CN116380321A - Method for Decoupling Decoupling Model of Tire-Road Contact Triaxial Force Sensor - Google Patents
Method for Decoupling Decoupling Model of Tire-Road Contact Triaxial Force Sensor Download PDFInfo
- Publication number
- CN116380321A CN116380321A CN202310180840.XA CN202310180840A CN116380321A CN 116380321 A CN116380321 A CN 116380321A CN 202310180840 A CN202310180840 A CN 202310180840A CN 116380321 A CN116380321 A CN 116380321A
- Authority
- CN
- China
- Prior art keywords
- tire
- road contact
- force sensor
- way force
- decoupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
技术领域technical field
本发明涉及解耦技术领域,尤其涉及一种胎-路接触三向力传感器解耦模型确定方法。The invention relates to the field of decoupling technology, in particular to a method for determining a decoupling model of a tire-road contact three-way force sensor.
背景技术Background technique
由于胎-路接触三向力测量系统的传感器的机械加工精度、结构设计原理等因素影响,可能出现传感器维间耦合现象,即力信号与应变桥的输出信号之间存在着较强的耦合作用,使传感器系统的整体测量精度受到影响,要提高胎-路接触三向力测量系统的测量精度,降低维间耦合至关重要。Due to factors such as machining accuracy and structural design principles of the sensor of the tire-road contact three-way force measurement system, there may be inter-dimensional coupling between the sensor, that is, there is a strong coupling between the force signal and the output signal of the strain bridge. , so that the overall measurement accuracy of the sensor system is affected. To improve the measurement accuracy of the tire-road contact three-dimensional force measurement system, it is very important to reduce the coupling between dimensions.
目前,降低维间耦合的方法主要有基于耦合误差建模的静态解耦算法、径向基函数(RBF,Radial basis function)神经网络的解耦算法等。由于传感器实际输出量并不是纯线性的,所以采用静态解耦算法即线性解耦虽然能够一定程度上减少传感器的干扰误差,但是解耦效果并不理想;而径向基函数(RBF)神经网络遍历所有样本点时,如果样本点出现噪声,会使其泛化能力下降。At present, the methods for reducing inter-dimensional coupling mainly include static decoupling algorithms based on coupling error modeling, radial basis function (RBF, Radial basis function) neural network decoupling algorithms, and so on. Since the actual output of the sensor is not purely linear, although the static decoupling algorithm, that is, linear decoupling, can reduce the interference error of the sensor to a certain extent, the decoupling effect is not ideal; and the radial basis function (RBF) neural network When traversing all sample points, if there is noise in the sample point, it will reduce its generalization ability.
因此,如何提升解耦准确性、稳定性,从而显著提升胎-路三向力传感器测量系统的测量精度,成为亟需解决的问题。Therefore, how to improve the decoupling accuracy and stability, thereby significantly improving the measurement accuracy of the tire-road three-way force sensor measurement system, has become an urgent problem to be solved.
发明内容Contents of the invention
本发明提供一种胎-路接触三向力传感器解耦模型确定方法,用以解决现有技术中对检测装置线性度的依赖度较高,解耦结果不准确、效果不稳定,可能导致解耦结果梯度爆炸及梯度消失等问题的缺陷,实现提高解耦准确性、稳定性,从而显著提升胎-路三向力传感器测量系统的测量精度。The invention provides a method for determining the decoupling model of a tire-road contact three-way force sensor, which is used to solve the problem of high dependence on the linearity of the detection device in the prior art, inaccurate decoupling results, and unstable effects, which may lead to solution problems. Defects such as gradient explosion and gradient disappearance of coupling results can be solved, and the accuracy and stability of decoupling can be improved, thereby significantly improving the measurement accuracy of the tire-road three-way force sensor measurement system.
本发明提供一种胎-路接触三向力传感器解耦模型确定方法,包括:The invention provides a tire-road contact three-way force sensor decoupling model determination method, including:
建立胎-路接触三向力传感器解耦模型的人工神经网络结构,所述人工神经网络结构包括输入层、隐藏层和输出层,所述输入层和所述隐藏层的激活函数为ReLU激活函数;Establish the artificial neural network structure of tire-road contact three-way force sensor decoupling model, described artificial neural network structure comprises input layer, hidden layer and output layer, and the activation function of described input layer and described hidden layer is ReLU activation function ;
采用Adam学习率自适应的优化算法,基于优化参数,调整所述人工神经网络结构的参数,获得优化后的胎-路接触三向力传感器解耦模型,其中,所述优化参数包括以下至少一项:步长、矩估计的指数衰减速率、用于数值稳定的小常数、和下降梯度;Adaptive optimization algorithm of Adam learning rate is used to adjust the parameters of the artificial neural network structure based on optimization parameters to obtain an optimized tire-road contact three-way force sensor decoupling model, wherein the optimization parameters include at least one of the following terms: step size, exponential decay rate for moment estimation, small constant for numerical stabilization, and descent gradient;
采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,其中,所述训练数据包括胎-路接触三向力传感器的三个方向分别对应的输入载荷量,所述三个方向分别对应的输入载荷量分别对应各自的期望输出电信号。Using the batch update method, based on the training data, iteratively update the parameters of the tire-road contact three-way force sensor decoupling model until the value of the loss function MSE continues to decrease, and obtain the actual measurement for the tire-road contact three-way force The tire-road contact three-way force sensor decoupling model decoupled in , wherein the training data includes the input loads corresponding to the three directions of the tire-road contact three-way force sensor, and the three directions correspond to The input loads respectively correspond to the respective expected output electrical signals.
根据本发明提供的一种胎-路接触三向力传感器解耦模型确定方法,所述采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,包括:According to a method for determining a tire-road contact three-way force sensor decoupling model provided by the present invention, the batch update method is used to iteratively update the parameters of the tire-road contact three-way force sensor decoupling model based on training data, Until the value of the loss function MSE continues to decrease, the tire-road contact three-way force sensor decoupling model for decoupling in the actual measurement of the tire-road contact three-way force is obtained, including:
执行多次参数更新过程,获得多个参数更新过程中分别获得的MSE值,在确定MSE的值持续递减的情况下,停止执行参数更新过程,基于最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,确定所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型;Execute multiple parameter update processes to obtain the MSE values obtained in multiple parameter update processes respectively. When it is determined that the value of MSE continues to decrease, stop executing the parameter update process. Based on the tire- A road contact three-way force sensor decoupling model, determining the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force;
其中,所述参数更新过程包括:从训练集中三个方向的训练数据中各选择n个输入载荷量,并在三个方向分别进行单轴加载,检测输出电信号数据,根据所述输出电信号数据和所述输入载荷量分别对应的期望输出电信号,获取MSE值。Wherein, the parameter update process includes: selecting n input loads from the training data in the three directions of the training set, and performing uniaxial loading in the three directions respectively, detecting the output electrical signal data, and according to the output electrical signal The expected output electrical signal corresponding to the data and the input load respectively, to obtain the MSE value.
根据本发明提供的一种胎-路接触三向力传感器解耦模型确定方法,所述基于最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,确定所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,包括:According to a method for determining the tire-road contact three-way force sensor decoupling model provided by the present invention, the decoupling model of the tire-road contact three-way force sensor is determined based on the updated tire-road contact three-way force sensor decoupling model in the last executed parameter update process. The decoupling model of tire-road contact three-way force sensor decoupled in the actual measurement of tire-road contact three-way force, including:
将验证集中的三个方向的输出电信号数据,输入到最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型中,获得最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型输出的三个方向上的输入载荷;Input the output electrical signal data of the three directions in the verification set into the decoupling model of the tire-road contact three-way force sensor updated during the last parameter update process, and obtain the updated tire-road contact force sensor data during the last parameter update process. - Input loads in three directions output by the road contact three-way force sensor decoupling model;
在验证胎-路接触三向力传感器解耦模型输出的三个方向上的输入载荷与所述三个方向的输出电信号数据对应的实际载荷一致的情况下,将所述最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,作为所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型。In the case of verifying that the input loads in the three directions output by the tire-road contact three-way force sensor decoupling model are consistent with the actual loads corresponding to the output electrical signal data in the three directions, the parameters of the last execution The tire-road contact three-way force sensor decoupling model updated during the update process is used as the tire-road contact three-way force sensor decoupling model for decoupling in the actual measurement of the tire-road contact three-way force.
根据本发明提供的一种胎-路接触三向力传感器解耦模型确定方法,所述方法还包括:According to a tire-road contact three-way force sensor decoupling model determination method provided by the present invention, the method further includes:
将胎-路接触三向力测量系统采集到的输出电信号输入到用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型中,获得所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型输出的所述三个方向的输入载荷值。The output electrical signal collected by the tire-road contact three-way force measurement system is input into the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force, and the obtained The input load values in the three directions output by the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force are described.
根据本发明提供的一种胎-路接触三向力传感器解耦模型确定方法,所述方法还包括:According to a tire-road contact three-way force sensor decoupling model determination method provided by the present invention, the method further includes:
对胎-路接触三向力传感器进行静态标定,获得静态标定结果;所述静态标定结果用于表征胎-路接触三向力传感器的标定系数矩阵。Static calibration is performed on the tire-road contact three-way force sensor to obtain a static calibration result; the static calibration result is used to characterize the calibration coefficient matrix of the tire-road contact three-way force sensor.
根据本发明提供的一种胎-路接触三向力传感器解耦模型确定方法,所述隐藏层分为5层,每层隐藏层分别包含的神经元数量依次为40、160、640、160、40。According to a method for determining the decoupling model of tire-road contact three-way force sensor provided by the present invention, the hidden layer is divided into 5 layers, and the number of neurons contained in each hidden layer is 40, 160, 640, 160, 40.
本发明还提供一种胎-路接触三向力传感器解耦模型确定装置,包括:The present invention also provides a decoupling model determination device for tire-road contact three-way force sensor, including:
建立模块,用于建立胎-路接触三向力传感器解耦模型的人工神经网络结构,所述人工神经网络结构包括输入层、隐藏层和输出层,所述输入层和所述隐藏层的激活函数为ReLU激活函数;Building a module for building the artificial neural network structure of the tire-road contact three-way force sensor decoupling model, the artificial neural network structure includes an input layer, a hidden layer and an output layer, and the activation of the input layer and the hidden layer The function is the ReLU activation function;
第一获取模块,用于采用Adam学习率自适应的优化算法,基于优化参数,调整所述人工神经网络结构的参数,获得优化后的胎-路接触三向力传感器解耦模型,其中,所述优化参数包括以下至少一项:步长、矩估计的指数衰减速率、用于数值稳定的小常数、和下降梯度;The first acquisition module is used to adopt the Adam learning rate adaptive optimization algorithm, adjust the parameters of the artificial neural network structure based on the optimization parameters, and obtain the optimized tire-road contact three-way force sensor decoupling model, wherein the The optimization parameters include at least one of the following: step size, exponential decay rate of moment estimation, small constant for numerical stability, and descent gradient;
第二获取模块,用于采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,其中,所述训练数据包括胎-路接触三向力传感器的三个方向分别对应的输入载荷量,所述三个方向分别对应的输入载荷量分别对应各自的期望输出电信号。The second acquisition module is used to use the batch update method to iteratively update the parameters of the decoupling model of the tire-road contact three-way force sensor based on the training data until the value of the loss function MSE continues to decrease, so as to obtain the parameters for the tire-road contact The decoupled tire-road contact three-way force sensor decoupling model in the actual measurement of the contact three-way force, wherein the training data includes the input loads corresponding to the three directions of the tire-road contact three-way force sensor respectively, so The input loads corresponding to the three directions respectively correspond to the respective expected output electrical signals.
本发明还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述任一种所述胎-路接触三向力传感器解耦模型确定方法。The present invention also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. When the processor executes the program, any one of the above-mentioned Decoupling model determination method of tire-road contact triaxial force sensor.
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种所述胎-路接触三向力传感器解耦模型确定方法。The present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the decoupling model of any one of the tire-road contact three-way force sensors described above can be determined. method.
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现上述任一种所述胎-路接触三向力传感器解耦模型确定方法。The present invention also provides a computer program product, including a computer program. When the computer program is executed by a processor, any method for determining the decoupling model of the tire-road contact three-way force sensor described above can be implemented.
本发明提供的胎-路接触三向力传感器解耦模型确定方法,利用ReLU函数作为胎-路接触三向力传感器解耦模型的人工神经网络结构的激活函数,获得胎-路接触三向力传感器解耦模型,可以使胎-路接触三向力传感器解耦模型具有较强的泛化能力,使模型更逼近于最优解;采用Adam学习率自适应的优化算法调整所述人工神经网络结构的参数,可以通过计算并修正每轮梯度的一阶矩和二阶矩来动态调节学习率;采用批量更新方法迭代更新胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,可以获得胎-路接触三向力传感器解耦模型的参数的最优解,使用胎-路接触三向力传感器解耦模型进行解耦,可以利用神经网络中信号前向传递、误差后向传递的特点,通过不断调节网络权重值,让网络的最终输出与期望输出尽可能接近的特点,最大程度降低维间耦合,从而显著提高胎-路接触三向力测量系统的测量精度。The method for determining the tire-road contact three-way force sensor decoupling model provided by the present invention uses the ReLU function as the activation function of the artificial neural network structure of the tire-road contact three-way force sensor decoupling model to obtain the tire-road contact three-way force The sensor decoupling model can make the tire-road contact three-way force sensor decoupling model have a strong generalization ability, making the model closer to the optimal solution; using the Adam learning rate adaptive optimization algorithm to adjust the artificial neural network For the parameters of the structure, the learning rate can be dynamically adjusted by calculating and correcting the first-order moment and second-order moment of each round of gradient; the batch update method is used to iteratively update the parameters of the tire-road contact three-way force sensor decoupling model until the loss function MSE The value of is continuously decreasing, and the optimal solution of the parameters of the tire-road contact three-way force sensor decoupling model can be obtained. Using the tire-road contact three-way force sensor decoupling model for decoupling can use the forward transmission of signals in the neural network , The characteristics of error backward transmission, by continuously adjusting the network weight value, the final output of the network is as close as possible to the expected output, and the inter-dimensional coupling is minimized, thereby significantly improving the measurement of the tire-road contact three-dimensional force measurement system precision.
附图说明Description of drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the present invention or the technical solutions in the prior art, the accompanying drawings that need to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the accompanying drawings in the following description are the present invention. For some embodiments of the invention, those skilled in the art can also obtain other drawings based on these drawings without creative effort.
图1是本发明提供的胎-路接触三向力传感器解耦模型确定方法的流程示意图;Fig. 1 is a schematic flow chart of a tire-road contact three-way force sensor decoupling model determination method provided by the present invention;
图2是本发明提供的胎-路接触三向力传感器解耦模型的人工神经网络算法模型示意图;Fig. 2 is a schematic diagram of the artificial neural network algorithm model of the tire-road contact three-way force sensor decoupling model provided by the present invention;
图3是本发明提供的ReLU函数和Sigmoid函数图像对比图;Fig. 3 is the image contrast chart of ReLU function and Sigmoid function provided by the present invention;
图4是本发明提供的解耦方法的误差迭代曲线示意图;Fig. 4 is a schematic diagram of the error iteration curve of the decoupling method provided by the present invention;
图5是本发明提供的胎-路接触三向力传感器解耦模型的人工神经网络结构示意图;Fig. 5 is a schematic diagram of the artificial neural network structure of the decoupling model of tire-road contact three-way force sensor provided by the present invention;
图6是本发明提供的胎-路接触三向力传感器解耦模型确定装置的结构示意图;Fig. 6 is a schematic structural diagram of a decoupling model determination device for a tire-road contact three-way force sensor provided by the present invention;
图7是本发明提供的电子设备的结构示意图。Fig. 7 is a schematic structural diagram of an electronic device provided by the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention clearer, the technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the present invention. Obviously, the described embodiments are part of the embodiments of the present invention , but not all examples. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
胎-路接触三向力测量系统,是开展汽车轮胎与路面接触应力研究的基础检测设备。作为新型多维力传感器系统,它可用于监测、分析路面受力情况,且测量精度较高。但由于传感器的机械加工精度、结构设计原理等因素影响,可能出现传感器维间耦合现象,即力信号与应变桥的输出信号之间存在着较强的耦合作用,使传感器系统的整体测量精度受到影响。The tire-road contact three-dimensional force measurement system is the basic testing equipment for research on the contact stress between automobile tires and road surfaces. As a new multi-dimensional force sensor system, it can be used to monitor and analyze the stress on the road surface, and has high measurement accuracy. However, due to the influence of factors such as the machining accuracy of the sensor and the structural design principle, the inter-dimensional coupling phenomenon of the sensor may occur, that is, there is a strong coupling between the force signal and the output signal of the strain bridge, which affects the overall measurement accuracy of the sensor system. Influence.
综上,要提高胎-路接触三向力测量系统的测量精度,降低维间耦合至关重要,本发明采用一种基于近似生物激活函数ReLU函数的BP神经网络来进行胎路接触三向力解耦,通过调节网络参量权重值,可以最大程度降低维间耦合,从而显著提高胎-路接触三向力测量系统的测量精度。To sum up, in order to improve the measurement accuracy of the tire-road contact three-dimensional force measurement system, it is very important to reduce the coupling between dimensions. The present invention uses a BP neural network based on the approximate biological activation function ReLU function to measure the tire-road contact three-dimensional force Decoupling, by adjusting the weight value of the network parameters, can minimize the inter-dimensional coupling, thereby significantly improving the measurement accuracy of the tire-road contact three-dimensional force measurement system.
图1是本发明提供的胎-路接触三向力传感器解耦模型确定方法的流程示意图,包括以下步骤:Fig. 1 is a schematic flow chart of a tire-road contact three-way force sensor decoupling model determination method provided by the present invention, including the following steps:
步骤100,建立胎-路接触三向力传感器解耦模型的人工神经网络结构,所述人工神经网络结构包括输入层、隐藏层和输出层,所述输入层和所述隐藏层的激活函数为ReLU激活函数;
可选地,胎-路接触三向力传感器解耦模型可以用于降低胎-路接触三向力测量系统测量过程中可能出现的维间耦合现象,提高胎-路接触三向力测量系统的测量精度。Optionally, the tire-road contact three-dimensional force sensor decoupling model can be used to reduce the inter-dimensional coupling phenomenon that may occur during the measurement process of the tire-road contact three-dimensional force measurement system, and improve the performance of the tire-road contact three-dimensional force measurement system. measurement accuracy.
可选地,胎-路接触三向力传感器解耦模型的人工神经网络结构的隐藏层可以有多层。Optionally, the hidden layer of the artificial neural network structure of the decoupling model of the tire-road contact three-way force sensor may have multiple layers.
可选地,ReLU激活函数可以是 Optionally, the ReLU activation function can be
可选地,对于进入神经元的来自上一层神经网络的输入向量x,使用ReLU函数的神经元可以输出max(0,WTX+b)至下一层神经元或作为整个神经网络的输出。Optionally, for the input vector x from the previous layer of neural network entering the neuron, the neuron using the ReLU function can output max(0,W T X+b) to the next layer of neurons or as the input vector of the entire neural network output.
可选地,输入层或隐藏层的输出可以作为下一层神经网络的输入。Optionally, the output of the input layer or the hidden layer can be used as the input of the next layer of neural network.
可选地,输出层的输出可以是整个神经网络的输出。Optionally, the output of the output layer can be the output of the entire neural network.
可选地,输入层和隐藏层的激活函数为ReLU激活函数可以是为了给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数。Optionally, the activation function of the input layer and the hidden layer may be a ReLU activation function in order to introduce nonlinear factors into the neurons, so that the neural network can arbitrarily approximate any nonlinear function.
图2是本发明提供的胎-路接触三向力传感器解耦模型的人工神经网络算法模型示意图,如图2所示,W1和W2分别为输入层到隐含层以及隐含层到输出层的权重矩阵,b1和b2分别为隐含层偏值矩阵和输出层的偏值矩阵。输入胎-路接触三向力传感器解耦模型的人工神经网络结构的信号为电信号,胎-路接触三向力传感器解耦模型的人工神经网络结构输出的信号为力信号。Fig. 2 is a schematic diagram of the artificial neural network algorithm model of the tire-road contact three-way force sensor decoupling model provided by the present invention. As shown in Fig. 2, W1 and W2 are respectively the input layer to the hidden layer and the hidden layer to the output layer The weight matrix of , b1 and b2 are the bias matrix of the hidden layer and the bias matrix of the output layer respectively. The signal input to the artificial neural network structure of the tire-road contact three-way force sensor decoupling model is an electrical signal, and the signal output by the artificial neural network structure of the tire-road contact three-way force sensor decoupling model is a force signal.
图3是本发明提供的ReLU函数和Sigmoid函数图像对比图,如图3所示,BP神经网络的一般激活函数Sigmoid函数存在求导过程计算量大、模型训练的时间复杂度较高的问题,而ReLU函数的稀疏性可以很好地解决Sigmoid函数带来的梯度消失的问题,所以可以将相关技术中BP神经网络的激活函数从Sigmoid函数改成ReLU函数。Fig. 3 is an image comparison diagram of the ReLU function and the Sigmoid function provided by the present invention. As shown in Fig. 3, the general activation function Sigmoid function of the BP neural network has the problems of large amount of calculation in the derivation process and high time complexity of model training. The sparsity of the ReLU function can well solve the problem of gradient disappearance caused by the Sigmoid function, so the activation function of the BP neural network in the related art can be changed from the Sigmoid function to the ReLU function.
步骤110,采用Adam学习率自适应的优化算法,基于优化参数,调整所述人工神经网络结构的参数,获得优化后的胎-路接触三向力传感器解耦模型,其中,所述优化参数包括以下至少一项:步长、矩估计的指数衰减速率、用于数值稳定的小常数、和下降梯度;
可选地,Adam是一种自适应调节学习率的随机梯度下降算法,可以结合矩估计思想,通过计算并修正每轮梯度的一阶矩和二阶矩来动态调节学习率。Optionally, Adam is a stochastic gradient descent algorithm for adaptively adjusting the learning rate, which can dynamically adjust the learning rate by calculating and correcting the first-order moment and second-order moment of each round of gradients by combining the idea of moment estimation.
可选地,测量人员可以设置人工神经网络结构的初始参数为θ,然后采用Adam学习率自适应的优化算法,基于优化参数,计算出参数的变更值Δθ,然后基于参数的变更值Δθ,调整人工神经网络结构的参数为θ1=θ+Δθ。Optionally, the surveyor can set the initial parameter of the artificial neural network structure to θ, and then use the Adam learning rate adaptive optimization algorithm to calculate the parameter change value Δθ based on the optimized parameters, and then adjust the parameter value Δθ based on the parameter change value Δθ. The parameters of the artificial neural network structure are θ 1 =θ+Δθ.
可选地,测量人员可以采用Adam学习率自适应的优化算法,基于以下情况的任意一种,调整人工神经网络结构的参数:Optionally, the measurement personnel can use the Adam learning rate adaptive optimization algorithm to adjust the parameters of the artificial neural network structure based on any of the following situations:
1、步长;1. Step length;
2、矩估计的指数衰减速率;2. Exponential decay rate of moment estimation;
3、用于数值稳定的小常数;3. Small constants for numerical stability;
4、下降梯度;4. Descent gradient;
5、步长和矩估计的指数衰减速率;5. Exponential decay rate of step size and moment estimation;
6、步长和用于数值稳定的小常数;6. Step size and small constants for numerical stability;
7、步长和下降梯度;7. Step size and descent gradient;
8、矩估计的指数衰减速率和用于数值稳定的小常数;8. Exponential decay rate for moment estimation and small constants for numerical stabilization;
9、矩估计的指数衰减速率和下降梯度;9. Exponential decay rate and descent gradient of moment estimation;
10、用于数值稳定的小常数和下降梯度;10. Small constants and descending gradients for numerical stability;
11、步长、矩估计的指数衰减速率和用于数值稳定的小常数;11. Step size, exponential decay rate for moment estimation and small constants for numerical stabilization;
12、步长、矩估计的指数衰减速率和下降梯度;12. Step size, exponential decay rate and descent gradient of moment estimation;
13、步长、用于数值稳定的小常数和下降梯度;13. Step size, small constant for numerical stabilization and descent gradient;
14、矩估计的指数衰减速率、用于数值稳定的小常数和下降梯度;14. Exponential decay rate for moment estimation, small constants and descent gradients for numerical stabilization;
15、步长、矩估计的指数衰减速率、用于数值稳定的小常数和下降梯度。15. Step size, exponential decay rate for moment estimates, small constants for numerical stabilization and descent gradients.
在本发明的其中一个实施例中,参数优化的过程如下:In one of the embodiments of the present invention, the process of parameter optimization is as follows:
参数优化器采用Adam,首先计算第t轮迭代时的梯度gt的一阶矩和二阶矩的估计量mt和ut:The parameter optimizer adopts Adam, and first calculates the estimators m t and u t of the first-order moment and second-order moment of the gradient g t in the t-th iteration:
mt=β1mt-1+(1-β1)gt;m t =β 1 m t-1 +(1-β 1 )g t ;
其中,β1,β2∈[0,1)是衰减函数,可以设置为β1=0.9,β2=0.999,初始化m0和u0均为d维零向量。Wherein, β 1 , β 2 ∈[0,1) are attenuation functions, which can be set as β 1 =0.9, β 2 =0.999, and both m 0 and u 0 are initialized as d-dimensional zero vectors.
分别对mt和ut的偏差进行修正:Correct the deviations of m t and u t respectively:
Adam的参数更新式为:Adam's parameter update formula is:
其中ε是用于数值稳定的小常数(一般取10-8),作用是避免分母为0。Where ε is a small constant (generally 10 -8 ) used for numerical stability, and its function is to prevent the denominator from being 0.
步骤120,采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,其中,所述训练数据包括胎-路接触三向力传感器的三个方向分别对应的输入载荷量,所述三个方向分别对应的输入载荷量分别对应各自的期望输出电信号。
可选地,批量更新方法可以是将整个训练数据分为若干各个训练样本,然后逐一导入胎-路接触三向力传感器解耦模型中,迭代更新所述胎-路接触三向力传感器解耦模型的参数。Optionally, the batch update method may be to divide the entire training data into several individual training samples, and then import them one by one into the tire-road contact three-way force sensor decoupling model, and iteratively update the tire-road contact three-way force sensor decoupling model. The parameters of the model.
可选地,胎-路接触三向力传感器解耦模型中,力和电信号可以是线性关系,通过测得三个方向分别对应的输出电信号,可以获得三个方向分别对应的输出的力。Optionally, in the tire-road contact three-way force sensor decoupling model, the force and the electrical signal can be in a linear relationship, and by measuring the output electrical signals corresponding to the three directions, the output force corresponding to the three directions can be obtained .
可选地,测量人员可以将训练数据导入胎-路接触三向力传感器解耦模型,检测输出电信号数据,根据实际输出电信号和期望输出电信号,计算出MSE值,若算法迭代时MSE的值没有持续递减,则测量人员需更新胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减。Optionally, the measurement personnel can import the training data into the tire-road contact three-way force sensor decoupling model, detect the output electrical signal data, and calculate the MSE value according to the actual output electrical signal and the expected output electrical signal. If the algorithm iterates, the MSE The value of the loss function MSE does not continue to decrease, so the measurement personnel need to update the parameters of the decoupling model of the tire-road contact three-way force sensor until the value of the loss function MSE continues to decrease.
可选地,测试人员可以在建立胎-路接触三向力传感器解耦模型的人工神经网络结构后,基于ReLU激活函数的BP神经网络结构,构造数据训练集、验证集和测试集,然后采用批量更新方法,基于训练集数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型。Optionally, after establishing the artificial neural network structure of the tire-road contact three-way force sensor decoupling model, based on the BP neural network structure of the ReLU activation function, the tester can construct a data training set, a verification set and a test set, and then use The batch update method, based on the training set data, iteratively updates the parameters of the tire-road contact three-way force sensor decoupling model until the value of the loss function MSE continues to decrease, and obtains the actual measurement for the tire-road contact three-way force Decoupled tire-road contact three-way force sensor decoupling model.
可选地,胎-路接触三向力传感器的三个方向可以是X轴、Y轴和Z轴方向。Optionally, the three directions of the tire-road contacting three-way force sensor may be X-axis, Y-axis and Z-axis directions.
可选地,测量人员可以在数据训练集中的X轴、Y轴和Z轴三个方向各选择n个输入载荷量,分别导入胎-路接触三向力传感器解耦模型,检测输出电信号数据,根据实际输出电信号和期望输出电信号,计算出MSE值,若算法迭代时MSE的值没有持续递减,则测量人员需更新胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型。Optionally, the surveyor can select n input loads in each of the three directions of the X-axis, Y-axis and Z-axis in the data training set, respectively import the tire-road contact three-way force sensor decoupling model, and detect the output electrical signal data , according to the actual output electrical signal and the expected output electrical signal, the MSE value is calculated. If the MSE value does not continue to decrease during the algorithm iteration, the measurement personnel need to update the parameters of the decoupling model of the tire-road contact three-way force sensor until the loss function The value of MSE keeps decreasing, and the tire-road contact three-way force sensor decoupling model is obtained for decoupling in the actual measurement of the tire-road contact three-way force.
本发明提供的胎-路接触三向力传感器解耦模型确定方法,利用ReLU函数作为胎-路接触三向力传感器解耦模型的人工神经网络结构的激活函数,获得胎-路接触三向力传感器解耦模型,可以使胎-路接触三向力传感器解耦模型具有较强的泛化能力,使模型更逼近于最优解;采用Adam学习率自适应的优化算法调整所述人工神经网络结构的参数,可以通过计算并修正每轮梯度的一阶矩和二阶矩来动态调节学习率;采用批量更新方法迭代更新胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,可以获得胎-路接触三向力传感器解耦模型的参数的最优解,使用胎-路接触三向力传感器解耦模型进行解耦,可以利用神经网络中信号前向传递、误差后向传递的特点,通过不断调节网络权重值,让网络的最终输出与期望输出尽可能接近的特点,最大程度降低维间耦合,从而显著提高胎-路接触三向力测量系统的测量精度。The method for determining the tire-road contact three-way force sensor decoupling model provided by the present invention uses the ReLU function as the activation function of the artificial neural network structure of the tire-road contact three-way force sensor decoupling model to obtain the tire-road contact three-way force The sensor decoupling model can make the tire-road contact three-way force sensor decoupling model have a strong generalization ability, making the model closer to the optimal solution; using the Adam learning rate adaptive optimization algorithm to adjust the artificial neural network For the parameters of the structure, the learning rate can be dynamically adjusted by calculating and correcting the first-order moment and second-order moment of each round of gradient; the batch update method is used to iteratively update the parameters of the tire-road contact three-way force sensor decoupling model until the loss function MSE The value of is continuously decreasing, and the optimal solution of the parameters of the tire-road contact three-way force sensor decoupling model can be obtained. Using the tire-road contact three-way force sensor decoupling model for decoupling can use the forward transmission of signals in the neural network , The characteristics of error backward transmission, by continuously adjusting the network weight value, the final output of the network is as close as possible to the expected output, and the inter-dimensional coupling is minimized, thereby significantly improving the measurement of the tire-road contact three-dimensional force measurement system precision.
可选地,所述采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,包括:Optionally, the batch update method is used to iteratively update the parameters of the decoupling model of the tire-road contact three-way force sensor based on the training data until the value of the loss function MSE continues to decrease, and the tire-road contact is obtained. Decoupled tire-road contact three-dimensional force sensor decoupling model in the actual measurement of three-dimensional force, including:
执行多次参数更新过程,获得多个参数更新过程中分别获得的MSE值,在确定MSE的值持续递减的情况下,停止执行参数更新过程,基于最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,确定所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型;Execute multiple parameter update processes to obtain the MSE values obtained in multiple parameter update processes respectively. When it is determined that the value of MSE continues to decrease, stop executing the parameter update process. Based on the tire- A road contact three-way force sensor decoupling model, determining the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force;
其中,所述参数更新过程包括:从训练集中三个方向的训练数据中各选择n个输入载荷量,并在三个方向分别进行单轴加载,检测输出电信号数据,根据所述输出电信号数据和所述输入载荷量分别对应的期望输出电信号,获取MSE值。Wherein, the parameter update process includes: selecting n input loads from the training data in the three directions of the training set, and performing uniaxial loading in the three directions respectively, detecting the output electrical signal data, and according to the output electrical signal The expected output electrical signal corresponding to the data and the input load respectively, to obtain the MSE value.
可选地,训练集可以用于模型拟合的数据样本,用来训练胎-路接触三向力传感器解耦模型中的参数。Optionally, the training set can be used as a data sample for model fitting to train parameters in the tire-road contact three-way force sensor decoupling model.
可选地,训练集的样本越大,训练出来的胎-路接触三向力传感器解耦模型的解耦效果越好。Optionally, the larger the samples in the training set, the better the decoupling effect of the trained tire-road contact three-way force sensor decoupling model.
可选地,训练胎-路接触三向力传感器解耦模型中的参数的过程可以是有监督的。Optionally, the process of training the parameters in the tire-road contact triaxial force sensor decoupling model can be supervised.
可选地,损失函数MSE的值可以通过公式获得,式中n为输入载荷量的数量,y为输入载荷量分别对应的期望输出电信号,yi′为实际输出电信号。Optionally, the value of the loss function MSE can be obtained by the formula Obtained, where n is the number of input loads, y is the expected output electrical signal corresponding to the input loads, and y i ' is the actual output electrical signal.
可选地,测量人员获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型后,可以获得BP神经网络的初始权值和阈值。Optionally, after the surveyor obtains the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force, the initial weight and threshold of the BP neural network can be obtained.
可选地,测量人员在执行多次参数更新过程,获得多个参数更新过程中分别获得的MSE值后,可以观察MSE的值是否会随着迭代次数依次递减,当MSE的值无限接近0或者MSE的值不会随着迭代次数有较大改变则判定获得的解耦模型的参数为最优解,停止执行参数更新过程,基于最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,确定所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型。Optionally, after performing multiple parameter update processes and obtaining the MSE values obtained in multiple parameter update processes, the measurement personnel can observe whether the value of MSE will decrease with the number of iterations. When the value of MSE is infinitely close to 0 or If the value of MSE does not change significantly with the number of iterations, it is determined that the parameters of the obtained decoupling model are the optimal solution, and the execution of the parameter update process is stopped. The force sensor decoupling model is to determine the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force.
可选地,测量人员可以执行10次参数更新过程,获得10个参数更新过程中分别获得的MSE值为10,9,8,7,6,5,4,3,2,1,则测量人员可以判定MSE的值会随着迭代次数依次递减,停止执行参数更新过程,基于最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,确定所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型。可选地,测量人员在执行多次参数更新过程,获得多个参数更新过程中分别获得的MSE值后,可以观察MSE的值是否会随着迭代次数依次递减,若MSE的值呈递增趋势或非线性变化趋势,则测量人员可以对解耦模型算法中的各项参数进行调整,重新执行多次参数更新过程,直至MSE的值保持稳定递减趋势。Optionally, the measurement personnel can perform 10 parameter update processes, and the MSE values obtained in the 10 parameter update processes are 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, then the measurement personnel It can be determined that the value of MSE will decrease sequentially with the number of iterations, and the execution of the parameter update process will be stopped. Based on the tire-road contact three-way force sensor decoupling model updated during the last execution of the parameter update process, the tire-road contact force sensor decoupling model used to determine the Decoupled tire-road contact three-way force sensor decoupling model in actual measurement of road contact three-way force. Optionally, after performing multiple parameter update processes and obtaining the MSE values obtained in multiple parameter update processes, the measurement personnel can observe whether the value of MSE will decrease sequentially with the number of iterations, if the value of MSE shows an increasing trend or Non-linear change trend, the surveyors can adjust the parameters in the decoupling model algorithm, and re-execute the parameter update process for several times until the value of MSE maintains a stable decreasing trend.
图4是本发明提供的解耦方法的误差迭代曲线示意图,如图4所示,随着算法迭代次数的增加,MSE的值呈递减趋势,则判定获得的解耦模型的参数为最优解。Fig. 4 is a schematic diagram of the error iteration curve of the decoupling method provided by the present invention. As shown in Fig. 4, as the number of algorithm iterations increases, the value of MSE shows a decreasing trend, and the parameters of the obtained decoupling model are determined to be the optimal solution .
本发明提供的胎-路接触三向力传感器解耦模型确定方法,通过在迭代更新所述胎-路接触三向力传感器解耦模型的参数过程中,计算每次迭代更新的MSE值,并观察MSE值是否随着迭代次数的增加而持续递减,若确定MSE值持续递减,则可以认为最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型为最优模型。The method for determining the tire-road contact three-way force sensor decoupling model provided by the present invention calculates the MSE value updated each iteration during the iterative update of the parameters of the tire-road contact three-way force sensor decoupling model, and Observe whether the MSE value continues to decrease as the number of iterations increases. If it is determined that the MSE value continues to decrease, it can be considered that the tire-road contact three-way force sensor decoupling model updated during the last parameter update process is the optimal model.
可选地,所述基于最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,确定所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,包括:Optionally, the tire-road contact three-way force sensor decoupling model updated in the last executed parameter update process is used to determine the tire-road contact three-way force sensor decoupling used in the actual measurement. - Road contact three-way force sensor decoupling model, including:
将验证集中的三个方向的输出电信号数据,输入到最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型中,获得最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型输出的三个方向上的输入载荷;Input the output electrical signal data of the three directions in the verification set into the decoupling model of the tire-road contact three-way force sensor updated during the last parameter update process, and obtain the updated tire-road contact force sensor data during the last parameter update process. - Input loads in three directions output by the road contact three-way force sensor decoupling model;
在验证胎-路接触三向力传感器解耦模型输出的三个方向上的输入载荷与所述三个方向的输出电信号数据对应的实际载荷一致的情况下,将所述最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,作为所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型。In the case of verifying that the input loads in the three directions output by the tire-road contact three-way force sensor decoupling model are consistent with the actual loads corresponding to the output electrical signal data in the three directions, the parameters of the last execution The tire-road contact three-way force sensor decoupling model updated during the update process is used as the tire-road contact three-way force sensor decoupling model for decoupling in the actual measurement of the tire-road contact three-way force.
可选地,为了使胎-路接触三向力传感器解耦模型的解耦效果更好,测量人员可以将验证集中的三个方向的输出电信号数据,输入到该模型中,不断更新胎-路接触三向力传感器解耦模型的参数,因此,胎-路接触三向力传感器解耦模型执行最后一次参数更新过程后,应该是解耦效果最优的、可以用于实际胎-路接触三向力测量中解耦的解耦模型,为了验证该模型是否最优,测量人员可以将验证集中的三个方向的输出电信号数据输入到该模型中,验证输出的三个方向上的输入载荷是否等于输出电信号数据对应的实际载荷,若等于,则证明该模型为最优的、可以用于实际胎-路接触三向力测量中解耦的胎-路接触三向力传感器解耦模型;若不等于,则测量人员需要继续对该解耦模型执行参数更新过程,直至获得最优的、可以用于实际胎-路接触三向力测量中解耦的胎-路接触三向力传感器解耦模型。Optionally, in order to make the decoupling effect of the decoupling model of the tire-road contact three-way force sensor better, the measurement personnel can input the output electrical signal data of the three directions in the verification set into the model, and continuously update the tire-road contact force sensor decoupling effect. The parameters of the road contact three-way force sensor decoupling model, therefore, after the last parameter update process, the tire-road contact three-way force sensor decoupling model should have the best decoupling effect and can be used in the actual tire-road contact Decoupled decoupling model in three-way force measurement. In order to verify whether the model is optimal, the measurement personnel can input the output electrical signal data in the three directions in the verification set into the model, and verify the input in the three directions of the output. Whether the load is equal to the actual load corresponding to the output electrical signal data, if it is equal, it proves that the model is optimal and can be used for the decoupling of the tire-road contact three-way force sensor decoupling in the actual tire-road contact three-way force measurement model; if it is not equal, the measurement personnel need to continue to perform the parameter update process of the decoupling model until the optimal tire-road contact three-dimensional force that can be used for decoupling in the actual tire-road contact three-dimensional force measurement is obtained Sensor decoupling model.
可选地,测量人员可以将验证集中的三个方向的输出电信号数据Vx、Vy和Vz,输入到最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型中,获得最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型输出的三个方向上的输入载荷Fx、Fy和Fz,若三个方向的输出电信号数据对应的实际载荷中,X轴方向的输出电信号数据对应的实际载荷等于Fx;Y轴方向的输出电信号数据对应的实际载荷等于Fy;Z轴方向的输出电信号数据对应的实际载荷等于Fz,则测量人员可以将最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型,作为用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型。Optionally, the measurement personnel can input the output electrical signal data V x , V y and V z of the three directions in the verification set to the tire-road contact three-way force sensor decoupling updated during the last parameter update process In the model, the input loads F x , F y and F z in the three directions output by the tire-road contact three-way force sensor decoupling model updated during the last execution of the parameter update process are obtained. If the output power in the three directions In the actual load corresponding to the signal data, the actual load corresponding to the output electrical signal data in the X-axis direction is equal to F x ; the actual load corresponding to the output electrical signal data in the Y-axis direction is equal to F y ; the output electrical signal data in the Z-axis direction is corresponding to If the actual load is equal to F z , the measurer can use the tire-road contact three-way force sensor decoupling model updated during the last parameter update process as the decoupling model used in the actual measurement of the tire-road contact three-way force Decoupling model of three-way force sensor for tire-road contact.
本发明提供的胎-路接触三向力传感器解耦模型确定方法,在获得最后一次执行的参数更新过程中更新的胎-路接触三向力传感器解耦模型后,还会将验证集中的三个方向的输出电信号数据输入到优化后的解耦模型中,测得三个方向上的输入载荷,通过对比输入载荷是否与实际载荷一致,可以对模型进行验证,确定最优模型。The tire-road contact three-way force sensor decoupling model determination method provided by the present invention, after obtaining the tire-road contact three-way force sensor decoupling model updated in the last execution of the parameter update process, will also verify the concentrated three-way The output electrical signal data in three directions is input into the optimized decoupling model, and the input load in three directions is measured. By comparing whether the input load is consistent with the actual load, the model can be verified and the optimal model can be determined.
可选地,所述胎-路接触三向力传感器解耦模型确定方法还包括:Optionally, the tire-road contact three-way force sensor decoupling model determination method further includes:
将胎-路接触三向力测量系统采集到的输出电信号输入到用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型中,获得所述用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型输出的所述三个方向的输入载荷值。The output electrical signal collected by the tire-road contact three-way force measurement system is input into the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force, and the obtained The input load values in the three directions output by the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force are described.
可选地,测量人员获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型后,可以将实际测量数据,比如胎-路接触三向力测量系统采集到的输出电信号,输入该解耦模型中,检测该模型是否正常运行,若能获得三个方向的输入载荷值,则说明该模型正常。Optionally, after the surveyor obtains the tire-road contact three-way force sensor decoupling model for decoupling in the actual measurement of the tire-road contact three-way force, the actual measurement data, such as the tire-road contact three-way The output electrical signal collected by the force measurement system is input into the decoupling model to check whether the model is running normally. If the input load values in three directions can be obtained, it means that the model is normal.
可选地,测量人员可以基于用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型输出的所述三个方向的输入载荷值,对模型进行验证,确定最优模型。Optionally, the measurement personnel may base the input load values in the three directions output by the decoupling tire-road contact three-way force sensor decoupling model used in the actual measurement of the tire-road contact three-way force, to the model Validate and determine the optimal model.
可选地,测量人员可以基于用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型输出的所述三个方向的输入载荷值,从Ⅰ类误差、Ⅱ类误差以及整体误差与其他的常用解耦方法进行对比,观察Ⅰ类误差、Ⅱ类误差以及整体误差是否小于其他的常用解耦方法,证明ReLU函数作为激活函数的可行性和优势性。Optionally, the surveyor can base on the input load values in the three directions output by the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force, from I Compare the type error, type II error and overall error with other commonly used decoupling methods, observe whether the type I error, type II error and overall error are smaller than other commonly used decoupling methods, and prove the feasibility and advantages of the ReLU function as an activation function sex.
本发明提供的胎-路接触三向力传感器解耦模型确定方法,通过获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型输出的所述三个方向的输入载荷值,可以对模型进行验证,确定最优模型,证明了ReLU函数作为激活函数的可行性和优势性。The tire-road contact three-way force sensor decoupling model determination method provided by the present invention obtains the output of the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force The input load values in the three directions can verify the model and determine the optimal model, which proves the feasibility and superiority of the ReLU function as an activation function.
可选地,所述胎-路接触三向力传感器解耦模型确定方法还包括:Optionally, the tire-road contact three-way force sensor decoupling model determination method further includes:
对胎-路接触三向力传感器进行静态标定,获得静态标定结果;所述静态标定结果用于表征胎-路接触三向力传感器的标定系数矩阵。Static calibration is performed on the tire-road contact three-way force sensor to obtain a static calibration result; the static calibration result is used to characterize the calibration coefficient matrix of the tire-road contact three-way force sensor.
可选地,胎-路接触三向力传感器的标定系数矩阵可以用于确定该胎-路接触三向力传感器的输出电信号与力之间的关系,测量人员可以基于标定系数矩阵,在实际测量中根据输出电信号求出力。Optionally, the calibration coefficient matrix of the tire-road contact three-way force sensor can be used to determine the relationship between the output electrical signal and the force of the tire-road contact three-way force sensor. The output force is calculated according to the output electrical signal during the measurement.
可选地,测量人员可以在对胎-路接触三向力传感器进行静态标定前,使加载系统、传感器和测量系统之间可靠连接。Optionally, before the static calibration of the tire-road contact three-way force sensor, the measuring personnel can make a reliable connection between the loading system, the sensor and the measuring system.
可选地,为了验证加载系统的稳定性,避免在对胎-路接触三向力传感器进行静态标定的过程中因为加载系统的不稳定导致的各种问题,测量人员可以进行预实验,比如首先加载10%的载荷,观察加载过程是否出现异常情况,若没有出现异常情况,则可以认为加载系统稳定,测量人员可以开始对胎-路接触三向力传感器进行静态标定。Optionally, in order to verify the stability of the loading system and avoid various problems caused by the instability of the loading system during the static calibration of the tire-road contact three-dimensional force sensor, the measurement personnel can conduct pre-experiments, such as
可选地,测量人员可以在对胎-路接触三向力传感器进行静态标定时,在X轴、Y轴和Z轴方向上,分别在传感器量程范围内将载荷按测量点从0增加至满量程值(每5N为一个测量点),然后卸载至0;加载操作需要缓慢、轻柔、平稳进行;重复进行此过程10次,或15次、或20次,本发明对此不作限定,准确记录载荷产生的电信号数据。Optionally, when performing static calibration on the tire-road contact three-way force sensor, in the X-axis, Y-axis and Z-axis directions, the load can be increased from 0 to full according to the measurement point within the range of the sensor. Range value (every 5N is a measuring point), then unload to 0; the loading operation needs to be carried out slowly, softly and steadily; repeat this
可选地,测量人员可以在完成对胎-路接触三向力传感器的静态标定,获得静态标定结果后,建立胎-路接触三向力传感器解耦模型的人工神经网络结构。Optionally, after completing the static calibration of the tire-road contact three-way force sensor and obtaining the static calibration results, the measurement personnel can establish an artificial neural network structure for the decoupling model of the tire-road contact three-way force sensor.
在本发明的其中一个实施例中,静态标定包括以下步骤:In one of the embodiments of the present invention, the static calibration includes the following steps:
(1)将胎-路接触三向力传感器放在全自动静重式力标准机加载台上,检查加载装置、传感器、控制系统等各部分是否连接无误,是否连接紧固;(1) Put the tire-road contact three-way force sensor on the loading platform of the automatic deadweight force standard machine, and check whether the loading device, sensor, control system and other parts are connected correctly and whether the connection is tight;
(2)确认各部分准确可靠连接之后,进行预实验,按照10%满量程值进行加载,以此验证加载系统的稳定性;(2) After confirming the accurate and reliable connection of each part, conduct a pre-test and load according to 10% of the full scale value to verify the stability of the loading system;
(3)预实验完成后,进行正式加载。以Z轴方向为例,在传感器量程范围内将载荷按测量点从0增加至满量程值(每5N为一个测量点),然后卸载至0。此过程重复10次,加载过程中操作需要缓慢轻稳;(3) After the pre-experiment is completed, the formal loading is carried out. Taking the Z-axis direction as an example, within the range of the sensor, increase the load from 0 to the full-scale value according to the measurement point (every 5N is a measurement point), and then unload it to 0. This process is repeated 10 times, and the operation needs to be slow and steady during the loading process;
(4)X轴和Y轴按照步骤(3)进行实验,最后完成胎-路接触三向力传感器三个方向的静态标定。(4) The X-axis and Y-axis are tested according to step (3), and finally the static calibration of the three directions of the tire-road contact three-way force sensor is completed.
本发明提供的胎-路接触三向力传感器解耦模型确定方法,通过对胎-路接触三向力传感器进行静态标定,可以找到该传感器的标定系数矩阵,这样在实际测量中可以根据输出电信号求出力,为后续胎-路接触三向力传感器解耦模型的建立和优化做准备。The method for determining the decoupling model of the tire-road contact three-way force sensor provided by the present invention can find the calibration coefficient matrix of the sensor through static calibration of the tire-road contact three-way force sensor, so that in actual measurement, it can be based on the output voltage The signal is calculated to prepare for the establishment and optimization of the subsequent tire-road contact three-way force sensor decoupling model.
可选地,所述隐藏层分为5层,每层隐藏层分别包含的神经元数量依次为40、160、640、160、40。Optionally, the hidden layer is divided into 5 layers, and the number of neurons included in each hidden layer is 40, 160, 640, 160, and 40 in sequence.
图5是本发明提供的胎-路接触三向力传感器解耦模型的人工神经网络结构示意图,如图5所示,ReLU-BP神经网络结构采用5个隐藏层,隐藏层节点数分别为40,160,640,160,40。输入量为电信号,输出量为力信号。Fig. 5 is a schematic diagram of the artificial neural network structure of the tire-road contact three-way force sensor decoupling model provided by the present invention. As shown in Fig. 5, the ReLU-BP neural network structure adopts 5 hidden layers, and the number of hidden layer nodes is 40 respectively. , 160, 640, 160, 40. The input is an electrical signal, and the output is a force signal.
本发明提供的胎-路接触三向力传感器解耦模型确定方法,通过采用5个隐藏层,隐藏层节点数分别为40,160,640,160,40,且每一层的激活函数为ReLU激活函数,具有较强的泛化能力,而且更适应的网络结构与激活函数,使模型更逼近于最优解。The tire-road contact three-way force sensor decoupling model determination method provided by the present invention adopts 5 hidden layers, the number of hidden layer nodes is 40, 160, 640, 160, 40, and the activation function of each layer is ReLU The activation function has strong generalization ability, and the more adaptable network structure and activation function make the model closer to the optimal solution.
在本发明的其中一个实施例中,为了验证基于ReLU函数的BP神经网络三向力解耦方法的可行性,分别从三个方向各选取150组输出电信号数据进行检验。为了验证本发明中选用的ReLU激活函数的优越性,从Ⅰ类误差、Ⅱ类误差以及整体误差与其他的常用解耦方法进行了对比,具有良好的解耦效果。In one embodiment of the present invention, in order to verify the feasibility of the three-way force decoupling method of the BP neural network based on the ReLU function, 150 sets of output electrical signal data were selected from each of the three directions for inspection. In order to verify the superiority of the ReLU activation function selected in the present invention, the type I error, type II error, and overall error were compared with other commonly used decoupling methods, and it has a good decoupling effect.
表1单轴加载误差Table 1 Uniaxial loading error
表2整体误差Table 2 overall error
由上表1和表2的实验结果可以看出,基于ReLU激活函数的BP神经网络的胎路接触三向力解耦算法相较于最小二乘的解耦算法,Ⅰ、Ⅱ类误差都有明显提高,并且由于ReLU函数简单、高效,会表现出更快的解耦速度,进一步证明了ReLU函数作为激活函数的可行性和优势性。From the experimental results in Table 1 and Table 2 above, it can be seen that the tire road contact three-dimensional force decoupling algorithm based on the ReLU activation function of the BP neural network has both Type I and Type II errors compared with the least squares decoupling algorithm. It is significantly improved, and because the ReLU function is simple and efficient, it will show a faster decoupling speed, which further proves the feasibility and advantages of the ReLU function as an activation function.
下面对本发明提供的胎-路接触三向力传感器解耦模型确定装置进行描述,下文描述的胎-路接触三向力传感器解耦模型确定装置与上文描述的胎-路接触三向力传感器解耦模型确定方法可相互对应参照。The tire-road contact three-way force sensor decoupling model determination device provided by the present invention is described below. The tire-road contact three-way force sensor decoupling model determination device described below is the same as the tire-road contact three-way force sensor described above. Decoupling model determination methods can be referred to each other.
图6是本发明提供的胎-路接触三向力传感器解耦模型确定装置的结构示意图,包括建立模块610,第一获取模块620和第二获取模块630,其中:Fig. 6 is a schematic structural diagram of a tire-road contact three-way force sensor decoupling model determination device provided by the present invention, including an
建立模块610,用于建立胎-路接触三向力传感器解耦模型的人工神经网络结构,所述人工神经网络结构包括输入层、隐藏层和输出层,所述输入层和所述隐藏层的激活函数为ReLU激活函数;
第一获取模块620,用于采用Adam学习率自适应的优化算法,基于优化参数,调整所述人工神经网络结构的参数,获得优化后的胎-路接触三向力传感器解耦模型,其中,所述优化参数包括以下至少一项:步长、矩估计的指数衰减速率、用于数值稳定的小常数、和下降梯度;The
第二获取模块630,用于采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,其中,所述训练数据包括胎-路接触三向力传感器的三个方向分别对应的输入载荷量,所述三个方向分别对应的输入载荷量分别对应各自的期望输出电信号。The
本发明提供的胎-路接触三向力传感器解耦模型确定装置,建立模块利用ReLU函数作为胎-路接触三向力传感器解耦模型的人工神经网络结构的激活函数,具有较强的泛化能力,而且更适应的网络结构与激活函数,使模型更逼近于最优解;第一获取模块采用Adam学习率自适应的优化算法调整所述人工神经网络结构的参数,可以通过计算并修正每轮梯度的一阶矩和二阶矩来动态调节学习率;第二获取模块采用批量更新方法迭代更新胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,可以获得胎-路接触三向力传感器解耦模型的参数的最优解,使用胎-路接触三向力传感器解耦模型进行解耦,可以最大程度降低维间耦合,从而显著提高胎-路接触三向力测量系统的测量精度。The tire-road contact three-way force sensor decoupling model determination device provided by the present invention uses the ReLU function as the activation function of the artificial neural network structure of the tire-road contact three-way force sensor decoupling model to establish a module, which has strong generalization Ability, and a more adaptable network structure and activation function, make the model closer to the optimal solution; the first acquisition module uses the Adam learning rate adaptive optimization algorithm to adjust the parameters of the artificial neural network structure, which can be calculated and corrected for each The first-order moment and second-order moment of the wheel gradient are used to dynamically adjust the learning rate; the second acquisition module uses the batch update method to iteratively update the parameters of the tire-road contact three-way force sensor decoupling model until the value of the loss function MSE continues to decrease, which can Obtain the optimal solution of the parameters of the tire-road contact three-way force sensor decoupling model, and use the tire-road contact three-way force sensor decoupling model for decoupling, which can minimize the coupling between dimensions, thereby significantly improving the tire-road contact Measurement accuracy of a three-way force measuring system.
可以理解的是,本发明提供的胎-路接触三向力传感器解耦模型确定装置与上述各实施例提供的胎-路接触三向力传感器解耦模型确定方法相对应,本发明提供的胎-路接触三向力传感器解耦模型确定装置的相关技术特征可参考上述各实施例提供的胎-路接触三向力传感器解耦模型确定方法的相关技术特征,在此不再赘述。It can be understood that the device for determining the tire-road contact three-way force sensor decoupling model provided by the present invention corresponds to the method for determining the tire-road contact three-way force sensor decoupling model provided in the above-mentioned embodiments. For the relevant technical features of the device for determining the decoupling model of the road contact three-way force sensor, please refer to the relevant technical features of the method for determining the decoupling model of the tire-road contact three-way force sensor provided by the above-mentioned embodiments, and details will not be repeated here.
图7示例了一种电子设备的实体结构示意图,如图7所示,该电子设备可以包括:处理器(processor)710、通信接口(Communications Interface)720、存储器(memory)730和通信总线740,其中,处理器710,通信接口720,存储器730通过通信总线740完成相互间的通信。处理器710可以调用存储器730中的逻辑指令,以执行胎-路接触三向力传感器解耦模型确定方法,该方法包括:建立胎-路接触三向力传感器解耦模型的人工神经网络结构,所述人工神经网络结构包括输入层、隐藏层和输出层,所述输入层和所述隐藏层的激活函数为ReLU激活函数;采用Adam学习率自适应的优化算法,基于优化参数,调整所述人工神经网络结构的参数,获得优化后的胎-路接触三向力传感器解耦模型,其中,所述优化参数包括以下至少一项:步长、矩估计的指数衰减速率、用于数值稳定的小常数、和下降梯度;采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,其中,所述训练数据包括胎-路接触三向力传感器的三个方向分别对应的输入载荷量,所述三个方向分别对应的输入载荷量分别对应各自的期望输出电信号。FIG. 7 illustrates a schematic diagram of the physical structure of an electronic device. As shown in FIG. 7, the electronic device may include: a processor (processor) 710, a communication interface (Communications Interface) 720, a memory (memory) 730, and a
此外,上述的存储器730中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the above-mentioned logic instructions in the
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的胎-路接触三向力传感器解耦模型确定方法,该方法包括:建立胎-路接触三向力传感器解耦模型的人工神经网络结构,所述人工神经网络结构包括输入层、隐藏层和输出层,所述输入层和所述隐藏层的激活函数为ReLU激活函数;采用Adam学习率自适应的优化算法,基于优化参数,调整所述人工神经网络结构的参数,获得优化后的胎-路接触三向力传感器解耦模型,其中,所述优化参数包括以下至少一项:步长、矩估计的指数衰减速率、用于数值稳定的小常数、和下降梯度;采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,其中,所述训练数据包括胎-路接触三向力传感器的三个方向分别对应的输入载荷量,所述三个方向分别对应的输入载荷量分别对应各自的期望输出电信号。On the other hand, the present invention also provides a computer program product. The computer program product includes a computer program that can be stored on a non-transitory computer-readable storage medium. When the computer program is executed by a processor, the computer can The method for determining the tire-road contact three-way force sensor decoupling model provided by performing the above-mentioned methods includes: establishing an artificial neural network structure for the tire-road contact three-way force sensor decoupling model, and the artificial neural network structure includes Input layer, hidden layer and output layer, the activation function of described input layer and described hidden layer is ReLU activation function; Adopt the adaptive optimization algorithm of Adam learning rate, based on optimization parameter, adjust the parameter of described artificial neural network structure, An optimized tire-road contact three-way force sensor decoupling model is obtained, wherein the optimized parameters include at least one of the following: step size, exponential decay rate of moment estimation, small constant for numerical stability, and descent gradient; Using the batch update method, based on the training data, iteratively update the parameters of the tire-road contact three-way force sensor decoupling model until the value of the loss function MSE continues to decrease, and obtain the actual measurement for the tire-road contact three-way force The tire-road contact three-way force sensor decoupling model decoupled in , wherein the training data includes the input loads corresponding to the three directions of the tire-road contact three-way force sensor, and the three directions correspond to The input loads respectively correspond to respective expected output electrical signals.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的胎-路接触三向力传感器解耦模型确定方法,该方法包括:建立胎-路接触三向力传感器解耦模型的人工神经网络结构,所述人工神经网络结构包括输入层、隐藏层和输出层,所述输入层和所述隐藏层的激活函数为ReLU激活函数;采用Adam学习率自适应的优化算法,基于优化参数,调整所述人工神经网络结构的参数,获得优化后的胎-路接触三向力传感器解耦模型,其中,所述优化参数包括以下至少一项:步长、矩估计的指数衰减速率、用于数值稳定的小常数、和下降梯度;采用批量更新方法,基于训练数据,迭代更新所述胎-路接触三向力传感器解耦模型的参数,直至损失函数MSE的值持续递减,获得用于在胎-路接触三向力的实际测量中解耦的胎-路接触三向力传感器解耦模型,其中,所述训练数据包括胎-路接触三向力传感器的三个方向分别对应的输入载荷量,所述三个方向分别对应的输入载荷量分别对应各自的期望输出电信号。In yet another aspect, the present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to implement the tire-road contact three-way force sensor provided by the above methods. A method for determining a decoupling model, the method comprising: establishing an artificial neural network structure for a tire-road contact three-way force sensor decoupling model, the artificial neural network structure comprising an input layer, a hidden layer and an output layer, the input layer and the The activation function of the hidden layer is a ReLU activation function; the Adam learning rate self-adaptive optimization algorithm is used to adjust the parameters of the artificial neural network structure based on the optimization parameters to obtain the optimized tire-road contact three-way force sensor decoupling model , wherein the optimization parameters include at least one of the following: step size, exponential decay rate of moment estimation, small constant for numerical stability, and descending gradient; adopt batch update method, based on training data, iteratively update the tire- The parameters of the road contact three-way force sensor decoupling model until the value of the loss function MSE continues to decrease, and the tire-road contact three-way force sensor decoupling model used for decoupling in the actual measurement of the tire-road contact three-way force is obtained , wherein the training data includes the input loads corresponding to the three directions of the tire-road contact three-way force sensor, and the input loads corresponding to the three directions respectively correspond to the respective expected output electrical signals.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the above description of the implementations, those skilled in the art can clearly understand that each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware. Based on this understanding, the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310180840.XA CN116380321A (en) | 2023-02-24 | 2023-02-24 | Method for Decoupling Decoupling Model of Tire-Road Contact Triaxial Force Sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310180840.XA CN116380321A (en) | 2023-02-24 | 2023-02-24 | Method for Decoupling Decoupling Model of Tire-Road Contact Triaxial Force Sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116380321A true CN116380321A (en) | 2023-07-04 |
Family
ID=86962367
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310180840.XA Pending CN116380321A (en) | 2023-02-24 | 2023-02-24 | Method for Decoupling Decoupling Model of Tire-Road Contact Triaxial Force Sensor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116380321A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101832837A (en) * | 2010-05-11 | 2010-09-15 | 东南大学 | Decoupling method for multidimensional force sensor based on coupling error modeling |
| CN111006808A (en) * | 2019-11-07 | 2020-04-14 | 重庆邮电大学 | Three-dimensional force decoupling method based on flexible array tactile sensor |
| WO2021007812A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳大学 | Deep neural network hyperparameter optimization method, electronic device and storage medium |
| CN114417714A (en) * | 2022-01-06 | 2022-04-29 | 浙江大学 | Calculation method for scattering properties of finite-length cylinders based on physics and deep learning |
-
2023
- 2023-02-24 CN CN202310180840.XA patent/CN116380321A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101832837A (en) * | 2010-05-11 | 2010-09-15 | 东南大学 | Decoupling method for multidimensional force sensor based on coupling error modeling |
| WO2021007812A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳大学 | Deep neural network hyperparameter optimization method, electronic device and storage medium |
| CN111006808A (en) * | 2019-11-07 | 2020-04-14 | 重庆邮电大学 | Three-dimensional force decoupling method based on flexible array tactile sensor |
| CN114417714A (en) * | 2022-01-06 | 2022-04-29 | 浙江大学 | Calculation method for scattering properties of finite-length cylinders based on physics and deep learning |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2023425728A1 (en) | Method and apparatus for estimating soc of battery, and device, battery module and storage medium | |
| CN108846200B (en) | Quasi-static bridge influence line identification method based on iteration method | |
| CN115128300A (en) | Structure dynamic load/parameter combined identification method under sensor optimized arrangement | |
| CN119691628B (en) | Gas detection method and device based on MEMS gas sensor array | |
| KR20230051660A (en) | Multi-exponential error extrapolation | |
| CN112380774B (en) | Dynamic modeling method and system based on residual echo state network | |
| CN119555279B (en) | Determination method of pressure sensor calibration scheme | |
| CN110705137B (en) | Method and device for determining stress amplitude and mean value | |
| US20210279561A1 (en) | Computational processing system, sensor system, computational processing method, and program | |
| CN114218519B (en) | Inversion method of atmospheric radioactive release source term under incomplete data | |
| CN116380321A (en) | Method for Decoupling Decoupling Model of Tire-Road Contact Triaxial Force Sensor | |
| CN111898732B (en) | Ultrasonic ranging compensation method based on deep convolutional neural network | |
| CN117332205B (en) | High-precision automatic optimization method and device for temperature compensation resistance of piezoresistor | |
| CN111258222B (en) | Autoregressive moving average system adaptive state estimation method and closed-loop control system | |
| CN108376123A (en) | A kind of satellite gravity observing data outliers extracting method, device and electronic equipment | |
| CN117131469B (en) | Error checking method of intelligent differential pressure transmitter | |
| CN117606590A (en) | Calibration method and device of steam instrument, electronic equipment and storage medium | |
| CN115431302B (en) | Robot joint idle stroke measuring method and device, electronic equipment and storage medium | |
| CN118034136A (en) | Digital twin method and system applied to industrial research and development design | |
| CN117521460A (en) | A Bayesian finite element model correction method considering the uncertainty of environmental disturbances | |
| CN116400248A (en) | Method and device for determining short-circuit fault in battery | |
| CN111609878B (en) | Monitoring method of sensor operation state of three-degree-of-freedom helicopter system | |
| CN120344834A (en) | Method, device, electronic device, and computer-readable medium for identifying an operating state of a sensor system | |
| CN114780440A (en) | Method and device for detecting correctness of software upgrading version | |
| CN110970887B (en) | Two-stage linear three-phase state estimation method and device for active power distribution network |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |