CN116184666A - Optical system comprising a light-guiding optical element with two-dimensional expansion - Google Patents
Optical system comprising a light-guiding optical element with two-dimensional expansion Download PDFInfo
- Publication number
- CN116184666A CN116184666A CN202310132324.XA CN202310132324A CN116184666A CN 116184666 A CN116184666 A CN 116184666A CN 202310132324 A CN202310132324 A CN 202310132324A CN 116184666 A CN116184666 A CN 116184666A
- Authority
- CN
- China
- Prior art keywords
- partially reflective
- image
- loe
- light
- light guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0018—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
- G02B6/0061—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/143—Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0018—Redirecting means on the surface of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/011—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
- G02B2027/0125—Field-of-view increase by wavefront division
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
本公开涉及包括具有二维扩展的光导光学元件的光学系统。一种光学系统,包括光导光学元件(LOE),LOE具有第一组相互平行的部分反射表面以及与第一组相互平行的部分反射表面取向不同的第二组相互平行的部分反射表面。两组部分反射表面均位于一组相互平行的主外表面之间。在耦入位置处引入的图像照射沿LOE传播,被第一组部分反射表面朝向第二组部分反射表面重定向,图像照射在第二组部分反射表面被朝向用户的眼睛耦出。第一组部分反射表面被实现为位于向眼动箱填充所需图像而所需的位置处的部分表面。另外地或替选地,第一组部分反射表面的间隔跨LOE的第一区域变化。附加特征涉及投射仪和部分反射表面的相对取向,以提高紧凑性并且实现各种调整。
The present disclosure relates to an optical system comprising a light guiding optical element with a two-dimensional extension. An optical system includes a light guiding optical element (LOE) having a first set of mutually parallel partially reflective surfaces and a second set of mutually parallel partially reflective surfaces oriented differently from the first set of mutually parallel partially reflective surfaces. Both sets of partially reflective surfaces are located between a set of mutually parallel major exterior surfaces. Image illumination introduced at the in-coupling location propagates along the LOE, redirected by the first set of partially reflective surfaces towards the second set of partially reflective surfaces where it is coupled out towards the user's eye. The first set of partially reflective surfaces is implemented as partial surfaces located at the locations required to fill the eye box with the desired image. Additionally or alternatively, the spacing of the first set of partially reflective surfaces varies across the first region of the LOE. Additional features relate to the relative orientation of the projector and the partially reflective surface to improve compactness and enable various adjustments.
Description
本申请是申请日为2019年9月9日、申请号为“201980057892.X”、发明名称为“包括具有二维扩展的光导光学元件的光学系统”的发明专利申请的分案申请。This application is a divisional application of an invention patent application with an application date of September 9, 2019, an application number of "201980057892.X", and an invention title of "Optical System Including a Light Guide Optical Element with Two-Dimensional Expansion".
技术领域technical field
本发明涉及光学系统,并且特别地,其涉及包括用于实现光学孔径扩展的光导光学元件(LOE)的光学系统。The present invention relates to optical systems, and in particular it relates to optical systems comprising light guiding optical elements (LOEs) for achieving optical aperture expansion.
背景技术Background technique
许多近眼显示系统包括在用户的眼睛前放置的透明光导光学元件(LOE)或“波导”,LOE或波导通过内反射在LOE内传送图像,并且然后通过合适的输出耦合机制朝向用户的眼睛耦出图像。输出耦合机制可以基于嵌入的部分反射器或“小平面”,或者可以采用衍射模式。下面的描述将主要涉及基于小平面的耦出装置,但是应当理解,本发明的各种特征也适用于衍射装置。Many near-eye display systems include a transparent light-guiding optical element (LOE) or "waveguide" placed in front of the user's eye, the LOE or waveguide transmits the image within the LOE by internal reflection, and is then coupled out towards the user's eye by a suitable output coupling mechanism. image. The outcoupling mechanism can be based on embedded partial reflectors or "facets", or it can employ diffractive modes. The following description will primarily relate to facet-based outcoupling devices, but it will be understood that the various features of the invention are also applicable to diffractive devices.
发明内容Contents of the invention
本发明是光学系统。The present invention is an optical system.
根据本发明的实施方式的教导,提供了一种用于将在耦入区域处注入的图像照射引导到眼动箱以供用户的眼睛观看的光学系统,光学系统包括由透明材料形成的光导光学元件(LOE),LOE包括:(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(b)第二区域,其包含具有与第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(c)一组相互平行的主外表面,主外表面跨第一区域和第二区域延伸,使得第一组部分反射表面和第二组部分反射表面均位于主外表面之间,其中,第二组部分反射表面与主外表面成斜角,使得通过主外表面处的内反射在LOE内从第一区域传播到第二区域的图像照射的一部分被从LOE朝向眼动箱耦出,并且其中,第一组部分反射表面被定向成使得从耦入区域通过主外表面处的内反射在LOE内传播的图像照射的一部分被朝向第二区域偏转,其中,第一组部分反射表面的部分反射表面中的每一个包括形成LOE的一部分的两个板之间的交界平面处的部分反射涂层,并且其中,部分反射涂层位于交界平面的第一部分上,并且部分反射表面中的至少之一具有被结合以在两个板之间形成光学连续体的交界平面的第二部分。In accordance with the teachings of embodiments of the present invention, there is provided an optical system for directing image illumination injected at an in-coupling region to an eye box for viewing by a user's eye, the optical system comprising a light guide optic formed of a transparent material An element (LOE), the LOE comprising: (a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation; (b) a second region comprising a second set of planar mutually parallel partially reflective surfaces in a second orientation; (c) a set of mutually parallel major outer surfaces extending across the first region and the second region such that the first set of partially reflective surfaces and A second set of partially reflective surfaces are located between the major outer surfaces, wherein the second set of partially reflective surfaces are at an oblique angle to the major outer surfaces such that internal reflections passing through the major outer surfaces propagate within the LOE from the first region to the second. A portion of the image illumination of the area is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that a portion of the image illumination from the in-coupling area propagates within the LOE through internal reflection at the main outer surface is deflected towards a second region, wherein each of the partially reflective surfaces of the first set of partially reflective surfaces comprises a partially reflective coating at an interface plane between two plates forming part of the LOE, and wherein the partially reflective coating A layer is located on a first portion of the interface plane, and at least one of the partially reflective surfaces has a second portion of the interface plane bonded to form an optical continuum between the two plates.
根据本发明的实施方式的另一特征,从耦入区域开始在LOE内传播、被第一组部分反射表面中的一个部分反射表面偏转并且被第二组部分反射表面中的一个部分反射表面沿到达眼动箱的方向耦出的光线路径的包络限定第一组部分反射表面中的一个部分反射表面的成像区域,并且其中,第一组部分反射表面中的一个部分反射表面中的位于包络外的区域限定第一组部分反射表面中的一个部分反射表面的非成像区域,其中,非成像区域的大部分被结合以在两个板之间形成光学连续体。According to another feature of an embodiment of the present invention, propagating within the LOE from the in-coupling region, is deflected by one of the first set of partially reflective surfaces and along by one of the second set of partially reflective surfaces The envelope of the path of light rays outcoupled in the direction to the eye box defines an imaging area of one of the first set of partially reflective surfaces, and wherein the one of the first set of partially reflective surfaces located in the envelope The area outside the network defines a non-imaging area of one of the partially reflecting surfaces of the first set of partially reflecting surfaces, wherein a substantial portion of the non-imaging area is combined to form an optical continuum between the two plates.
根据本发明的实施方式的另一特征,第一组部分反射表面具有不均匀的间隔,使得靠近耦入区域的相邻部分反射表面之间的间隔小于远离耦入区域的相邻部分反射表面之间的间隔。According to another feature in an embodiment of the invention, the first set of partially reflective surfaces has a non-uniform spacing such that the spacing between adjacent partially reflective surfaces close to the in-coupling region is smaller than the spacing between adjacent partially reflective surfaces far from the in-coupling region. interval between.
根据本发明的实施方式的另一特征,光学系统还包括图像投射仪,图像投射仪用于投射具有围绕光轴的角视场的准直图像,图像投射仪光学地耦合到LOE,以在耦入区域处将准直图像引入LOE中,作为通过主外表面处的内反射在LOE内传播的传播图像,传播图像被第一组部分反射表面部分地反射,以生成通过主外表面处的内反射在LOE内传播的经偏转传播图像,经偏转传播图像被第二组部分反射表面部分地反射,以生成从主外表面之一向外指向眼动箱的耦出图像,耦出图像的光轴相对于主外表面的法线倾斜,具有沿第二组部分反射表面的面内延伸方向的非零倾斜分量。According to another feature of an embodiment of the present invention, the optical system further includes an image projector for projecting a collimated image having an angular field of view around the optical axis, the image projector is optically coupled to the LOE to The collimated image is introduced into the LOE at the entry region as a propagated image propagating within the LOE by internal reflection at the main outer surface, the propagated image being partially reflected by the first set of partially reflective surfaces to generate the inner reflection at the main outer surface. reflecting a deflected propagating image propagating within the LOE, the deflected propagating image being partially reflected by a second set of partially reflective surfaces to generate an outcoupled image directed outward from one of the major exterior surfaces toward the eye box, the optical axis of the outcoupling image The tilt relative to the normal to the major outer surface has a non-zero tilt component along the in-plane extension of the second set of partially reflective surfaces.
根据本发明的实施方式的另一特征,被配置用于利用主轴将图像投射到眼动箱,主轴包括与投射图像的第一水平或竖直轴对应的X轴,以及与投射图像的另一轴对应的Y轴,并且其中,第二组部分反射表面具有平行于主外表面的延伸方向,延伸方向具有相对于X轴的角度偏移。According to another feature of an embodiment of the invention, it is configured to project an image to the eye box with a main axis including an X axis corresponding to a first horizontal or vertical axis of the projected image, and another axis corresponding to the projected image. axis corresponds to the Y-axis, and wherein the second set of partially reflective surfaces has a direction of extension parallel to the main outer surface, the direction of extension having an angular offset relative to the X-axis.
根据本发明的实施方式的另一特征,被配置用于利用主轴将图像投射到眼动箱,主轴包括与投射图像的第一水平或竖直轴对应的X轴,以及与投射图像的另一轴对应的Y轴,光学系统还包括图像投射仪,图像投射仪用于投射具有围绕光轴的角视场的准直图像,图像投射仪光学地耦合到LOE,以在耦入区域处将准直图像引入LOE中,作为通过主外表面处的内反射在LOE内传播的传播图像,传播图像的光轴的面内分量相对于X轴朝向第二区域的边界倾斜。According to another feature of an embodiment of the invention, it is configured to project an image to the eye box with a main axis including an X axis corresponding to a first horizontal or vertical axis of the projected image, and another axis corresponding to the projected image. axis corresponding to the Y-axis, the optical system also includes an image projector for projecting a collimated image with an angular field of view around the optical axis, the image projector is optically coupled to the LOE to align the collimator at the in-coupling region A straight image is introduced into the LOE as a propagated image propagating within the LOE by internal reflection at the main outer surface, the in-plane component of the optical axis of the propagated image being inclined relative to the X-axis towards the boundary of the second region.
根据本发明的实施方式的另一特征,传播图像的视场的一个末端的面内分量基本上平行于X轴。According to another feature of an embodiment of the invention, the in-plane component of one end of the field of view of the propagating image is substantially parallel to the X-axis.
根据本发明的实施方式的另一特征,被配置用于利用主轴将图像投射到眼动箱,主轴包括与投射图像的第一水平或竖直轴对应的X轴,以及与投射图像的另一轴对应的Y轴,光学系统还包括图像投射仪,图像投射仪用于投射具有围绕光轴的角视场的准直图像,图像投射仪光学地耦合到LOE,以在耦入区域处将准直图像引入LOE中,作为通过主外表面处的内反射在LOE内传播的传播图像,传播图像被第一组部分反射表面部分地反射,以生成通过主外表面处的内反射在LOE内传播的经偏转传播图像,经偏转传播图像的光轴的面内分量相对于Y轴倾斜。According to another feature of an embodiment of the invention, it is configured to project an image to the eye box with a main axis including an X axis corresponding to a first horizontal or vertical axis of the projected image, and another axis corresponding to the projected image. axis corresponding to the Y-axis, the optical system also includes an image projector for projecting a collimated image with an angular field of view around the optical axis, the image projector is optically coupled to the LOE to align the collimator at the in-coupling region The straight image is introduced into the LOE as a propagated image propagating within the LOE by internal reflection at the main exterior surface, the propagating image being partially reflected by the first set of partially reflective surfaces to generate The deflected propagation image of , the in-plane component of the optical axis of the deflected propagation image is inclined with respect to the Y axis.
根据本发明的实施方式的教导,还提供了一种用于投射在耦入区域处注入的图像以供用户的眼睛在眼动箱处观看的光学系统,图像被利用主轴来观看,主轴包括与投射图像的水平或竖直轴对应的X轴,以及与投射图像的垂直于X轴的轴对应的Y轴,光学系统包括由透明材料形成的光导光学元件(LOE),LOE包括:(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(b)第二区域,其包含具有与第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(c)一组相互平行的主外表面,主外表面跨第一区域和第二区域延伸,使得第一组部分反射表面和第二组部分反射表面均位于主外表面之间,其中,第二组部分反射表面与主外表面成斜角,使得通过主外表面处的内反射在LOE内从第一区域传播到第二区域的图像照射的一部分被从LOE朝向眼动箱耦出,并且其中,第一组部分反射表面被定向成使得从耦入区域通过主外表面处的内反射在LOE内传播的图像照射的一部分被朝向第二区域偏转,并且其中,第二组部分反射表面具有平行于主外表面的延伸方向,延伸方向具有相对于X轴的角度偏移。In accordance with the teachings of embodiments of the present invention there is also provided an optical system for projecting an image injected at an in-coupling region for viewing by a user's eye at an eye box, the image being viewed with a main axis comprising a An X-axis corresponding to the horizontal or vertical axis of the projected image, and a Y-axis corresponding to an axis perpendicular to the X-axis of the projected image, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOE comprising: (a) A first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation; (b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to the first orientation parallel partially reflective surfaces; (c) a set of mutually parallel major exterior surfaces extending across the first region and the second region such that the first set of partially reflective surfaces and the second set of partially reflective surfaces are located on the major exterior surface , wherein the second set of partially reflective surfaces is at an oblique angle to the main outer surface such that a portion of the image illumination propagating within the LOE from the first region to the second region by internal reflection at the main outer surface is directed from the LOE toward the eye outcoupling, and wherein the first set of partially reflective surfaces is oriented such that a portion of the image illumination propagating within the LOE from the incoupling region by internal reflection at the main outer surface is deflected toward the second region, and wherein the first set The two sets of partially reflective surfaces have directions of extension parallel to the main outer surface, directions of extension having an angular offset relative to the X-axis.
根据本发明的实施方式的教导,还提供了一种用于投射在耦入区域处注入的图像以供用户的眼睛在眼动箱处观看的光学系统,图像被利用主轴来观看,主轴包括与投射图像的水平或竖直轴对应的X轴,以及与投射图像的垂直于X轴的轴对应的Y轴,光学系统包括由透明材料形成的光导光学元件(LOE),LOE包括:(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(b)第二区域,其包含具有与第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(c)一组相互平行的主外表面,主外表面跨第一区域和第二区域延伸,使得第一组部分反射表面和第二组部分反射表面均位于主外表面之间,其中,第二组部分反射表面与主外表面成斜角,使得通过主外表面处的内反射在LOE内从第一区域传播到第二区域的图像照射的一部分被从LOE朝向眼动箱耦出,并且其中,第一组部分反射表面被定向成使得从耦入区域通过主外表面处的内反射在LOE内传播的图像照射的一部分被朝向第二区域偏转,光学系统还包括图像投射仪,图像投射仪用于投射具有围绕光轴的角视场的准直图像,图像投射仪光学地耦合到LOE,以在耦入区域处将准直图像引入LOE,作为通过主外表面处的内反射在LOE内传播的传播图像,传播图像的光轴的面内分量相对于X轴朝向第二区域的边界倾斜。In accordance with the teachings of embodiments of the present invention there is also provided an optical system for projecting an image injected at an in-coupling region for viewing by a user's eye at an eye box, the image being viewed with a main axis comprising a An X-axis corresponding to the horizontal or vertical axis of the projected image, and a Y-axis corresponding to an axis perpendicular to the X-axis of the projected image, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOE comprising: (a) A first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation; (b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to the first orientation parallel partially reflective surfaces; (c) a set of mutually parallel major exterior surfaces extending across the first region and the second region such that the first set of partially reflective surfaces and the second set of partially reflective surfaces are located on the major exterior surface , wherein the second set of partially reflective surfaces is at an oblique angle to the main outer surface such that a portion of the image illumination propagating within the LOE from the first region to the second region by internal reflection at the main outer surface is directed from the LOE toward the eye outcoupling, and wherein the first set of partially reflective surfaces is oriented such that a portion of the image illumination propagating within the LOE from the incoupling region by internal reflection at the main outer surface is deflected toward the second region, the optical system further comprising An image projector for projecting a collimated image with an angular field of view around the optical axis, the image projector is optically coupled to the LOE to introduce the collimated image into the LOE at the in-coupling region as through the main outer surface Internal reflection at propagating image propagating within the LOE, the in-plane component of the optical axis of the propagating image is tilted with respect to the X-axis towards the boundary of the second region.
根据本发明的实施方式的另一特征,传播图像的视场的一个末端的面内分量基本上平行于X轴。According to another feature of an embodiment of the invention, the in-plane component of one end of the field of view of the propagating image is substantially parallel to the X-axis.
根据本发明的实施方式的教导,还提供了一种用于投射在耦入区域处注入的图像以供用户的眼睛在眼动箱处观看的光学系统,图像被利用主轴来观看,主轴包括与投射图像的水平或竖直轴对应的X轴,以及与投射图像的垂直于X轴的轴对应的Y轴,光学系统包括由透明材料形成的光导光学元件(LOE),LOE包括:(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(b)第二区域,其包含具有与第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(c)一组相互平行的主外表面,主外表面跨第一区域和第二区域延伸,使得第一组部分反射表面和第二组部分反射表面均位于主外表面之间,其中,第二组部分反射表面与主外表面成斜角,使得通过主外表面处的内反射在LOE内从第一区域传播到第二区域的图像照射的一部分被从LOE朝向眼动箱耦出,并且其中,第一组部分反射表面被定向成使得从耦入区域通过主外表面处的内反射在LOE内传播的图像照射的一部分被朝向第二区域偏转,光学系统还包括图像投射仪,图像投射仪用于投射具有围绕光轴的角视场的准直图像,图像投射仪光学地耦合到LOE,以在耦入区域处将准直图像引入LOE,作为通过主外表面处的内反射在LOE内传播的传播图像,传播图像被第一组部分反射表面部分地反射,以生成通过主外表面处的内反射在LOE内传播的经偏转传播图像,经偏转传播图像的光轴的面内分量相对于Y轴倾斜。In accordance with the teachings of embodiments of the present invention there is also provided an optical system for projecting an image injected at an in-coupling region for viewing by a user's eye at an eye box, the image being viewed with a main axis comprising a An X-axis corresponding to the horizontal or vertical axis of the projected image, and a Y-axis corresponding to an axis perpendicular to the X-axis of the projected image, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOE comprising: (a) A first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation; (b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to the first orientation parallel partially reflective surfaces; (c) a set of mutually parallel major exterior surfaces extending across the first region and the second region such that the first set of partially reflective surfaces and the second set of partially reflective surfaces are located on the major exterior surface , wherein the second set of partially reflective surfaces is at an oblique angle to the main outer surface such that a portion of the image illumination propagating within the LOE from the first region to the second region by internal reflection at the main outer surface is directed from the LOE toward the eye outcoupling, and wherein the first set of partially reflective surfaces is oriented such that a portion of the image illumination propagating within the LOE from the incoupling region by internal reflection at the main outer surface is deflected toward the second region, the optical system further comprising An image projector for projecting a collimated image with an angular field of view around the optical axis, the image projector is optically coupled to the LOE to introduce the collimated image into the LOE at the in-coupling region as through the main outer surface A propagating image propagating within the LOE by internal reflection at , the propagating image being partially reflected by the first set of partially reflective surfaces to generate a deflected propagating image propagating within the LOE by internal reflection at the main exterior surface, the deflected propagating image being The in-plane component of the optical axis is tilted with respect to the Y-axis.
根据本发明的实施方式的另一特征,眼动箱由平行于X轴的至少一个直线定界。According to another feature of embodiments of the invention, the eye box is delimited by at least one straight line parallel to the X-axis.
根据本发明的实施方式的另一特征,投射图像是具有与X轴和Y轴平行的边缘的矩形图像。According to another feature of an embodiment of the invention, the projected image is a rectangular image with edges parallel to the X-axis and the Y-axis.
根据本发明的实施方式的另一特征,还提供了支承装置,支乘装置被配置用于相对于用户的头部支承LOE,其中,主外表面之一面对用户的眼睛并且沿相对于用户的眼睛的使得X轴被水平定向的取向。According to another feature of an embodiment of the present invention, there is also provided a support device configured to support the LOE relative to the user's head, wherein one of the main outer surfaces faces the user's eyes and along the The orientation of the eye such that the x-axis is oriented horizontally.
根据本发明的实施方式的另一特征,第一区域和第二区域由平行于X轴延伸的边界分开。According to another feature of an embodiment of the invention, the first area and the second area are separated by a boundary extending parallel to the X-axis.
根据本发明的实施方式的教导,还提供了一种用于将在耦入区域处注入的图像照射引导到眼动箱以供用户的眼睛观看的光学系统,光学系统包括由透明材料形成的光导光学元件(LOE),LOE包括:(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(b)第二区域,其包含具有与第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(c)一组相互平行的主外表面,主外表面跨第一区域和第二区域延伸,使得第一组部分反射表面和第二组部分反射表面均位于主外表面之间,其中,第二组部分反射表面与主外表面成斜角,使得通过主外表面处的内反射在LOE内从第一区域传播到第二区域的图像照射的一部分被从LOE朝向眼动箱耦出,并且其中,第一组部分反射表面被定向成使得从耦入区域通过主外表面处的内反射在LOE内传播的图像照射的一部分被朝向第二区域偏转,并且其中,第一组部分反射表面具有不均匀的间隔,使得靠近耦入区域的相邻部分反射表面之间的间隔小于远离耦入区域的相邻部分反射表面之间的间隔。In accordance with the teachings of embodiments of the present invention, there is also provided an optical system for directing image illumination injected at an in-coupling region to an eye box for viewing by a user's eye, the optical system comprising a light guide formed of a transparent material An optical element (LOE), the LOE comprising: (a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation; (b) a second region comprising a second set of planar mutually parallel partially reflective surfaces in a parallel second orientation; (c) a set of mutually parallel major exterior surfaces extending across the first region and the second region such that the first set of partially reflective surfaces and a second set of partially reflective surfaces are located between the main outer surfaces, wherein the second set of partially reflective surfaces are at an oblique angle to the main outer surface such that internal reflections passing through the main outer surface propagate within the LOE from the first region to the second A portion of the image illumination of the second region is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that the portion of the image illumination propagating within the LOE from the in-coupling region by internal reflection at the main outer surface A portion is deflected toward the second region, and wherein the first set of partially reflective surfaces has a non-uniform spacing such that adjacent partially reflective surfaces near the incoupling region are less spaced apart than adjacent partially reflective surfaces farther from the incoupling region interval between.
根据本发明的实施方式的教导,还提供了一种用于将在耦入区域处注入的图像照射引导到眼动箱以供用户的眼睛观看的光学系统,光学系统包括由透明材料形成的光导光学元件(LOE),LOE包括:(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(b)第二区域,其包含具有与第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(c)一组相互平行的主外表面,主外表面跨第一区域和第二区域延伸,使得第一组部分反射表面和第二组部分反射表面均位于主外表面之间,其中,第二组部分反射表面与主外表面成斜角,使得通过主外表面处的内反射在LOE内从第一区域传播到第二区域的图像照射的一部分被从LOE朝向眼动箱耦出,并且其中,第一组部分反射表面被定向成使得从耦入区域通过主外表面处的内反射在LOE内传播的图像照射的一部分被朝向第二区域偏转,光学系统还包括图像投射仪,图像投射仪用于投射具有围绕光轴的角视场的准直图像,图像投射仪光学地耦合到LOE,以在耦入区域处将准直图像引入LOE,作为通过主外表面处的内反射在LOE内传播的传播图像,传播图像被第一组部分反射表面部分地反射,以生成通过主外表面处的内反射在LOE内传播的经偏转传播图像,经偏转传播图像被第二组部分反射表面部分地反射,以生成从主外表面之一向外指向眼动箱的耦出图像,耦出图像的光轴相对于主外表面的法线倾斜,具有沿第二组部分反射表面的面内延伸方向的非零倾斜分量。In accordance with the teachings of embodiments of the present invention, there is also provided an optical system for directing image illumination injected at an in-coupling region to an eye box for viewing by a user's eye, the optical system comprising a light guide formed of a transparent material An optical element (LOE), the LOE comprising: (a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation; (b) a second region comprising a second set of planar mutually parallel partially reflective surfaces in a parallel second orientation; (c) a set of mutually parallel major exterior surfaces extending across the first region and the second region such that the first set of partially reflective surfaces and a second set of partially reflective surfaces are located between the main outer surfaces, wherein the second set of partially reflective surfaces are at an oblique angle to the main outer surface such that internal reflections passing through the main outer surface propagate within the LOE from the first region to the second A portion of the image illumination of the second region is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that the portion of the image illumination propagating within the LOE from the in-coupling region by internal reflection at the main outer surface A portion is deflected toward the second region, the optical system further includes an image projector for projecting a collimated image having an angular field of view around the optical axis, the image projector is optically coupled to the LOE for The collimated image is introduced into the LOE as a propagating image propagating within the LOE by internal reflection at the main exterior surface, the propagating image being partially reflected by the first set of partially reflective surfaces to generate a propagating image within the LOE by internal reflection at the primary exterior surface The propagated deflected propagating image is partially reflected by the second set of partially reflective surfaces to generate an out-coupling image directed outwardly from one of the main exterior surfaces to the eye box, the optical axis of the out-coupling image being relative to the main exterior The normal to the surface is tilted with a non-zero tilt component along the in-plane extension of the second set of partially reflective surfaces.
附图说明Description of drawings
本文仅通过示例参照附图描述了本发明,在附图中:The invention is herein described, by way of example only, with reference to the accompanying drawings, in which:
图1A和图1B是使用根据本发明的教导构造和操作的光导光学元件(LOE)实现的光学系统的示意性等距视图,分别示出了自顶向下配置和侧向注入配置;1A and 1B are schematic isometric views of optical systems implemented using light-guiding optical elements (LOEs) constructed and operative in accordance with the teachings of the present invention, showing top-down configurations and side-injection configurations, respectively;
图2A和图2B是来自图1A或图1B的LOE的放大示意性等距视图,示出了图像的两个末端场的光线路径;Figures 2A and 2B are enlarged schematic isometric views of the LOE from Figure 1A or Figure 1B showing the ray paths of the two end fields of the image;
图2C是图1A和图1B的场与限定在眼动箱处形成完整图像所需的部分反射表面的整体包络的附加场的组合的概况;Figure 2C is a summary of the fields of Figures 1A and 1B combined with additional fields defining the overall envelope of partially reflective surfaces required to form a complete image at the eye box;
图2D是图2C的替选实现方式,其中选择性地实现部分反射表面;Figure 2D is an alternative implementation of Figure 2C in which partially reflective surfaces are selectively implemented;
图2E是类似于图2D的视图,示出了部分反射表面之间的可变间隔;Figure 2E is a view similar to Figure 2D showing variable spacing between partially reflective surfaces;
图2F是类似于图2E的视图,示出了LOE中可以切除的区域;Figure 2F is a view similar to Figure 2E, showing the region that can be excised in the LOE;
图3A和图3B是类似于图2E的视图,示出了在部分反射表面的所需轮廓之外存在和不存在部分反射表面的情况下形成重影的潜在光线路径;3A and 3B are views similar to FIG. 2E showing potential ray paths that form ghosts with and without partially reflective surfaces outside the desired profile of the partially reflective surface;
图4A是根据图1A或图1B的LOE的另一实现方式的LOE的第一区域的放大示意性等距视图,示出了两个末端场的光线路径;FIG. 4A is an enlarged schematic isometric view of a first region of an LOE according to another implementation of the LOE of FIG. 1A or FIG. 1B , showing the ray paths of two end fields;
图4B是类似于图4A的视图,示出了在部分反射表面之间具有可变间隔的部分反射表面的部分表示;Figure 4B is a view similar to Figure 4A showing a partial representation of partially reflective surfaces with variable spacing between the partially reflective surfaces;
图4C是类似于图4B的视图,示出了场末端所需的部分反射表面的各部分;Figure 4C is a view similar to Figure 4B showing the portions of the partially reflective surface required for the end of field;
图5A是包括根据上面关于图2E示出的原理实现的与图4C的第一区域类似的第一区域的LOE的放大示意性等距视图;Figure 5A is an enlarged schematic isometric view of an LOE comprising a first region similar to that of Figure 4C implemented according to the principles shown above with respect to Figure 2E;
图5B是类似于图5A的视图,示出了LOE的可以切除的区域;FIG. 5B is a view similar to FIG. 5A showing the resectable region of the LOE;
图6A至图6D是类似于图2A至图2F的示意性等距视图,示出了各种角度偏移参数的影响;以及FIGS. 6A-6D are schematic isometric views similar to FIGS. 2A-2F showing the effect of various angular offset parameters; and
图7是近眼显示器的示意性俯视图,示出了根据本发明的方面的面部曲线和会聚校正所需的角度偏移。7 is a schematic top view of a near-eye display showing angular offsets required for facial curves and convergence correction in accordance with aspects of the present invention.
具体实施方式Detailed ways
本发明的某些实施方式提供了包括用于实现光学孔径扩展的光导光学元件(LOE)的光学系统,以用于平视显示器的目的,并且最优选地为可以是虚拟现实显示器或者更优选地是增强现实显示器的近眼显示器。Certain embodiments of the present invention provide an optical system comprising a Light Guide Optical Element (LOE) for optical aperture expansion for purposes of a heads-up display, and most preferably may be a virtual reality display or more preferably a Near-eye displays for augmented reality displays.
在图1A和图1B中示意性地示出了呈采用根据本发明的实施方式的教导的LOE 12的近眼显示器(通常被指定为10)形式的装置的示例性实现方式。近眼显示器10采用光学地耦合以将图像注入到LOE(可互换地被称为“波导”、“基板”或“平板”)12中的紧凑型图像投射仪(或“POD”)14,在LOE 12中图像光通过一组相互平行的平坦外表面处的内反射被捕获在一个维度。光射向一组彼此平行并且相对于图像光的传播方向斜向倾斜的部分反射表面(可互换地被称为“小平面”),其中,每个相继的小平面使图像光的一部分偏转成偏转方向,其也在基板内通过反射被捕获/引导。该第一组小平面未在图1A和图1B中单独示出,但是位于LOE的第一区域(被指定为16)中。在相继的小平面处的该种部分反射实现了第一维度的光学孔径扩展。An exemplary implementation of a device in the form of a near-eye display (generally designated 10 ) employing an
在本发明的第一组优选但非限制性示例中,前面提及的小平面组与基板的主外表面正交。在该情况下,注入图像及其在区域16内传播时经历内反射的其共轭均被偏转并且成为沿偏转方向传播的共轭图像。在替选的一组优选但非限制性示例的中,第一组部分反射表面相对于LOE的主外表面成斜角。在后一情况下,注入图像或其共轭形成在LOE内传播的所需偏转图像,而另一反射可以例如通过在小平面上采用角度选择涂层来最小化,其中角度选择涂层使得小平面对于由不需要其反射的图像呈现的入射角范围相对透明。In a first set of preferred but non-limiting examples of the invention, the aforementioned set of facets is normal to the main outer surface of the substrate. In this case both the injected image and its conjugate which undergoes internal reflection when propagating in the
第一组部分反射表面将图像照射从通过全内反射(TIR)被捕获在基板内的传播的第一方向偏转到也通过TIR被捕获在基板内的传播的第二方向。The first set of partially reflective surfaces deflects image illumination from a first direction of propagation trapped within the substrate by total internal reflection (TIR) to a second direction of propagation also trapped within the substrate by TIR.
然后,经偏转的图像照射进入第二基板区域18,可以将该第二基板区域18实现为相邻的不同基板或者实现为单个基板的延续,在第二基板区域18中,耦出装置(另一组部分反射小平面或衍射光学元件)逐渐将图像照射的一部分朝向位于被限定为眼动箱(EMB)的区域内的观察者的眼睛耦出,从而实现第二维度的光学孔径扩展。整体装置可以针对每个眼睛单独实现,并且优选地相对于用户的头部被支承,其中每个LOE 12面对用户的对应眼睛。在如这里所示的一个特别优选的选择中,将支承装置实现为具有用于相对于用户的耳朵来支承装置的侧部20的眼镜框架。也可以使用其他形式的支承装置,包括但不限于头带、面罩或悬挂在头盔上的装置。The deflected image is then irradiated into a
本文在附图和权利要求书中参照X轴和Y轴,其中,X轴沿LOE的第一区域的大体延伸方向水平(图1A)或竖直(图1B)延伸,并且Y轴垂直于X轴延伸,即,在图1A中竖直延伸并且在图1B中水平延伸。Reference is made herein to an X-axis and a Y-axis in the drawings and claims, wherein the X-axis extends horizontally (FIG. 1A) or vertically (FIG. 1B) along the general direction of extension of the first region of the LOE, and the Y-axis extends perpendicular to the X-axis. The axes extend, ie vertically in FIG. 1A and horizontally in FIG. 1B .
以非常粗略的术语而言,可以认为第一LOE或LOE 12的第一区域16在X方向上实现孔径扩展,而第二LOE或LOE 12的第二区域18在Y方向上实现孔径扩展。在下面将更精确地表述视场的不同部分传播的角方向的扩展的细节。应当注意,如图1A中所示的取向可以被视为“自顶向下”实现方式,在该实现方式中进入LOE的主(第二区域)的图像照射从上边缘进入,而图1B中所示的取向可以被视为“侧向注入”实现方式,在该实现方式中水平部署这里被称为Y轴的轴。在其余附图中,将在“自顶向下”取向的背景下示出本发明的某些实施方式的各种特征,类似于图1A。然而,应当理解,所有这些特征同样适用于也落入本发明的范围内的侧向注入实现方式。在某些情况下,其他中间取向也是适用的,并且除非明确被排除,否则其他中间取向包括在本发明的范围内。In very rough terms, the first LOE or
与本发明的装置一起采用的POD优选地被配置成生成准直图像,即,在准直图像中每个图像像素的光是准直到无穷远的平行光束,其中角度方向对应于像素位置。因此,图像照射跨越与两个维度中的角视场对应的角度范围。The POD employed with the device of the present invention is preferably configured to generate a collimated image, ie in which the light of each image pixel is a parallel beam collimated to infinity, where the angular direction corresponds to the pixel position. Thus, the image illumination spans an angular range corresponding to the angular field of view in two dimensions.
图像投射仪14包括通常被部署成照射空间光调制器例如LCOS芯片的至少一个光源。空间光调制器对图像的每个像素的投射强度进行调制,从而生成图像。替选地,图像投射仪可以包括通常使用快速扫描镜来实现的扫描装置,其跨投射仪的图像平面扫描来自激光光源的照射,同时光束的强度与逐像素的运动同步地被改变,从而针对每个像素投射期望的强度。在两种情况下,设置准直光学器件以生成准直到无穷远的输出投射图像。以上部件中的一些或全部通常被布置在一个或更多个偏振分束器(PBS)立方体或本领域所公知的其他棱镜装置的表面上。
图像投射仪14与LOE 12的光学耦合可以通过任何合适的光学耦合来实现,例如,经由具有成斜角的输入表面的耦合棱镜,或者经由反射耦合装置,经由侧边缘和/或LOE的主外表面之一。耦入配置的细节对于本发明并不重要,并且在此被示意性地示出为应用于LOE的主外表面之一的楔形棱镜15的非限制性示例。The optical coupling of the
应当理解,近眼显示器10包括各种附加部件,通常包括用于致动图像投射仪14的控制器22,其通常采用来自小型板载电池(未示出)或一些其他合适的电源的电力。应当理解,控制器22包括用于驱动图像投射仪的所有必需的电子部件,例如至少一个处理器或处理电路,所有这些均为本领域已知的。It should be appreciated that near-
现在转到图2A至图2F,更详细地示出了近眼显示器的实现方式的光学特性。具体地,示出了由透明材料形成的光导光学元件(LOE)12的更详细视图,LOE 12包括第一区域16和第二区域18,第一区域16包含具有第一取向的第一组平坦的相互平行的部分反射表面17,第二区域18包含具有与第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面19。一组相互平行的主外表面24跨第一区域16和第二区域18延伸,使得第一组部分反射表面17和第二组部分反射表面19均位于主外表面24之间。最优选地,该组主外表面24是各自跨整个第一区域16和第二区域18连续的一对表面,然而在区域16与区域18之间厚度递增或厚度递减的选择也落入本发明的范围。区域16和区域18可以被紧接地并置,使得区域16和18在边界处接触,边界可以是直边界或一些其他形式的边界,或者取决于特定应用,可以存在置于区域16与区域18之间的一个或更多个附加LOE区域,以提供各种附加的光学或机械功能。尽管本发明不限于任何特定的制造技术,但在某些特别优选的实现方式中,通过采用连续的外部板来实现特别高质量的主外表面,在连续的外部板之间夹有单独形成的区域16和18以形成复合LOE结构。Turning now to FIGS. 2A-2F , the optical characteristics of an implementation of a near-eye display are shown in more detail. In particular, a more detailed view of a light guiding optical element (LOE) 12 formed of a transparent material is shown, the
可以通过反向追踪图像照射路径来理解LOE的光学特性。第二组部分反射表面19与主外表面24成斜角,使得通过主外表面处的内反射在LOE 12内从第一区域16传播到第二区域18的图像照射的一部分从LOE朝向眼动箱26耦出。第一组部分反射表面17被定向成使得从耦入区域(耦合棱镜15)通过主外表面处的内反射在LOE 12内传播的图像照射的一部分被朝向第二区域18偏转。The optical properties of the LOE can be understood by back-tracing the image illumination path. The second set of partially
在图2A中通过从LOE右侧的POD孔径朝向LOE左侧扩展的照射锥表示来自图像投射仪14的投射图像的一个维度的角扩展。在这里示出的非限制性示例中,POD的中心光轴限定LOE内与X轴对齐的传播方向,并且角扩展(在LOE内)大致为±16°。(应当注意,由于折射率的变化,角度FOV在空气中变大)。在第一区域16中示出第一组部分反射表面17,在第二区域18中示出第二组部分反射表面19。The angular spread of one dimension of the projected image from
近眼显示器被设计成向用户的眼睛提供投射图像的完整视场,其中用户的眼睛位于由“眼动箱”(EMB)26(即,通常被表示为矩形的形状,与眼瞳将从其观看投射图像的LOE的平面间隔开)指定的允许位置范围内的某个位置处。为了到达眼动箱,光必须通过第二组部分反射表面19从第二区域18朝向EMB 26耦出。为了提供完整图像视场,EMB中的每个点必须从LOE接收图像的整个角度范围。从EMB回溯视场可以指示较大矩形28,相关照射从矩形28自LOE朝向EMB耦出。Near-eye displays are designed to provide the full field of view of the projected image to the user's eyes, where the user's eyes are located in the area represented by the "Eye Movement Box" (EMB) 26 (i.e., the shape generally represented as a rectangle, with the pupils from which the eye will view at a position within the range of allowed positions specified by the plane of the LOE where the image is projected). In order to reach the eye box, light must be coupled out from the
图2A示出了视场的第一末端,第一末端对应于投射图像的左下像素。耦合到LOE中的具有与投射仪的光学孔径对应的宽度的光束被示出为从POD向左和向上传播并且从一系列部分反射表面17被部分地反射。如这里所示,仅小平面的子集生成对提供由用户观看的图像中的相应像素有用的反射,并且仅这些小平面的子区域有助于该像素的观察图像。用粗黑线示出了相关区域,并且示出了从小平面17反射并且然后被小平面19耦出到达EMB 26的四个角的与重定向图像中的该像素对应的光线。这里以及贯穿说明书,将注意,这里示出在LOE内传播期间光线的仅面内传播方向,但是光线实际上遵循来自两个主外表面的重复内反射的Z字形路径,并且一整个维度的图像视场通过光线相对于主外表面的对应于Y维度中的像素位置的斜角来编码。作为一个附加示例,用点划线示出了在EMB的左上角处观看到的与图像的左上末端对应的偏转和耦出光线。Figure 2A shows the first end of the field of view, which corresponds to the lower left pixel of the projected image. A beam of light coupled into the LOE having a width corresponding to the projector's optical aperture is shown propagating leftward and upward from the POD and being partially reflected from a series of partially reflective surfaces 17 . As shown here, only a subset of the facets generate reflections useful for providing the corresponding pixel in the image viewed by the user, and only a subregion of these facets contribute to the observed image for that pixel. The region of interest is shown with thick black lines, and the rays corresponding to that pixel in the redirected image are shown reflected from
图2B示出了与图2A相同的配置,但这里示出了与视场的右下像素对应的到达EMB的四个角的光线,其中同样用粗线示出相关部分反射表面17的相关区域。Figure 2B shows the same configuration as Figure 2A, but here shows the rays reaching the four corners of the EMB corresponding to the lower right pixel of the field of view, where the relevant areas of the relevant partially
明显地,通过另外追踪到达EMB的所有区域的图像的所有场(方向或像素)的对应光线路径,可以标出从耦入区域开始在LOE内传播、由第一组部分反射表面之一偏转并且由第二组部分反射表面之一沿到达眼动箱的方向耦出的所有光线路径的包络,并且该包络限定每个小平面17中的“成像区域”,而小平面17中的位于包络外的剩余部分是“非成像区域”,其中“成像区域”是对图像照射中的有助于图像到达EMB的部分进行偏转所需的,“非成像区域”并不有助于所需图像。在图2C中用粗线示出与所有小平面17的“成像区域”对应的该包络的简化轮廓。Clearly, by additionally tracing the corresponding ray paths for all fields (directions or pixels) of the image reaching all regions of the EMB, it is possible to mark the propagation within the LOE starting from the incoupling region, deflected by one of the first set of partially reflective surfaces and The envelope of all ray paths coupled out by one of the second set of partially reflective surfaces in the direction to the eye box, and this envelope defines the "imaging area" in each
根据本发明的一组特别优选的实现方式,将小平面17实现为“部分小平面”,使得部分反射特性仅存在于区域16的截面区域的子区域内,该子区域包括每个小平面平面的“成像区域”,并且优选地排除小平面中的一些或全部的“非成像区域”的至少大部分。在图2D中示意性地示出了这样的实现方式。小平面的有效(部分反射)区域优选地略微延伸超过完成EMB图像投射的几何要求所需的最小值,以避免可能由涂层边缘处的缺陷引起的异常,并且在一些情况下小平面也可以由于与偏转图像方向上小平面之间的整数交叠有关的另外考虑而进一步延伸以实现改善的图像均匀性。根据某些特别优选的实现方式,如图所示,沿从耦入位置起的线遇到的最远部分反射小平面的距离在从投射仪14投射的图像的大部分角度范围上随着角度离开与第二区域18的边界顺时针增加而逐渐增加。According to a particularly preferred set of implementations of the invention, the
在第一区域16由然后以适当的角度被切割的涂覆板的堆叠形成(例如,如PCT专利公开第WO2007054928A1号所述,并且如本领域中已知的)的情况下,部分反射表面的选择性空间部署可以有利地被实现为形成板的堆叠,其中,部分反射涂层位于两个板之间的交界平面的第一部分上,而交界平面的第二部分被结合(通常使用折射率匹配粘合剂并且不使用涂层)以便在两个板之间形成光学连续体。部分反射涂层的选择性施加通常通过在涂覆过程之前施加合适的掩蔽层并且在涂覆过程结束时移除掩蔽层来实现。In the case where the
根据替选生产技术,可以形成全区域涂覆板的堆叠,并且然后将其切割成包含小平面的体积所需的形状(例如,对应于图2D所示的具有小平面的区域)。然后,通过将包含部分反射小平面的该不规则块与单纯折射率匹配玻璃的互补块一起光学地结合来完成LOE的所需形式。According to an alternative production technique, a stack of full-area coated plates can be formed and then cut into the shape required for the volume containing the facets (eg, corresponding to the faceted areas shown in FIG. 2D ). The desired form of the LOE is then accomplished by optically bonding this irregular mass containing partially reflective facets together with a complementary mass of pure index matching glass.
图2E类似于图2D,但示出了以下光学系统:在该光学系统中,第一组部分反射表面17在表面的平面之间具有不均匀的间隔,使得靠近耦入区域的相邻部分反射表面之间的间隔小于远离耦入区域的相邻部分反射表面之间的间隔。该可变间隔在许多情况下是优选的,用于增强投射图像的均匀性,如将在下面进一步说明的。Figure 2E is similar to Figure 2D, but shows an optical system in which the first set of partially
光轴实际上不平行于X轴,而是位于X-Z平面中,其中,选择进入页面的Z分量,使得FOV的深度维度中的整个角度范围在主基板表面处经历全内反射。为了简化呈现,本文中的图形表示及其描述将仅涉及光线传播方向的面内(X-Y)分量,其在本文中被称为“面内分量”或“平行于LOE的主外表面的分量”。The optical axis is not actually parallel to the X axis, but lies in the X-Z plane, where the Z component into the page is chosen such that the entire angular range in the depth dimension of the FOV experiences total internal reflection at the surface of the main substrate. For simplicity of presentation, the graphical representations and descriptions herein will refer only to the in-plane (X-Y) component of the direction of light propagation, referred to herein as the "in-plane component" or "the component parallel to the main outer surface of the LOE" .
应当注意,视场最上面的光线方向对应于到达观察者眼睛的视场左侧,而最低的光线方向对应于视场右侧。还应当注意,视场左侧的一些反射从LOE右侧附近的小平面沿将不会到达EMB的方向被反射,并且将因此丢失。类似地,来自视场右侧的一些光线从LOE左侧附近的小平面反射并且沿将不会到达EMB的方向被偏转,并且因此将丢失。本发明的某些方面利用这些观察来减小第一LOE(或LOE区域)的尺寸(并因此减小体积和重量)。It should be noted that the uppermost ray directions in the field of view correspond to the left side of the field of view reaching the observer's eyes, while the lowest ray directions correspond to the right side of the field of view. It should also be noted that some reflections to the left of the field of view are reflected from facets near the right of the LOE in directions that will not reach the EMB, and will thus be lost. Similarly, some rays from the right side of the field of view reflect off the facet near the left side of the LOE and are deflected in directions that will not reach the EMB, and thus will be lost. Certain aspects of the invention take advantage of these observations to reduce the size (and thus volume and weight) of the first LOE (or LOE region).
具体地,图2F用阴影示出了图2E中并不有助于图像到达EMB的各个区域,并且因此该各个区域可以被截断而不会干扰向用户的眼睛的图像投射。还应当注意,用于从图像投射仪注入图像的光学孔径处于LOE 12的第一区域16的下半部分中,因为图像的与所示的成向下角度的光线对应的部分对应于图像视场的右侧,图像视场的右侧不需要从较接近第一区域16的左侧部分的小平面被反射。这允许LOE 12的第一区域16的相对紧凑的实现方式。具体地,选择在POD光轴以下的LOE的范围,使得来自POD孔径的与视场的最右侧像素对应的光线到达将光线朝向EMB的整个区域偏转的小平面,但是小平面在这样的角度不再能够到达EMB的区域中被缩短。第一区域16的高度的减小还导致X尺寸的小量减小,因为LOE高度的减小使小平面更接近EMB,并且因此减小了覆盖FOV的所需角度范围的所需X尺寸。在本文献的这里和其它地方,将注意,术语“切除”和“截断”用于指代最终产品的相对于例如图2A的作为参照点的实现方式的理论起点减小的几何结构或尺寸。该术语不承载物理地切掉材料的任何实现方式或任何其他特定生产技术。不一定设想为LOE将被精确地沿所指示区域的边界截断,而是这些区域提供设计灵活性,允许以被认为在美学上优选的和/或与期望的应用的另外细节机械兼容的任意外部轮廓来完成LOE。In particular, FIG. 2F shows shaded areas in FIG. 2E that do not contribute to the image reaching the EMB, and thus can be truncated without interfering with the projection of the image to the user's eyes. It should also be noted that the optical aperture used to inject the image from the image projector is in the lower half of the
应当注意,如上参照图2D至图2F所述使用部分小平面可以提供许多优点中的一个或更多个,包括提高的效率和亮度,其中来自远离耦入区域的小平面的图像的透射在到达第二LOE区域之前不需要穿过如此多的附加小平面。这里参照图3A和图3B示出另外的优点。It should be noted that the use of partial facets as described above with reference to FIGS. The second LOE region does not need to traverse so many additional facets before. Further advantages are shown here with reference to FIGS. 3A and 3B .
具体地,图3A示出了在将投射图像传递到EMB所需的小平面区域的包络之外的被标记为17'的小平面的区域。(该小平面通常是许多小平面中的一个,但为了更容易解释其意义而在这里单独示出了该小平面。)图3A示出了源自图像投射仪处的向下指向的图像光线的光线路径,其直接穿过部分反射表面。该光线行进(通过全内反射传播)到第二区域18中,在第二区域18中,光线入射到第二组部分反射表面19之一上,并且如图所示被部分地反射,生成向上传播回到第一区域16中的不期望的“重影”(“ghost”)反射。该光线的角度使得光线可以从小平面17'的延续部分沿朝向EMB 24的方向被反射,在该情况下光线可以形成干扰观看图像的可见重影。In particular, Figure 3A shows the region of the facet labeled 17' outside the envelope of the facet region required to deliver the projected image to the EMB. (This facet is usually one of many, but is shown here alone for easier explanation of its significance.) Figure 3A shows downwardly pointing image rays originating at the image projector A ray path that passes directly through a partially reflective surface. This ray travels (propagating by total internal reflection) into a
图3B相对照地示出了在小平面仅被部署在形成输出图像所需的区域处或附近的缩减区域中的情况下同一重影光线路径所发生情况。在该情况下,从表面19反射并且被引导回到第一区域16的光线在其传播通过LOE的第一区域时不会遇到任何部分反射表面。因此,光线继续行进直到到达LOE的外边缘,在此处光线优选地被合适设置的非反射表面吸收或漫射。Figure 3B shows in contrast what happens to the same ghosted raypath where the facets are only deployed in a reduced area at or near the area needed to form the output image. In this case, light rays reflected from the
在图2A至图2F的示例中,第一LOE区域16在POD 14的光轴以上的尺寸不能显著减小,因为FOV最左侧区域必须从LOE最左侧末端的小平面被反射。图4A至图5B示出了根据本发明的某些特别优选的实现方式的另外特征的替选方法,替选方法允许进一步减小第一LOE区域16的尺寸。In the example of FIGS. 2A-2F , the size of the
具体地,在图4A的装置中,将POD和/或耦入棱镜旋转以使得图像投射的中心光轴跨第一LOE区域16成向下角度,其中,最优选地选择该角度使得大致平行于X轴投射FOV的最左侧末端。在该情况下,POD的耦入优选地在第一LOE区域16的上末端处或附近(通常在上三分之一处)。LOD在POD孔径以下的所需尺寸由类似于参照图2A至图2F所述的几何考虑因素指定,即,图像的所有光线应当遇到被适当定位并且成适当角度的小平面,以将投射的FOV的相应区域传送到整个EMB。在该情况下,最右侧光线以更陡的角度下降,并且小平面角度相应地被调整,但是第一LOE的整体Y尺寸仍进一步减小。Specifically, in the device of FIG. 4A , the POD and/or incoupling prisms are rotated such that the central optical axis of image projection is angled downward across the
在一些情况下,并且如图4A中视场右侧所示的更陡的角度所特别强调的,“填充”EMB的几何要求需要在视场右侧与视场左侧之间的显著不同的小平面间隔。因此,在图4A所示的示例中,对于如图所示的耦入光学孔径宽度,通过从一个小平面反射的像素光束的一侧与从相邻小平面反射的光束的另一侧重合来有效地填充左侧场。然而,在场的右侧,如图所示的均匀小平面间隔将导致“黑线”(这里被示为粗黑线),黑线内不存在图像照射。如果小平面间隔均匀减小,这将导致靠近场的左侧的亮条纹的逆问题。为解决该问题,优选可变小平面间隔,如图4B示出的具有相应几何构造的小平面的部分集合所示,示出如何正确地调整小平面间隔以提供针对视场的每个末端“填充”EMB的图像照射。小面间隔优选地跨LOE区域16逐渐变化(但是不一定连续地或线性地)。In some cases, and particularly emphasized by the steeper angles shown on the right side of the field of view in Figure 4A, the geometrical requirements to "fill" the EMB require a significantly different small plane spacing. Thus, in the example shown in Figure 4A, for the incoupling optical aperture widths as shown, one side of the pixel beam reflected from one facet coincides with the other side of the beam reflected from the adjacent facet. Effectively filling left field. However, on the right side of the field, the uniform facet spacing as shown will result in a "black line" (shown here as a thick black line) within which there is no image illumination. If the facet spacing decreases uniformly, this will lead to the inverse problem of bright fringes near the left side of the field. To address this problem, variable facet spacing is preferred, as shown in Figure 4B with a partial collection of facets with corresponding geometric configurations, showing how to properly tune the facet spacing to provide a " Filled" EMB's image illuminated. The facet spacing preferably varies gradually (but not necessarily continuously or linearly) across the
如上面照图2A至图2E所述,可以识别各个小平面的提供部分反射以针对图像的每个场(像素)填充EMB图像而所需的区域,如针对图4C中的两个末端场所示。这里,通过限定包括在眼动箱26处提供输出图像所需的所有小平面的所有区域的“包络”,也可以以在结构和功能上完全类似于上面参照图2D和图2E描述的方式实现LOE 12的第一区域16,该第一区域16具有其范围跨第一区域变化的选择性部署的部分反射表面。在图5A中示出对应该情况的整体光学系统的相应实现方式。图5B示出了第一LOE和第二LOE的并不有助于图像投射并且可以根据每个特定应用的需要进一步如图所示进行切除的各个附加区域。As described above with respect to FIGS. 2A-2E , the regions of each facet needed to provide partial reflection to fill the EMB image for each field (pixel) of the image can be identified, such as for the two end fields in FIG. 4C Show. Here too, by defining an "envelope" of all regions including all facets required to provide an output image at the
因此,通过部署图像投射仪14并且使得传播图像的光轴的面内分量相对于X轴朝向第二区域18的边界倾斜,并且最优选地确保传播图像的视场的一个末端的面内分量基本上平行于X轴,可以实现相比于图2A至图2F的整体配置的进一步紧凑。在所有其他方面,用于实现图4A至图5B的装置的结构、功能和选择范围如上面参照2A至图3B所述那样。Therefore, by deploying the
除了图4A至图5B中描述的图像投射仪的光轴方向的倾斜之外,可以使用许多其他角度参数来实现对光学系统的特性的各种调整。现在将参照图6A至图6D和图7示出其各种示例。In addition to the tilting of the optical axis direction of the image projector described in FIGS. 4A-5B , many other angular parameters can be used to achieve various adjustments to the characteristics of the optical system. Various examples thereof will now be shown with reference to FIGS. 6A to 6D and 7 .
首先参照图6A和图6B,这些示出了跨LOE 12的第二区域的宽度尺寸对眼动箱位置的潜在调整的几何原理。在图6A中,示出了相当于图2A至图2F的装置,其中,光线路径对应于从眼动箱的中心观看的图像的中心光线。这导致EMB的中心定位。Referring first to FIGS. 6A and 6B , these illustrate the geometry of potential adjustments to eye box position across the width dimension of the second region of the
图6B示出了实现LOE 12的第二区域18的效果,其中,小平面19相对于X轴发生角度偏移。在该情况下,形成眼动箱的中心处的场中心的光线被移位,导致水平移位的眼动箱,这在需要相对于LOE的EMB的不对称部署的情况下是有用的。在该背景下,小平面的“延伸方向”被认为是小平面与平行于LOE的主外表面的平面的交线。等价定义是包含部分反射表面的平面与主外表面之间的交线。本文中该线被称为小平面的平行于主外表面的延伸方向,或“面内”延伸方向。在该背景下,相对于X轴的“角度偏移”的程度取决于所需的水平偏移的程度,但是对于某些优选情况,可以在5度至25度的范围内偏移,但是更小和更大的角度偏移是可能的。Figure 6B shows the effect of implementing the
转到图6C和图6D,示出了另一调整形式,其允许对“面部曲率”和/或会聚角进行校正,如图7所示。具体地,图7示意性地示出了近眼显示器的俯视图,其中,LOE相对于彼此倾斜部署,允许LOE被安装在“围裹式”(wrap-around)框架中,该框架被成形为遵循(在某种程度上)面部的侧到侧(side-to-side)曲率。为了在这样的配置中实现立体视觉,有必要针对面部曲率进行校正,使得图像沿空间中的平行线(图7中的点划线)在中心呈现,平行线相对于LOE的垂线水平偏移。另外地或替选地,在各种应用中,特别地但不唯一地针对室内使用,期望在两个显示器之间提供会聚角,使得通过显示器双眼观看的物体看起来位于用户的期望方向处。该校正还需要具有在水平(X轴)方向上的分量的情况下的从法线到LOE平面的偏转。Turning to FIGS. 6C and 6D , another form of adjustment is shown that allows corrections for "face curvature" and/or angle of convergence, as shown in FIG. 7 . Specifically, FIG. 7 schematically shows a top view of a near-eye display in which the LOEs are deployed obliquely relative to each other, allowing the LOEs to be mounted in a "wrap-around" frame shaped to follow ( To some extent) the side-to-side curvature of the face. To achieve stereopsis in such a configuration, it is necessary to correct for the curvature of the face so that the image is rendered centrally along parallel lines in space (dot-dash lines in Figure 7), which are horizontally offset from the vertical of the LOE . Additionally or alternatively, in various applications, particularly but not exclusively for indoor use, it is desirable to provide a convergence angle between two displays such that objects viewed binocularly through the displays appear to be located in a user's desired direction. This correction also requires a deflection from the normal to the LOE plane with a component in the horizontal (X-axis) direction.
为了实现该校正,图像投射仪14和第一组部分反射表面17被定向,使得从图像投射仪14耦入到LOE中的传播图像被小平面17偏转,以生成以相对于Y轴倾斜的光轴的面内分量传播的经偏转传播图像。在被小平面19耦出之后,该偏移的结果是耦出图像的光轴在水平平面中被偏转,即,相对于主外表面的法线倾斜,具有沿第二组部分反射表面的面内延伸方向的非零倾斜分量,如图6D所示。To achieve this correction, the
尽管这些调整已经作为独立调整呈现,但应当注意,投射仪光轴倾斜、第一LOE区域小平面角度和第二LOE区域小平面角度等各种参数是相互关联的,并且这些参数中的一个参数的改变将通常需要其他参数的相应调整以确保整个视场的透射,并且这些调整可以导致注入图像围绕其中心轴旋转,这可以通过投射仪和/或耦合装置的旋转直接进行校正,如图6D中示意性地所示。Although these adjustments have been presented as independent adjustments, it should be noted that various parameters such as projector optical axis tilt, first LOE region facet angle, and second LOE region facet angle are interrelated, and one of these parameters Changes in ϕ will typically require corresponding adjustments of other parameters to ensure transmission across the field of view, and these adjustments can cause the injected image to rotate about its central axis, which can be directly corrected by rotation of the projector and/or coupling device, as shown in Figure 6D shown schematically in .
如上面在图1B的背景下提及的,所有上述原理也可以应用于“侧向”配置,在“侧向”配置中,图像从横向地位于观看区外的POD注入并且由第一组小平面竖直地扩展,并且然后由第二组小平面水平地扩展,以用于耦合到用户的眼睛中。应当理解,所有上述配置和变型也适用于侧向注入配置。As mentioned above in the context of Figure 1B, all of the above principles can also be applied to the "sideways" configuration, where the image is injected from a POD located laterally outside the viewing zone and is captured by a first set of small The plane is extended vertically and then horizontally by a second set of facets for coupling into the user's eyes. It should be understood that all of the above configurations and variations also apply to side injection configurations.
贯穿以上描述,已经参照如图所示的X轴和Y轴,其中,X轴是水平的或竖直的,并且对应于光学孔径扩展的第一维度,以及Y轴是与扩展的第二维度对应的另一主轴。在该背景下,当装置被安装在用户的头部上时,可以相对于装置的取向以通常由支承装置(例如,上述图1A和图1B的眼镜框架)限定的取向来限定X和Y。通常与X轴的定义一致的其他术语包括:(a)对眼动箱进行定界的至少一个直线,其可以用于限定与X轴平行的方向;(b)矩形投射图像的边缘通常平行于X轴和Y轴;以及(c)第一区域16与第二区域18之间的边界通常平行于X轴延伸。Throughout the above description, reference has been made to the X-axis and Y-axis as shown, wherein the X-axis is horizontal or vertical and corresponds to the first dimension of optical aperture expansion, and the Y-axis is the second dimension of expansion. corresponding to the other axis. In this context, X and Y may be defined relative to the orientation of the device when the device is mounted on the user's head in an orientation typically defined by a support device (eg, the eyeglass frames of FIGS. 1A and 1B described above). Other terms generally consistent with the definition of the X-axis include: (a) at least one straight line bounding the eye box, which may be used to define a direction parallel to the X-axis; (b) the edges of the rectangular projected image generally parallel to the The X-axis and the Y-axis; and (c) the boundary between the
本发明还包括以下技术方案:The present invention also includes the following technical solutions:
1.一种用于将在耦入区域处注入的图像照射引导到眼动箱以供用户的眼睛观看的光学系统,所述光学系统包括由透明材料形成的光导光学元件(LOE),所述LOE包括:1. An optical system for directing image illumination injected at an in-coupling region to an eye box for viewing by a user's eye, said optical system comprising a light-guiding optical element (LOE) formed of a transparent material, said LOEs include:
(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation;
(b)第二区域,其包含具有与所述第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to said first orientation;
(c)一组相互平行的主外表面,所述主外表面跨所述第一区域和所述第二区域延伸,使得所述第一组部分反射表面和所述第二组部分反射表面均位于所述主外表面之间,(c) a set of mutually parallel major exterior surfaces extending across said first region and said second region such that said first set of partially reflective surfaces and said second set of partially reflective surfaces are both between said major exterior surfaces,
其中,所述第二组部分反射表面与所述主外表面成斜角,使得通过所述主外表面处的内反射在所述LOE内从所述第一区域传播到所述第二区域的图像照射的一部分被从所述LOE朝向所述眼动箱耦出,并且其中,所述第一组部分反射表面被定向成使得从所述耦入区域通过所述主外表面处的内反射在所述LOE内传播的图像照射的一部分被朝向所述第二区域偏转,wherein the second set of partially reflective surfaces is at an oblique angle to the major outer surface such that internal reflections at the major outer surface propagate within the LOE from the first region to the second region A portion of image illumination is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that internal reflection from the in-coupling region through the main outer surface is at a portion of the image illumination propagating within the LOE is deflected towards the second region,
其中,所述第一组部分反射表面的所述部分反射表面中的每一个包括形成所述LOE的一部分的两个板之间的交界平面处的部分反射涂层,并且其中,所述部分反射涂层位于所述交界平面的第一部分上,并且所述部分反射表面中的至少之一具有被结合以在所述两个板之间形成光学连续体的所述交界平面的第二部分。wherein each of said partially reflective surfaces of said first set of partially reflective surfaces comprises a partially reflective coating at an interface plane between two plates forming part of said LOE, and wherein said partially reflective A coating is on a first portion of the interface plane and at least one of the partially reflective surfaces has a second portion of the interface plane bonded to form an optical continuum between the two plates.
2.根据方案1所述的光学系统,其中,从所述耦入区域开始在所述LOE内传播、被所述第一组部分反射表面中的一个部分反射表面偏转并且被所述第二组部分反射表面中的一个部分反射表面沿到达所述眼动箱的方向耦出的光线路径的包络限定所述第一组部分反射表面中的所述一个部分反射表面的成像区域,并且其中,所述第一组部分反射表面中的所述一个部分反射表面中的位于所述包络外的区域限定所述第一组部分反射表面中的所述一个部分反射表面的非成像区域,其中,所述非成像区域的大部分被结合以在所述两个板之间形成光学连续体。2. The optical system of clause 1, wherein propagating within the LOE from the in-coupling region, is deflected by one of the first set of partially reflective surfaces and is transmitted by the second set of partially reflective surfaces The envelope of the path of light rays outcoupled by one of the partially reflective surfaces in a direction to the eye box defines an imaging area of the one of the partially reflective surfaces of the first set of partially reflective surfaces, and wherein, A region of the one of the first set of partially reflective surfaces outside the envelope defines a non-imaging region of the one of the first set of partially reflective surfaces, wherein Most of the non-imaging areas are combined to form an optical continuum between the two plates.
3.根据方案1所述的光学系统,其中,所述第一组部分反射表面具有不均匀的间隔,使得靠近所述耦入区域的相邻部分反射表面之间的间隔小于远离所述耦入区域的相邻部分反射表面之间的间隔。3. The optical system of clause 1, wherein the first set of partially reflective surfaces has a non-uniform spacing such that the spacing between adjacent partially reflective surfaces near the incoupling region is smaller than that farther from the incoupling region. The spacing between adjacent partially reflective surfaces of a region.
4.根据方案1所述的光学系统,其中,所述光学系统还包括图像投射仪,所述图像投射仪用于投射具有围绕光轴的角视场的准直图像,所述图像投射仪光学地耦合到所述LOE,以在所述耦入区域处将所述准直图像引入所述LOE,作为通过所述主外表面处的内反射在所述LOE内传播的传播图像,所述传播图像被所述第一组部分反射表面部分地反射,以生成通过所述主外表面处的内反射在所述LOE内传播的经偏转传播图像,所述经偏转传播图像被所述第二组部分反射表面部分地反射,以生成从所述主外表面之一向外指向所述眼动箱的耦出图像,所述耦出图像的所述光轴相对于所述主外表面的法线倾斜,具有沿所述第二组部分反射表面的面内延伸方向的非零倾斜分量。4. The optical system according to claim 1, wherein the optical system further comprises an image projector for projecting a collimated image having an angular field of view around an optical axis, the image projector optical coupled to the LOE to introduce the collimated image into the LOE at the in-coupling region as a propagated image propagated within the LOE by internal reflection at the major exterior surface, the propagated An image is partially reflected by the first set of partially reflective surfaces to generate a deflected propagating image propagating within the LOE by internal reflection at the major exterior surface, the deflected propagating image being propagated by the second set of a partially reflective surface is partially reflective to generate an out-of-coupling image directed outwardly from one of the main exterior surfaces to the eye box, the optical axis of the out-coupling image being inclined relative to a normal to the main exterior surface , having a non-zero tilt component along the direction of in-plane extension of the second set of partially reflective surfaces.
5.根据方案1所述的光学系统,被配置用于利用主轴将图像投射到所述眼动箱,所述主轴包括与投射图像的第一水平或竖直轴对应的X轴,以及与所述投射图像的另一轴对应的Y轴,并且其中,所述第二组部分反射表面具有平行于所述主外表面的延伸方向,所述延伸方向具有相对于X轴的角度偏移。5. The optical system of aspect 1 configured to project an image to the eye box with a main axis comprising an X axis corresponding to a first horizontal or vertical axis of the projected image, and to the The other axis of the projected image corresponds to the Y axis, and wherein the second set of partially reflective surfaces has an extension direction parallel to the main outer surface, the extension direction having an angular offset relative to the X axis.
6.根据方案1所述的光学系统,被配置用于利用主轴将图像投射到所述眼动箱,所述主轴包括与投射图像的第一水平或竖直轴对应的X轴,以及与所述投射图像的另一轴对应的Y轴,所述光学系统还包括图像投射仪,所述图像投射仪用于投射具有围绕光轴的角视场的准直图像,所述图像投射仪光学地耦合到所述LOE,以在所述耦入区域处将所述准直图像引入所述LOE,作为通过所述主外表面处的内反射在所述LOE内传播的传播图像,所述传播图像的所述光轴的面内分量相对于所述X轴朝向所述第二区域的边界倾斜。6. The optical system of aspect 1 configured to project an image to the eye box with a main axis comprising an X axis corresponding to a first horizontal or vertical axis of the projected image, and a first axis corresponding to the projected image. The Y-axis corresponding to the other axis of the projected image, the optical system also includes an image projector for projecting a collimated image with an angular field of view around the optical axis, the image projector optically coupled to the LOE to introduce the collimated image into the LOE at the in-coupling region as a propagating image propagating within the LOE by internal reflection at the major exterior surface, the propagating image The in-plane component of the optical axis is inclined relative to the X-axis towards the boundary of the second region.
7.根据方案6所述的光学系统,其中,所述传播图像的所述视场的一个末端的面内分量基本上平行于所述X轴。7. The optical system of clause 6, wherein an in-plane component of one end of the field of view of the propagating image is substantially parallel to the X-axis.
8.根据方案1所述的光学系统,被配置用于利用主轴将图像投射到所述眼动箱,其中,所述主轴包括与投射图像的第一水平或竖直轴对应的X轴,以及与所述投射图像的另一轴对应的Y轴,所述光学系统还包括图像投射仪,所述图像投射仪用于投射具有围绕光轴的角视场的准直图像,所述图像投射仪光学地耦合到所述LOE,以在所述耦入区域处将所述准直图像引入所述LOE中,作为通过所述主外表面处的内反射在所述LOE内传播的传播图像,所述传播图像被所述第一组部分反射表面部分地反射,以生成通过所述主外表面处的内反射在所述LOE内传播的经偏转传播图像,所述经偏转传播图像的所述光轴的面内分量相对于所述Y轴倾斜。8. The optical system of aspect 1 configured to project an image to the eye box with a primary axis, wherein the primary axis includes an X-axis corresponding to a first horizontal or vertical axis of the projected image, and Y-axis corresponding to the other axis of the projected image, the optical system further includes an image projector for projecting a collimated image having an angular field of view around the optical axis, the image projector optically coupled to the LOE to introduce the collimated image into the LOE at the incoupling region as a propagated image propagating within the LOE by internal reflection at the major exterior surface, the The propagated image is partially reflected by the first set of partially reflective surfaces to generate a deflected propagated image propagated within the LOE by internal reflection at the major exterior surface, the light of the deflected propagated image The in-plane component of the axis is tilted with respect to the Y-axis.
9.一种用于投射在耦入区域处注入的图像以供用户的眼睛在眼动箱处观看的光学系统,所述图像被利用主轴来观看,所述主轴包括与投射图像的水平或竖直轴对应的X轴,以及与所述投射图像的垂直于所述X轴的轴对应的Y轴,所述光学系统包括由透明材料形成的光导光学元件(LOE),所述LOE包括:9. An optical system for projecting an image injected at an in-coupling region for viewing by a user's eye at an eye box, the image being viewed with a main axis comprising a horizontal or vertical axis to the projected image an X-axis corresponding to the straight axis, and a Y-axis corresponding to an axis perpendicular to the X-axis of the projected image, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOE comprising:
(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation;
(b)第二区域,其包含具有与所述第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to said first orientation;
(c)一组相互平行的主外表面,所述主外表面跨所述第一区域和所述第二区域延伸,使得所述第一组部分反射表面和所述第二组部分反射表面均位于所述主外表面之间,(c) a set of mutually parallel major exterior surfaces extending across said first region and said second region such that said first set of partially reflective surfaces and said second set of partially reflective surfaces are both between said major exterior surfaces,
其中,所述第二组部分反射表面与所述主外表面成斜角,使得通过所述主外表面处的内反射在所述LOE内从所述第一区域传播到所述第二区域的图像照射的一部分被从所述LOE朝向所述眼动箱耦出,并且其中,所述第一组部分反射表面被定向成使得从所述耦入区域通过所述主外表面处的内反射在所述LOE内传播的图像照射的一部分被朝向所述第二区域偏转,wherein the second set of partially reflective surfaces is at an oblique angle to the major outer surface such that internal reflections at the major outer surface propagate within the LOE from the first region to the second region A portion of image illumination is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that internal reflection from the in-coupling region through the main outer surface is at a portion of the image illumination propagating within the LOE is deflected towards the second region,
并且其中,所述第二组部分反射表面具有平行于所述主外表面的延伸方向,所述延伸方向具有相对于X轴的角度偏移。And wherein said second set of partially reflective surfaces has a direction of extension parallel to said major outer surface, said direction of extension having an angular offset relative to the X-axis.
10.一种用于投射在耦入区域处注入的图像以供用户的眼睛在眼动箱处观看的光学系统,所述图像被利用主轴来观看,所述主轴包括与投射图像的水平或竖直轴对应的X轴,以及与所述投射图像的垂直于所述X轴的轴对应的Y轴,所述光学系统包括由透明材料形成的光导光学元件(LOE),所述LOE包括:10. An optical system for projecting an image injected at an in-coupling region for viewing by a user's eye at an eye box, said image being viewed with a main axis comprising a horizontal or vertical axis to the projected image An X-axis corresponding to the straight axis, and a Y-axis corresponding to an axis perpendicular to the X-axis of the projected image, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOE comprising:
(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation;
(b)第二区域,其包含具有与所述第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to said first orientation;
(c)一组相互平行的主外表面,所述主外表面跨所述第一区域和所述第二区域延伸,使得所述第一组部分反射表面和所述第二组部分反射表面均位于所述主外表面之间,(c) a set of mutually parallel major exterior surfaces extending across said first region and said second region such that said first set of partially reflective surfaces and said second set of partially reflective surfaces are both between said major exterior surfaces,
其中,所述第二组部分反射表面与所述主外表面成斜角,使得通过所述主外表面处的内反射在所述LOE内从所述第一区域传播到所述第二区域的图像照射的一部分被从所述LOE朝向所述眼动箱耦出,并且其中,所述第一组部分反射表面被定向成使得从所述耦入区域通过所述主外表面处的内反射在所述LOE内传播的图像照射的一部分被朝向所述第二区域偏转,wherein the second set of partially reflective surfaces is at an oblique angle to the major outer surface such that internal reflections at the major outer surface propagate within the LOE from the first region to the second region A portion of image illumination is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that internal reflection from the in-coupling region through the main outer surface is at a portion of the image illumination propagating within the LOE is deflected towards the second region,
所述光学系统还包括图像投射仪,所述图像投射仪用于投射具有围绕光轴的角视场的准直图像,所述图像投射仪光学地耦合到所述LOE,以在所述耦入区域处将所述准直图像引入所述LOE,作为通过所述主外表面处的内反射在所述LOE内传播的传播图像,所述传播图像的所述光轴的面内分量相对于所述X轴朝向所述第二区域的边界倾斜。The optical system also includes an image projector for projecting a collimated image having an angular field of view about an optical axis, the image projector optically coupled to the LOE for The collimated image is introduced into the LOE at the region as a propagated image propagating within the LOE by internal reflection at the major exterior surface, the in-plane component of the optical axis of the propagated image relative to the The X-axis is inclined toward the boundary of the second region.
11.根据方案10所述的光学系统,其中,所述传播图像的所述视场的一个末端的面内分量基本上平行于所述X轴。11. The optical system of
12.一种用于投射在耦入区域处注入的图像以供用户的眼睛在眼动箱处观看的光学系统,所述图像被利用主轴来观看,所述主轴包括与投射图像的水平或竖直轴对应的X轴,以及与所述投射图像的垂直于所述X轴的轴对应的Y轴,所述光学系统包括由透明材料形成的光导光学元件(LOE),所述LOE包括:12. An optical system for projecting an image injected at an in-coupling region for viewing by a user's eye at an eye box, said image being viewed with a main axis comprising a horizontal or vertical axis to the projected image an X-axis corresponding to the straight axis, and a Y-axis corresponding to an axis perpendicular to the X-axis of the projected image, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOE comprising:
(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation;
(b)第二区域,其包含具有与所述第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to said first orientation;
(c)一组相互平行的主外表面,所述主外表面跨所述第一区域和所述第二区域延伸,使得所述第一组部分反射表面和所述第二组部分反射表面均位于所述主外表面之间,(c) a set of mutually parallel major exterior surfaces extending across said first region and said second region such that said first set of partially reflective surfaces and said second set of partially reflective surfaces are both between said major exterior surfaces,
其中,所述第二组部分反射表面与所述主外表面成斜角,使得通过所述主外表面处的内反射在所述LOE内从所述第一区域传播到所述第二区域的图像照射的一部分被从所述LOE朝向所述眼动箱耦出,并且其中,所述第一组部分反射表面被定向成使得从所述耦入区域通过所述主外表面处的内反射在所述LOE内传播的图像照射的一部分被朝向所述第二区域偏转,wherein the second set of partially reflective surfaces is at an oblique angle to the major outer surface such that internal reflections at the major outer surface propagate within the LOE from the first region to the second region A portion of image illumination is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that internal reflection from the in-coupling region through the main outer surface is at a portion of the image illumination propagating within the LOE is deflected towards the second region,
所述光学系统还包括图像投射仪,所述图像投射仪用于投射具有围绕光轴的角视场的准直图像,所述图像投射仪光学地耦合到所述LOE,以在所述耦入区域处将所述准直图像引入所述LOE,作为通过所述主外表面处的内反射在所述LOE内传播的传播图像,所述传播图像被所述第一组部分反射表面部分地反射,以生成通过所述主外表面处的内反射在所述LOE内传播的经偏转传播图像,所述经偏转传播图像的所述光轴的面内分量相对于所述Y轴倾斜。The optical system also includes an image projector for projecting a collimated image having an angular field of view about an optical axis, the image projector optically coupled to the LOE for introducing the collimated image into the LOE at the region as a propagated image propagated within the LOE by internal reflection at the major exterior surface, the propagated image being partially reflected by the first set of partially reflective surfaces , to generate a deflected propagating image propagated within the LOE by internal reflection at the major exterior surface, the in-plane component of the optical axis of the deflected propagating image being inclined with respect to the Y-axis.
13.根据方案5至12中任一项所述的光学系统,其中,所述眼动箱由平行于所述X轴的至少一个直线定界。13. The optical system according to any one of clauses 5 to 12, wherein the eye box is bounded by at least one straight line parallel to the X-axis.
14.根据方案5至12中任一项所述的光学系统,其中,所述投射图像是具有与所述X轴和所述Y轴平行的边缘的矩形图像。14. The optical system of any one of clauses 5 to 12, wherein the projected image is a rectangular image with edges parallel to the X-axis and the Y-axis.
15.根据方案5至12中任一项所述的光学系统,还包括支承装置,所述支承装置被配置用于相对于所述用户的头部支承所述LOE,其中,所述主外表面之一面对所述用户的眼睛并且沿相对于所述用户的眼睛的使得所述X轴被水平定向的取向。15. The optical system of any one of clauses 5 to 12, further comprising support means configured to support the LOE relative to the user's head, wherein the major outer surface One faces the user's eye and is oriented such that the X-axis is oriented horizontally relative to the user's eye.
16.根据方案5至12中任一项所述的光学系统,其中,所述第一区域和所述第二区域由平行于所述X轴延伸的边界分开。16. The optical system of any one of clauses 5 to 12, wherein the first region and the second region are separated by a boundary extending parallel to the X-axis.
17.一种用于将在耦入区域处注入的图像照射引导到眼动箱以供用户的眼睛观看的光学系统,所述光学系统包括由透明材料形成的光导光学元件(LOE),所述LOE包括:17. An optical system for directing image illumination injected at an in-coupling region to an eye box for viewing by a user's eye, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOEs include:
(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation;
(b)第二区域,其包含具有与所述第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to said first orientation;
(c)一组相互平行的主外表面,所述主外表面跨所述第一区域和所述第二区域延伸,使得所述第一组部分反射表面和所述第二组部分反射表面均位于所述主外表面之间,(c) a set of mutually parallel major exterior surfaces extending across said first region and said second region such that said first set of partially reflective surfaces and said second set of partially reflective surfaces are both between said major exterior surfaces,
其中,所述第二组部分反射表面与所述主外表面成斜角,使得通过所述主外表面处的内反射在所述LOE内从所述第一区域传播到所述第二区域的图像照射的一部分被从所述LOE朝向所述眼动箱耦出,并且其中,所述第一组部分反射表面被定向成使得从所述耦入区域通过所述主外表面处的内反射在所述LOE内传播的图像照射的一部分被朝向所述第二区域偏转,wherein the second set of partially reflective surfaces is at an oblique angle to the major outer surface such that internal reflections at the major outer surface propagate within the LOE from the first region to the second region A portion of image illumination is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that internal reflection from the in-coupling region through the main outer surface is at a portion of the image illumination propagating within the LOE is deflected towards the second region,
并且其中,所述第一组部分反射表面具有不均匀的间隔,使得靠近所述耦入区域的相邻部分反射表面之间的间隔小于远离所述耦入区域的相邻部分反射表面之间的间隔。And wherein the first set of partially reflective surfaces has a non-uniform spacing such that the spacing between adjacent partially reflective surfaces close to the in-coupling region is smaller than the spacing between adjacent partially reflective surfaces away from the in-coupling region interval.
18.一种用于将在耦入区域处注入的图像照射引导到眼动箱以供用户的眼睛观看的光学系统,所述光学系统包括由透明材料形成的光导光学元件(LOE),所述LOE包括:18. An optical system for directing image illumination injected at an in-coupling region to an eye box for viewing by a user's eye, the optical system comprising a light-guiding optical element (LOE) formed of a transparent material, the LOEs include:
(a)第一区域,其包含具有第一取向的第一组平坦的相互平行的部分反射表面;(a) a first region comprising a first set of planar mutually parallel partially reflective surfaces having a first orientation;
(b)第二区域,其包含具有与所述第一取向不平行的第二取向的第二组平坦的相互平行的部分反射表面;(b) a second region comprising a second set of planar mutually parallel partially reflective surfaces having a second orientation non-parallel to said first orientation;
(c)一组相互平行的主外表面,所述主外表面跨所述第一区域和所述第二区域延伸,使得所述第一组部分反射表面和所述第二组部分反射表面均位于所述主外表面之间,(c) a set of mutually parallel major exterior surfaces extending across said first region and said second region such that said first set of partially reflective surfaces and said second set of partially reflective surfaces are both between said major exterior surfaces,
其中,所述第二组部分反射表面与所述主外表面成斜角,使得通过所述主外表面处的内反射在所述LOE内从所述第一区域传播到所述第二区域的图像照射的一部分被从所述LOE朝向所述眼动箱耦出,并且其中,所述第一组部分反射表面被定向成使得从所述耦入区域通过所述主外表面处的内反射在所述LOE内传播的图像照射的一部分被朝向所述第二区域偏转,wherein the second set of partially reflective surfaces is at an oblique angle to the major outer surface such that internal reflections at the major outer surface propagate within the LOE from the first region to the second region A portion of image illumination is coupled out from the LOE towards the eye box, and wherein the first set of partially reflective surfaces is oriented such that internal reflection from the in-coupling region through the main outer surface is at a portion of the image illumination propagating within the LOE is deflected towards the second region,
所述光学系统还包括图像投射仪,所述图像投射仪用于投射具有围绕光轴的角视场的准直图像,所述图像投射仪光学地耦合到所述LOE,以在所述耦入区域处将所述准直图像引入所述LOE,作为通过所述主外表面处的内反射在所述LOE内传播的传播图像,所述传播图像被所述第一组部分反射表面部分地反射,以生成通过所述主外表面处的内反射在所述LOE内传播的经偏转传播图像,所述经偏转传播图像被所述第二组部分反射表面部分地反射,以生成从所述主外表面之一向外指向所述眼动箱的耦出图像,所述耦出图像的所述光轴相对于所述主外表面的法线倾斜,具有沿所述第二组部分反射表面的面内延伸方向的非零倾斜分量。The optical system also includes an image projector for projecting a collimated image having an angular field of view about an optical axis, the image projector optically coupled to the LOE for introducing the collimated image into the LOE at the region as a propagated image propagated within the LOE by internal reflection at the major exterior surface, the propagated image being partially reflected by the first set of partially reflective surfaces , to generate a deflected propagating image propagating within the LOE by internal reflection at the primary exterior surface, the deflected propagating image being partially reflected by the second set of partially reflective surfaces to generate one of the outer surfaces points outwardly towards the out-coupling image of the eye box, the optical axis of the out-coupling image is inclined relative to the normal of the main outer surface, with a face along the second set of partially reflective surfaces Non-zero slope component of the direction of inward extension.
应当理解,以上描述仅旨在用作示例,并且在所附权利要求书中限定的本发明的范围内,许多其他实施方式是可能的。It should be understood that the above description is intended as an example only, and that many other embodiments are possible within the scope of the invention as defined in the appended claims.
Claims (8)
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862728803P | 2018-09-09 | 2018-09-09 | |
| US62/728,803 | 2018-09-09 | ||
| US201962823701P | 2019-03-26 | 2019-03-26 | |
| US62/823,701 | 2019-03-26 | ||
| PCT/IB2019/057572 WO2020049542A1 (en) | 2018-09-09 | 2019-09-09 | Optical systems including light-guide optical elements with two-dimensional expansion |
| CN201980057892.XA CN112639574B (en) | 2018-09-09 | 2019-09-09 | Optical system comprising a light-guiding optical element with a two-dimensional extension |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201980057892.XA Division CN112639574B (en) | 2018-09-09 | 2019-09-09 | Optical system comprising a light-guiding optical element with a two-dimensional extension |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116184666A true CN116184666A (en) | 2023-05-30 |
Family
ID=69722306
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310132324.XA Pending CN116184666A (en) | 2018-09-09 | 2019-09-09 | Optical system comprising a light-guiding optical element with two-dimensional expansion |
| CN202310134492.2A Pending CN116184667A (en) | 2018-09-09 | 2019-09-09 | Optical system comprising a light-guiding optical element with two-dimensional expansion |
| CN201980057892.XA Active CN112639574B (en) | 2018-09-09 | 2019-09-09 | Optical system comprising a light-guiding optical element with a two-dimensional extension |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310134492.2A Pending CN116184667A (en) | 2018-09-09 | 2019-09-09 | Optical system comprising a light-guiding optical element with two-dimensional expansion |
| CN201980057892.XA Active CN112639574B (en) | 2018-09-09 | 2019-09-09 | Optical system comprising a light-guiding optical element with a two-dimensional extension |
Country Status (12)
| Country | Link |
|---|---|
| US (4) | US11543583B2 (en) |
| EP (2) | EP3847500B1 (en) |
| JP (2) | JP7407458B2 (en) |
| KR (2) | KR102805566B1 (en) |
| CN (3) | CN116184666A (en) |
| AU (2) | AU2019335612B2 (en) |
| BR (1) | BR112021004307A2 (en) |
| CA (1) | CA3111598C (en) |
| IL (3) | IL281242B2 (en) |
| MX (1) | MX2021002813A (en) |
| TW (3) | TWI837175B (en) |
| WO (1) | WO2020049542A1 (en) |
Families Citing this family (65)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10261321B2 (en) | 2005-11-08 | 2019-04-16 | Lumus Ltd. | Polarizing optical system |
| IL232197B (en) | 2014-04-23 | 2018-04-30 | Lumus Ltd | Compact head-mounted display system |
| IL237337B (en) | 2015-02-19 | 2020-03-31 | Amitai Yaakov | Compact head-mounted display system having uniform image |
| WO2018065975A1 (en) | 2016-10-09 | 2018-04-12 | Lumus Ltd | Aperture multiplier using a rectangular waveguide |
| KR20240160657A (en) | 2016-11-08 | 2024-11-11 | 루머스 리미티드 | Light-guide device with optical cutoff edge and corresponding production methods |
| CN110431467A (en) | 2017-01-28 | 2019-11-08 | 鲁姆斯有限公司 | Augmented reality imaging system |
| CN109416433B (en) | 2017-03-22 | 2021-06-01 | 鲁姆斯有限公司 | Overlapping Reflector Construction |
| US11513352B2 (en) | 2017-09-29 | 2022-11-29 | Lumus Ltd. | Augmented reality display |
| WO2019077614A1 (en) | 2017-10-22 | 2019-04-25 | Lumus Ltd. | ENHANCED REALITY DEVICE MOUNTED ON THE HEAD AND USING AN OPTICAL BENCH |
| WO2019102366A1 (en) | 2017-11-21 | 2019-05-31 | Lumus Ltd. | Optical aperture expansion arrangement for near-eye displays |
| CN111417883B (en) | 2017-12-03 | 2022-06-17 | 鲁姆斯有限公司 | Optical equipment alignment method |
| IL275013B (en) | 2017-12-03 | 2022-08-01 | Lumus Ltd | Method and device for testing an optics device |
| KR20200102408A (en) | 2018-01-02 | 2020-08-31 | 루머스 리미티드 | Augmented Reality Display with Active Alignment and Corresponding Method |
| US10551544B2 (en) | 2018-01-21 | 2020-02-04 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
| MY203244A (en) | 2018-04-08 | 2024-06-19 | Lumus Ltd | Optical sample characterization |
| KR102752134B1 (en) | 2018-05-14 | 2025-01-08 | 루머스 리미티드 | Projector configuration with sub-optical aperture for near-eye display and corresponding optical system |
| IL278511B2 (en) | 2018-05-17 | 2025-01-01 | Lumus Ltd | Near-eye display having overlapping projector assemblies |
| IL259518B2 (en) | 2018-05-22 | 2023-04-01 | Lumus Ltd | Optical system and method for improvement of light field uniformity |
| MX2020012512A (en) | 2018-05-23 | 2021-02-16 | Lumus Ltd | Optical system including light-guide optical element with partially-reflective internal surfaces. |
| CN119595595A (en) | 2018-06-21 | 2025-03-11 | 鲁姆斯有限公司 | Technique for measuring refractive index non-uniformity between plates of light-guiding optical element (LOE) |
| US11415812B2 (en) | 2018-06-26 | 2022-08-16 | Lumus Ltd. | Compact collimating optical device and system |
| EP3824335B1 (en) | 2018-07-16 | 2023-10-18 | Lumus Ltd. | Light-guide optical element employing polarized internal reflectors |
| CN112601993A (en) | 2018-08-26 | 2021-04-02 | 鲁姆斯有限公司 | Reflection suppression in near-eye displays |
| CN116184666A (en) | 2018-09-09 | 2023-05-30 | 鲁姆斯有限公司 | Optical system comprising a light-guiding optical element with two-dimensional expansion |
| TWM642752U (en) | 2018-11-08 | 2023-06-21 | 以色列商魯姆斯有限公司 | Light-guide display with reflector |
| US11947130B2 (en) | 2018-11-08 | 2024-04-02 | Lumus Ltd. | Optical devices and systems with dichroic beamsplitter color combiner |
| JP3226277U (en) | 2018-11-11 | 2020-05-14 | ルムス エルティーディー. | Near eye display with intermediate window |
| MX2021008808A (en) | 2019-01-24 | 2021-08-24 | Lumus Ltd | Optical systems including loe with three stage expansion. |
| WO2020174433A1 (en) | 2019-02-28 | 2020-09-03 | Lumus Ltd. | Compact collimated image projector |
| TWI800657B (en) | 2019-03-12 | 2023-05-01 | 以色列商魯姆斯有限公司 | Image projector |
| EP3956604A4 (en) * | 2019-04-15 | 2022-06-08 | Lumus Ltd. | PROCESS FOR MANUFACTURING AN OPTICAL LIGHT GUIDE ELEMENT |
| TWI845670B (en) | 2019-05-06 | 2024-06-21 | 以色列商魯姆斯有限公司 | Transparent lightguide for viewing a scene and a near-eye display |
| AU2020300121B2 (en) | 2019-07-04 | 2024-06-13 | Lumus Ltd. | Image waveguide with symmetric beam multiplication |
| US12111479B2 (en) * | 2019-09-16 | 2024-10-08 | Lumus Ltd. | Image display system with beam multiplication |
| WO2021105982A1 (en) | 2019-11-25 | 2021-06-03 | Lumus Ltd. | Method of polishing a surface of a waveguide |
| IL270991B (en) | 2019-11-27 | 2020-07-30 | Lumus Ltd | Lightguide optical element for polarization scrambling |
| TWI884834B (en) | 2019-12-05 | 2025-05-21 | 以色列商魯姆斯有限公司 | Optical device and method of fabricating optical device |
| US11523092B2 (en) | 2019-12-08 | 2022-12-06 | Lumus Ltd. | Optical systems with compact image projector |
| CN114787687B (en) | 2019-12-25 | 2024-07-30 | 鲁姆斯有限公司 | Systems and methods for eye tracking based on redirection of light from the eye using an optical arrangement associated with a light guide optical element |
| IL294151A (en) | 2019-12-30 | 2022-08-01 | Lumus Ltd | Optical systems including light-guiding optical elements with two-dimensional expansion |
| US20220390748A1 (en) * | 2020-04-05 | 2022-12-08 | Lumus Ltd. | Optical Systems including Light-Guide Optical Elements with Two-Dimensional Expansion |
| WO2021220267A1 (en) | 2020-04-30 | 2021-11-04 | Lumus Ltd. | Optical sample characterization |
| CN218848473U (en) | 2020-05-12 | 2023-04-11 | 鲁姆斯有限公司 | Equipment including projection optics and light guides |
| CN115176190B (en) * | 2020-05-24 | 2024-07-09 | 鲁姆斯有限公司 | Composite light guide optical element |
| AU2021279462B2 (en) * | 2020-05-24 | 2023-06-08 | Lumus Ltd. | Method of fabrication of compound light-guide optical elements |
| US12344093B2 (en) | 2020-06-27 | 2025-07-01 | Lumus Ltd. | Vehicle head-up display (HUD) |
| AU2021331833A1 (en) * | 2020-08-23 | 2023-03-09 | Lumus Ltd. | Optical system for two-dimensional expansion of an image reducing glints and ghosts from the waveguide |
| KR102802733B1 (en) * | 2020-08-25 | 2025-05-08 | 주식회사 엘지화학 | Parts for display device and display device using the same |
| DE202021104723U1 (en) | 2020-09-11 | 2021-10-18 | Lumus Ltd. | Image projector coupled to an optical light guide element |
| DE102021101432A1 (en) | 2021-01-22 | 2022-07-28 | Bayerische Motoren Werke Aktiengesellschaft | Waveguide-based projection display device with a dynamic stray light absorber for a vehicle |
| CA3194222A1 (en) * | 2021-02-16 | 2022-08-25 | Lumus Ltd. | Optical systems including light-guide optical elements for two-dimensional expansion with retarder element |
| JP7465830B2 (en) * | 2021-02-18 | 2024-04-11 | 株式会社日立エルジーデータストレージ | Head-mounted display |
| KR20240006707A (en) | 2021-02-25 | 2024-01-15 | 루머스 리미티드 | Optical aperture multipliers having a rectangular waveguide |
| KR20230148324A (en) * | 2021-03-01 | 2023-10-24 | 루머스 리미티드 | Optical system with compact coupling from projector to waveguide |
| KR20230169075A (en) | 2021-04-11 | 2023-12-15 | 루머스 리미티드 | Display containing two-dimensionally scalable light-guide optical elements |
| US11852822B2 (en) * | 2021-07-09 | 2023-12-26 | Realwear, Inc. | Convertible waveguide optical engine assembly for head-mounted device |
| US11940627B2 (en) | 2021-07-09 | 2024-03-26 | Realwear, Inc. | Opaque waveguide optical engine assembly for head-mounted device |
| CN113504606A (en) * | 2021-08-04 | 2021-10-15 | 北京灵犀微光科技有限公司 | Optical waveguide device and AR equipment |
| KR20240046489A (en) | 2021-08-23 | 2024-04-09 | 루머스 리미티드 | Method for manufacturing composite light guiding optical elements with embedded coupling-in reflector |
| US12271000B2 (en) * | 2021-09-05 | 2025-04-08 | Lumus Ltd. | Independent conjugate image generation optical systems |
| JP2023040704A (en) | 2021-09-10 | 2023-03-23 | 株式会社リコー | Light guide member, optical unit, virtual image display device, and head-mounted display |
| CN114280788A (en) * | 2021-12-24 | 2022-04-05 | 深圳珑璟光电科技有限公司 | Display system and head-up display |
| US11741861B1 (en) * | 2022-02-08 | 2023-08-29 | Lumus Ltd. | Optical system including selectively activatable facets |
| WO2024047554A1 (en) * | 2022-08-31 | 2024-03-07 | Lumus Ltd. | Splitter and coupling prism arrangement |
| WO2025104737A1 (en) * | 2023-11-19 | 2025-05-22 | Lumus Ltd. | Lightguide-based display |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1440513A (en) * | 2000-06-05 | 2003-09-03 | 鲁姆斯有限公司 | Substrate-guided optical beam expander |
| US20080094586A1 (en) * | 2004-12-06 | 2008-04-24 | Yoshikazu Hirayama | Image Display Optical System, Image Display Unit, Illuminating Optical System, And Liquid Crystal Display Unit |
| JP2012008355A (en) * | 2010-06-25 | 2012-01-12 | Sony Corp | Image display apparatus and head-mounted display |
| US20130250431A1 (en) * | 2012-03-21 | 2013-09-26 | Steve Robbins | Two-dimensional exit-pupil expansion |
| CN103869406A (en) * | 2012-12-12 | 2014-06-18 | 泰勒斯公司 | Optical guide for collimated images with optical beam doubler, and associated optical device |
| WO2017120346A1 (en) * | 2016-01-06 | 2017-07-13 | Vuzix Corporation | Head-mounted display with pivoting imaging light guide |
| CN107918209A (en) * | 2016-10-07 | 2018-04-17 | 中强光电股份有限公司 | Head-mounted display device and optical system |
| CN108235739A (en) * | 2016-10-09 | 2018-06-29 | 鲁姆斯有限公司 | Aperture multiplier using rectangular waveguides |
| WO2018154576A1 (en) * | 2017-02-22 | 2018-08-30 | Lumus Ltd. | Light guide optical assembly |
Family Cites Families (306)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2748659A (en) | 1951-02-26 | 1956-06-05 | Jenaer Glaswerk Schott & Gen | Light source, searchlight or the like for polarized light |
| US2886911A (en) | 1953-07-23 | 1959-05-19 | George K C Hardesty | Duo-panel edge illumination system |
| US2795069A (en) | 1956-02-07 | 1957-06-11 | George K C Hardesty | Laminated metal-plastic illuminable panel |
| DE1422172B1 (en) | 1961-12-07 | 1970-11-12 | Kopperschmidt & Co Carl W | periscope |
| US3491245A (en) | 1967-04-10 | 1970-01-20 | George K C Hardesty | Guided light display panel |
| DE2057827A1 (en) | 1969-11-24 | 1971-06-03 | Vickers Ltd | Optical arrangement for flattening the image field |
| US3626394A (en) | 1970-04-09 | 1971-12-07 | Magnavox Co | Magneto-optical system |
| US3667621A (en) | 1970-10-20 | 1972-06-06 | Wisconsin Foundry And Machine | Fluid power system for a self-contained unloading unit |
| US3737212A (en) | 1970-12-14 | 1973-06-05 | Gen Electric | Diffraction optics head up display |
| GB1377627A (en) | 1971-09-01 | 1974-12-18 | Rank Organisation Ltd | Beam splitting prisms |
| CH563945A5 (en) | 1971-10-20 | 1975-07-15 | Balzers Patent Beteilig Ag | |
| US3857109A (en) | 1973-11-21 | 1974-12-24 | Us Navy | Longitudinally-pumped two-wavelength lasers |
| US3873209A (en) | 1973-12-10 | 1975-03-25 | Bell Telephone Labor Inc | Measurement of thin films by optical waveguiding technique |
| FR2295436A1 (en) | 1974-12-16 | 1976-07-16 | Radiotechnique Compelec | DIRECTIVE COUPLING DEVICE FOR MULTIMODES OPTICAL FIBERS |
| US3940204A (en) | 1975-01-23 | 1976-02-24 | Hughes Aircraft Company | Optical display systems utilizing holographic lenses |
| US4084883A (en) | 1977-02-28 | 1978-04-18 | The University Of Rochester | Reflective polarization retarder and laser apparatus utilizing same |
| DE3000402A1 (en) | 1979-01-19 | 1980-07-31 | Smiths Industries Ltd | DISPLAY DEVICE |
| US4331387A (en) | 1980-07-03 | 1982-05-25 | Westinghouse Electric Corp. | Electro-optical modulator for randomly polarized light |
| FR2496905A1 (en) | 1980-12-24 | 1982-06-25 | France Etat | EPISCOPE WITH MULTIMODES REFLECTIONS |
| DE3266408D1 (en) | 1981-10-14 | 1985-10-24 | Gec Avionics | Optical arrangements for head-up displays and night vision goggles |
| US4516828A (en) | 1982-05-03 | 1985-05-14 | General Motors Corporation | Duplex communication on a single optical fiber |
| FR2562273B1 (en) | 1984-03-27 | 1986-08-08 | France Etat Armement | DEVICE FOR OBSERVING THROUGH A WALL IN TWO OPPOSITE DIRECTIONS |
| US4715684A (en) | 1984-06-20 | 1987-12-29 | Hughes Aircraft Company | Optical system for three color liquid crystal light valve image projection system |
| US4711512A (en) | 1985-07-12 | 1987-12-08 | Environmental Research Institute Of Michigan | Compact head-up display |
| US4805988A (en) | 1987-07-24 | 1989-02-21 | Nelson Dones | Personal video viewing device |
| US4798448A (en) | 1988-02-16 | 1989-01-17 | General Electric Company | High efficiency illumination system for display devices |
| US4932743A (en) | 1988-04-18 | 1990-06-12 | Ricoh Company, Ltd. | Optical waveguide device |
| GB2220081A (en) | 1988-06-21 | 1989-12-28 | Hall & Watts Defence Optics Lt | Periscope apparatus |
| EP0365406B1 (en) | 1988-10-21 | 1993-09-29 | Thomson-Csf | Optical collimating system for a helmet visual |
| FR2638242B1 (en) | 1988-10-21 | 1991-09-20 | Thomson Csf | OPTICAL COLLIMATION SYSTEM, ESPECIALLY FOR A HELMET VISUAL |
| CN1043203A (en) | 1988-12-02 | 1990-06-20 | 三井石油化学工业株式会社 | Light output control method and device thereof |
| JPH02182447A (en) | 1989-01-09 | 1990-07-17 | Mitsubishi Electric Corp | Dielectric multilayer reflective film |
| US5880888A (en) | 1989-01-23 | 1999-03-09 | Hughes Aircraft Company | Helmet mounted display system |
| US4978952A (en) | 1989-02-24 | 1990-12-18 | Collimated Displays Incorporated | Flat screen color video display |
| FR2647556B1 (en) | 1989-05-23 | 1993-10-29 | Thomson Csf | OPTICAL DEVICE FOR INTRODUCING A COLLIMATED IMAGE INTO THE VISUAL FIELD OF AN OBSERVER AND HELMET COMPRISING AT LEAST ONE SUCH DEVICE |
| US5157526A (en) | 1990-07-06 | 1992-10-20 | Hitachi, Ltd. | Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same |
| US5096520A (en) | 1990-08-01 | 1992-03-17 | Faris Sades M | Method for producing high efficiency polarizing filters |
| US5751480A (en) | 1991-04-09 | 1998-05-12 | Canon Kabushiki Kaisha | Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit |
| FR2683918B1 (en) | 1991-11-19 | 1994-09-09 | Thomson Csf | MATERIAL CONSTITUTING A RIFLE SCOPE AND WEAPON USING THE SAME. |
| US5367399A (en) | 1992-02-13 | 1994-11-22 | Holotek Ltd. | Rotationally symmetric dual reflection optical beam scanner and system using same |
| US5383053A (en) | 1992-04-07 | 1995-01-17 | Hughes Aircraft Company | Virtual image display having a high efficiency grid beamsplitter |
| US5301067A (en) | 1992-05-06 | 1994-04-05 | Plx Inc. | High accuracy periscope assembly |
| US5231642A (en) | 1992-05-08 | 1993-07-27 | Spectra Diode Laboratories, Inc. | Semiconductor ring and folded cavity lasers |
| US5369415A (en) | 1992-06-29 | 1994-11-29 | Motorola, Inc. | Direct retinal scan display with planar imager |
| WO1994004892A1 (en) | 1992-08-13 | 1994-03-03 | Maechler Meinrad | Spectroscopic systems for the analysis of small and very small quantities of substances |
| US6144347A (en) | 1992-10-09 | 2000-11-07 | Sony Corporation | Head-mounted image display apparatus |
| US5537173A (en) | 1992-10-23 | 1996-07-16 | Olympus Optical Co., Ltd. | Film winding detecting means for a camera including control means for controlling proper and accurate winding and rewinding of a film |
| IL103900A (en) | 1992-11-26 | 1998-06-15 | Electro Optics Ind Ltd | Optical system |
| DE69432526T2 (en) | 1993-02-26 | 2004-04-01 | Yeda Research And Development Co., Ltd. | OPTICAL HOLOGRAPHIC DEVICES |
| GB2278222A (en) | 1993-05-20 | 1994-11-23 | Sharp Kk | Spatial light modulator |
| US5284417A (en) | 1993-06-07 | 1994-02-08 | Ford Motor Company | Automotive fuel pump with regenerative turbine and long curved vapor channel |
| AU686245B2 (en) | 1993-10-07 | 1998-02-05 | Virtual Vision, Inc. | Binocular head mounted display system |
| US5555329A (en) | 1993-11-05 | 1996-09-10 | Alliesignal Inc. | Light directing optical structure |
| JPH07199236A (en) | 1993-12-28 | 1995-08-04 | Fujitsu Ltd | Optical switch and optical distributor |
| US7262919B1 (en) | 1994-06-13 | 2007-08-28 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
| FR2721872B1 (en) | 1994-07-01 | 1996-08-02 | Renault | DEVICE FOR IMPROVING THE VISION OF A ROAD SCENE |
| JPH08114765A (en) | 1994-10-15 | 1996-05-07 | Fujitsu Ltd | Polarization separation / conversion device, polarized illumination device and projection type display device using the same |
| US5650873A (en) | 1995-01-30 | 1997-07-22 | Lockheed Missiles & Space Company, Inc. | Micropolarization apparatus |
| GB9521210D0 (en) | 1995-10-17 | 1996-08-28 | Barr & Stroud Ltd | Display system |
| GB2306741A (en) | 1995-10-24 | 1997-05-07 | Sharp Kk | Illuminator |
| US6404550B1 (en) | 1996-07-25 | 2002-06-11 | Seiko Epson Corporation | Optical element suitable for projection display apparatus |
| US5829854A (en) | 1996-09-26 | 1998-11-03 | Raychem Corporation | Angled color dispersement and recombination prism |
| US6023372A (en) | 1997-10-30 | 2000-02-08 | The Microoptical Corporation | Light weight, compact remountable electronic display device for eyeglasses or other head-borne eyewear frames |
| US6204974B1 (en) | 1996-10-08 | 2001-03-20 | The Microoptical Corporation | Compact image display system for eyeglasses or other head-borne frames |
| JPH10133055A (en) | 1996-10-31 | 1998-05-22 | Sharp Corp | Photocoupler and its production |
| US5919601A (en) | 1996-11-12 | 1999-07-06 | Kodak Polychrome Graphics, Llc | Radiation-sensitive compositions and printing plates |
| US5724163A (en) | 1996-11-12 | 1998-03-03 | Yariv Ben-Yehuda | Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer |
| US6577411B1 (en) | 1996-11-12 | 2003-06-10 | Planop-Planar Optics Ltd. | Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer |
| JPH10160961A (en) | 1996-12-03 | 1998-06-19 | Mitsubishi Gas Chem Co Inc | Optical element |
| US6292296B1 (en) | 1997-05-28 | 2001-09-18 | Lg. Philips Lcd Co., Ltd. | Large scale polarizer and polarizer system employing it |
| IL121067A0 (en) | 1997-06-12 | 1997-11-20 | Yeda Res & Dev | Compact planar optical correlator |
| DE19725262C2 (en) | 1997-06-13 | 1999-08-05 | Vitaly Dr Lissotschenko | Optical beam transformation device |
| US5883684A (en) | 1997-06-19 | 1999-03-16 | Three-Five Systems, Inc. | Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield |
| US5896232A (en) | 1997-08-07 | 1999-04-20 | International Business Machines Corporation | Highly efficient and compact frontlighting for polarization-based reflection light valves |
| RU2124746C1 (en) | 1997-08-11 | 1999-01-10 | Закрытое акционерное общество "Кванта Инвест" | Dichroic polarizer |
| US6091548A (en) | 1997-10-01 | 2000-07-18 | Raytheon Company | Optical system with two-stage aberration correction |
| CA2307877C (en) | 1997-10-30 | 2005-08-30 | The Microoptical Corporation | Eyeglass interface system |
| EP1068548B1 (en) * | 1998-04-02 | 2003-11-12 | Elop Electro-Optics Industries Ltd. | Holographic optical devices |
| US6222971B1 (en) | 1998-07-17 | 2001-04-24 | David Slobodin | Small inlet optical panel and a method of making a small inlet optical panel |
| US6301417B1 (en) | 1998-08-31 | 2001-10-09 | Brookhaven Science Associates | Ultrathin optical panel and a method of making an ultrathin optical panel |
| JP2000155234A (en) | 1998-11-24 | 2000-06-06 | Nippon Electric Glass Co Ltd | Capillary for optical fiber |
| JP2000187177A (en) | 1998-12-22 | 2000-07-04 | Olympus Optical Co Ltd | Image display device |
| WO2000063738A1 (en) | 1999-04-21 | 2000-10-26 | U.S. Precision Lens Incorporated | Optical systems for reflective lcd's |
| US6798579B2 (en) | 1999-04-27 | 2004-09-28 | Optical Products Development Corp. | Real imaging system with reduced ghost imaging |
| US6728034B1 (en) | 1999-06-16 | 2004-04-27 | Matsushita Electric Industrial Co., Ltd. | Diffractive optical element that polarizes light and an optical pickup using the same |
| US20030063042A1 (en) | 1999-07-29 | 2003-04-03 | Asher A. Friesem | Electronic utility devices incorporating a compact virtual image display |
| CA2386856A1 (en) | 1999-10-14 | 2001-04-19 | Stratos Product Development Llc | Virtual imaging system |
| JP2001141924A (en) | 1999-11-16 | 2001-05-25 | Matsushita Electric Ind Co Ltd | Demultiplexing element and demultiplexing light receiving element |
| JP3828328B2 (en) | 1999-12-28 | 2006-10-04 | ローム株式会社 | Head mounted display |
| US6421148B2 (en) | 2000-01-07 | 2002-07-16 | Honeywell International Inc. | Volume holographic diffusers |
| EP1688766B1 (en) | 2000-01-28 | 2011-04-27 | Seiko Epson Corporation | Light reflective polarizer and projector using the same |
| US6362861B1 (en) | 2000-05-02 | 2002-03-26 | Agilent Technologies, Inc. | Microdisplay system |
| IL136248A (en) | 2000-05-21 | 2004-08-31 | Elop Electrooptics Ind Ltd | System and method for varying the transmittance of light through a media |
| US20040176488A1 (en) | 2000-06-06 | 2004-09-09 | Shyama Mukherjee | Low dielectric materials and methods of producing same |
| US6307612B1 (en) | 2000-06-08 | 2001-10-23 | Three-Five Systems, Inc. | Liquid crystal display element having a precisely controlled cell gap and method of making same |
| IL136849A (en) | 2000-06-18 | 2004-09-27 | Beamus Ltd | Optical dynamic devices particularly for beam steering and optical communication |
| US6324330B1 (en) | 2000-07-10 | 2001-11-27 | Ultratech Stepper, Inc. | Folded light tunnel apparatus and method |
| KR100514011B1 (en) | 2000-07-24 | 2005-09-13 | 미츠비시 레이온 가부시키가이샤 | Surface illuminant device and prism sheet used therefor |
| KR100388819B1 (en) | 2000-07-31 | 2003-06-25 | 주식회사 대양이앤씨 | Optical System for Head Mount Display |
| US6490104B1 (en) | 2000-09-15 | 2002-12-03 | Three-Five Systems, Inc. | Illumination system for a micro display |
| IL138895A (en) | 2000-10-05 | 2005-08-31 | Elop Electrooptics Ind Ltd | Optical switching devices |
| US6542307B2 (en) | 2000-10-20 | 2003-04-01 | Three-Five Systems, Inc. | Compact near-eye illumination system |
| GB2371405B (en) | 2001-01-23 | 2003-10-15 | Univ Glasgow | Improvements in or relating to semiconductor lasers |
| GB0108838D0 (en) | 2001-04-07 | 2001-05-30 | Cambridge 3D Display Ltd | Far field display |
| JP4772204B2 (en) | 2001-04-13 | 2011-09-14 | オリンパス株式会社 | Observation optical system |
| KR100813943B1 (en) | 2001-04-30 | 2008-03-14 | 삼성전자주식회사 | Composite Reflective Prism and Optical Pick-up Device |
| GB0112871D0 (en) | 2001-05-26 | 2001-07-18 | Thales Optics Ltd | Improved optical device |
| US6690513B2 (en) | 2001-07-03 | 2004-02-10 | Jds Uniphase Corporation | Rhomb interleaver |
| US6791760B2 (en) | 2001-07-24 | 2004-09-14 | Itt Manufacturing Enterprises, Inc. | Planar diffractive relay |
| US6556282B2 (en) | 2001-09-04 | 2003-04-29 | Rosemount Aerospace, Inc. | Combined LOAS and LIDAR system |
| EP1433160A1 (en) | 2001-09-07 | 2004-06-30 | The Microoptical Corporation | Light weight, compact, remountable face-supported electronic display |
| US6775432B2 (en) | 2001-10-19 | 2004-08-10 | Santanu Basu | Method and apparatus for optical wavelength demultiplexing, multiplexing and routing |
| JP2003140081A (en) | 2001-11-06 | 2003-05-14 | Nikon Corp | Hologram combiner optical system |
| FR2834799B1 (en) | 2002-01-11 | 2004-04-16 | Essilor Int | OPHTHALMIC LENS WITH PROJECTION INSERT |
| HRP20020044B1 (en) | 2002-01-16 | 2008-11-30 | Mara-Institut D.O.O. | Indirectly prestressed, concrete, roof-ceiling construction with flat soffit |
| AU2007203023B2 (en) * | 2002-03-21 | 2010-02-11 | Lumus Ltd. | A Light Guide Optical Device |
| IL148804A (en) | 2002-03-21 | 2007-02-11 | Yaacov Amitai | Optical device |
| DE10216169A1 (en) | 2002-04-12 | 2003-10-30 | Zeiss Carl Jena Gmbh | Arrangement for the polarization of light |
| ITTO20020625A1 (en) | 2002-07-17 | 2004-01-19 | Fiat Ricerche | LIGHT GUIDE FOR "HEAD-MOUNTED" OR "HEAD-UP" TYPE DISPLAY DEVICES |
| EP1418459A1 (en) | 2002-11-08 | 2004-05-12 | 3M Innovative Properties Company | Optical device comprising cubo-octahedral polyhedron as light flux splitter or light diffusing element |
| US20050174641A1 (en) | 2002-11-26 | 2005-08-11 | Jds Uniphase Corporation | Polarization conversion light integrator |
| US20090190890A1 (en) | 2002-12-19 | 2009-07-30 | Freeland Riley S | Fiber optic cable having a dry insert and methods of making the same |
| US7175304B2 (en) | 2003-01-30 | 2007-02-13 | Touchsensor Technologies, Llc | Integrated low profile display |
| US7205960B2 (en) | 2003-02-19 | 2007-04-17 | Mirage Innovations Ltd. | Chromatic planar optic display system |
| US7206133B2 (en) | 2003-05-22 | 2007-04-17 | Optical Research Associates | Light distribution apparatus and methods for illuminating optical systems |
| EP1484596A1 (en) | 2003-06-05 | 2004-12-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and device for three-dimensional determination of the refractive index of transparents layers |
| US20060132914A1 (en) | 2003-06-10 | 2006-06-22 | Victor Weiss | Method and system for displaying an informative image against a background image |
| JP4845336B2 (en) | 2003-07-16 | 2011-12-28 | 株式会社半導体エネルギー研究所 | Display device with imaging function and bidirectional communication system |
| IL157837A (en) | 2003-09-10 | 2012-12-31 | Yaakov Amitai | Substrate-guided optical device particularly for three-dimensional displays |
| IL157836A (en) | 2003-09-10 | 2009-08-03 | Yaakov Amitai | Optical devices particularly for remote viewing applications |
| JP2005084522A (en) | 2003-09-10 | 2005-03-31 | Nikon Corp | Combiner optics |
| IL157838A (en) | 2003-09-10 | 2013-05-30 | Yaakov Amitai | High brightness optical device |
| KR20050037085A (en) | 2003-10-17 | 2005-04-21 | 삼성전자주식회사 | Light tunnel, illuminating device and projector adopting the same |
| US7430355B2 (en) | 2003-12-08 | 2008-09-30 | University Of Cincinnati | Light emissive signage devices based on lightwave coupling |
| US7101063B2 (en) | 2004-02-05 | 2006-09-05 | Hewlett-Packard Development Company, L.P. | Systems and methods for integrating light |
| US7418170B2 (en) | 2004-03-29 | 2008-08-26 | Sony Corporation | Optical device and virtual image display device |
| EP1748305A4 (en) | 2004-05-17 | 2009-01-14 | Nikon Corp | Optical element, combiner optical system, and image display unit |
| TWI282017B (en) | 2004-05-28 | 2007-06-01 | Epistar Corp | Planar light device |
| IL162572A (en) | 2004-06-17 | 2013-02-28 | Lumus Ltd | High brightness optical device |
| IL162573A (en) * | 2004-06-17 | 2013-05-30 | Lumus Ltd | Substrate-guided optical device with very wide aperture |
| JPWO2006001254A1 (en) | 2004-06-29 | 2008-04-17 | 株式会社ニコン | Image combiner and image display device |
| IL163361A (en) | 2004-08-05 | 2011-06-30 | Lumus Ltd | Optical device for light coupling into a guiding substrate |
| US20060126181A1 (en) | 2004-12-13 | 2006-06-15 | Nokia Corporation | Method and system for beam expansion in a display device |
| US10073264B2 (en) | 2007-08-03 | 2018-09-11 | Lumus Ltd. | Substrate-guide optical device |
| IL166799A (en) | 2005-02-10 | 2014-09-30 | Lumus Ltd | Substrate-guided optical device utilizing beam splitters |
| JP2008533507A (en) | 2005-02-10 | 2008-08-21 | ラマス リミテッド | Substrate guiding optical device especially for vision enhancement optical system |
| US7724443B2 (en) * | 2005-02-10 | 2010-05-25 | Lumus Ltd. | Substrate-guided optical device utilizing thin transparent layer |
| EP1848966A1 (en) | 2005-02-17 | 2007-10-31 | Lumus Ltd | Personal navigation system |
| WO2006098097A1 (en) | 2005-03-14 | 2006-09-21 | Nikon Corporation | Image display optical system and image display |
| US7405881B2 (en) | 2005-05-30 | 2008-07-29 | Konica Minolta Holdings, Inc. | Image display apparatus and head mount display |
| JP4655771B2 (en) | 2005-06-17 | 2011-03-23 | ソニー株式会社 | Optical device and virtual image display device |
| US7364306B2 (en) | 2005-06-20 | 2008-04-29 | Digital Display Innovations, Llc | Field sequential light source modulation for a digital display system |
| US20070002191A1 (en) | 2005-07-01 | 2007-01-04 | Seiko Epson Corporation | Projector |
| US20070155277A1 (en) | 2005-07-25 | 2007-07-05 | Avi Amitai | Mobile/portable and personal pre-recorded sound effects electronic amplifier device/gadget |
| JP5030134B2 (en) | 2005-08-18 | 2012-09-19 | 株式会社リコー | Polarization conversion element, polarization conversion optical system, and image projection apparatus |
| US9081178B2 (en) | 2005-09-07 | 2015-07-14 | Bae Systems Plc | Projection display for displaying an image to a viewer |
| US10261321B2 (en) | 2005-11-08 | 2019-04-16 | Lumus Ltd. | Polarizing optical system |
| IL171820A (en) | 2005-11-08 | 2014-04-30 | Lumus Ltd | Polarizing optical device for light coupling |
| IL173715A0 (en) | 2006-02-14 | 2007-03-08 | Lumus Ltd | Substrate-guided imaging lens |
| IL174170A (en) | 2006-03-08 | 2015-02-26 | Abraham Aharoni | Device and method for binocular alignment |
| IL177618A (en) | 2006-08-22 | 2015-02-26 | Lumus Ltd | Substrate- guided optical device |
| JP2008053517A (en) | 2006-08-25 | 2008-03-06 | Sharp Corp | Array substrate manufacturing method and array substrate |
| EP1975679A1 (en) | 2007-03-31 | 2008-10-01 | Sony Deutschland Gmbh | Image generating apparatus |
| US8643948B2 (en) | 2007-04-22 | 2014-02-04 | Lumus Ltd. | Collimating optical device and system |
| US8139944B2 (en) | 2007-05-08 | 2012-03-20 | The Boeing Company | Method and apparatus for clearing an optical channel |
| IL183637A (en) | 2007-06-04 | 2013-06-27 | Zvi Lapidot | Distributed head-mounted display |
| EP3667399A1 (en) | 2007-06-04 | 2020-06-17 | Magic Leap, Inc. | A diffractive beam expander |
| US7589901B2 (en) | 2007-07-10 | 2009-09-15 | Microvision, Inc. | Substrate-guided relays for use with scanned beam light sources |
| FR2925171B1 (en) | 2007-12-13 | 2010-04-16 | Optinvent | OPTICAL GUIDE AND OPTICAL SYSTEM OF EYE VISION |
| WO2010022101A2 (en) | 2008-08-19 | 2010-02-25 | Plextronics, Inc. | Organic light emitting diode lighting devices |
| US7949214B2 (en) | 2008-11-06 | 2011-05-24 | Microvision, Inc. | Substrate guided relay with pupil expanding input coupler |
| US8317352B2 (en) | 2008-12-11 | 2012-11-27 | Robert Saccomanno | Non-invasive injection of light into a transparent substrate, such as a window pane through its face |
| CN102356338B (en) | 2009-04-08 | 2015-03-11 | 国际商业机器公司 | Optical waveguide with embedded light-reflecting feature and method for fabricating the same |
| WO2010124028A2 (en) | 2009-04-21 | 2010-10-28 | Vasylyev Sergiy V | Light collection and illumination systems employing planar waveguide |
| US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
| US20100291489A1 (en) | 2009-05-15 | 2010-11-18 | Api Nanofabrication And Research Corp. | Exposure methods for forming patterned layers and apparatus for performing the same |
| US8233204B1 (en) | 2009-09-30 | 2012-07-31 | Rockwell Collins, Inc. | Optical displays |
| US8885112B2 (en) * | 2009-10-27 | 2014-11-11 | Sbg Labs, Inc. | Compact holographic edge illuminated eyeglass display |
| JP5494153B2 (en) | 2010-04-08 | 2014-05-14 | ソニー株式会社 | Image display method for head mounted display |
| US9028123B2 (en) | 2010-04-16 | 2015-05-12 | Flex Lighting Ii, Llc | Display illumination device with a film-based lightguide having stacked incident surfaces |
| EP2558893A4 (en) | 2010-04-16 | 2014-06-11 | Flex Lighting Ii Llc | TEACH COMPRISING A LIGHT GUIDE BASED ON A FILM |
| JP5471986B2 (en) | 2010-09-07 | 2014-04-16 | 株式会社島津製作所 | Optical component and display device using the same |
| US8743464B1 (en) | 2010-11-03 | 2014-06-03 | Google Inc. | Waveguide with embedded mirrors |
| US8666208B1 (en) | 2010-11-05 | 2014-03-04 | Google Inc. | Moldable waveguide with embedded micro structures |
| JP5645631B2 (en) | 2010-12-13 | 2014-12-24 | 三菱電機株式会社 | Wavelength monitor, optical module, and wavelength monitoring method |
| JP5720290B2 (en) * | 2011-02-16 | 2015-05-20 | セイコーエプソン株式会社 | Virtual image display device |
| JP2012252091A (en) | 2011-06-01 | 2012-12-20 | Sony Corp | Display apparatus |
| KR20130015326A (en) | 2011-08-03 | 2013-02-14 | 삼성전기주식회사 | Camera system and method for recognition distance using the same |
| US8548290B2 (en) * | 2011-08-23 | 2013-10-01 | Vuzix Corporation | Dynamic apertured waveguide for near-eye display |
| JP5826597B2 (en) | 2011-10-31 | 2015-12-02 | シャープ株式会社 | Simulated solar irradiation device |
| CN206649211U (en) | 2017-02-24 | 2017-11-17 | 北京耐德佳显示技术有限公司 | A kind of nearly eye display device using Waveguide mode optical element |
| DE102012208113A1 (en) | 2012-05-15 | 2013-11-21 | Robert Bosch Gmbh | Laser module with duochromatic laser diode for a portable image projector |
| IL219907A (en) | 2012-05-21 | 2017-08-31 | Lumus Ltd | Head-mounted display eyeball tracker integrated system |
| US20130321432A1 (en) | 2012-06-01 | 2013-12-05 | QUALCOMM MEMES Technologies, Inc. | Light guide with embedded fresnel reflectors |
| CN115494654B (en) | 2012-06-11 | 2025-08-01 | 奇跃公司 | Multi-depth planar three-dimensional display using waveguide reflector array projector |
| US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
| US8913324B2 (en) | 2012-08-07 | 2014-12-16 | Nokia Corporation | Display illumination light guide |
| US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
| US8947783B2 (en) | 2013-01-02 | 2015-02-03 | Google Inc. | Optical combiner for near-eye display |
| JP6065630B2 (en) | 2013-02-13 | 2017-01-25 | セイコーエプソン株式会社 | Virtual image display device |
| DE102013106392B4 (en) | 2013-06-19 | 2017-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for producing an antireflection coating |
| US8913865B1 (en) | 2013-06-27 | 2014-12-16 | Microsoft Corporation | Waveguide including light turning gaps |
| US10228242B2 (en) | 2013-07-12 | 2019-03-12 | Magic Leap, Inc. | Method and system for determining user input based on gesture |
| US20150081313A1 (en) | 2013-09-16 | 2015-03-19 | Sunedison Llc | Methods and systems for photovoltaic site installation, commissioining, and provisioning |
| JP6225657B2 (en) | 2013-11-15 | 2017-11-08 | セイコーエプソン株式会社 | OPTICAL ELEMENT, IMAGE DISPLAY DEVICE, AND MANUFACTURING METHOD THEREOF |
| IL313875A (en) | 2013-11-27 | 2024-08-01 | Magic Leap Inc | Virtual and augmented reality systems and methods |
| US9470633B2 (en) | 2014-02-14 | 2016-10-18 | Google Inc. | Method, apparatus and system for transmittance measurement |
| CN108572449B (en) | 2014-03-31 | 2021-09-14 | 联想(北京)有限公司 | Display device and electronic apparatus |
| US10151928B2 (en) | 2014-04-09 | 2018-12-11 | Alexey Leonidovich Ushakov | Smart glasses with a fixed frame and a rotatable frame |
| DE102014207490B3 (en) | 2014-04-17 | 2015-07-02 | Carl Zeiss Ag | Spectacle lens for a display device to be placed on the head of a user and an image-generating display device and display device with such a spectacle lens |
| US9213178B1 (en) | 2014-04-21 | 2015-12-15 | Google Inc. | Lens with lightguide insert for head wearable display |
| IL232197B (en) | 2014-04-23 | 2018-04-30 | Lumus Ltd | Compact head-mounted display system |
| DE112014006610B4 (en) | 2014-04-24 | 2019-09-19 | Mitsubishi Electric Corporation | Robot control device and robot control method |
| JP6096713B2 (en) | 2014-05-21 | 2017-03-15 | 株式会社東芝 | Display device |
| GB201413344D0 (en) | 2014-07-28 | 2014-09-10 | Neoss Ltd | Surgical instruments |
| JP2016033867A (en) | 2014-07-31 | 2016-03-10 | ソニー株式会社 | Optical member, illumination unit, wearable display, and image display apparatus |
| CN112925100B (en) * | 2014-09-29 | 2023-10-31 | 奇跃公司 | Optical system |
| IL235642B (en) | 2014-11-11 | 2021-08-31 | Lumus Ltd | Compact head-mounted display system protected by a hyperfine structure |
| IL236490B (en) | 2014-12-25 | 2021-10-31 | Lumus Ltd | Optical component on a conductive substrate |
| IL236491B (en) | 2014-12-25 | 2020-11-30 | Lumus Ltd | A method for fabricating substrate-guided optical device |
| CN107430283A (en) | 2015-01-06 | 2017-12-01 | 伊奎蒂公司 | Head-mounted imaging device with optical coupling |
| US20160234485A1 (en) | 2015-02-09 | 2016-08-11 | Steven John Robbins | Display System |
| CN107405137B (en) | 2015-02-17 | 2020-10-09 | 皇家飞利浦有限公司 | Device for locating a marker in a 3D ultrasound image volume |
| IL237337B (en) | 2015-02-19 | 2020-03-31 | Amitai Yaakov | Compact head-mounted display system having uniform image |
| WO2016181459A1 (en) | 2015-05-11 | 2016-11-17 | オリンパス株式会社 | Prism optical system, image display device using prism optical system, and imaging device using prism optical system |
| US10246369B2 (en) * | 2015-07-31 | 2019-04-02 | Corning Incorporated | High index glasses |
| US10007117B2 (en) | 2015-09-10 | 2018-06-26 | Vuzix Corporation | Imaging light guide with reflective turning array |
| DE102015116297A1 (en) * | 2015-09-25 | 2017-03-30 | Carl Zeiss Smart Optics Gmbh | Imaging optics and display device with such imaging optics |
| US10345594B2 (en) | 2015-12-18 | 2019-07-09 | Ostendo Technologies, Inc. | Systems and methods for augmented near-eye wearable displays |
| EP3400477B1 (en) * | 2016-01-06 | 2023-10-25 | Vuzix Corporation | Imaging light guide with reflective turning array |
| US10473933B2 (en) | 2016-02-19 | 2019-11-12 | Microsoft Technology Licensing, Llc | Waveguide pupil relay |
| US9880441B1 (en) * | 2016-09-08 | 2018-01-30 | Osterhout Group, Inc. | Electrochromic systems for head-worn computer systems |
| CN107167919B (en) | 2016-03-07 | 2021-08-03 | 精工爱普生株式会社 | Light guide device and virtual image display device |
| CN107290816B (en) | 2016-03-30 | 2020-04-24 | 中强光电股份有限公司 | Optical waveguide element and head-mounted display device having the same |
| US10394029B2 (en) * | 2016-04-04 | 2019-08-27 | Akonia Holographics, Llc | Field of view enhancement |
| US20170343810A1 (en) | 2016-05-24 | 2017-11-30 | Osterhout Group, Inc. | Pre-assembled solid optical assembly for head worn computers |
| US10025093B2 (en) | 2016-04-13 | 2018-07-17 | Microsoft Technology Licensing, Llc | Waveguide-based displays with exit pupil expander |
| US9791703B1 (en) * | 2016-04-13 | 2017-10-17 | Microsoft Technology Licensing, Llc | Waveguides with extended field of view |
| US10061124B2 (en) | 2016-04-29 | 2018-08-28 | Microsoft Technology Licensing, Llc | Robust architecture for large field of view components |
| JP6740366B2 (en) | 2016-05-18 | 2020-08-12 | ルーマス リミテッドLumus Ltd. | Head mount imaging device |
| TWI669530B (en) * | 2016-08-18 | 2019-08-21 | 以色列商盧姆斯有限公司 | Compact head-mounted display system having uniform image |
| KR20240160657A (en) | 2016-11-08 | 2024-11-11 | 루머스 리미티드 | Light-guide device with optical cutoff edge and corresponding production methods |
| EP3542213B1 (en) | 2016-11-18 | 2025-10-08 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| EP4152077A1 (en) | 2016-11-30 | 2023-03-22 | Magic Leap, Inc. | Method and system for high resolution digitized display |
| DE212017000261U1 (en) | 2016-12-02 | 2019-08-05 | Lumus Ltd. | Optical system with compact collimator image projector |
| WO2018102834A2 (en) * | 2016-12-02 | 2018-06-07 | Digilens, Inc. | Waveguide device with uniform output illumination |
| KR102296369B1 (en) | 2016-12-31 | 2021-09-01 | 루머스 리미티드 | Retinal Imaging-Based Eye Tracker with Light-Guiding Optics |
| WO2018127913A1 (en) | 2017-01-04 | 2018-07-12 | Lumus Ltd. | Optical system for near-eye displays |
| CN108333749A (en) * | 2017-01-19 | 2018-07-27 | 中强光电股份有限公司 | Optical system and head-mounted display device |
| CA3053963A1 (en) | 2017-03-14 | 2018-09-20 | Magic Leap, Inc. | Waveguides with light absorbing films and processes for forming the same |
| CA3053990A1 (en) | 2017-03-15 | 2018-09-20 | Magic Leap, Inc. | Techniques for improving a fiber scanning system |
| CN109416433B (en) * | 2017-03-22 | 2021-06-01 | 鲁姆斯有限公司 | Overlapping Reflector Construction |
| US10852543B2 (en) * | 2017-03-28 | 2020-12-01 | Seiko Epson Corporation | Light guide device and display device |
| JP2018165740A (en) | 2017-03-28 | 2018-10-25 | セイコーエプソン株式会社 | Display device |
| IL251645B (en) | 2017-04-06 | 2018-08-30 | Lumus Ltd | Light-guide optical element and method of its manufacture |
| FI129873B (en) | 2017-05-08 | 2022-10-14 | Dispelix Oy | Diffractive display, lightguide element and projector therefor, and method for displaying image |
| JP2018205448A (en) | 2017-05-31 | 2018-12-27 | セイコーエプソン株式会社 | Display device and lighting device |
| CN107238928B (en) | 2017-06-09 | 2020-03-06 | 京东方科技集团股份有限公司 | an arrayed waveguide |
| EP4215980A1 (en) | 2017-07-19 | 2023-07-26 | Lumus Ltd. | Lcos illumination via loe |
| DE102017116885B4 (en) * | 2017-07-26 | 2023-04-06 | Ledvance Gmbh | Bulb and lens for a bulb |
| US10859833B2 (en) | 2017-08-18 | 2020-12-08 | Tipd, Llc | Waveguide image combiner for augmented reality displays |
| US11513352B2 (en) | 2017-09-29 | 2022-11-29 | Lumus Ltd. | Augmented reality display |
| WO2019079014A1 (en) | 2017-10-16 | 2019-04-25 | Akonia Holographics Llc | Two-dimensional light homogenization |
| WO2019077614A1 (en) | 2017-10-22 | 2019-04-25 | Lumus Ltd. | ENHANCED REALITY DEVICE MOUNTED ON THE HEAD AND USING AN OPTICAL BENCH |
| WO2019102366A1 (en) | 2017-11-21 | 2019-05-31 | Lumus Ltd. | Optical aperture expansion arrangement for near-eye displays |
| CN108107576A (en) | 2017-11-27 | 2018-06-01 | 北京灵犀微光科技有限公司 | Waveguide display device |
| US20190170327A1 (en) | 2017-12-03 | 2019-06-06 | Lumus Ltd. | Optical illuminator device |
| CN111417883B (en) | 2017-12-03 | 2022-06-17 | 鲁姆斯有限公司 | Optical equipment alignment method |
| IL275013B (en) | 2017-12-03 | 2022-08-01 | Lumus Ltd | Method and device for testing an optics device |
| KR102704523B1 (en) | 2017-12-10 | 2024-09-06 | 루머스 리미티드 | Image projector |
| US11112613B2 (en) | 2017-12-18 | 2021-09-07 | Facebook Technologies, Llc | Integrated augmented reality head-mounted display for pupil steering |
| KR20200102408A (en) | 2018-01-02 | 2020-08-31 | 루머스 리미티드 | Augmented Reality Display with Active Alignment and Corresponding Method |
| US10506220B2 (en) | 2018-01-02 | 2019-12-10 | Lumus Ltd. | Augmented reality displays with active alignment and corresponding methods |
| US10551544B2 (en) | 2018-01-21 | 2020-02-04 | Lumus Ltd. | Light-guide optical element with multiple-axis internal aperture expansion |
| US10942355B2 (en) | 2018-01-22 | 2021-03-09 | Facebook Technologies, Llc | Systems, devices, and methods for tiled multi-monochromatic displays |
| US11256004B2 (en) * | 2018-03-20 | 2022-02-22 | Invensas Bonding Technologies, Inc. | Direct-bonded lamination for improved image clarity in optical devices |
| MY203244A (en) | 2018-04-08 | 2024-06-19 | Lumus Ltd | Optical sample characterization |
| KR102752134B1 (en) | 2018-05-14 | 2025-01-08 | 루머스 리미티드 | Projector configuration with sub-optical aperture for near-eye display and corresponding optical system |
| IL278511B2 (en) | 2018-05-17 | 2025-01-01 | Lumus Ltd | Near-eye display having overlapping projector assemblies |
| IL259518B2 (en) | 2018-05-22 | 2023-04-01 | Lumus Ltd | Optical system and method for improvement of light field uniformity |
| MX2020012512A (en) | 2018-05-23 | 2021-02-16 | Lumus Ltd | Optical system including light-guide optical element with partially-reflective internal surfaces. |
| TWM587757U (en) | 2018-05-27 | 2019-12-11 | 以色列商魯姆斯有限公司 | Substrate-guide based optical systems with field curvature effect |
| CN119595595A (en) | 2018-06-21 | 2025-03-11 | 鲁姆斯有限公司 | Technique for measuring refractive index non-uniformity between plates of light-guiding optical element (LOE) |
| US11415812B2 (en) | 2018-06-26 | 2022-08-16 | Lumus Ltd. | Compact collimating optical device and system |
| EP3824335B1 (en) | 2018-07-16 | 2023-10-18 | Lumus Ltd. | Light-guide optical element employing polarized internal reflectors |
| CN112601993A (en) | 2018-08-26 | 2021-04-02 | 鲁姆斯有限公司 | Reflection suppression in near-eye displays |
| TWI827663B (en) | 2018-09-06 | 2024-01-01 | 以色列商魯姆斯有限公司 | Near-eye display with laser diode illumination |
| CN116184666A (en) | 2018-09-09 | 2023-05-30 | 鲁姆斯有限公司 | Optical system comprising a light-guiding optical element with two-dimensional expansion |
| US10725291B2 (en) | 2018-10-15 | 2020-07-28 | Facebook Technologies, Llc | Waveguide including volume Bragg gratings |
| US11947130B2 (en) | 2018-11-08 | 2024-04-02 | Lumus Ltd. | Optical devices and systems with dichroic beamsplitter color combiner |
| TWM642752U (en) | 2018-11-08 | 2023-06-21 | 以色列商魯姆斯有限公司 | Light-guide display with reflector |
| JP3226277U (en) | 2018-11-11 | 2020-05-14 | ルムス エルティーディー. | Near eye display with intermediate window |
| KR102816729B1 (en) | 2019-01-15 | 2025-06-04 | 루머스 리미티드 | Method for fabricating symmetrical light guide optical elements |
| MX2021008808A (en) | 2019-01-24 | 2021-08-24 | Lumus Ltd | Optical systems including loe with three stage expansion. |
| IL264551B2 (en) | 2019-01-29 | 2024-09-01 | Oorym Optics Ltd | Highly efficient compact head-mounted display system having small input aperture |
| CN109613644B (en) | 2019-02-14 | 2020-08-11 | 京东方科技集团股份有限公司 | A light guide device and its manufacturing method, and a display device |
| JP6911878B2 (en) | 2019-02-28 | 2021-07-28 | セイコーエプソン株式会社 | Image display device and virtual image display device |
| TWI800657B (en) | 2019-03-12 | 2023-05-01 | 以色列商魯姆斯有限公司 | Image projector |
| TWI845670B (en) | 2019-05-06 | 2024-06-21 | 以色列商魯姆斯有限公司 | Transparent lightguide for viewing a scene and a near-eye display |
| AU2020300121B2 (en) | 2019-07-04 | 2024-06-13 | Lumus Ltd. | Image waveguide with symmetric beam multiplication |
| US12111479B2 (en) | 2019-09-16 | 2024-10-08 | Lumus Ltd. | Image display system with beam multiplication |
| WO2021055278A2 (en) | 2019-09-19 | 2021-03-25 | Akalana Management Llc | Optical systems with reflective prism input couplers |
| US10962787B1 (en) * | 2019-11-25 | 2021-03-30 | Shanghai North Ocean Photonics Co., Ltd. | Waveguide display device |
| IL270991B (en) | 2019-11-27 | 2020-07-30 | Lumus Ltd | Lightguide optical element for polarization scrambling |
| IL294151A (en) | 2019-12-30 | 2022-08-01 | Lumus Ltd | Optical systems including light-guiding optical elements with two-dimensional expansion |
| JP2022039127A (en) | 2020-08-28 | 2022-03-10 | 株式会社日立エルジーデータストレージ | Head-mounted display |
-
2019
- 2019-09-09 CN CN202310132324.XA patent/CN116184666A/en active Pending
- 2019-09-09 MX MX2021002813A patent/MX2021002813A/en unknown
- 2019-09-09 WO PCT/IB2019/057572 patent/WO2020049542A1/en not_active Ceased
- 2019-09-09 CN CN202310134492.2A patent/CN116184667A/en active Pending
- 2019-09-09 BR BR112021004307-1A patent/BR112021004307A2/en not_active Application Discontinuation
- 2019-09-09 CN CN201980057892.XA patent/CN112639574B/en active Active
- 2019-09-09 TW TW108132471A patent/TWI837175B/en active
- 2019-09-09 IL IL281242A patent/IL281242B2/en unknown
- 2019-09-09 KR KR1020217010057A patent/KR102805566B1/en active Active
- 2019-09-09 CA CA3111598A patent/CA3111598C/en active Active
- 2019-09-09 IL IL309806A patent/IL309806B1/en unknown
- 2019-09-09 JP JP2021512406A patent/JP7407458B2/en active Active
- 2019-09-09 EP EP19858448.4A patent/EP3847500B1/en active Active
- 2019-09-09 KR KR1020257014687A patent/KR20250067958A/en active Pending
- 2019-09-09 TW TW113106639A patent/TWI865343B/en active
- 2019-09-09 TW TW113140884A patent/TW202509535A/en unknown
- 2019-09-09 AU AU2019335612A patent/AU2019335612B2/en active Active
- 2019-09-09 US US17/268,970 patent/US11543583B2/en active Active
- 2019-09-09 IL IL321153A patent/IL321153A/en unknown
- 2019-09-09 EP EP24211944.4A patent/EP4495661A3/en active Pending
-
2020
- 2020-03-01 US US16/805,782 patent/US10739512B2/en active Active
-
2022
- 2022-12-21 US US18/085,575 patent/US12386114B2/en active Active
-
2023
- 2023-12-11 JP JP2023208758A patent/JP2024037843A/en active Pending
-
2024
- 2024-10-03 AU AU2024227066A patent/AU2024227066B2/en active Active
-
2025
- 2025-01-14 US US19/019,560 patent/US20250155631A1/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1440513A (en) * | 2000-06-05 | 2003-09-03 | 鲁姆斯有限公司 | Substrate-guided optical beam expander |
| US20080094586A1 (en) * | 2004-12-06 | 2008-04-24 | Yoshikazu Hirayama | Image Display Optical System, Image Display Unit, Illuminating Optical System, And Liquid Crystal Display Unit |
| JP2012008355A (en) * | 2010-06-25 | 2012-01-12 | Sony Corp | Image display apparatus and head-mounted display |
| US20130250431A1 (en) * | 2012-03-21 | 2013-09-26 | Steve Robbins | Two-dimensional exit-pupil expansion |
| CN103869406A (en) * | 2012-12-12 | 2014-06-18 | 泰勒斯公司 | Optical guide for collimated images with optical beam doubler, and associated optical device |
| WO2017120346A1 (en) * | 2016-01-06 | 2017-07-13 | Vuzix Corporation | Head-mounted display with pivoting imaging light guide |
| CN107918209A (en) * | 2016-10-07 | 2018-04-17 | 中强光电股份有限公司 | Head-mounted display device and optical system |
| CN108235739A (en) * | 2016-10-09 | 2018-06-29 | 鲁姆斯有限公司 | Aperture multiplier using rectangular waveguides |
| WO2018154576A1 (en) * | 2017-02-22 | 2018-08-30 | Lumus Ltd. | Light guide optical assembly |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112639574B (en) | Optical system comprising a light-guiding optical element with a two-dimensional extension | |
| US11714224B2 (en) | Optical systems including light-guide optical elements with two-dimensional expansion |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |