+

CN117117858B - Wind turbine generator power prediction method, device and storage medium - Google Patents

Wind turbine generator power prediction method, device and storage medium Download PDF

Info

Publication number
CN117117858B
CN117117858B CN202311346538.3A CN202311346538A CN117117858B CN 117117858 B CN117117858 B CN 117117858B CN 202311346538 A CN202311346538 A CN 202311346538A CN 117117858 B CN117117858 B CN 117117858B
Authority
CN
China
Prior art keywords
wind speed
wind
power
regression tree
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311346538.3A
Other languages
Chinese (zh)
Other versions
CN117117858A (en
Inventor
韦玮
钟明
安娜
杨宁
王春森
任立兵
李小翔
冯帆
邸智
薛丽
黄思皖
史鉴恒
王宝岳
付雄
范风顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Huaneng Group Technology Innovation Center Co Ltd
Original Assignee
Huaneng Clean Energy Research Institute
Huaneng Group Technology Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute, Huaneng Group Technology Innovation Center Co Ltd filed Critical Huaneng Clean Energy Research Institute
Priority to CN202311346538.3A priority Critical patent/CN117117858B/en
Publication of CN117117858A publication Critical patent/CN117117858A/en
Application granted granted Critical
Publication of CN117117858B publication Critical patent/CN117117858B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

The invention relates to the technical field of fan unit power prediction, in particular to a method, a device and equipment for predicting the power of a wind turbine unit and a computer storage medium. According to the wind turbine generator power prediction method, interval division in a parameter method is combined with a gradient lifting regression tree in a non-parameter method, and data in each wind speed area is input as a training set of the gradient lifting regression tree to obtain reference power of each wind speed area and used for fitting a power curve; the invention also improves the gradient lifting regression tree by k neighbor weighted average so as to improve the contribution value of the sample which is closer to the predicted sample, thereby ensuring more accurate prediction effect.

Description

一种风电机组功率预测方法、装置及存储介质A wind turbine power prediction method, device and storage medium

技术领域Technical field

本发明涉及风机机组功率预测技术领域,尤其是指一种风电机组功率预测方法、装置、设备及计算机存储介质。The invention relates to the technical field of wind turbine power prediction, and in particular, to a wind turbine power prediction method, device, equipment and computer storage medium.

背景技术Background technique

在传统化石能源资源匮乏和污染严重的现代社会,风能作为一种无污染、可再生的新能源而广泛为大众所青睐,风电产业也由此成为国内外大力发展的新型可再生能源产业之一。在我国,近十年来有关风电场的建设与相关研究工作无论是从数量上还是质量上来说都有着显著的提升,但在大力发展风力发电行业的同时,也伴随着风机自身的不断退化所导致的一系列负面因素。现今风力发电机在使用的过程中,由于风速具有间歇性与高度不确定性的特点,对风力发电机本身的性能评估造成了较大的影响,而正确对风力发电机的性能与健康状况进行评估与诊断则是风力发电运维方面合理规划的重要之处。In modern society where traditional fossil energy resources are scarce and pollution is serious, wind energy is widely favored by the public as a pollution-free, renewable new energy source. The wind power industry has thus become one of the new renewable energy industries being vigorously developed at home and abroad. . In our country, the construction of wind farms and related research work have significantly improved in terms of quantity and quality in the past ten years. However, while vigorously developing the wind power industry, it has also been accompanied by the continuous degradation of the wind turbines themselves. a series of negative factors. During the use of today's wind turbines, due to the intermittent and highly uncertain characteristics of wind speed, it has a great impact on the performance evaluation of the wind turbine itself. It is necessary to correctly evaluate the performance and health of the wind turbine. Assessment and diagnosis are important for reasonable planning in wind power operation and maintenance.

风电场实际运行中受到环境、机组状态、运营方式、电网调度等多方面影响,无法在各个时段都保持较高的效能水平,造成发电量损失。风电机组功率曲线建模是用于预测风机功率的,是进行风电场发电效能评价、寻找效能提升途径的必要环节。风电机组功率曲线建模方法分为参数方法和非参数方法。 参数方法主要包括分段平均法(IEC)、分段线性模型方法、多项式拟合、多参数 logistic 函数回归等; 非参数方法主要包括模糊逻辑回归、神经网络、K 最近邻方法等;然而常规的参数方法对于功率估计值都不够准确,且受离群点影响程度较大,而非参数方法需要进行大量的迭代计算,因此,在大规模的数据下,建模需要消耗大量的时间。The actual operation of wind farms is affected by the environment, unit status, operation methods, power grid dispatching, etc., and cannot maintain a high efficiency level at all times, resulting in loss of power generation. Wind turbine power curve modeling is used to predict wind turbine power. It is a necessary link to evaluate wind farm power generation efficiency and find ways to improve efficiency. Wind turbine power curve modeling methods are divided into parametric methods and non-parametric methods. Parametric methods mainly include the piecewise averaging method (IEC), piecewise linear model method, polynomial fitting, multi-parameter logistic function regression, etc.; non-parametric methods mainly include fuzzy logistic regression, neural network, K nearest neighbor method, etc.; however, conventional Parametric methods are not accurate enough for power estimation and are greatly affected by outliers, while non-parametric methods require a large number of iterative calculations. Therefore, modeling requires a lot of time under large-scale data.

发明内容Contents of the invention

为此,本发明所要解决的技术问题在于克服现有技术中功率预测精度较低的问题。To this end, the technical problem to be solved by the present invention is to overcome the problem of low power prediction accuracy in the prior art.

