CN115901954A - Nondestructive detection method for ultrasonic guided wave pipeline defects - Google Patents
Nondestructive detection method for ultrasonic guided wave pipeline defects Download PDFInfo
- Publication number
- CN115901954A CN115901954A CN202211615969.0A CN202211615969A CN115901954A CN 115901954 A CN115901954 A CN 115901954A CN 202211615969 A CN202211615969 A CN 202211615969A CN 115901954 A CN115901954 A CN 115901954A
- Authority
- CN
- China
- Prior art keywords
- guided wave
- detection
- ultrasonic
- matrix
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及无损检测技术领域,且更为具体地,涉及一种超声导波管道缺陷无损检测方法。The present application relates to the technical field of nondestructive testing, and more specifically, to a method for nondestructive testing of pipeline defects using ultrasonic guided waves.
背景技术Background Art
管道铺设涉及各行各业,承担着重要的生产使命。大多数管道需要面临各种复杂的环境,比如恶劣天气、撞击、管道内部化学物质的腐蚀等,因此管道容易产生各种缺陷。工程中,因为管道缺陷给人们生存和财产安全带来巨大损伤的事件频繁发生,因此,管道健康状况的检测显得尤为重要。Pipeline laying involves all walks of life and undertakes an important production mission. Most pipelines need to face various complex environments, such as bad weather, impact, corrosion of chemical substances inside the pipeline, etc., so pipelines are prone to various defects. In engineering, incidents where pipeline defects cause great damage to people's survival and property safety frequently occur. Therefore, the detection of pipeline health status is particularly important.
目前,管道维护人员一般通过目视检测、电磁探伤等方法检测管道的损伤,这些方法不但耗费时间长,检测精度也不高。At present, pipeline maintenance personnel generally detect pipeline damage through visual inspection, electromagnetic flaw detection and other methods. These methods are not only time-consuming but also have low detection accuracy.
因此,期望一种优化的管道缺陷无损检测方案。Therefore, an optimized nondestructive detection scheme for pipeline defects is desired.
发明内容Summary of the invention
为了解决上述技术问题,提出了本申请。本申请的实施例提供了一种超声导波管道缺陷无损检测方法,其采用基于深度学习的人工智能检测技术,以通过对于待检测管道的检测超声导波信号和无缺陷管道的参考超声导波信号在高维空间中进行多尺度的特征差异性对比来进行所述待检测管道是否存在缺陷的检测判断。这样,能够准确地进行管道缺陷的无损检测。In order to solve the above technical problems, the present application is proposed. The embodiment of the present application provides an ultrasonic guided wave pipeline defect non-destructive detection method, which adopts artificial intelligence detection technology based on deep learning to detect and judge whether the pipeline to be detected has defects by comparing the multi-scale feature differences of the detection ultrasonic guided wave signal of the pipeline to be detected and the reference ultrasonic guided wave signal of the defect-free pipeline in a high-dimensional space. In this way, non-destructive detection of pipeline defects can be accurately performed.
根据本申请的一个方面,提供了一种超声导波管道缺陷无损检测方法,其包括:获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号;对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值;将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵;将所述多个参考频域统计值和所述参考超声导波信号通过第二Clip模型以得到参考超声特征矩阵;计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵;以及将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷。According to one aspect of the present application, a method for nondestructive detection of pipeline defects using ultrasonic guided waves is provided, which includes: obtaining a detection ultrasonic guided wave signal and a reference ultrasonic guided wave signal of a pipeline to be detected, wherein the reference ultrasonic guided wave signal is an ultrasonic guided wave signal of a defect-free pipeline; performing Fourier transform on the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal respectively to obtain a plurality of detection frequency domain statistical values and a plurality of reference frequency domain statistical values; passing the waveform diagrams of the plurality of detection frequency domain statistical values and the detection ultrasonic guided wave signal through a first Clip model to obtain a detection ultrasonic feature matrix; passing the plurality of reference frequency domain statistical values and the reference ultrasonic guided wave signal through a second Clip model to obtain a reference ultrasonic feature matrix; calculating a differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix; correcting the eigenvalues of each position of the differential feature matrix to obtain a corrected differential feature matrix; and passing the corrected differential feature matrix through a classifier to obtain a classification result, wherein the classification result indicates whether the pipeline to be detected has defects.
在上述超声导波管道缺陷无损检测方法中,所述将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵,包括:将所述多个检测频域统计值输入所述第一Clip模型的序列编码器以得到检测频域统计特征向量;将所述检测超声导波信号的波形图输入所述第一Clip模型的图像编码器以得到检测超声导波图像特征向量;以及,将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection method, the multiple detection frequency domain statistical values and the waveform diagram of the detection ultrasonic guided wave signal are passed through the first Clip model to obtain a detection ultrasonic feature matrix, including: inputting the multiple detection frequency domain statistical values into the sequence encoder of the first Clip model to obtain a detection frequency domain statistical feature vector; inputting the waveform diagram of the detection ultrasonic guided wave signal into the image encoder of the first Clip model to obtain a detection ultrasonic guided wave image feature vector; and inputting the detection ultrasonic guided wave image feature vector and the detection frequency domain statistical feature vector into the encoding optimizer of the first Clip model to obtain the detection ultrasonic feature matrix.
在上述超声导波管道缺陷无损检测方法中,所述将所述多个检测频域统计值输入所述第一Clip模型的序列编码器以得到检测频域统计特征向量,包括:将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第一卷积层以得到第一尺度检测频域统计特征向量,其中,所述第一卷积层具有第一长度的第一一维卷积核;将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第二卷积层以得到第二尺度检测频域统计特征向量,其中,所述第二卷积层具有第二长度的第二一维卷积核,所述第一长度不同于所述第二长度;以及,将所述第一尺度检测频域统计特征向量和所述第二尺度检测频域统计特征向量进行级联以得到所述检测频域统计特征向量。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive testing method, the inputting the multiple detection frequency domain statistical values into the sequence encoder of the first Clip model to obtain the detection frequency domain statistical feature vector includes: inputting the multiple detection frequency domain statistical values into the first convolution layer of the multi-scale neighborhood feature extraction module to obtain the first-scale detection frequency domain statistical feature vector, wherein the first convolution layer has a first one-dimensional convolution kernel of a first length; inputting the multiple detection frequency domain statistical values into the second convolution layer of the multi-scale neighborhood feature extraction module to obtain the second-scale detection frequency domain statistical feature vector, wherein the second convolution layer has a second one-dimensional convolution kernel of a second length, and the first length is different from the second length; and cascading the first-scale detection frequency domain statistical feature vector and the second-scale detection frequency domain statistical feature vector to obtain the detection frequency domain statistical feature vector.
在上述超声导波管道缺陷无损检测方法中,所述将所述检测超声导波信号的波形图输入所述第一Clip模型的图像编码器以得到检测超声导波图像特征向量,包括:使用所述第一Clip模型的图像编码器的各层在层的正向传递中分别进行:对输入数据进行卷积处理以得到卷积特征图;对所述卷积特征图进行基于局部特征矩阵的均值池化以得到池化特征图;以及,对所述池化特征图进行非线性激活以得到激活特征图;其中,所述第一Clip模型的图像编码器的最后一层的输出为所述检测超声导波图像特征向量,所述第一Clip模型的图像编码器的第一层的输入为所述检测超声导波信号的波形图。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection method, the waveform diagram of the detection ultrasonic guided wave signal is input into the image encoder of the first Clip model to obtain the detection ultrasonic guided wave image feature vector, including: using each layer of the image encoder of the first Clip model to perform in the forward transfer of the layer: convolution processing on the input data to obtain a convolution feature map; mean pooling based on the local feature matrix on the convolution feature map to obtain a pooled feature map; and nonlinear activation on the pooled feature map to obtain an activation feature map; wherein the output of the last layer of the image encoder of the first Clip model is the detection ultrasonic guided wave image feature vector, and the input of the first layer of the image encoder of the first Clip model is the waveform diagram of the detection ultrasonic guided wave signal.
在上述超声导波管道缺陷无损检测方法中,所述将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵,包括:以如下公式将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵;其中,所述公式为:In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection method, the step of inputting the detected ultrasonic guided wave image feature vector and the detected frequency domain statistical feature vector into the coding optimizer of the first Clip model to obtain the detected ultrasonic feature matrix comprises: inputting the detected ultrasonic guided wave image feature vector and the detected frequency domain statistical feature vector into the coding optimizer of the first Clip model to obtain the detected ultrasonic feature matrix according to the following formula; wherein the formula is:
其中表示所述检测超声导波图像特征向量的转置向量,V2表示所述检测频域统计特征向量,M表示所述检测超声特征矩阵,表示矩阵相乘。in represents the transposed vector of the detected ultrasonic guided wave image feature vector, V 2 represents the detected frequency domain statistical feature vector, M represents the detected ultrasonic feature matrix, Represents matrix multiplication.
在上述超声导波管道缺陷无损检测方法中,所述计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵,包括:以如下公式来计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;其中,所述公式为:其中M1表示所述检测超声特征矩阵,M2表示所述参考超声特征矩阵,Mc表示所述差分特征矩阵。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection method, the calculation of the differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix includes: calculating the differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix using the following formula; wherein the formula is: Wherein, M1 represents the detected ultrasonic feature matrix, M2 represents the reference ultrasonic feature matrix, and Mc represents the differential feature matrix.
在上述超声导波管道缺陷无损检测方法中,所述对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵,包括:采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵;以及,以所述权重矩阵对所述差分特征矩阵进行按位置点乘以得到所述校正后差分特征矩阵。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection method, the eigenvalues of each position of the differential feature matrix are corrected to obtain the corrected differential feature matrix, including: calculating the weight matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix by full orthographic projection nonlinear reweighting; and multiplying the differential feature matrix by the weight matrix at each position to obtain the corrected differential feature matrix.
在上述超声导波管道缺陷无损检测方法中,所述采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵,包括:采用全正投影非线性重加权的方式以如下公式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的所述权重矩阵;其中,所述公式为:In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection method, the weight matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix is calculated by using the full orthogonal projection nonlinear reweighting method, including: using the full orthogonal projection nonlinear reweighting method to calculate the weight matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix by the following formula; wherein the formula is:
其中,M1和M2分别为所述检测超声特征矩阵与所述参考超声特征矩阵,Mw是所述权重矩阵,ReLU(·)表示ReLU激活函数,表示矩阵相乘,且分子矩阵和分母矩阵之间的除法为矩阵特征值的按位置相除,exp(·)表示矩阵的指数运算,所述矩阵的指数运算表示计算以矩阵中各个位置的特征值为幂的自然指数函数值。Wherein, M1 and M2 are the detection ultrasonic feature matrix and the reference ultrasonic feature matrix respectively, Mw is the weight matrix, ReLU(·) represents the ReLU activation function, represents matrix multiplication, and the division between the numerator matrix and the denominator matrix is the positional division of the matrix eigenvalues. exp(·) represents the exponential operation of the matrix, and the exponential operation of the matrix represents the calculation of the natural exponential function value raised to the power of the eigenvalues at each position in the matrix.
在上述超声导波管道缺陷无损检测方法中,所述将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷,包括:将所述校正后差分特征矩阵按照行向量或者列向量展开为分类特征向量;使用所述分类器的全连接层对所述分类特征向量进行全连接编码以得到编码分类特征向量;以及,将所述编码分类特征向量输入所述分类器的Softmax分类函数以得到所述分类结果。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection method, the corrected differential feature matrix is passed through a classifier to obtain a classification result, and the classification result indicates whether there is a defect in the pipeline to be detected, including: expanding the corrected differential feature matrix into a classification feature vector according to a row vector or a column vector; using the fully connected layer of the classifier to fully connect the classification feature vector to obtain an encoded classification feature vector; and inputting the encoded classification feature vector into the Softmax classification function of the classifier to obtain the classification result.
根据本申请的另一方面,提供了一种超声导波管道缺陷无损检测系统,包括:超声导波获取模块,用于获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号;域变化模块,用于对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值;检测超声编码模块,用于将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵;参考超声编码模块,用于将所述多个参考频域统计值和所述参考超声导波信号通过第二Clip模型以得到参考超声特征矩阵;差分模块,用于计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;特征值校正模块,用于对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵;以及检测结果生成模块,用于将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷。According to another aspect of the present application, an ultrasonic guided wave pipeline defect nondestructive detection system is provided, comprising: an ultrasonic guided wave acquisition module, used to acquire a detection ultrasonic guided wave signal and a reference ultrasonic guided wave signal of a pipeline to be detected, wherein the reference ultrasonic guided wave signal is an ultrasonic guided wave signal of a defect-free pipeline; a domain change module, used to perform Fourier transform on the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal, respectively, to obtain a plurality of detection frequency domain statistical values and a plurality of reference frequency domain statistical values; a detection ultrasonic encoding module, used to convert the waveform diagrams of the plurality of detection frequency domain statistical values and the detection ultrasonic guided wave signal into a waveform diagram through a first Clip model; A detection ultrasonic feature matrix is obtained; a reference ultrasonic encoding module is used to pass the multiple reference frequency domain statistical values and the reference ultrasonic guided wave signal through a second Clip model to obtain a reference ultrasonic feature matrix; a difference module is used to calculate a differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix; an eigenvalue correction module is used to correct the eigenvalues of each position of the differential feature matrix to obtain a corrected differential feature matrix; and a detection result generation module is used to pass the corrected differential feature matrix through a classifier to obtain a classification result, wherein the classification result indicates whether there is a defect in the pipeline to be detected.
在上述超声导波管道缺陷无损检测系统中,所述检测超声编码模块,包括:序列编码单元,用于将所述多个检测频域统计值输入所述第一Clip模型的序列编码器以得到检测频域统计特征向量;图像编码单元,用于将所述检测超声导波信号的波形图输入所述第一Clip模型的图像编码器以得到检测超声导波图像特征向量;以及,编码优化单元,用于将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection system, the detection ultrasonic encoding module includes: a sequence encoding unit, which is used to input the multiple detection frequency domain statistical values into the sequence encoder of the first Clip model to obtain a detection frequency domain statistical feature vector; an image encoding unit, which is used to input the waveform diagram of the detection ultrasonic guided wave signal into the image encoder of the first Clip model to obtain a detection ultrasonic guided wave image feature vector; and a coding optimization unit, which is used to input the detection ultrasonic guided wave image feature vector and the detection frequency domain statistical feature vector into the coding optimizer of the first Clip model to obtain the detection ultrasonic feature matrix.
在上述超声导波管道缺陷无损检测系统中,所述序列编码单元,进一步用于:将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第一卷积层以得到第一尺度检测频域统计特征向量,其中,所述第一卷积层具有第一长度的第一一维卷积核;将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第二卷积层以得到第二尺度检测频域统计特征向量,其中,所述第二卷积层具有第二长度的第二一维卷积核,所述第一长度不同于所述第二长度;以及,将所述第一尺度检测频域统计特征向量和所述第二尺度检测频域统计特征向量进行级联以得到所述检测频域统计特征向量。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive testing system, the sequence encoding unit is further used to: input the multiple detection frequency domain statistical values into the first convolution layer of the multi-scale neighborhood feature extraction module to obtain a first-scale detection frequency domain statistical feature vector, wherein the first convolution layer has a first one-dimensional convolution kernel of a first length; input the multiple detection frequency domain statistical values into the second convolution layer of the multi-scale neighborhood feature extraction module to obtain a second-scale detection frequency domain statistical feature vector, wherein the second convolution layer has a second one-dimensional convolution kernel of a second length, and the first length is different from the second length; and cascade the first-scale detection frequency domain statistical feature vector and the second-scale detection frequency domain statistical feature vector to obtain the detection frequency domain statistical feature vector.
在上述超声导波管道缺陷无损检测系统中,所述图像编码单元,进一步用于:使用所述第一Clip模型的图像编码器的各层在层的正向传递中分别进行:对输入数据进行卷积处理以得到卷积特征图;对所述卷积特征图进行基于局部特征矩阵的均值池化以得到池化特征图;以及,对所述池化特征图进行非线性激活以得到激活特征图;其中,所述第一Clip模型的图像编码器的最后一层的输出为所述检测超声导波图像特征向量,所述第一Clip模型的图像编码器的第一层的输入为所述检测超声导波信号的波形图。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection system, the image encoding unit is further used to: use each layer of the image encoder of the first Clip model to perform in the forward transfer of the layer: convolution processing on the input data to obtain a convolution feature map; mean pooling based on the local feature matrix on the convolution feature map to obtain a pooled feature map; and nonlinear activation on the pooled feature map to obtain an activation feature map; wherein the output of the last layer of the image encoder of the first Clip model is the detected ultrasonic guided wave image feature vector, and the input of the first layer of the image encoder of the first Clip model is the waveform diagram of the detected ultrasonic guided wave signal.
在上述超声导波管道缺陷无损检测系统中,所述编码优化单元,进一步用于:以如下公式将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵;其中,所述公式为:In the above ultrasonic guided wave pipeline defect nondestructive testing system, the coding optimization unit is further used to: input the detected ultrasonic guided wave image feature vector and the detected frequency domain statistical feature vector into the coding optimizer of the first Clip model to obtain the detected ultrasonic feature matrix according to the following formula; wherein the formula is:
其中表示所述检测超声导波图像特征向量的转置向量,V2表示所述检测频域统计特征向量,M表示所述检测超声特征矩阵,表示矩阵相乘。in represents the transposed vector of the detected ultrasonic guided wave image feature vector, V 2 represents the detected frequency domain statistical feature vector, M represents the detected ultrasonic feature matrix, Represents matrix multiplication.
在上述超声导波管道缺陷无损检测系统中,所述差分模块,进一步用于:以如下公式来计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;其中,所述公式为:其中M1表示所述检测超声特征矩阵,M2表示所述参考超声特征矩阵,Mc表示所述差分特征矩阵。In the above ultrasonic guided wave pipeline defect nondestructive detection system, the differential module is further used to calculate the differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix using the following formula; wherein the formula is: Wherein, M1 represents the detected ultrasonic feature matrix, M2 represents the reference ultrasonic feature matrix, and Mc represents the differential feature matrix.
在上述超声导波管道缺陷无损检测系统中,所述特征值校正模块,包括:权重单元,采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵;以及,施加单元,以所述权重矩阵对所述差分特征矩阵进行按位置点乘以得到所述校正后差分特征矩阵。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive detection system, the eigenvalue correction module includes: a weight unit, which calculates the weight matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix by full orthographic projection nonlinear reweighting; and an application unit, which multiplies the differential feature matrix by the weight matrix at the position point to obtain the corrected differential feature matrix.
在上述超声导波管道缺陷无损检测系统中,所述权重单元,进一步用于:采用全正投影非线性重加权的方式以如下公式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的所述权重矩阵;其中,所述公式为:In the above ultrasonic guided wave pipeline defect nondestructive testing system, the weight unit is further used to: calculate the weight matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix by the following formula using a full orthographic projection nonlinear reweighting method; wherein the formula is:
其中,M1和M2分别为所述检测超声特征矩阵与所述参考超声特征矩阵,Mw是所述权重矩阵,ReLU(·)表示ReLU激活函数,表示矩阵相乘,且分子矩阵和分母矩阵之间的除法为矩阵特征值的按位置相除,exp(·)表示矩阵的指数运算,所述矩阵的指数运算表示计算以矩阵中各个位置的特征值为幂的自然指数函数值。Wherein, M1 and M2 are the detection ultrasonic feature matrix and the reference ultrasonic feature matrix respectively, Mw is the weight matrix, ReLU(·) represents the ReLU activation function, represents matrix multiplication, and the division between the numerator matrix and the denominator matrix is the positional division of the matrix eigenvalues. exp(·) represents the exponential operation of the matrix, and the exponential operation of the matrix represents the calculation of the natural exponential function value raised to the power of the eigenvalues at each position in the matrix.
在上述超声导波管道缺陷无损检测系统中,所述检测结果生成模块,进一步用于:将所述校正后差分特征矩阵按照行向量或者列向量展开为分类特征向量;使用所述分类器的全连接层对所述分类特征向量进行全连接编码以得到编码分类特征向量;以及,将所述编码分类特征向量输入所述分类器的Softmax分类函数以得到所述分类结果。In the above-mentioned ultrasonic guided wave pipeline defect nondestructive testing system, the detection result generation module is further used to: expand the corrected differential feature matrix into a classification feature vector according to a row vector or a column vector; use the fully connected layer of the classifier to fully connect the classification feature vector to obtain an encoded classification feature vector; and input the encoded classification feature vector into the Softmax classification function of the classifier to obtain the classification result.
根据本申请的再一方面,提供了一种电子设备,包括:处理器;以及,存储器,在所述存储器中存储有计算机程序指令,所述计算机程序指令在被所述处理器运行时使得所述处理器执行如上所述的超声导波管道缺陷无损检测方法。According to another aspect of the present application, an electronic device is provided, comprising: a processor; and a memory, wherein computer program instructions are stored in the memory, and when the computer program instructions are executed by the processor, the processor executes the ultrasonic guided wave pipeline defect nondestructive detection method as described above.
根据本申请的又一方面,提供了一种计算机可读介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行如上所述的超声导波管道缺陷无损检测方法。According to another aspect of the present application, a computer-readable medium is provided, on which computer program instructions are stored. When the computer program instructions are executed by a processor, the processor executes the ultrasonic guided wave pipeline defect nondestructive detection method as described above.
与现有技术相比,本申请提供的超声导波管道缺陷无损检测方法,其采用基于深度学习的人工智能检测技术,以通过对于待检测管道的检测超声导波信号和无缺陷管道的参考超声导波信号在高维空间中进行多尺度的特征差异性对比来进行所述待检测管道是否存在缺陷的检测判断。这样,能够准确地进行管道缺陷的无损检测。Compared with the prior art, the ultrasonic guided wave pipeline defect nondestructive detection method provided by the present application adopts artificial intelligence detection technology based on deep learning to detect and judge whether the pipeline to be detected has defects by comparing the multi-scale feature differences between the detection ultrasonic guided wave signal of the pipeline to be detected and the reference ultrasonic guided wave signal of the defect-free pipeline in a high-dimensional space. In this way, nondestructive detection of pipeline defects can be accurately performed.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。By describing the embodiments of the present application in more detail in conjunction with the accompanying drawings, the above and other purposes, features and advantages of the present application will become more apparent. The accompanying drawings are used to provide a further understanding of the embodiments of the present application and constitute a part of the specification. Together with the embodiments of the present application, they are used to explain the present application and do not constitute a limitation of the present application. In the accompanying drawings, the same reference numerals generally represent the same components or steps.
图1为根据本申请实施例的超声导波管道缺陷无损检测方法的应用场景图。FIG1 is a diagram showing an application scenario of a method for nondestructive detection of pipeline defects using ultrasonic guided waves according to an embodiment of the present application.
图2为根据本申请实施例的超声导波管道缺陷无损检测方法的流程图。FIG2 is a flow chart of a method for nondestructive detection of pipeline defects using ultrasonic guided waves according to an embodiment of the present application.
图3为根据本申请实施例的超声导波管道缺陷无损检测方法的架构图。FIG3 is a schematic diagram of a method for nondestructive detection of pipeline defects using ultrasonic guided waves according to an embodiment of the present application.
图4为根据本申请实施例的超声导波管道缺陷无损检测系统的框图。FIG4 is a block diagram of an ultrasonic guided wave pipeline defect nondestructive detection system according to an embodiment of the present application.
图5为根据本申请实施例的电子设备的框图。FIG5 is a block diagram of an electronic device according to an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。Below, the exemplary embodiments according to the present application will be described in detail with reference to the accompanying drawings. Obviously, the described embodiments are only part of the embodiments of the present application, rather than all the embodiments of the present application, and it should be understood that the present application is not limited to the exemplary embodiments described here.
申请概述Application Overview
如上述背景技术所言,管道铺设涉及各行各业,承担着重要的生产使命。大多数管道需要面临各种复杂的环境,比如恶劣天气、撞击、管道内部化学物质的腐蚀等,因此管道容易产生各种缺陷。工程中,因为管道缺陷给人们生存和财产安全带来巨大损伤的事件频繁发生,因此,管道健康状况的检测显得尤为重要。As mentioned in the above background technology, pipeline laying involves all walks of life and undertakes an important production mission. Most pipelines need to face various complex environments, such as bad weather, impact, corrosion of chemical substances inside the pipeline, etc., so pipelines are prone to various defects. In engineering, incidents where pipeline defects cause great damage to people's survival and property safety frequently occur. Therefore, the detection of pipeline health status is particularly important.
目前,管道维护人员一般通过目视检测、电磁探伤等方法检测管道的损伤,这些方法不但耗费时间长,检测精度也不高。因此,期望一种优化的管道缺陷无损检测方案。At present, pipeline maintenance personnel generally detect pipeline damage through visual inspection, electromagnetic flaw detection and other methods. These methods are not only time-consuming, but also have low detection accuracy. Therefore, an optimized non-destructive detection solution for pipeline defects is desired.
目前,深度学习以及神经网络已经广泛应用于计算机视觉、自然语言处理、语音信号处理等领域。此外,深度学习以及神经网络在图像分类、物体检测、语义分割、文本翻译等领域,也展现出了接近甚至超越人类的水平。At present, deep learning and neural networks have been widely used in computer vision, natural language processing, speech signal processing and other fields. In addition, deep learning and neural networks have also shown a level close to or even beyond that of humans in image classification, object detection, semantic segmentation, text translation and other fields.
近年来,深度学习以及神经网络的发展为管道缺陷的无损检测提供了新的解决思路和方案。In recent years, the development of deep learning and neural networks has provided new solutions and solutions for non-destructive detection of pipeline defects.
相应地,由于无损检测是在不破坏试件的前提下,对被测试件进行缺陷检测。无损检测的优点为非破坏性,检测成本低,检测范围广,检测精度高。而超声波是频率高于20KHz的机械波,广泛应用于测厚、无损探伤等领域。由于实际中管道的弹性介质都是有边界限制的,超声在其传播过程中的超声波为导波。因此,可以使用管道内实际检测的超声导波信号和无缺陷管道的参考超声导波信号进行对比来进行缺陷检测。但是,考虑到由于超声导波信号中具有的信息量较多,难以在实际应用中进行两者的对比观察检测,并且由于管道内的缺陷为小尺度的特征信息,这给管道缺陷的无损检测带来了困难。Accordingly, since nondestructive testing is to detect defects on the tested piece without destroying the test piece. The advantages of nondestructive testing are non-destructiveness, low testing cost, wide testing range, and high testing accuracy. Ultrasonic waves are mechanical waves with a frequency higher than 20KHz, which are widely used in thickness measurement, nondestructive flaw detection and other fields. Since the elastic medium of the pipeline is actually limited by boundaries, the ultrasonic wave in its propagation process is a guided wave. Therefore, the ultrasonic guided wave signal actually detected in the pipeline and the reference ultrasonic guided wave signal of the defect-free pipeline can be used for defect detection. However, considering that the ultrasonic guided wave signal has a large amount of information, it is difficult to compare and observe the two in actual applications, and since the defects in the pipeline are small-scale characteristic information, this brings difficulties to the nondestructive detection of pipeline defects.
基于此,在本申请的技术方案中,期望采用基于深度学习的人工智能检测技术,以通过对于待检测管道的检测超声导波信号和无缺陷管道的参考超声导波信号在高维空间中进行多尺度的特征差异性对比来进行所述待检测管道是否存在缺陷的检测判断。这样,能够准确地进行管道缺陷的无损检测,进而时刻关注管道健康状况,以避免管道缺陷给人们生存和财产安全带来损失。Based on this, in the technical solution of this application, it is expected to adopt artificial intelligence detection technology based on deep learning, so as to detect and judge whether the pipeline to be detected has defects by comparing the multi-scale feature differences of the detection ultrasonic guided wave signal of the pipeline to be detected and the reference ultrasonic guided wave signal of the defect-free pipeline in a high-dimensional space. In this way, non-destructive detection of pipeline defects can be accurately performed, and then the health status of the pipeline can be paid attention to at all times to avoid the loss of people's survival and property safety caused by pipeline defects.
具体地,在本申请的技术方案中,首先,获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号。接着,考虑到对于所述检测超声导波信号和所述参考超声导波信号来说,其在时域中的表现形式为波形图,因此可以使用图像编码器来进行所述检测超声导波信号和所述参考超声导波信号的时域特征提取,以此特征差异性分布信息来进行管道的缺陷检测。但是,由于在使用所述检测超声导波信号和所述参考超声导波信号的时域特征差异性分布信息来进行管道缺陷检测时,时域特征中会包含有较多的环境噪声干扰特征信息,这对于检测的结果会造成严重的影响,因此,进一步结合所述超声导波信号的频域统计特征值间的关联性特征分布来提高检测的精准度。也就是,进一步对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值。Specifically, in the technical solution of the present application, first, a detection ultrasonic guided wave signal and a reference ultrasonic guided wave signal of the pipeline to be detected are obtained, wherein the reference ultrasonic guided wave signal is an ultrasonic guided wave signal of a defect-free pipeline. Next, considering that the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal are expressed in the time domain as a waveform, an image encoder can be used to extract the time domain features of the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal, and the pipeline defect detection is performed using this feature difference distribution information. However, when the time domain feature difference distribution information of the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal is used to perform pipeline defect detection, the time domain feature will contain more environmental noise interference feature information, which will have a serious impact on the detection result. Therefore, the correlation feature distribution between the frequency domain statistical feature values of the ultrasonic guided wave signal is further combined to improve the detection accuracy. That is, the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal are further Fourier transformed to obtain multiple detection frequency domain statistical values and multiple reference frequency domain statistical values.
然后,对于所述检测超声导波信号的特征提取,使用包含序列编码器和图像编码器的第一Clip模型来分别对于所述多个检测频域统计值和所述检测超声导波信号的波形图进行处理以得到检测超声特征矩阵。也就是,具体地,首先,考虑到管道内的缺陷特征为小尺度特征信息,因此以所述第一Clip模型的序列编码器对于所述检测超声导波信号的多个检测频域统计值进行特征挖掘,以提取出所述多个检测频域统计值间的多尺度隐含关联特征分布信息,从而得到检测频域统计特征向量。特别地,这里,所述序列编码器使用多尺度邻域特征提取模块来进行所述多个检测频域统计值的关联性特征提取。接着,以所述第一Clip模型的图像编码器对于所述检测超声导波信号的波形图进行特征挖掘,以提取出所述检测超声导波信号的时域隐含特征分布信息,从而得到检测超声导波图像特征向量。最后,再将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵。也就是,基于所述检测超声导波信号的频域统计特征值的多尺度隐含关联特征信息来对所述检测超声导波信号波形图的时域隐含特征进行图像属性编码优化以得到所述检测超声特征矩阵。这样,所得到的所述检测超声特征矩阵既包含了所述检测超声导波信号的频域特征内容,又反应了频域内容随时间的变化规律特征,提高了管道缺陷检测的精准度。Then, for the feature extraction of the detection ultrasonic guided wave signal, the first Clip model including a sequence encoder and an image encoder is used to process the multiple detection frequency domain statistics and the waveform of the detection ultrasonic guided wave signal respectively to obtain the detection ultrasonic feature matrix. That is, specifically, first, considering that the defect characteristics in the pipeline are small-scale feature information, the sequence encoder of the first Clip model is used to perform feature mining on the multiple detection frequency domain statistics of the detection ultrasonic guided wave signal to extract the multi-scale implicit correlation feature distribution information between the multiple detection frequency domain statistics, thereby obtaining the detection frequency domain statistical feature vector. In particular, here, the sequence encoder uses a multi-scale neighborhood feature extraction module to extract the correlation feature of the multiple detection frequency domain statistics. Next, the image encoder of the first Clip model is used to perform feature mining on the waveform of the detection ultrasonic guided wave signal to extract the time domain implicit feature distribution information of the detection ultrasonic guided wave signal, thereby obtaining the detection ultrasonic guided wave image feature vector. Finally, the detection ultrasonic guided wave image feature vector and the detection frequency domain statistical feature vector are input into the encoding optimizer of the first Clip model to obtain the detection ultrasonic feature matrix. That is, based on the multi-scale implicit correlation feature information of the frequency domain statistical eigenvalues of the detection ultrasonic guided wave signal, the time domain implicit features of the detection ultrasonic guided wave signal waveform are optimized by image attribute coding to obtain the detection ultrasonic feature matrix. In this way, the obtained detection ultrasonic feature matrix not only contains the frequency domain feature content of the detection ultrasonic guided wave signal, but also reflects the characteristics of the change of the frequency domain content over time, thereby improving the accuracy of pipeline defect detection.
同样地,对于所述参考超声导波信号的声音特征提取,考虑到所述参考超声导波信号的周期性特征信息与所述检测超声导波信号的周期性特征具有相似的规律性,因此,在本申请的技术方案中,同样使用Clip模型来进行所述参考超声导波信号编码。也就是,具体地,将所述多个参考频域统计值和所述参考超声导波信号通过包含列编码器和图像编码器的第二Clip模型以得到参考超声特征矩阵,进而基于所述参考超声导波信号的频域统计特征值的多尺度隐含关联特征来对所述参考超声导波信号波形图的时域隐含特征进行图像属性编码优化以得到所述参考超声特征矩阵。Similarly, for the sound feature extraction of the reference ultrasonic guided wave signal, considering that the periodic feature information of the reference ultrasonic guided wave signal has similar regularity to the periodic feature of the detection ultrasonic guided wave signal, therefore, in the technical solution of the present application, the Clip model is also used to encode the reference ultrasonic guided wave signal. That is, specifically, the multiple reference frequency domain statistical values and the reference ultrasonic guided wave signal are passed through a second Clip model including a column encoder and an image encoder to obtain a reference ultrasonic feature matrix, and then based on the multi-scale implicit correlation features of the frequency domain statistical feature values of the reference ultrasonic guided wave signal, the time domain implicit features of the reference ultrasonic guided wave signal waveform are optimized by image attribute encoding to obtain the reference ultrasonic feature matrix.
进一步地,再计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵,以表示所述待检测管道实际的检测超声导波信号和无缺陷管道的参考超声导波信号在高维空间中的差异性特征,并以此来作为分类特征矩阵通过分类器中进行分类处理,从而得到用于表示待检测管道是否存在缺陷的分类结果。这样,能够准确地进行管道缺陷的无损检测,进而时刻关注管道健康状况,以避免管道缺陷给人们生存和财产安全带来损失。Furthermore, the differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix is calculated to represent the difference features of the actual detection ultrasonic guided wave signal of the pipeline to be detected and the reference ultrasonic guided wave signal of the defect-free pipeline in the high-dimensional space, and this is used as a classification feature matrix for classification processing in a classifier to obtain a classification result indicating whether the pipeline to be detected has defects. In this way, non-destructive detection of pipeline defects can be accurately performed, and the health status of the pipeline can be kept under constant attention to avoid losses to people's survival and property safety caused by pipeline defects.
特别地,在本申请的技术方案中,在计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的特征矩阵得到所述差分特征矩阵时,由于所述差分特征矩阵的计算是所述检测超声特征矩阵与所述参考超声特征矩阵之间的按位置特征值差分计算,因此,期望所述检测超声特征矩阵与所述参考超声特征矩阵之间的特征分布尽量保持同相分布,也就是,期望尽量避免所述检测超声特征矩阵与所述参考超声特征矩阵的相应位置之间的负相关关系,从而提高所述差分特征矩阵的计算准确性。In particular, in the technical solution of the present application, when calculating the feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix to obtain the differential feature matrix, since the calculation of the differential feature matrix is the positional eigenvalue difference calculation between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix, it is expected that the feature distribution between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix maintains the same phase distribution as much as possible, that is, it is expected to avoid the negative correlation between the corresponding positions of the detection ultrasonic feature matrix and the reference ultrasonic feature matrix as much as possible, thereby improving the calculation accuracy of the differential feature matrix.
因此,本申请的申请人采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵,表示为:Therefore, the applicant of the present application uses a full orthographic projection nonlinear reweighting method to calculate the weight matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix, which is expressed as:
M1和M2分别为所述检测超声特征矩阵与所述参考超声特征矩阵,Mc是所述权重矩阵,且分子矩阵和分母矩阵之间的除法为矩阵特征值的按位置相除。 M1 and M2 are the detection ultrasonic feature matrix and the reference ultrasonic feature matrix respectively, Mc is the weight matrix, and the division between the numerator matrix and the denominator matrix is the positional division of the matrix eigenvalues.
这里,所述全正投影非线性重加权通过ReLU函数来保证投影的全正以避免聚合负相关的信息,并同时引入非线性重加权机制来相对于彼此聚集所述检测超声特征矩阵与所述参考超声特征矩阵的特征值分布,以使得所述权重矩阵的内在结构能够惩罚远距离连接而加强局部性耦合。这样,通过以所述权重矩阵对所述差分特征矩阵进行点乘以进行按位置加权,就实现了所述检测超声特征矩阵与所述参考超声特征矩阵在高维特征空间内的与全正投影重加权对应的空间特征变换(feature transform)的协同效果,也就提升了所述差分特征矩阵的计算的准确性,进而提高了分类的准确性。这样,能够准确地进行管道缺陷的无损检测,进而时刻关注管道健康状况,以避免管道缺陷给人们生存和财产安全带来损失。Here, the full orthographic projection nonlinear reweighting uses the ReLU function to ensure that the projection is fully positive to avoid aggregating negatively correlated information, and at the same time introduces a nonlinear reweighting mechanism to aggregate the eigenvalue distributions of the detection ultrasonic feature matrix and the reference ultrasonic feature matrix relative to each other, so that the intrinsic structure of the weight matrix can punish long-distance connections and strengthen local coupling. In this way, by performing point multiplication on the differential feature matrix with the weight matrix to perform positional weighting, the synergistic effect of the spatial feature transformation (feature transform) corresponding to the full orthographic projection reweighting of the detection ultrasonic feature matrix and the reference ultrasonic feature matrix in the high-dimensional feature space is achieved, which improves the accuracy of the calculation of the differential feature matrix, thereby improving the accuracy of classification. In this way, non-destructive detection of pipeline defects can be accurately performed, and the health status of the pipeline can be always paid attention to to avoid pipeline defects causing losses to people's survival and property safety.
基于此,本申请提出了一种超声导波管道缺陷无损检测方法,其包括:获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号;对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值;将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵;将所述多个参考频域统计值和所述参考超声导波信号通过第二Clip模型以得到参考超声特征矩阵;计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵;以及,将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷。Based on this, the present application proposes a nondestructive detection method for ultrasonic guided wave pipeline defects, which includes: obtaining a detection ultrasonic guided wave signal and a reference ultrasonic guided wave signal of a pipeline to be detected, wherein the reference ultrasonic guided wave signal is an ultrasonic guided wave signal of a defect-free pipeline; performing Fourier transform on the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal respectively to obtain a plurality of detection frequency domain statistical values and a plurality of reference frequency domain statistical values; passing the waveform diagrams of the plurality of detection frequency domain statistical values and the detection ultrasonic guided wave signal through a first Clip model to obtain a detection ultrasonic feature matrix; passing the plurality of reference frequency domain statistical values and the reference ultrasonic guided wave signal through a second Clip model to obtain a reference ultrasonic feature matrix; calculating a differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix; correcting the eigenvalues of each position of the differential feature matrix to obtain a corrected differential feature matrix; and passing the corrected differential feature matrix through a classifier to obtain a classification result, wherein the classification result indicates whether there is a defect in the pipeline to be detected.
图1为根据本申请实施例的超声导波管道缺陷无损检测方法的应用场景图。如图1所示,在该应用场景中,首先使用超声导波仪(例如,如图1所示意的Se)获取待检测管道(例如,如图1所示意的P)的检测超声导波信号。进而,将所述待检测管道的检测超声导波信号输入至部署有超声导波管道缺陷无损检测算法的服务器(例如,如图1所示意的S)中,其中,所述服务器能够基于所述超声导波管道缺陷无损检测算法对所述待检测管道的检测超声导波信号进行处理,以得到用于表示待检测管道是否存在缺陷的分类结果。FIG1 is an application scenario diagram of an ultrasonic guided wave pipeline defect nondestructive detection method according to an embodiment of the present application. As shown in FIG1, in this application scenario, an ultrasonic guided wave instrument (for example, Se as shown in FIG1) is first used to obtain a detection ultrasonic guided wave signal of a pipeline to be detected (for example, P as shown in FIG1). Then, the detection ultrasonic guided wave signal of the pipeline to be detected is input into a server (for example, S as shown in FIG1) deployed with an ultrasonic guided wave pipeline defect nondestructive detection algorithm, wherein the server can process the detection ultrasonic guided wave signal of the pipeline to be detected based on the ultrasonic guided wave pipeline defect nondestructive detection algorithm to obtain a classification result for indicating whether the pipeline to be detected has defects.
在介绍了本申请的基本原理之后,下面将参考附图来具体介绍本申请的各种非限制性实施例。After introducing the basic principles of the present application, various non-limiting embodiments of the present application will be described in detail with reference to the accompanying drawings.
示例性方法Exemplary Methods
图2为根据本申请实施例的超声导波管道缺陷无损检测方法的流程图。如图2所示,根据本申请实施例的超声导波管道缺陷无损检测方法,包括:S110,获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号;S120,对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值;S130,将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵;S140,将所述多个参考频域统计值和所述参考超声导波信号通过第二Clip模型以得到参考超声特征矩阵;S150,计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;S160,对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵;以及,S170,将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷。FIG2 is a flow chart of the ultrasonic guided wave pipeline defect nondestructive detection method according to an embodiment of the present application. As shown in FIG2, the ultrasonic guided wave pipeline defect nondestructive detection method according to an embodiment of the present application includes: S110, obtaining a detection ultrasonic guided wave signal and a reference ultrasonic guided wave signal of the pipeline to be detected, wherein the reference ultrasonic guided wave signal is an ultrasonic guided wave signal of a defect-free pipeline; S120, performing Fourier transform on the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal respectively to obtain a plurality of detection frequency domain statistics and a plurality of reference frequency domain statistics; S130, transforming the waveform diagrams of the plurality of detection frequency domain statistics and the detection ultrasonic guided wave signal through a first Clip model To obtain a detection ultrasonic feature matrix; S140, the multiple reference frequency domain statistical values and the reference ultrasonic guided wave signal are passed through a second Clip model to obtain a reference ultrasonic feature matrix; S150, a differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix is calculated; S160, the eigenvalues of each position of the differential feature matrix are corrected to obtain a corrected differential feature matrix; and, S170, the corrected differential feature matrix is passed through a classifier to obtain a classification result, wherein the classification result indicates whether there is a defect in the pipeline to be detected.
图3为根据本申请实施例的超声导波管道缺陷无损检测方法的架构图。如图3所示,在该架构中,首先,获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号。接着,对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值。然后,将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵,同时,将所述多个参考频域统计值和所述参考超声导波信号通过第二Clip模型以得到参考超声特征矩阵。接着,计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵。然后,对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵。进而,将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷。FIG3 is an architecture diagram of a method for nondestructive detection of defects of ultrasonic guided wave pipelines according to an embodiment of the present application. As shown in FIG3, in the architecture, first, a detection ultrasonic guided wave signal and a reference ultrasonic guided wave signal of the pipeline to be detected are obtained, wherein the reference ultrasonic guided wave signal is an ultrasonic guided wave signal of a defect-free pipeline. Then, the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal are respectively subjected to Fourier transform to obtain a plurality of detection frequency domain statistics and a plurality of reference frequency domain statistics. Then, the waveform diagrams of the plurality of detection frequency domain statistics and the detection ultrasonic guided wave signal are passed through a first Clip model to obtain a detection ultrasonic feature matrix, and at the same time, the plurality of reference frequency domain statistics and the reference ultrasonic guided wave signal are passed through a second Clip model to obtain a reference ultrasonic feature matrix. Then, a differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix is calculated. Then, the eigenvalues of each position of the differential feature matrix are corrected to obtain a corrected differential feature matrix. Furthermore, the corrected differential feature matrix is passed through a classifier to obtain a classification result, and the classification result indicates whether there is a defect in the pipeline to be detected.
在步骤S110中,获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号。如上述背景技术所言,管道铺设涉及各行各业,承担着重要的生产使命。大多数管道需要面临各种复杂的环境,比如恶劣天气、撞击、管道内部化学物质的腐蚀等,因此管道容易产生各种缺陷。工程中,因为管道缺陷给人们生存和财产安全带来巨大损伤的事件频繁发生,因此,管道健康状况的检测显得尤为重要。目前,管道维护人员一般通过目视检测、电磁探伤等方法检测管道的损伤,这些方法不但耗费时间长,检测精度也不高。因此,期望一种优化的管道缺陷无损检测方案。In step S110, the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal of the pipeline to be detected are obtained, wherein the reference ultrasonic guided wave signal is the ultrasonic guided wave signal of a defect-free pipeline. As mentioned in the above background technology, pipeline laying involves all walks of life and undertakes an important production mission. Most pipelines need to face various complex environments, such as bad weather, impact, corrosion of chemical substances inside the pipeline, etc., so the pipeline is prone to various defects. In engineering, because pipeline defects cause great damage to people's survival and property safety, incidents occur frequently, therefore, the detection of pipeline health status is particularly important. At present, pipeline maintenance personnel generally detect pipeline damage by visual inspection, electromagnetic flaw detection and other methods. These methods are not only time-consuming, but also have low detection accuracy. Therefore, an optimized non-destructive detection scheme for pipeline defects is desired.
相应地,由于无损检测是在不破坏试件的前提下,对被测试件进行缺陷检测。无损检测的优点为非破坏性,检测成本低,检测范围广,检测精度高。而超声波是频率高于20KHz的机械波,广泛应用于测厚、无损探伤等领域。由于实际中管道的弹性介质都是有边界限制的,超声在其传播过程中的超声波为导波。因此,可以使用管道内实际检测的超声导波信号和无缺陷管道的参考超声导波信号进行对比来进行缺陷检测。但是,考虑到由于超声导波信号中具有的信息量较多,难以在实际应用中进行两者的对比观察检测,并且由于管道内的缺陷为小尺度的特征信息,这给管道缺陷的无损检测带来了困难。Accordingly, since nondestructive testing is to detect defects on the tested piece without destroying the test piece. The advantages of nondestructive testing are non-destructiveness, low testing cost, wide testing range, and high testing accuracy. Ultrasonic waves are mechanical waves with a frequency higher than 20KHz, which are widely used in thickness measurement, nondestructive flaw detection and other fields. Since the elastic medium of the pipeline is actually limited by boundaries, the ultrasonic wave in its propagation process is a guided wave. Therefore, the ultrasonic guided wave signal actually detected in the pipeline and the reference ultrasonic guided wave signal of the defect-free pipeline can be used for defect detection. However, considering that the ultrasonic guided wave signal has a large amount of information, it is difficult to compare and observe the two in actual applications, and since the defects in the pipeline are small-scale characteristic information, this brings difficulties to the nondestructive detection of pipeline defects.
基于此,在本申请的技术方案中,期望采用基于深度学习的人工智能检测技术,以通过对于待检测管道的检测超声导波信号和无缺陷管道的参考超声导波信号在高维空间中进行多尺度的特征差异性对比来进行所述待检测管道是否存在缺陷的检测判断。这样,能够准确地进行管道缺陷的无损检测,进而时刻关注管道健康状况,以避免管道缺陷给人们生存和财产安全带来损失。具体地,在本申请的技术方案中,首先,获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号。这里,所述待检测管道的检测超声导波信号可以由超声导波仪来获取,所述参考超声导波信号为已有资料。Based on this, in the technical solution of the present application, it is expected to adopt artificial intelligence detection technology based on deep learning, so as to detect and judge whether the pipeline to be detected has defects by comparing the detection ultrasonic guided wave signal of the pipeline to be detected and the reference ultrasonic guided wave signal of the defect-free pipeline in a high-dimensional space. In this way, non-destructive detection of pipeline defects can be accurately performed, and then attention can be paid to the health status of the pipeline at all times to avoid losses to people's survival and property safety caused by pipeline defects. Specifically, in the technical solution of the present application, first, the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal of the pipeline to be detected are obtained, wherein the reference ultrasonic guided wave signal is the ultrasonic guided wave signal of the defect-free pipeline. Here, the detection ultrasonic guided wave signal of the pipeline to be detected can be obtained by an ultrasonic guided wave instrument, and the reference ultrasonic guided wave signal is existing data.
在步骤S120中,对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值。考虑到对于所述检测超声导波信号和所述参考超声导波信号来说,其在时域中的表现形式为波形图,因此可以使用图像编码器来进行所述检测超声导波信号和所述参考超声导波信号的时域特征提取,以此特征差异性分布信息来进行管道的缺陷检测。但是,由于在使用所述检测超声导波信号和所述参考超声导波信号的时域特征差异性分布信息来进行管道缺陷检测时,时域特征中会包含有较多的环境噪声干扰特征信息,这对于检测的结果会造成严重的影响,因此,进一步结合所述超声导波信号的频域统计特征值间的关联性特征分布来提高检测的精准度。也就是,进一步对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值。In step S120, the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal are respectively subjected to Fourier transformation to obtain a plurality of detection frequency domain statistics and a plurality of reference frequency domain statistics. Considering that the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal are expressed in the time domain in the form of a waveform, an image encoder can be used to extract the time domain features of the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal, and the pipeline defect detection is performed based on the feature difference distribution information. However, when the pipeline defect detection is performed using the time domain feature difference distribution information of the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal, the time domain features contain a lot of environmental noise interference feature information, which will have a serious impact on the detection result. Therefore, the correlation feature distribution between the frequency domain statistical feature values of the ultrasonic guided wave signal is further combined to improve the detection accuracy. That is, the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal are further subjected to Fourier transformation to obtain a plurality of detection frequency domain statistics and a plurality of reference frequency domain statistics.
在步骤S130中,将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵。对于所述检测超声导波信号的特征提取,使用包含序列编码器和图像编码器的第一Clip模型来分别对于所述多个检测频域统计值和所述检测超声导波信号的波形图进行处理以得到检测超声特征矩阵。In step S130, the plurality of detection frequency domain statistics and the waveform of the detection ultrasonic guided wave signal are passed through a first Clip model to obtain a detection ultrasonic feature matrix. For feature extraction of the detection ultrasonic guided wave signal, the first Clip model including a sequence encoder and an image encoder is used to process the plurality of detection frequency domain statistics and the waveform of the detection ultrasonic guided wave signal to obtain a detection ultrasonic feature matrix.
也就是,具体地,首先,考虑到管道内的缺陷特征为小尺度特征信息,因此以所述第一Clip模型的序列编码器对于所述检测超声导波信号的多个检测频域统计值进行特征挖掘,以提取出所述多个检测频域统计值间的多尺度隐含关联特征分布信息,从而得到检测频域统计特征向量。特别地,这里,所述序列编码器使用多尺度邻域特征提取模块来进行所述多个检测频域统计值的关联性特征提取。在本申请的一个实施例中,所述将所述多个检测频域统计值输入所述第一Clip模型的序列编码器以得到检测频域统计特征向量,包括:将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第一卷积层以得到第一尺度检测频域统计特征向量,其中,所述第一卷积层具有第一长度的第一一维卷积核;将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第二卷积层以得到第二尺度检测频域统计特征向量,其中,所述第二卷积层具有第二长度的第二一维卷积核,所述第一长度不同于所述第二长度;以及,将所述第一尺度检测频域统计特征向量和所述第二尺度检测频域统计特征向量进行级联以得到所述检测频域统计特征向量。这里,所述多尺度邻域特征提取模块能够提取出不同时间跨度下的所述多个检测频域统计值的多尺度邻域关联特征,以表征所述检测频域统计值在时间维度上的多尺度邻域动态变化特征信息,同时也使得输出的特征既包含了平滑后的特征,保存了原始输入的特征以避免信息丢失,进而提高了后续分类的准确性。That is, specifically, first, considering that the defect characteristics in the pipeline are small-scale feature information, the sequence encoder of the first Clip model performs feature mining on multiple detection frequency domain statistical values of the detection ultrasonic guided wave signal to extract multi-scale implicit correlation feature distribution information between the multiple detection frequency domain statistical values, thereby obtaining the detection frequency domain statistical feature vector. In particular, here, the sequence encoder uses a multi-scale neighborhood feature extraction module to extract the correlation features of the multiple detection frequency domain statistical values. In one embodiment of the present application, the step of inputting the multiple detection frequency domain statistical values into the sequence encoder of the first Clip model to obtain the detection frequency domain statistical feature vector includes: inputting the multiple detection frequency domain statistical values into the first convolution layer of the multi-scale neighborhood feature extraction module to obtain the first-scale detection frequency domain statistical feature vector, wherein the first convolution layer has a first one-dimensional convolution kernel of a first length; inputting the multiple detection frequency domain statistical values into the second convolution layer of the multi-scale neighborhood feature extraction module to obtain the second-scale detection frequency domain statistical feature vector, wherein the second convolution layer has a second one-dimensional convolution kernel of a second length, and the first length is different from the second length; and, cascading the first-scale detection frequency domain statistical feature vector and the second-scale detection frequency domain statistical feature vector to obtain the detection frequency domain statistical feature vector. Here, the multi-scale neighborhood feature extraction module can extract the multi-scale neighborhood correlation features of the multiple detection frequency domain statistical values under different time spans to characterize the multi-scale neighborhood dynamic change feature information of the detection frequency domain statistical values in the time dimension, and at the same time, the output features include both the smoothed features and the original input features to avoid information loss, thereby improving the accuracy of subsequent classification.
接着,以所述第一Clip模型的图像编码器对于所述检测超声导波信号的波形图进行特征挖掘,以提取出所述检测超声导波信号的时域隐含特征分布信息,从而得到检测超声导波图像特征向量。具体地,在本申请实施例中,所述将所述检测超声导波信号的波形图输入所述第一Clip模型的图像编码器以得到检测超声导波图像特征向量,包括:使用所述第一Clip模型的图像编码器的各层在层的正向传递中分别进行:对输入数据进行卷积处理以得到卷积特征图;对所述卷积特征图进行基于局部特征矩阵的均值池化以得到池化特征图;以及,对所述池化特征图进行非线性激活以得到激活特征图;其中,所述第一Clip模型的图像编码器的最后一层的输出为所述检测超声导波图像特征向量,所述第一Clip模型的图像编码器的第一层的输入为所述检测超声导波信号的波形图。Next, the image encoder of the first Clip model is used to perform feature mining on the waveform of the detection ultrasonic guided wave signal to extract the time domain implicit feature distribution information of the detection ultrasonic guided wave signal, thereby obtaining the detection ultrasonic guided wave image feature vector. Specifically, in an embodiment of the present application, the waveform of the detection ultrasonic guided wave signal is input into the image encoder of the first Clip model to obtain the detection ultrasonic guided wave image feature vector, including: using each layer of the image encoder of the first Clip model to perform in the forward transfer of the layer: convolution processing on the input data to obtain a convolution feature map; mean pooling based on the local feature matrix on the convolution feature map to obtain a pooled feature map; and nonlinear activation on the pooled feature map to obtain an activation feature map; wherein the output of the last layer of the image encoder of the first Clip model is the detection ultrasonic guided wave image feature vector, and the input of the first layer of the image encoder of the first Clip model is the waveform of the detection ultrasonic guided wave signal.
最后,再将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵。也就是,基于所述检测超声导波信号的频域统计特征值的多尺度隐含关联特征信息来对所述检测超声导波信号波形图的时域隐含特征进行图像属性编码优化以得到所述检测超声特征矩阵。具体地,在本申请的技术方案中,所述将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵,包括:以如下公式将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵;其中,所述公式为:Finally, the detected ultrasonic guided wave image feature vector and the detected frequency domain statistical feature vector are input into the coding optimizer of the first Clip model to obtain the detected ultrasonic feature matrix. That is, based on the multi-scale implicit correlation feature information of the frequency domain statistical eigenvalues of the detected ultrasonic guided wave signal, the time domain implicit features of the detected ultrasonic guided wave signal waveform are optimized for image attribute coding to obtain the detected ultrasonic feature matrix. Specifically, in the technical solution of the present application, the input of the detected ultrasonic guided wave image feature vector and the detected frequency domain statistical feature vector into the coding optimizer of the first Clip model to obtain the detected ultrasonic feature matrix includes: inputting the detected ultrasonic guided wave image feature vector and the detected frequency domain statistical feature vector into the coding optimizer of the first Clip model according to the following formula to obtain the detected ultrasonic feature matrix; wherein, the formula is:
其中表示所述检测超声导波图像特征向量的转置向量,V2表示所述检测频域统计特征向量,M表示所述检测超声特征矩阵,表示矩阵相乘。这样,所得到的所述检测超声特征矩阵既包含了所述检测超声导波信号的频域特征内容,又反应了频域内容随时间的变化规律特征,提高了管道缺陷检测的精准度。in represents the transposed vector of the detected ultrasonic guided wave image feature vector, V 2 represents the detected frequency domain statistical feature vector, M represents the detected ultrasonic feature matrix, In this way, the obtained detection ultrasonic feature matrix not only contains the frequency domain feature content of the detection ultrasonic guided wave signal, but also reflects the characteristics of the change rule of the frequency domain content over time, thereby improving the accuracy of pipeline defect detection.
在步骤S140中,将所述多个参考频域统计值和所述参考超声导波信号通过第二Clip模型以得到参考超声特征矩阵。同样地,对于所述参考超声导波信号的声音特征提取,考虑到所述参考超声导波信号的周期性特征信息与所述检测超声导波信号的周期性特征具有相似的规律性,因此,在本申请的技术方案中,同样使用Clip模型来进行所述参考超声导波信号编码。也就是,具体地,将所述多个参考频域统计值和所述参考超声导波信号通过包含列编码器和图像编码器的第二Clip模型以得到参考超声特征矩阵,进而基于所述参考超声导波信号的频域统计特征值的多尺度隐含关联特征来对所述参考超声导波信号波形图的时域隐含特征进行图像属性编码优化以得到所述参考超声特征矩阵。In step S140, the multiple reference frequency domain statistics and the reference ultrasonic guided wave signal are passed through a second Clip model to obtain a reference ultrasonic feature matrix. Similarly, for the sound feature extraction of the reference ultrasonic guided wave signal, considering that the periodic feature information of the reference ultrasonic guided wave signal has similar regularity to the periodic feature of the detection ultrasonic guided wave signal, therefore, in the technical solution of the present application, the Clip model is also used to encode the reference ultrasonic guided wave signal. That is, specifically, the multiple reference frequency domain statistics and the reference ultrasonic guided wave signal are passed through a second Clip model including a column encoder and an image encoder to obtain a reference ultrasonic feature matrix, and then based on the multi-scale implicit correlation features of the frequency domain statistical feature values of the reference ultrasonic guided wave signal, the time domain implicit features of the reference ultrasonic guided wave signal waveform are optimized by image attribute encoding to obtain the reference ultrasonic feature matrix.
在步骤S150中,计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵。也就是,计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵,以表示所述待检测管道实际的检测超声导波信号和无缺陷管道的参考超声导波信号在高维空间中的差异性特征。In step S150, a differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix is calculated. That is, a differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix is calculated to represent the difference features between the actual detection ultrasonic guided wave signal of the pipeline to be detected and the reference ultrasonic guided wave signal of the defect-free pipeline in a high-dimensional space.
具体地,在本申请实施例中,所述计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵,包括:以如下公式来计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;其中,所述公式为:其中M1表示所述检测超声特征矩阵,M2表示所述参考超声特征矩阵,Mc表示所述差分特征矩阵。Specifically, in the embodiment of the present application, the calculation of the differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix includes: calculating the differential feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix using the following formula; wherein the formula is: Wherein, M1 represents the detected ultrasonic feature matrix, M2 represents the reference ultrasonic feature matrix, and Mc represents the differential feature matrix.
在步骤S160中,对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵。特别地,在本申请的技术方案中,在计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的特征矩阵得到所述差分特征矩阵时,由于所述差分特征矩阵的计算是所述检测超声特征矩阵与所述参考超声特征矩阵之间的按位置特征值差分计算,因此,期望所述检测超声特征矩阵与所述参考超声特征矩阵之间的特征分布尽量保持同相分布,也就是,期望尽量避免所述检测超声特征矩阵与所述参考超声特征矩阵的相应位置之间的负相关关系,从而提高所述差分特征矩阵的计算准确性。因此,本申请的申请人采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵。In step S160, the eigenvalues of each position of the differential feature matrix are corrected to obtain a corrected differential feature matrix. In particular, in the technical solution of the present application, when calculating the feature matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix to obtain the differential feature matrix, since the calculation of the differential feature matrix is the positional eigenvalue difference calculation between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix, it is expected that the feature distribution between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix should be kept in phase as much as possible, that is, it is expected to avoid the negative correlation between the corresponding positions of the detection ultrasonic feature matrix and the reference ultrasonic feature matrix as much as possible, thereby improving the calculation accuracy of the differential feature matrix. Therefore, the applicant of the present application adopts the method of full orthogonal projection nonlinear reweighting to calculate the weight matrix between the detection ultrasonic feature matrix and the reference ultrasonic feature matrix.
具体地,在本申请实施例中,所述对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵,包括:采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵;以及,以所述权重矩阵对所述差分特征矩阵进行按位置点乘以得到所述校正后差分特征矩阵。Specifically, in an embodiment of the present application, the eigenvalues of each position of the differential feature matrix are corrected to obtain a corrected differential feature matrix, including: calculating a weight matrix between the detected ultrasonic feature matrix and the reference ultrasonic feature matrix by full orthographic projection nonlinear reweighting; and multiplying the differential feature matrix by the weight matrix at each position to obtain the corrected differential feature matrix.
更具体地,在本申请实施例中,所述采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵,包括:采用全正投影非线性重加权的方式以如下公式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的所述权重矩阵;其中,所述公式为:More specifically, in an embodiment of the present application, the weight matrix between the detected ultrasonic feature matrix and the reference ultrasonic feature matrix is calculated by using a full orthogonal projection nonlinear reweighting method, including: using a full orthogonal projection nonlinear reweighting method to calculate the weight matrix between the detected ultrasonic feature matrix and the reference ultrasonic feature matrix using the following formula; wherein the formula is:
其中,M1和M2分别为所述检测超声特征矩阵与所述参考超声特征矩阵,Mw是所述权重矩阵,ReLU(·)表示ReLU激活函数,表示矩阵相乘,且分子矩阵和分母矩阵之间的除法为矩阵特征值的按位置相除,exp(·)表示矩阵的指数运算,所述矩阵的指数运算表示计算以矩阵中各个位置的特征值为幂的自然指数函数值。Wherein, M1 and M2 are the detection ultrasonic feature matrix and the reference ultrasonic feature matrix respectively, Mw is the weight matrix, ReLU(·) represents the ReLU activation function, represents matrix multiplication, and the division between the numerator matrix and the denominator matrix is the positional division of the matrix eigenvalues. exp(·) represents the exponential operation of the matrix, and the exponential operation of the matrix represents the calculation of the natural exponential function value raised to the power of the eigenvalues at each position in the matrix.
这里,所述全正投影非线性重加权通过ReLU函数来保证投影的全正以避免聚合负相关的信息,并同时引入非线性重加权机制来相对于彼此聚集所述检测超声特征矩阵与所述参考超声特征矩阵的特征值分布,以使得所述权重矩阵的内在结构能够惩罚远距离连接而加强局部性耦合。这样,通过以所述权重矩阵对所述差分特征矩阵进行点乘以进行按位置加权,就实现了所述检测超声特征矩阵与所述参考超声特征矩阵在高维特征空间内的与全正投影重加权对应的空间特征变换(feature transform)的协同效果,也就提升了所述差分特征矩阵的计算的准确性,进而提高了分类的准确性。这样,能够准确地进行管道缺陷的无损检测,进而时刻关注管道健康状况,以避免管道缺陷给人们生存和财产安全带来损失。Here, the full orthographic projection nonlinear reweighting uses the ReLU function to ensure that the projection is fully positive to avoid aggregating negatively correlated information, and at the same time introduces a nonlinear reweighting mechanism to aggregate the eigenvalue distributions of the detection ultrasonic feature matrix and the reference ultrasonic feature matrix relative to each other, so that the intrinsic structure of the weight matrix can punish long-distance connections and strengthen local coupling. In this way, by performing point multiplication on the differential feature matrix with the weight matrix to perform positional weighting, the synergistic effect of the spatial feature transformation (feature transform) corresponding to the full orthographic projection reweighting of the detection ultrasonic feature matrix and the reference ultrasonic feature matrix in the high-dimensional feature space is achieved, which improves the accuracy of the calculation of the differential feature matrix, thereby improving the accuracy of classification. In this way, non-destructive detection of pipeline defects can be accurately performed, and the health status of the pipeline can be always paid attention to to avoid pipeline defects causing losses to people's survival and property safety.
在步骤S170中,将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷。这样,能够准确地进行管道缺陷的无损检测,进而时刻关注管道健康状况,以避免管道缺陷给人们生存和财产安全带来损失。In step S170, the corrected differential feature matrix is passed through a classifier to obtain a classification result, which indicates whether the pipeline to be inspected has defects. In this way, non-destructive detection of pipeline defects can be accurately performed, and the health status of the pipeline can be always paid attention to to avoid losses to people's survival and property safety caused by pipeline defects.
具体地,在本申请实施例中,所述将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷,包括:将所述校正后差分特征矩阵按照行向量或者列向量展开为分类特征向量;使用所述分类器的全连接层对所述分类特征向量进行全连接编码以得到编码分类特征向量;以及,将所述编码分类特征向量输入所述分类器的Softmax分类函数以得到所述分类结果。Specifically, in an embodiment of the present application, the corrected differential feature matrix is passed through a classifier to obtain a classification result, and the classification result indicates whether there is a defect in the pipeline to be inspected, including: expanding the corrected differential feature matrix into a classification feature vector according to a row vector or a column vector; using the fully connected layer of the classifier to fully connect encode the classification feature vector to obtain an encoded classification feature vector; and inputting the encoded classification feature vector into the Softmax classification function of the classifier to obtain the classification result.
综上,基于本申请实施例的超声导波管道缺陷无损检测方法被阐明,其采用基于深度学习的人工智能检测技术,以通过对于待检测管道的检测超声导波信号和无缺陷管道的参考超声导波信号在高维空间中进行多尺度的特征差异性对比来进行所述待检测管道是否存在缺陷的检测判断。这样,能够准确地进行管道缺陷的无损检测。In summary, the ultrasonic guided wave pipeline defect nondestructive detection method based on the embodiment of the present application is explained, which adopts artificial intelligence detection technology based on deep learning to detect and judge whether the pipeline to be detected has defects by comparing the multi-scale feature differences between the detection ultrasonic guided wave signal of the pipeline to be detected and the reference ultrasonic guided wave signal of the defect-free pipeline in a high-dimensional space. In this way, nondestructive detection of pipeline defects can be accurately performed.
示例性系统Exemplary Systems
图4为根据本申请实施例的超声导波管道缺陷无损检测系统的框图。如图4所示,根据本申请实施例的超声导波管道缺陷无损检测系统100,包括:超声导波获取模块110,用于获取待检测管道的检测超声导波信号和参考超声导波信号,其中,所述参考超声导波信号为无缺陷的管道的超声导波信号;域变化模块120,用于对所述检测超声导波信号和所述参考超声导波信号分别进行傅里叶变换以得到多个检测频域统计值和多个参考频域统计值;检测超声编码模块130,用于将所述多个检测频域统计值和所述检测超声导波信号的波形图通过第一Clip模型以得到检测超声特征矩阵;参考超声编码模块140,用于将所述多个参考频域统计值和所述参考超声导波信号通过第二Clip模型以得到参考超声特征矩阵;差分模块150,用于计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;特征值校正模块160,用于对所述差分特征矩阵的各个位置的特征值进行校正以得到校正后差分特征矩阵;以及,检测结果生成模块170,用于将所述校正后差分特征矩阵通过分类器以得到分类结果,所述分类结果表示待检测管道是否存在缺陷。FIG4 is a block diagram of an ultrasonic guided wave pipeline defect nondestructive detection system according to an embodiment of the present application. As shown in FIG4, an ultrasonic guided wave pipeline defect nondestructive detection system 100 according to an embodiment of the present application includes: an ultrasonic guided wave acquisition module 110, which is used to acquire a detection ultrasonic guided wave signal and a reference ultrasonic guided wave signal of a pipeline to be detected, wherein the reference ultrasonic guided wave signal is an ultrasonic guided wave signal of a defect-free pipeline; a domain change module 120, which is used to perform Fourier transform on the detection ultrasonic guided wave signal and the reference ultrasonic guided wave signal respectively to obtain a plurality of detection frequency domain statistics and a plurality of reference frequency domain statistics; a detection ultrasonic encoding module 130, which is used to transform the waveform diagram of the plurality of detection frequency domain statistics and the detection ultrasonic guided wave signal through a first Clip model to obtain to detect ultrasonic feature matrix; a reference ultrasonic encoding module 140, used to pass the multiple reference frequency domain statistical values and the reference ultrasonic guided wave signal through a second Clip model to obtain a reference ultrasonic feature matrix; a difference module 150, used to calculate a differential feature matrix between the detected ultrasonic feature matrix and the reference ultrasonic feature matrix; an eigenvalue correction module 160, used to correct the eigenvalues of each position of the differential feature matrix to obtain a corrected differential feature matrix; and a detection result generation module 170, used to pass the corrected differential feature matrix through a classifier to obtain a classification result, wherein the classification result indicates whether there is a defect in the pipeline to be detected.
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述检测超声编码模块130,包括:序列编码单元,用于将所述多个检测频域统计值输入所述第一Clip模型的序列编码器以得到检测频域统计特征向量;图像编码单元,用于将所述检测超声导波信号的波形图输入所述第一Clip模型的图像编码器以得到检测超声导波图像特征向量;以及,编码优化单元,用于将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵。In one example, in the above-mentioned ultrasonic guided wave pipeline defect
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述序列编码单元,进一步用于:将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第一卷积层以得到第一尺度检测频域统计特征向量,其中,所述第一卷积层具有第一长度的第一一维卷积核;将所述多个检测频域统计值输入所述多尺度邻域特征提取模块的第二卷积层以得到第二尺度检测频域统计特征向量,其中,所述第二卷积层具有第二长度的第二一维卷积核,所述第一长度不同于所述第二长度;以及,将所述第一尺度检测频域统计特征向量和所述第二尺度检测频域统计特征向量进行级联以得到所述检测频域统计特征向量。In one example, in the above-mentioned ultrasonic guided wave pipeline defect
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述图像编码单元,进一步用于:使用所述第一Clip模型的图像编码器的各层在层的正向传递中分别进行:对输入数据进行卷积处理以得到卷积特征图;对所述卷积特征图进行基于局部特征矩阵的均值池化以得到池化特征图;以及,对所述池化特征图进行非线性激活以得到激活特征图;其中,所述第一Clip模型的图像编码器的最后一层的输出为所述检测超声导波图像特征向量,所述第一Clip模型的图像编码器的第一层的输入为所述检测超声导波信号的波形图。In one example, in the above-mentioned ultrasonic guided wave pipeline defect
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述编码优化单元,进一步用于:以如下公式将所述检测超声导波图像特征向量和所述检测频域统计特征向量输入所述第一Clip模型的编码优化器以得到所述检测超声特征矩阵;其中,所述公式为:In one example, in the above-mentioned ultrasonic guided wave pipeline defect
其中表示所述检测超声导波图像特征向量的转置向量,V2表示所述检测频域统计特征向量,M表示所述检测超声特征矩阵,表示矩阵相乘。in represents the transposed vector of the detected ultrasonic guided wave image feature vector, V 2 represents the detected frequency domain statistical feature vector, M represents the detected ultrasonic feature matrix, Represents matrix multiplication.
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述差分模块150,进一步用于:以如下公式来计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的差分特征矩阵;其中,所述公式为:其中M1表示所述检测超声特征矩阵,M2表示所述参考超声特征矩阵,Mc表示所述差分特征矩阵。In one example, in the ultrasonic guided wave pipeline defect
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述特征值校正模块160,包括:权重单元,采用全正投影非线性重加权的方式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的权重矩阵;以及,施加单元,以所述权重矩阵对所述差分特征矩阵进行按位置点乘以得到所述校正后差分特征矩阵。In one example, in the above-mentioned ultrasonic guided wave pipeline defect
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述权重单元,进一步用于:采用全正投影非线性重加权的方式以如下公式计算所述检测超声特征矩阵与所述参考超声特征矩阵之间的所述权重矩阵;其中,所述公式为:In one example, in the ultrasonic guided wave pipeline defect
其中,M1和M2分别为所述检测超声特征矩阵与所述参考超声特征矩阵,Mw是所述权重矩阵,ReLU(·)表示ReLU激活函数,表示矩阵相乘,且分子矩阵和分母矩阵之间的除法为矩阵特征值的按位置相除,exp(·)表示矩阵的指数运算,所述矩阵的指数运算表示计算以矩阵中各个位置的特征值为幂的自然指数函数值。Wherein, M1 and M2 are the detection ultrasonic feature matrix and the reference ultrasonic feature matrix respectively, Mw is the weight matrix, ReLU(·) represents the ReLU activation function, represents matrix multiplication, and the division between the numerator matrix and the denominator matrix is the positional division of the matrix eigenvalues. exp(·) represents the exponential operation of the matrix, and the exponential operation of the matrix represents the calculation of the natural exponential function value raised to the power of the eigenvalues at each position in the matrix.
在一个示例中,在上述超声导波管道缺陷无损检测系统100中,所述检测结果生成模块170,进一步用于:将所述校正后差分特征矩阵按照行向量或者列向量展开为分类特征向量;使用所述分类器的全连接层对所述分类特征向量进行全连接编码以得到编码分类特征向量;以及,将所述编码分类特征向量输入所述分类器的Softmax分类函数以得到所述分类结果。In one example, in the above-mentioned ultrasonic guided wave pipeline defect
这里,本领域技术人员可以理解,上述超声导波管道缺陷无损检测系统100中的各个单元和模块的具体功能和操作已经在上面参考图1到图3的超声导波管道缺陷无损检测方法的描述中得到了详细介绍,并因此,将省略其重复描述。Here, those skilled in the art can understand that the specific functions and operations of the various units and modules in the above-mentioned ultrasonic guided wave pipeline defect
如上所述,根据本申请实施例的超声导波管道缺陷无损检测系统100可以实现在各种终端设备中,例如用于超声导波管道缺陷无损检测的服务器等。在一个示例中,根据本申请实施例的超声导波管道缺陷无损检测系统100可以作为一个软件模块和/或硬件模块而集成到终端设备中。例如,该超声导波管道缺陷无损检测系统100可以是该终端设备的操作系统中的一个软件模块,或者可以是针对于该终端设备所开发的一个应用程序;当然,该超声导波管道缺陷无损检测系统100同样可以是该终端设备的众多硬件模块之一。As described above, the ultrasonic guided wave pipeline defect
替换地,在另一示例中,该超声导波管道缺陷无损检测系统100与该终端设备也可以是分立的设备,并且该超声导波管道缺陷无损检测系统100可以通过有线和/或无线网络连接到该终端设备,并且按照约定的数据格式来传输交互信息。Alternatively, in another example, the ultrasonic guided wave nondestructive detection system for
示例性电子设备Exemplary Electronic Devices
下面,参考图5来描述根据本申请实施例的电子设备。图5为根据本申请实施例的电子设备的框图。如图5所示,电子设备10包括一个或多个处理器11和存储器12。Next, an electronic device according to an embodiment of the present application is described with reference to FIG5 . FIG5 is a block diagram of an electronic device according to an embodiment of the present application. As shown in FIG5 , the electronic device 10 includes one or
处理器11可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备10中的其他组件以执行期望的功能。The
存储器12可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器11可以运行所述程序指令,以实现上文所述的本申请的各个实施例的超声导波管道缺陷无损检测方法中的功能以及/或者其他期望的功能。在所述计算机可读存储介质中还可以存储诸如待检测管道的检测超声导波信号和参考超声导波信号等各种内容。The
在一个示例中,电子设备10还可以包括:输入装置13和输出装置14,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。In one example, the electronic device 10 may further include: an
该输入装置13可以包括例如键盘、鼠标等等。The
该输出装置14可以向外部输出各种信息,包括分类结果等。该输出装置14可以包括例如显示器、扬声器、打印机、以及通信网络及其所连接的远程输出设备等等。The
当然,为了简化,图5中仅示出了该电子设备10中与本申请有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备10还可以包括任何其他适当的组件。Of course, for simplicity, FIG5 only shows some of the components in the electronic device 10 related to the present application, omitting components such as a bus, an input/output interface, etc. In addition, the electronic device 10 may further include any other appropriate components according to specific application scenarios.
示例性计算机程序产品和计算机可读存储介质Exemplary computer program products and computer-readable storage media
除了上述方法和设备以外,本申请的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方法”部分中描述的根据本申请各种实施例的超声导波管道缺陷无损检测方法中的功能中的步骤。In addition to the above-mentioned methods and devices, an embodiment of the present application may also be a computer program product, which includes computer program instructions, which, when executed by a processor, enable the processor to perform the steps in the functions of the ultrasonic guided wave pipeline defect nondestructive detection method according to various embodiments of the present application described in the above "Exemplary Method" section of this specification.
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。The computer program product may be written in any combination of one or more programming languages to write program codes for performing the operations of the embodiments of the present application, including object-oriented programming languages, such as Java, C++, etc., and conventional procedural programming languages, such as "C" language or similar programming languages. The program code may be executed entirely on the user computing device, partially on the user device, as an independent software package, partially on the user computing device and partially on a remote computing device, or entirely on a remote computing device or server.
此外,本申请的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方法”部分中描述的根据本申请各种实施例的超声导波管道缺陷无损检测方法中的功能中的步骤。In addition, an embodiment of the present application may also be a computer-readable storage medium on which computer program instructions are stored. When the computer program instructions are executed by a processor, the processor executes the steps in the functions of the ultrasonic guided wave pipeline defect nondestructive detection method according to various embodiments of the present application described in the above "Exemplary Method" section of this specification.
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The computer readable storage medium can adopt any combination of one or more readable media. The readable medium can be a readable signal medium or a readable storage medium. The readable storage medium can include, for example, but is not limited to, a system, device or device of electricity, magnetism, light, electromagnetic, infrared, or semiconductor, or any combination of the above. More specific examples (non-exhaustive list) of readable storage media include: an electrical connection with one or more wires, a portable disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。The basic principles of the present application are described above in conjunction with specific embodiments. However, it should be noted that the advantages, strengths, effects, etc. mentioned in the present application are only examples and not limitations, and it cannot be considered that these advantages, strengths, effects, etc. are required by each embodiment of the present application. In addition, the specific details disclosed above are only for the purpose of illustration and ease of understanding, not for limitation, and the above details do not limit the present application to being implemented by adopting the above specific details.
本申请中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。The block diagrams of the devices, devices, equipment, and systems involved in this application are only illustrative examples and are not intended to require or imply that they must be connected, arranged, and configured in the manner shown in the block diagram. As will be appreciated by those skilled in the art, these devices, devices, equipment, and systems can be connected, arranged, and configured in any manner. Words such as "including", "comprising", "having", etc. are open words, referring to "including but not limited to", and can be used interchangeably with them. The words "or" and "and" used here refer to the words "and/or" and can be used interchangeably with them, unless the context clearly indicates otherwise. The words "such as" used here refer to the phrase "such as but not limited to", and can be used interchangeably with them.
还需要指出的是,在本申请的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。It should also be noted that in the apparatus, device and method of the present application, each component or each step can be decomposed and/or recombined. Such decomposition and/or recombination should be regarded as equivalent solutions of the present application.
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。The above description of the disclosed aspects is provided to enable any person skilled in the art to make or use the present application. Various modifications to these aspects will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other aspects without departing from the scope of the present application. Therefore, the present application is not intended to be limited to the aspects shown herein, but rather to the widest scope consistent with the principles and novel features disclosed herein.
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。The above description has been given for the purpose of illustration and description. In addition, this description is not intended to limit the embodiments of the present application to the forms disclosed herein. Although multiple example aspects and embodiments have been discussed above, those skilled in the art will recognize certain variations, modifications, changes, additions and sub-combinations thereof.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211615969.0A CN115901954A (en) | 2022-12-15 | 2022-12-15 | Nondestructive detection method for ultrasonic guided wave pipeline defects |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211615969.0A CN115901954A (en) | 2022-12-15 | 2022-12-15 | Nondestructive detection method for ultrasonic guided wave pipeline defects |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115901954A true CN115901954A (en) | 2023-04-04 |
Family
ID=86491096
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211615969.0A Pending CN115901954A (en) | 2022-12-15 | 2022-12-15 | Nondestructive detection method for ultrasonic guided wave pipeline defects |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115901954A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116609442A (en) * | 2023-07-17 | 2023-08-18 | 南京工业大学 | Pipeline Crack Evaluation and Location Method Based on Nonlinear Ultrasonic Guided Wave and Deep Learning |
| CN117611587A (en) * | 2024-01-23 | 2024-02-27 | 赣州泰鑫磁性材料有限公司 | Rare earth alloy material detection system and method based on artificial intelligence |
| CN117825508A (en) * | 2024-01-12 | 2024-04-05 | 广东滨洲建筑工程有限公司 | Building environment-friendly material production method based on building |
| CN117969682A (en) * | 2024-03-28 | 2024-05-03 | 北京工业大学 | An optical flow image processing method for ultrasonic guided wave monitoring signals |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110146521A (en) * | 2019-06-17 | 2019-08-20 | 电子科技大学 | Method and device for detecting corrosion defects on pipeline surface based on microwave nondestructive testing |
| CN110274961A (en) * | 2019-04-24 | 2019-09-24 | 武汉工程大学 | The non-linear acoustic emission system recognition methods of pipeline microdefect is detected based on PEC |
| CN110568084A (en) * | 2019-09-19 | 2019-12-13 | 哈尔滨工业大学 | A method for extracting arrival time of guided wave signal with low signal-to-noise ratio suitable for guided wave transducer array |
| CN113256566A (en) * | 2021-04-29 | 2021-08-13 | 广州杰赛科技股份有限公司 | Pipeline weld defect identification method |
| CN113504306A (en) * | 2021-07-13 | 2021-10-15 | 电子科技大学 | Steel rail defect detection method based on ultrasonic phased array low-rank matrix recovery |
| CN113933388A (en) * | 2021-09-15 | 2022-01-14 | 北京航空航天大学 | Ultrasonic excitation-fiber grating sensing based metal plate damage monitoring system and method |
| CN114258488A (en) * | 2019-08-27 | 2022-03-29 | 株式会社日立电力解决方案 | Ultrasonic inspection apparatus and ultrasonic inspection method |
-
2022
- 2022-12-15 CN CN202211615969.0A patent/CN115901954A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110274961A (en) * | 2019-04-24 | 2019-09-24 | 武汉工程大学 | The non-linear acoustic emission system recognition methods of pipeline microdefect is detected based on PEC |
| CN110146521A (en) * | 2019-06-17 | 2019-08-20 | 电子科技大学 | Method and device for detecting corrosion defects on pipeline surface based on microwave nondestructive testing |
| CN114258488A (en) * | 2019-08-27 | 2022-03-29 | 株式会社日立电力解决方案 | Ultrasonic inspection apparatus and ultrasonic inspection method |
| CN110568084A (en) * | 2019-09-19 | 2019-12-13 | 哈尔滨工业大学 | A method for extracting arrival time of guided wave signal with low signal-to-noise ratio suitable for guided wave transducer array |
| CN113256566A (en) * | 2021-04-29 | 2021-08-13 | 广州杰赛科技股份有限公司 | Pipeline weld defect identification method |
| CN113504306A (en) * | 2021-07-13 | 2021-10-15 | 电子科技大学 | Steel rail defect detection method based on ultrasonic phased array low-rank matrix recovery |
| CN113933388A (en) * | 2021-09-15 | 2022-01-14 | 北京航空航天大学 | Ultrasonic excitation-fiber grating sensing based metal plate damage monitoring system and method |
Non-Patent Citations (1)
| Title |
|---|
| 赵晋巍 等: "基于CLIP模型的军事领域图片资源多模态搜索工具研究", 《中华医学图书情报杂志》, vol. 31, no. 8, 31 August 2022 (2022-08-31), pages 14 - 20 * |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116609442A (en) * | 2023-07-17 | 2023-08-18 | 南京工业大学 | Pipeline Crack Evaluation and Location Method Based on Nonlinear Ultrasonic Guided Wave and Deep Learning |
| CN116609442B (en) * | 2023-07-17 | 2023-10-13 | 南京工业大学 | Pipeline crack assessment and positioning method based on nonlinear ultrasonic guided waves and deep learning |
| CN117825508A (en) * | 2024-01-12 | 2024-04-05 | 广东滨洲建筑工程有限公司 | Building environment-friendly material production method based on building |
| CN117825508B (en) * | 2024-01-12 | 2024-06-11 | 广东滨洲建筑工程有限公司 | Building environment-friendly material production method based on building |
| CN117611587A (en) * | 2024-01-23 | 2024-02-27 | 赣州泰鑫磁性材料有限公司 | Rare earth alloy material detection system and method based on artificial intelligence |
| CN117611587B (en) * | 2024-01-23 | 2024-06-04 | 赣州泰鑫磁性材料有限公司 | Rare earth alloy material detection system and method based on artificial intelligence |
| CN117969682A (en) * | 2024-03-28 | 2024-05-03 | 北京工业大学 | An optical flow image processing method for ultrasonic guided wave monitoring signals |
| CN117969682B (en) * | 2024-03-28 | 2024-06-04 | 北京工业大学 | An optical flow image processing method for ultrasonic guided wave monitoring signals |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115901954A (en) | Nondestructive detection method for ultrasonic guided wave pipeline defects | |
| CN105738109B (en) | Bearing fault classification diagnosis method based on rarefaction representation and integrated study | |
| CN105678343A (en) | Adaptive-weighted-group-sparse-representation-based diagnosis method for noise abnormity of hydroelectric generating set | |
| CN117269644A (en) | Line fault monitoring system and method for current transformer | |
| Tang et al. | Explainable deep learning based ultrasonic guided wave pipe crack identification method | |
| CN114897032B (en) | A current transformer fault diagnosis method and device based on width learning | |
| Du et al. | DCGAN based data generation for process monitoring | |
| CN109903181A (en) | Line Loss Prediction Method Based on Compressed Sensing for Missing Datasets | |
| CN105844051B (en) | A detection method for slow leakage of oil and gas pipelines based on sparse representation of negative pressure wave signals | |
| Gao et al. | Enhanced data imputation framework for bridge health monitoring using Wasserstein generative adversarial networks with gradient penalty | |
| Gao et al. | Accurate identification partial discharge of cable termination for high-speed trains based on wavelet transform and convolutional neural network | |
| CN116086790A (en) | Performance testing method and system for hydrogen fuel cell high pressure valve | |
| CN118035717A (en) | Error state prediction method and device for capacitive voltage transformer and electronic equipment | |
| CN118445734A (en) | Tokamak experimental data intelligent processing method and system | |
| CN116182089A (en) | Long-distance conveying pipeline leakage detection method and system | |
| CN115656317A (en) | Micro-defect ultrasonic detection signal processing method, electronic device and readable storage medium | |
| CN119042543A (en) | Coiled tubing fault detection device and method | |
| CN112199637B (en) | Regression modeling method for generating contrast network data enhancement based on regression attention | |
| CN117309446A (en) | Automatic detection method and system for full-automatic mechanical equipment | |
| CN115542230B (en) | A Diffusion Model-Based Current Transformer Error Estimation Method and Device | |
| Zhang et al. | Agent-SwinPyramidNet: an enhanced deep learning model with AMTCF-VMD for anomaly detection in oil and gas pipelines | |
| CN117648559A (en) | Transformer state evaluation method and device, storage medium and electronic equipment | |
| CN116843656A (en) | Plastic coating control method and system for steel belt pipe | |
| CN116310644A (en) | Abnormality detection method and device based on normalized stream network and encoder | |
| WO2024103470A1 (en) | Performance testing system and method for escalator production |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |