for calibrating antenna
CN111929708A (en) * 2020-06-30 2020-11-13 中国科学院国家授时中心 Antenna and receiving channel calibration system and method for signal quality evaluation
CN114006663A (en) * 2021-09-18 2022-02-01 中国电子科技集团公司第二十九研究所 Correction method and correction system for improving correction efficiency
CN114415134A (en) * 2022-01-20 2022-04-29 北京环境特性研究所 Calibration device and calibration method for electromagnetic characteristic measurement system
CN217428131U (en) * 2022-04-28 2022-09-13 中国移动通信有限公司研究院 Calibration equipment, base station antenna and antenna system
CN115603835A (en) * 2022-10-09 2023-01-13 北京天地一格科技有限公司(Cn) Phased array radar antenna online calibration method and system
CN115882988A (en) * 2023-02-23 2023-03-31 中山香山微波科技有限公司 Antenna environment testing method, system, device, electronic equipment and storage medium

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576335B2 (en) * 1996-10-31 2004-10-13 松下電器産業株式会社 Method and apparatus for extracting abnormalities in process processing steps
JP3832139B2 (en) * 1999-05-17 2006-10-11 三菱電機株式会社 Radar signal processor
US6859642B2 (en) * 2002-04-29 2005-02-22 Nokia Corporation Calibration of signal strength measurements in a cellular communications system
US9116232B2 (en) * 2012-04-13 2015-08-25 Apple Inc. Methods and apparatus for testing satellite navigation system receiver performance
GB2517218B (en) * 2013-08-16 2017-10-04 Analog Devices Global Communication unit and method of antenna array calibration
US11016173B2 (en) * 2015-04-27 2021-05-25 Vayyar Imaging Ltd. System and methods for calibrating an antenna array using targets
CN106301629A (en) * 2015-06-12 2017-01-04 中兴通讯股份有限公司 Broadband multi-band signal detecting method and device and wireless communication system
CN105021887A (en) * 2015-06-30 2015-11-04 北京航空航天大学 System for automatically collecting data of electromagnetic environment for testing of data chain of unmanned plane
CN110350988B (en) * 2019-07-30 2022-02-25 中国信息通信研究院 OTA performance test system of intelligent wearable equipment under interference condition
CN111967118A (en) * 2019-12-12 2020-11-20 熊军 Device and method for constructing circular antenna array
CN111505555B (en) * 2020-03-26 2022-08-12 中国航天系统科学与工程研究院 Non-coherent electromagnetic detection external field automatic calibration system and method
CN113965876B (en) * 2021-09-14 2023-12-12 成都德辰博睿科技有限公司 Method for realizing comprehensive test platform of monitoring system
CN114384874B (en) * 2021-12-16 2024-10-18 江苏核电有限公司 Data processing method for judging electromagnetic sensitivity of instrument control signal of nuclear power plant
CN115001602B (en) * 2022-05-07 2023-05-09 成都美数科技有限公司 Multichannel receiver error dynamic correction method, system, terminal and medium
CN115085829B (en) * 2022-05-18 2023-08-29 珠海云洲智能科技股份有限公司 Sensitivity testing method and electronic equipment under multipath fading interference
CN115015661A (en) * 2022-06-01 2022-09-06 深圳市德普华电子测试技术有限公司 Radio frequency electromagnetic field immunity testing method and device, electronic equipment and storage medium
CN115374561A (en) * 2022-08-23 2022-11-22 中国兵器装备集团上海电控研究所 Reliability analysis design method and system based on quality improvement
CN115290991B (en) * 2022-10-09 2022-12-30 荣耀终端有限公司 Antenna testing method, device and system, channel simulator and readable storage medium
CN115801952B (en) * 2022-11-09 2024-02-09 昆山贝松精密电子有限公司 Control method and system of antenna system
CN116775408B (en) * 2023-06-19 2024-02-09 上海启斯云计算有限公司 Intelligent monitoring method for operation state of energy storage equipment

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064902A (en) * 2006-04-25 2007-10-31 大唐移动通信设备有限公司 Method for real-time calibrating intelligent antenna
CN102780518A (en) * 2011-05-09 2012-11-14 华为技术有限公司 Calibration method and device of antenna gain
CN103117781A (en) * 2013-02-01 2013-05-22 华中科技大学 Method and device for antenna array calibration under complex electromagnetic environment
CN106803774A (en) * 2015-11-26 2017-06-06 北京信威通信技术股份有限公司 Antenna and radio-frequency channel calibration system and method
CN107959533A (en) * 2016-10-17 2018-04-24 华为技术有限公司 A kind of wireless device and radio-frequency channel calibration method
WO2019165842A1 (en) * 2018-03-02 2019-09-06 京信通信系统(中国)有限公司 Method, device and equipment for calibrating antenna
CN108768548A (en) * 2018-06-12 2018-11-06 Oppo广东移动通信有限公司 Radio frequency calibration method, device, mobile terminal and computer readable storage medium
CN109088679A (en) * 2018-08-31 2018-12-25 京信通信系统(中国)有限公司 Active Arrays calibration system, method, apparatus and Active Arrays system
CN111929708A (en) * 2020-06-30 2020-11-13 中国科学院国家授时中心 Antenna and receiving channel calibration system and method for signal quality evaluation
CN114006663A (en) * 2021-09-18 2022-02-01 中国电子科技集团公司第二十九研究所 Correction method and correction system for improving correction efficiency
CN114415134A (en) * 2022-01-20 2022-04-29 北京环境特性研究所 Calibration device and calibration method for electromagnetic characteristic measurement system
CN217428131U (en) * 2022-04-28 2022-09-13 中国移动通信有限公司研究院 Calibration equipment, base station antenna and antenna system
CN115603835A (en) * 2022-10-09 2023-01-13 北京天地一格科技有限公司(Cn) Phased array radar antenna online calibration method and system
CN115882988A (en) * 2023-02-23 2023-03-31 中山香山微波科技有限公司 Antenna environment testing method, system, device, electronic equipment and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于圆形天线阵列的阵列校准方法与实现;饶蓉;《中国优秀硕士学位论文全文数据库 信息科技辑》;I136-14 *

Also Published As

Publication number Publication date
CN118191438A (en) 2024-06-14
CN118311490A (en) 2024-07-09
CN117169801A (en) 2023-12-05

Similar Documents

Publication Publication Date Title
CN117169801B (en) Electromagnetic environment monitoring and calibrating system, method, device and medium
JP2009065394A (en) Sensor network attenuation constant estimation system, node position estimation system, estimation method, and program thereof
WO2019062734A1 (en) Indoor positioning method and device based on wi-fi hot spots
CN1951027A (en) Location determination and location tracking in wireless networks
CN101695152B (en) Method and system for indoor positioning
Karegar Wireless fingerprinting indoor positioning using affinity propagation clustering methods
CN118523833A (en) Intelligent antenna control method of satellite communication terminal and related equipment
CN114543810B (en) Unmanned aerial vehicle cluster passive positioning method and device under complex environment
Zhou et al. Path loss model based on cluster at 28 GHz in the indoor and outdoor environments
Tang et al. An improved received signal strength indicator positioning algorithm based on weighted centroid and adaptive threshold selection
WO2022090810A1 (en) Cell similarity indicator based on coverage area morphology
Zhang et al. Spectrum cartography using the variational Bayesian EM algorithm
CN110261818A (en) Method and device for identifying indirect ultra-wideband signal and eliminating error and storage medium
CN111901026B (en) A Method of Arrival Angle Estimation in Communication
CN115209341A (en) Weighted random forest indoor positioning method based on channel state information
CN109639331B (en) Beam forming method for dynamically adjusting convergence factor
CN118054871A (en) Wireless signal prediction method, device, equipment and storage medium
CN110161459B (en) A Fast Localization Method of Amplitude Modulated Sound Source
Kim et al. A neural network-based path loss model for bluetooth transceivers
Tu et al. Performance comparison of MR-FDPF and ray launching in an indoor office scenario
Quang et al. Propagation path loss models at 28 GHz using K-nearest neighbor algorithm
Navarro et al. Emitter location using power difference of arrival
Evizal et al. Application of negative selection algorithm in smart antenna system for Lte communication
CN116430381B (en) Method and device for evaluating threat of air target based on motion parameters and signal parameters
CN119596670B (en) Low-orbit multi-beam power positioning and timing method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载