为解决上述技术问题,本发明提供了一种风电机组功率预测方法,包括:In order to solve the above technical problems, the present invention provides a wind turbine power prediction method, which includes:

获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分;Obtain a wind farm fan status data set, and divide the wind farm fan status data set according to wind speed zones;

将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率;Use the data in each wind speed zone as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone;

利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线;Use the least squares method to fit the reference power of multiple wind speed zones to obtain the wind turbine power curve;

根据所述风电机组功率曲线对风电机组功率进行预测。The wind turbine power is predicted according to the wind turbine power curve.

优选地,所述获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分包括:Preferably, obtaining the wind farm fan status data set and dividing the wind farm fan status data set according to wind speed zones includes:

获取风电场风机状态数据集合,其中,第i时刻风机状态/>,/>表示风速,/>表示有功功率,/>表示环境气压,/>表示环境温度;Get wind farm turbine status data collection , among which, the fan status at the i-th moment/> ,/> Indicates wind speed,/> Represents active power,/> Indicates ambient air pressure,/> Represents the ambient temperature;

初始化风速区集合,其中,风速区个数,/>和/>分别为风电场风机的切入风速和切出风速,第k个风速区,/>表示第k个风速区内包含的风机状态数据集合,/>表示第k个风速区的中心风速,/>表示第k个风速区的参考功率;Initialize the wind speed zone collection , among which, the number of wind speed zones ,/> and/> are the cut-in wind speed and cut-out wind speed of the wind farm turbine respectively, and the kth wind speed zone ,/> Represents the fan status data set contained in the k-th wind speed zone,/> Represents the central wind speed of the kth wind speed zone,/> Represents the reference power of the kth wind speed zone;

遍历所述风电场风机状态数据集合,根据第i时刻风机状态/>的风速计算风速区间号/>,并将第i时刻风机状态/>加入到第k个风速区/>的风机状态数据集合/>中。Traverse the wind farm turbine status data collection , according to the fan status at the i-th moment/> of wind speed Calculate wind speed interval number/> , and change the fan status at the i-th moment/> Join the kth wind speed zone/> fan status data collection/> middle.

优选地,所述获取风电场风机状态数据集合后还包括:Preferably, obtaining the wind farm turbine status data set further includes:

将所述有功功率修正为标准大气压和标准环境温度下的功率值/>The active power Corrected to power value under standard atmospheric pressure and standard ambient temperature/> :

其中,为空气密度,/>为大气压强,/>为环境温度,/>表示标准大气压强,/>表示标准环境温度。in, is the air density,/> is the atmospheric pressure,/> is the ambient temperature,/> Represents standard atmospheric pressure,/> Indicates standard ambient temperature.

优选地,所述梯度提升回归树为利用k近邻加权平均改进后的梯度提升回归树。Preferably, the gradient boosting regression tree is a gradient boosting regression tree improved by using k nearest neighbor weighted average.

优选地,所述将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率包括:Preferably, using the data in each wind speed zone as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone includes:

步骤a:将第t个风速区的风速作为训练集相关变量/>,有功功率/>作为训练集目标变量/>,得到训练集,并初始化弱学习器;Step a: Calculate the wind speed of the tth wind speed zone As training set related variables/> , active power/> As the training set target variable/> , obtain the training set and initialize the weak learner;

步骤b:计算当前回归树模型残差Step b: Calculate the current regression tree model residuals ;

步骤c:将所述残差作为训练集目标变量得到新的训练集,并利用cart算法拟合得到第m棵回归树;Step c: Use the residual as the target variable of the training set to obtain a new training set, and use the cart algorithm to fit the mth regression tree;

步骤d:计算所述第m棵回归树的叶节点区域上所有训练样本与样本均值之间的距离;Step d: Calculate the leaf node area of the m-th regression tree The distance between all training samples and the sample mean;

步骤e:筛选出所述距离最小的K个训练样本,并计算所述K个训练样本各自的权重;Step e: Screen out the K training samples with the smallest distance, and calculate the respective weights of the K training samples;

步骤f:计算第m棵回归树叶子节点的预测值,并更新强学习器;Step f: Calculate the predicted value of the mth regression tree leaf node and update the strong learner;

步骤g:当当前训练次数不小于最大训练次数时,得到最终的回归树;Step g: When the current number of training times is not less than the maximum number of training times, the final regression tree is obtained;

步骤h:计算当前风速区的中心风速/>,并输入所述最终的回归树,得到当前风速区的参考功率。Step h: Calculate the current wind speed zone The central wind speed/> , and input the final regression tree to obtain the reference power of the current wind speed zone.

优选地,所述计算当前风速区的中心风速/>,并输入所述最终的回归树,得到当前风速区的参考功率后还包括:Preferably, the calculated current wind speed zone The central wind speed/> , and input the final regression tree. After obtaining the reference power of the current wind speed area, it also includes:

更新风速-功率计数器t=t+1;Update wind speed-power counter t=t+1;

时,跳转到所述步骤a。when , jump to step a.

优选地,所述利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线包括:Preferably, the method of fitting the reference power of multiple wind speed zones using the least squares method to obtain the wind turbine power curve includes:

将所述风速区集合中第k个风速区/>的中心风速/>作为横坐标,参考功率/>作为纵坐标,利用最小二乘法进行功率曲线拟合,得到所述风电机组功率曲线。Collect the wind speed zones The kth wind speed zone in the middle/> The central wind speed/> As the abscissa, the reference power/> As the ordinate, the least squares method is used to perform power curve fitting to obtain the wind turbine power curve.

本发明还提供了一种风电机组功率预测装置,包括:The invention also provides a wind turbine power prediction device, which includes:

数据集划分模块,用于获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分;A data set dividing module is used to obtain a wind farm fan status data set and divide the wind farm fan status data set according to wind speed zones;

参考功率计算模块,用于将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率;The reference power calculation module is used to use the data in each wind speed zone as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone;

功率曲线拟合模块,用于利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线;The power curve fitting module is used to fit the reference power of multiple wind speed zones using the least squares method to obtain the wind turbine power curve;

功率预测模块,用于根据所述风电机组功率曲线对风电机组功率进行预测。A power prediction module is used to predict wind turbine power according to the wind turbine power curve.

本发明还提供了一种风电机组功率预测设备,包括:The invention also provides a wind turbine power prediction device, including:

存储器,用于存储计算机程序;Memory, used to store computer programs;

处理器,用于执行所述计算机程序时实现上述一种风电机组功率预测方法步骤。A processor, configured to implement the steps of the above-mentioned wind turbine power prediction method when executing the computer program.

本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述一种风电机组功率预测方法的步骤。The present invention also provides a computer-readable storage medium. A computer program is stored on the computer-readable storage medium. When the computer program is executed by a processor, the steps of the above-mentioned wind turbine power prediction method are implemented.

本发明的上述技术方案相比现有技术具有以下优点:The above technical solution of the present invention has the following advantages compared with the existing technology:

本发明所述的风电机组功率预测方法,将参数方法中的区间划分与非参数方法中的梯度提升回归树结合,将每一个风速区内的数据作为梯度提升回归树的训练集输入,以得到每一个风速区的参考功率,用于拟合功率曲线;本发明还用k近邻加权平均对梯度提升回归树进行改进,以提高离预测样本越近的样本的贡献值,使预测的效果更加精确。The wind turbine power prediction method of the present invention combines the interval division in the parametric method with the gradient boosting regression tree in the non-parametric method, and inputs the data in each wind speed zone as the training set of the gradient boosting regression tree to obtain The reference power of each wind speed zone is used to fit the power curve; the present invention also uses k nearest neighbor weighted average to improve the gradient boosting regression tree to increase the contribution value of samples closer to the predicted sample, making the prediction effect more accurate .

附图说明Description of the drawings

为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中:In order to make the content of the present invention easier to understand clearly, the present invention will be further described in detail below based on specific embodiments of the present invention and in conjunction with the accompanying drawings, wherein:

图1为本发明所提供的一种风电机组功率预测方法的实现流程图;Figure 1 is an implementation flow chart of a wind turbine power prediction method provided by the present invention;

图2为本发明一种实施例提供的风电机组功率预测实现流程图。Figure 2 is a flow chart for realizing wind turbine power prediction provided by an embodiment of the present invention.

具体实施方式Detailed ways

本发明的核心是提供一种风电机组功率预测方法、装置、设备及计算机存储介质,有效提高了功率预测的精确度。The core of the present invention is to provide a wind turbine power prediction method, device, equipment and computer storage medium, which effectively improves the accuracy of power prediction.

为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to enable those skilled in the art to better understand the solution of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

本发明的主要目的是提高风机机组功率预测的准确性。基于区间划分的方法是将风速划分为不同的风速区间,在不同风速区间内通过一定的手段得到一个功率的估计值。在常规的功率曲线建模方法中,分段均值法(IEC)、最大概率点法、分段线性模型都属于这一类方法,但这些方法对于功率估计值都不够准确,且受离群点影响程度较大。使用本发明提出的方法进行功率预测,将区间划分与机器学习方法相结合,以提高功率预测的精准性。The main purpose of the present invention is to improve the accuracy of wind turbine unit power prediction. The method based on interval division divides the wind speed into different wind speed intervals, and obtains a power estimate by certain means in different wind speed intervals. Among the conventional power curve modeling methods, the piecewise mean method (IEC), the maximum probability point method, and the piecewise linear model all belong to this category. However, these methods are not accurate enough for power estimation and are affected by outliers. The impact is relatively large. The method proposed by the present invention is used for power prediction, and the interval division is combined with the machine learning method to improve the accuracy of power prediction.

本发明提出一种基于改进梯度提升回归树的风电机组功率预测方法,该方法的主体思路是:获取风电场风机数据集集合后,将功率修正为标准大气压和标准环境温度下的功率,并且按照风速区将数据集分区,对于每一个风速区的风电数据,使用改进的梯度提升回归树得到一个回归树函数,并将风速区的中心风速输入进去以得到一个参考功率,在得到若干风速区的参考功率后,利用最小二乘法将这些点拟合以得到一个功率曲线,以用于风电机组的功率预测:The present invention proposes a wind turbine power prediction method based on an improved gradient boosting regression tree. The main idea of the method is: after obtaining the wind farm wind turbine data set, the power is corrected to the power under standard atmospheric pressure and standard ambient temperature, and according to The wind speed zone partitions the data set. For the wind power data in each wind speed zone, an improved gradient boosting regression tree is used to obtain a regression tree function, and the central wind speed of the wind speed zone is input to obtain a reference power. After obtaining the values of several wind speed zones After referencing the power, these points are fitted using the least squares method to obtain a power curve for power prediction of the wind turbine:

请参考图 1,图1为本发明所提供的一种风电机组功率预测方法的实现流程图;具体操作步骤如下:Please refer to Figure 1, which is an implementation flow chart of a wind turbine power prediction method provided by the present invention; the specific operation steps are as follows:

S101:获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分;S101: Obtain the wind farm fan status data set, and divide the wind farm fan status data set according to wind speed zones;

S102:将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率;S102: Use the data in each wind speed zone as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone;

S103:利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线;S103: Use the least squares method to fit the reference power of multiple wind speed zones to obtain the wind turbine power curve;

S104:根据所述风电机组功率曲线对风电机组功率进行预测。S104: Predict the wind turbine power according to the wind turbine power curve.

基于以上实施例,本实施例对步骤S101进行详细说明:Based on the above embodiment, this embodiment describes step S101 in detail:

获取风电场风机状态数据集合,其中,第i时刻风机状态/>,/>表示风速,/>表示有功功率,/>表示环境气压,/>表示环境温度;Get wind farm turbine status data collection , among which, the fan status at the i-th moment/> ,/> Indicates wind speed,/> Represents active power,/> Indicates ambient air pressure,/> Represents the ambient temperature;

初始化风速区集合,其中,风速区个数,/>和/>分别为风电场风机的切入风速和切出风速,第k个风速区,/>表示第k个风速区内包含的风机状态数据集合,初始化为空,/>表示第k个风速区的中心风速,/>表示第k个风速区的参考功率(初始为0),初始风速功率计数器t=1;Initialize the wind speed zone collection , among which, the number of wind speed zones ,/> and/> are the cut-in wind speed and cut-out wind speed of the wind farm turbine respectively, and the kth wind speed zone ,/> Represents the fan status data set contained in the k-th wind speed zone, initialized to empty, /> Represents the central wind speed of the kth wind speed zone,/> Represents the reference power of the kth wind speed zone (initially 0), and the initial wind speed power counter t=1;

遍历所述风电场风机状态数据集合,根据第i时刻风机状态/>的风速计算风速区间号/>,并将第i时刻风机状态/>加入到第k个风速区/>的风机状态数据集合/>中。Traverse the wind farm turbine status data collection , according to the fan status at the i-th moment/> of wind speed Calculate wind speed interval number/> , and change the fan status at the i-th moment/> Join the kth wind speed zone/> fan status data collection/> middle.

基于以上实施例,所述获取风电场风机状态数据集合后还包括:Based on the above embodiment, obtaining the wind farm turbine status data set also includes:

将所述有功功率修正为标准大气压和标准环境温度下的功率值/>The active power Corrected to power value under standard atmospheric pressure and standard ambient temperature/> :

其中,为空气密度,/>为大气压强,/>为环境温度,/>表示标准大气压强,为101.325kPa,/>表示标准环境温度,为20℃。in, is the air density,/> is the atmospheric pressure,/> is the ambient temperature,/> Represents the standard atmospheric pressure, which is 101.325kPa,/> Indicates the standard ambient temperature, which is 20℃.

基于以上实施例,本实施例对步骤S102进行详细说明:Based on the above embodiment, this embodiment describes step S102 in detail:

所述梯度提升回归树为利用k近邻加权平均改进后的梯度提升回归树。The gradient boosting regression tree is a gradient boosting regression tree improved by using k nearest neighbor weighted average.

所述将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率包括:Using the data in each wind speed zone as the training input of the gradient boosting regression tree, obtaining the reference power of each wind speed zone includes:

步骤a:将第t个风速区的风速作为训练集相关变量/>,有功功率/>作为训练集目标变量/>,得到训练集,并初始化弱学习器;Step a: Calculate the wind speed of the tth wind speed zone As training set related variables/> , active power/> As the training set target variable/> , obtain the training set and initialize the weak learner;

从风速区集合中选取第t个风速区/>中风电数据集/>的风速/>作为训练集相关变量/>,修正后的功率值为/>作为训练集目标变量/>,得到输入训练集/>,训练数据集样本个数N,最大训练次数为M,损失函数L。并依下列公式计算初始化弱学习器/>Gather from the wind speed zone Select the tth wind speed zone/> Wind power data set/> The wind speed/> As training set related variables/> , the corrected power value is/> As the training set target variable/> , get the input training set/> , the number of samples in the training data set is N, the maximum number of training times is M, and the loss function is L. And calculate the initialized weak learner according to the following formula/> .

步骤b:计算当前回归树模型残差/>,其中m=1,2,……,M,i=1,2,……N。Step b: Calculate the current regression tree Model residual/> , where m=1,2,…,M, i=1,2,…N.

步骤c:将所述残差作为训练集目标变量得到新的训练集,并利用cart算法拟合得到第m棵回归树/>Step c: Use the residual as the target variable of the training set to obtain a new training set , and use the cart algorithm to fit to obtain the mth regression tree/> ;

步骤d:计算所述第m棵回归树的叶节点区域上所有训练样本与样本均值/>之间的距离:Step d: Calculate the leaf node area of the m-th regression tree All training samples on and sample mean/> the distance between:

其中j=1,2,……,J,J为回归树m的叶子节点的个数,S为上的样本数;Among them, j=1,2,..., J, J is the number of leaf nodes of the regression tree m, and S is number of samples on;

步骤e:筛选出所述距离最小的K个训练样本,并计算所述K个训练样本各自的权重:Step e: Screen out the K training samples with the smallest distance, and calculate the respective weights of the K training samples:

找出距离最小的K个训练样本,记这K个训练样本的输出变量值为,它们与样本均值/>的距离为/>,每个训练样本的权重分别为/>,权重/>根据下列公式计算得到:find distance The smallest K training samples, record the output variable value of these K training samples as , they are related to the sample mean/> The distance is/> ,The weight of each training sample is/> ,weight/> It is calculated according to the following formula:

步骤f:计算第m棵回归树叶子节点的预测值,并更新强学习器:Step f: Calculate the predicted value of the leaf node of the mth regression tree and update the strong learner:

步骤g:当当前训练次数不小于最大训练次数时,得到最终的回归树:Step g: When the current number of training times is not less than the maximum number of training times, the final regression tree is obtained:

判断当前训练次数m是否小于最大训练次数M,若小于,则m=m+1,跳转到步骤a,否则,继续执行。Determine whether the current training times m is less than the maximum training times M. If it is less, then m=m+1 and jump to step a. Otherwise, continue execution.

步骤h:计算当前风速区的中心风速/>,并输入所述最终的回归树/>,得到当前风速区的参考功率/>=/>Step h: Calculate the current wind speed zone The central wind speed/> , and input the final regression tree/> , get the reference power of the current wind speed area/> =/> :

基于以上实施例,所述计算当前风速区的中心风速/>,并输入所述最终的回归树,得到当前风速区的参考功率后还包括:Based on the above embodiment, the calculation of the current wind speed zone The central wind speed/> , and input the final regression tree. After obtaining the reference power of the current wind speed area, it also includes:

更新风速-功率计数器t=t+1;Update wind speed-power counter t=t+1;

时,跳转到所述步骤a。when , jump to step a.

基于以上实施例,本实施例对步骤S103进行详细说明:Based on the above embodiment, this embodiment describes step S103 in detail:

将风速区集合中的/>的中心风速/>作为横坐标,参考功率/>作为纵坐标,利用最小二乘法进行功率曲线拟合,最终得到风电机组功率曲线,用于预测风电机组功率预测。Collect wind speed areas in/> The central wind speed/> As the abscissa, the reference power/> As the ordinate, the least squares method is used to perform power curve fitting, and finally the wind turbine power curve is obtained, which is used to predict wind turbine power prediction.

步骤a采用了风速分区与梯度提升回归树相结合的方法,将每一个风速区内的数据作为梯度提升回归树的训练集输入,以得到每一个风速区的参考功率,用于拟合功率曲线,在相关工作同类文献中文件,具有独创性。Step a uses the method of combining wind speed partitioning and gradient boosting regression tree. The data in each wind speed zone is input as the training set of the gradient boosting regression tree to obtain the reference power of each wind speed zone for fitting the power curve. , the document is original among similar literature on related work.

步骤d,e,f,h改进了梯度提升回归树算法,引入了k近邻加权平均的方法,以替代简单平均,计算叶节点上训练样本与预测样本的距离,选出最小的k的预测样本,并计算预测样本的权值,提高距离预测样本近的训练样本的对预测风速区参考功率的贡献值,在相关工作同类文献中文件,具有独创性。Steps d, e, f, h improve the gradient boosting regression tree algorithm and introduce the k nearest neighbor weighted average method to replace the simple average, calculate the distance between the training sample and the prediction sample on the leaf node, and select the smallest k prediction sample , and calculate the weight of the prediction sample, and improve the contribution of the training samples that are close to the prediction sample to the reference power of the predicted wind speed area. It is original in the relevant literature of the same type.

本发明提出了一直基于改进梯度提升回归树的预测方法,目前主流的风电机组功率曲线建模方法分为区间划分,多项式拟合等的参数方法和机器学习等非参数方法。该策略的主要优势在于:将参数方法中的区间划分与非参数方法中的梯度提升回归树结合,并用k近邻加权平均对梯度提升回归树进行改进,以提高离预测样本越近的样本的贡献值,使预测的效果更加接近。The present invention proposes a prediction method that has been based on improved gradient boosting regression trees. Currently, the mainstream wind turbine power curve modeling methods are divided into parametric methods such as interval division and polynomial fitting, and non-parametric methods such as machine learning. The main advantage of this strategy is that it combines the interval division in the parametric method with the gradient boosting regression tree in the non-parametric method, and uses k-nearest neighbor weighted average to improve the gradient boosting regression tree to increase the contribution of samples closer to the predicted sample. value, making the prediction effect closer.

对于大部分风电的预测方法而言,主要需要考虑的点有:对数据集的筛选优化和提高建模的效率和精度。本发明在考虑这两点的同时与其他的预测方法有本质区别。主要区别如下:For most wind power prediction methods, the main points to consider are: screening and optimizing data sets and improving the efficiency and accuracy of modeling. The present invention takes these two points into consideration and is essentially different from other prediction methods. The main differences are as follows:

1.将参数方法中的比恩法与非参数方法中的梯度提升回归树结合,常规的参数方法对于功率估计值都不够准确,且受离群点影响程度较大,而非参数方法需要进行大量的迭代计算,因此,在大规模的数据下,建模需要消耗大量的时间。而本发明将参数方法与非参数方法结合,兼顾风电功率曲线建模的效率和建模精度;1. Combine the Bien method in the parametric method with the gradient boosting regression tree in the non-parametric method. The conventional parametric method is not accurate enough for power estimation and is greatly affected by outliers. The non-parametric method needs to be A large number of iterative calculations, therefore, modeling requires a lot of time with large-scale data. The present invention combines parametric methods with non-parametric methods to take into account both the efficiency and modeling accuracy of wind power power curve modeling;

2.使用k近邻加权平均对梯度提升回归树进行改进,以提高离预测样本越近的样本的贡献值,使预测的效果更加接近,进一步降低离群点的影响,以提高预测的精度。2. Use k-nearest neighbor weighted average to improve the gradient boosting regression tree to increase the contribution value of samples that are closer to the predicted sample, making the prediction effect closer, and further reducing the impact of outliers to improve the accuracy of prediction.

请参考图2,图2为本发明一种实施例提供的风电机组功率预测实现流程图。Please refer to Figure 2, which is a flow chart for realizing wind turbine power prediction provided by an embodiment of the present invention.

本发明实施例还提供了一种风电机组功率预测装置;具体装置可以包括:The embodiment of the present invention also provides a wind turbine power prediction device; the specific device may include:

数据集划分模块100,用于获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分;The data set dividing module 100 is used to obtain a wind farm fan status data set and divide the wind farm fan status data set according to wind speed zones;

参考功率计算模块200,用于将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率;The reference power calculation module 200 is used to use the data in each wind speed zone as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone;

功率曲线拟合模块300,用于利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线;The power curve fitting module 300 is used to fit the reference power of multiple wind speed zones using the least square method to obtain the wind turbine power curve;

功率预测模块400,用于根据所述风电机组功率曲线对风电机组功率进行预测。The power prediction module 400 is used to predict the wind turbine power according to the wind turbine power curve.

本实施例的风电机组功率预测装置用于实现前述的风电机组功率预测方法,因此风电机组功率预测装置中的具体实施方式可见前文风电机组功率预测方法的实施例部分,例如,数据集划分模块100,参考功率计算模块200功率曲线拟合模块300,功率预测模块400,分别用于实现上述风电机组功率预测方法中步骤S101,S102,S103,S104,所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再赘述。The wind turbine power prediction device of this embodiment is used to implement the aforementioned wind turbine power prediction method. Therefore, the specific implementation of the wind turbine power prediction device can be found in the embodiments of the wind turbine power prediction method described above. For example, the data set partition module 100 , the reference power calculation module 200, the power curve fitting module 300, and the power prediction module 400 are respectively used to implement steps S101, S102, S103, and S104 in the above wind turbine power prediction method. Therefore, the specific implementation can refer to the corresponding parts. The description of the embodiment will not be repeated here.

本发明具体实施例还提供了一种风电机组功率预测设备,包括:存储器,用于存储计算机程序;处理器,用于执行所述计算机程序时实现上述一种风电机组功率预测方法的步骤。Specific embodiments of the present invention also provide a wind turbine power prediction device, including: a memory for storing a computer program; and a processor for implementing the steps of the above wind turbine power prediction method when executing the computer program.

本发明具体实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述一种风电机组功率预测方法的步骤。Specific embodiments of the present invention also provide a computer-readable storage medium. A computer program is stored on the computer-readable storage medium. When the computer program is executed by a processor, the steps of the above wind turbine power prediction method are implemented.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will understand that embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in a process or processes in a flowchart and/or a block or blocks in a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions The device implements the functions specified in a process or processes in the flowchart and/or in a block or blocks in the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device. Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear explanation and are not intended to limit the implementation. For those of ordinary skill in the art, other changes or modifications may be made based on the above description. An exhaustive list of all implementations is not necessary or possible. The obvious changes or modifications derived therefrom are still within the protection scope of the present invention.

Claims (9)

1.一种风电机组功率预测方法,其特征在于,包括:1. A wind turbine power prediction method, characterized by including: 获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分;Obtain a wind farm fan status data set, and divide the wind farm fan status data set according to wind speed zones; 将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率;Use the data in each wind speed zone as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone; 利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线;Use the least squares method to fit the reference power of multiple wind speed zones to obtain the wind turbine power curve; 根据所述风电机组功率曲线对风电机组功率进行预测;Predict the wind turbine power according to the wind turbine power curve; 其中,所述按照风速区对所述风电场风机状态数据集合进行划分,包括:Wherein, dividing the wind farm turbine status data set according to wind speed zones includes: 获取风电场风机状态数据集合;Obtain wind farm turbine status data collection; 初始化风速区集合;Initialize the wind speed zone collection; 遍历所述风电场风机状态数据集合,根据第i时刻风机状态的风速计算风速区间号,并将第i时刻风机状态加入到第k个风速区的风机状态数据集合中;Traverse the wind farm fan status data set, calculate the wind speed interval number based on the wind speed of the fan status at the i-th moment, and add the i-th fan status to the fan status data set of the k-th wind speed zone; 所述将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率,包括:The data in each wind speed zone is used as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone, including: 将第t个风速区的风速作为训练集相关变量/>,有功功率/>作为训练集目标变量/>,得到训练集,并初始化弱学习器;The wind speed of the tth wind speed zone is As training set related variables/> , active power/> As the training set target variable/> , obtain the training set and initialize the weak learner; 计算当前回归树模型残差Calculate the current regression tree model residuals ; 将所述残差作为训练集目标变量得到新的训练集,并利用cart算法拟合得到第m棵回归树;Use the residual as the target variable of the training set to obtain a new training set, and use the cart algorithm to fit the mth regression tree; 计算所述第m棵回归树的叶节点区域上所有训练样本与样本均值之间的距离;Calculate the leaf node area of the mth regression tree The distance between all training samples and the sample mean; 筛选出所述距离最小的K个训练样本,并计算所述K个训练样本各自的权重;Screen out the K training samples with the smallest distance, and calculate the respective weights of the K training samples; 计算第m棵回归树叶子节点的预测值,并更新强学习器;Calculate the predicted value of the mth regression tree leaf node and update the strong learner; 当当前训练次数不小于最大训练次数时,得到最终的回归树;When the current number of training times is not less than the maximum number of training times, the final regression tree is obtained; 计算当前风速区的中心风速/>,并输入所述最终的回归树,得到当前风速区的参考功率。Calculate current wind speed zone The central wind speed/> , and input the final regression tree to obtain the reference power of the current wind speed area. 2.根据权利要求1所述的风电机组功率预测方法,其特征在于,所述获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分包括:2. The wind turbine power prediction method according to claim 1, characterized in that said obtaining a wind farm fan status data set and dividing the wind farm fan status data set according to wind speed zones includes: 所述风电场风机状态数据集合为,其中,所述第i时刻风机状态为/>,/>表示风速,/>表示有功功率,/>表示环境气压,/>表示环境温度;The wind farm turbine status data set is , where the fan status at the i-th moment is/> ,/> Indicates wind speed,/> Represents active power,/> Indicates ambient air pressure,/> Represents the ambient temperature; 所述初始化风速区集合为,其中,风速区个数,/>和/>分别为风电场风机的切入风速和切出风速,第k个风速区/>,/>表示第k个风速区内包含的风机状态数据集合,表示所述第k个风速区的中心风速, />表示所述第k个风速区的参考功率;The initialized wind speed zone set is , among which, the number of wind speed zones ,/> and/> are the cut-in wind speed and cut-out wind speed of the wind farm turbine respectively, and the kth wind speed zone/> ,/> Represents the fan status data set contained in the kth wind speed zone, Represents the central wind speed of the kth wind speed zone, /> Represents the reference power of the kth wind speed zone; 所述第i时刻风机状态的风速为/>,所述风速区间号为/>The fan status at the i-th moment The wind speed is/> , the wind speed interval number is/> . 3.根据权利要求2所述的风电机组功率预测方法,其特征在于,所述获取风电场风机状态数据集合后还包括:3. The wind turbine power prediction method according to claim 2, characterized in that, after obtaining the wind farm fan status data set, it also includes: 将所述有功功率修正为标准大气压和标准环境温度下的功率值/>The active power Corrected to power value under standard atmospheric pressure and standard ambient temperature/> : 其中,为空气密度,/>为大气压强,/>为环境温度,/>表示标准大气压强,/>表示标准环境温度。in, is the air density,/> is the atmospheric pressure,/> is the ambient temperature,/> Represents standard atmospheric pressure,/> Indicates standard ambient temperature. 4.根据权利要求2所述的风电机组功率预测方法,其特征在于,所述梯度提升回归树为利用k近邻加权平均改进后的梯度提升回归树。4. The wind turbine power prediction method according to claim 2, characterized in that the gradient boosting regression tree is a gradient boosting regression tree improved by using k nearest neighbor weighted average. 5.根据权利要求1所述的风电机组功率预测方法,其特征在于,所述计算当前风速区的中心风速/>,并输入所述最终的回归树,得到当前风速区的参考功率后还包括:5. The wind turbine power prediction method according to claim 1, characterized in that the calculation of the current wind speed zone The central wind speed/> , and input the final regression tree. After obtaining the reference power of the current wind speed area, it also includes: 更新风速-功率计数器Update wind speed-power counter ; 时,跳转到所述步骤a。when , jump to step a. 6.根据权利要求2所述的风电机组功率预测方法,其特征在于,所述利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线包括:6. The wind turbine power prediction method according to claim 2, characterized in that the use of the least square method to fit the reference power of multiple wind speed zones to obtain the wind turbine power curve includes: 将所述风速区集合中第k个风速区/>的中心风速/>作为横坐标,参考功率/>作为纵坐标,利用最小二乘法进行功率曲线拟合,得到所述风电机组功率曲线。Collect the wind speed zones The kth wind speed zone in the middle/> The central wind speed/> As the abscissa, the reference power/> As the ordinate, the least squares method is used to perform power curve fitting to obtain the wind turbine power curve. 7.一种风电机组功率预测装置,其特征在于,包括:7. A wind turbine power prediction device, characterized in that it includes: 数据集划分模块,用于获取风电场风机状态数据集合,并按照风速区对所述风电场风机状态数据集合进行划分;A data set dividing module is used to obtain a wind farm fan status data set and divide the wind farm fan status data set according to wind speed zones; 参考功率计算模块,用于将每一个风速区内的数据作为梯度提升回归树的训练输入,得到每一个风速区的参考功率;The reference power calculation module is used to use the data in each wind speed zone as the training input of the gradient boosting regression tree to obtain the reference power of each wind speed zone; 功率曲线拟合模块,用于利用最小二乘法将多个风速区的参考功率拟合,得到风电机组功率曲线;The power curve fitting module is used to fit the reference power of multiple wind speed zones using the least squares method to obtain the wind turbine power curve; 功率预测模块,用于根据所述风电机组功率曲线对风电机组功率进行预测;A power prediction module, used to predict the power of the wind turbine according to the wind turbine power curve; 其中,所述数据集划分模块还用于:获取风电场风机状态数据集合,初始化风速区集合,遍历所述风电场风机状态数据集合,根据第i时刻风机状态的风速计算风速区间号,并将第i时刻风机状态加入到第k个风速区的风机状态数据集合中;Wherein, the data set division module is also used to: obtain the wind farm fan status data set, initialize the wind speed zone set, traverse the wind farm fan status data set, calculate the wind speed interval number according to the wind speed of the wind turbine status at the i-th moment, and The fan status at the i-th moment is added to the fan status data set of the k-th wind speed zone; 所述参考功率计算模块还用于:将第t个风速区的风速作为训练集相关变量/>,有功功率/>作为训练集目标变量/>,得到训练集,并初始化弱学习器,计算当前回归树模型残差,将所述残差作为训练集目标变量得到新的训练集,并利用cart算法拟合得到第m棵回归树,计算所述第m棵回归树的叶节点区域/>上所有训练样本与样本均值之间的距离,筛选出所述距离最小的K个训练样本,并计算所述K个训练样本各自的权重,计算第m棵回归树叶子节点的预测值,并更新强学习器,当当前训练次数不小于最大训练次数时,得到最终的回归树,计算当前风速区/>的中心风速/>,并输入所述最终的回归树,得到当前风速区的参考功率。The reference power calculation module is also used to: convert the wind speed of the tth wind speed zone As training set related variables/> , active power/> As the training set target variable/> , obtain the training set, initialize the weak learner, and calculate the current regression tree model residual , use the residual as the target variable of the training set to obtain a new training set, and use the cart algorithm to fit to obtain the mth regression tree, and calculate the leaf node area of the mth regression tree/> based on the distance between all training samples and the sample mean, select the K training samples with the smallest distance, calculate the respective weights of the K training samples, calculate the predicted value of the mth regression tree leaf node, and update Strong learner, when the current number of training times is not less than the maximum number of training times, the final regression tree is obtained and the current wind speed zone is calculated/> The central wind speed/> , and input the final regression tree to obtain the reference power of the current wind speed zone. 8.一种风电机组功率预测设备,其特征在于,包括:8. A wind turbine power prediction device, characterized by including: 存储器,用于存储计算机程序;Memory, used to store computer programs; 处理器,用于执行所述计算机程序时实现如权利要求1至6任一项所述一种风电机组功率预测方法的步骤。A processor, configured to implement the steps of a wind turbine power prediction method according to any one of claims 1 to 6 when executing the computer program. 9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述一种风电机组功率预测方法的步骤。9. A computer-readable storage medium, characterized in that a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method of any one of claims 1 to 6 is implemented. Steps of wind turbine power prediction method.
CN202311346538.3A 2023-10-18 2023-10-18 Wind turbine generator power prediction method, device and storage medium Active CN117117858B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311346538.3A CN117117858B (en) 2023-10-18 2023-10-18 Wind turbine generator power prediction method, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311346538.3A CN117117858B (en) 2023-10-18 2023-10-18 Wind turbine generator power prediction method, device and storage medium

Publications (2)

Publication Number Publication Date
CN117117858A CN117117858A (en) 2023-11-24
CN117117858B true CN117117858B (en) 2024-01-30

Family

ID=88805761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311346538.3A Active CN117117858B (en) 2023-10-18 2023-10-18 Wind turbine generator power prediction method, device and storage medium

Country Status (1)

Country Link
CN (1) CN117117858B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119397259B (en) * 2025-01-06 2025-03-25 南京理工大学 A wind turbine power curve extraction method based on XAI method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011143531A2 (en) * 2010-05-13 2011-11-17 University Of Cincinnati Turbine-to-turbine prognostics technique for wind farms
CN111396266A (en) * 2020-03-05 2020-07-10 浙江运达风电股份有限公司 GBRT-based wind turbine generator bearing fault early warning method
CN111476402A (en) * 2020-03-16 2020-07-31 云南电网有限责任公司 Wind power generation capacity prediction method coupling meteorological information and EMD technology
CN112818604A (en) * 2021-02-05 2021-05-18 河海大学 Wind turbine generator risk degree assessment method based on wind power prediction
CN113313139A (en) * 2021-04-13 2021-08-27 华北水利水电大学 Wind power prediction uncertainty quantification method based on dynamic characteristics of unit
CN114298140A (en) * 2021-11-18 2022-04-08 华能新能源股份有限公司 Wind power short-term power prediction correction method considering unit classification
CN114330094A (en) * 2021-11-18 2022-04-12 国家电网有限公司 A short-term forecasting method of wind power based on TCN-GRU joint model

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000248A1 (en) * 2018-06-27 2020-01-02 大连理工大学 Space reconstruction based method for predicting key performance parameters of transition state acceleration process of aircraft engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011143531A2 (en) * 2010-05-13 2011-11-17 University Of Cincinnati Turbine-to-turbine prognostics technique for wind farms
CN111396266A (en) * 2020-03-05 2020-07-10 浙江运达风电股份有限公司 GBRT-based wind turbine generator bearing fault early warning method
CN111476402A (en) * 2020-03-16 2020-07-31 云南电网有限责任公司 Wind power generation capacity prediction method coupling meteorological information and EMD technology
CN112818604A (en) * 2021-02-05 2021-05-18 河海大学 Wind turbine generator risk degree assessment method based on wind power prediction
CN113313139A (en) * 2021-04-13 2021-08-27 华北水利水电大学 Wind power prediction uncertainty quantification method based on dynamic characteristics of unit
CN114298140A (en) * 2021-11-18 2022-04-08 华能新能源股份有限公司 Wind power short-term power prediction correction method considering unit classification
CN114330094A (en) * 2021-11-18 2022-04-12 国家电网有限公司 A short-term forecasting method of wind power based on TCN-GRU joint model

Also Published As

Publication number Publication date
CN117117858A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
CN111144663B (en) Ultra-short-term wind power prediction method for offshore wind farm considering output fluctuation process
CN110264012B (en) Renewable energy power combination prediction method and system based on empirical mode decomposition
CN105138717A (en) Transformer state evaluation method by optimizing neural network with dynamic mutation particle swarm
CN113723717B (en) System day-ahead short-term load forecasting method, apparatus, device and readable storage medium
CN117117858B (en) Wind turbine generator power prediction method, device and storage medium
CN113240217A (en) Photovoltaic power generation prediction method and device based on integrated prediction model
CN117195449A (en) A wind farm layout optimization method, device, equipment and medium
CN117728404A (en) Method and system for predicting power generation capacity of medium-and-long-term photovoltaic field station
CN117650548A (en) Comprehensive energy operation optimization method and system based on hydrogen energy storage cooperation
CN119994874A (en) Multi-objective optimization method for comprehensive energy distribution network reconstruction based on BAS algorithm
CN116245019A (en) A load forecasting method, system, device and storage medium based on Bagging sampling and improved random forest algorithm
CN113363976B (en) A mid-term optimal dispatching method for wind, solar and water complementary power generation systems based on scene graphs
CN117436927A (en) Virtual power plant peak shaving market price prediction method and system
CN117767433A (en) Real-time county energy internet scheduling method and system based on digital twin
CN116882269A (en) Wind power plant error correction model construction method and device and wind power plant control system
CN117371581A (en) New energy generated power prediction method, device and storage medium
CN114266186B (en) Air conditioner energy consumption data missing value filling method, equipment and medium
CN117293916A (en) User-oriented power grid dispatching method and device and computing equipment
CN113515889B (en) Dynamic wind speed prediction model building method
CN119853156B (en) Improved super-capacitor energy storage frequency modulation grid-connected method and system
CN118297439B (en) Robust planning method and system for multi-stage transmission and storage coordination in power system
CN120150263B (en) Distribution network operation mode optimization method and system for distributed photovoltaic digestion
CN119134338B (en) Method for controlling load frequency of power system by deep reinforcement learning
CN119809062B (en) Regional distributed light Fu Juge ultra-short-term power prediction method, storage medium and equipment
CN119784453B (en) A method and system for batch generation of new energy market clearing sample sets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载