CN115907178A - Clean ecosystem CO 2 Method for predicting exchange amount - Google Patents
Clean ecosystem CO 2 Method for predicting exchange amount Download PDFInfo
- Publication number
- CN115907178A CN115907178A CN202211522956.9A CN202211522956A CN115907178A CN 115907178 A CN115907178 A CN 115907178A CN 202211522956 A CN202211522956 A CN 202211522956A CN 115907178 A CN115907178 A CN 115907178A
- Authority
- CN
- China
- Prior art keywords
- exchange
- data
- ecosystem
- net ecosystem
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/80—Management or planning
- Y02P90/84—Greenhouse gas [GHG] management systems
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及环境监测领域,尤其涉及一种净生态系统CO2交换量的预测方法。The present invention relates to the field of environmental monitoring, and in particular to a method for predicting net ecosystem CO2 exchange.
背景技术Background Art
CO2净生态系统交换量NEE收到广泛关注,NEE的精确预测极为重要,但是NEE的影响因素众多且为高度非线性关系,目前已有的方法无法对其进行精确的预测本发明将多种环境驱动因子考虑在内,本发明将多种环境驱动因子考虑在内,采用最大互信息系数MIC筛选影响NEE的主控因子,构建以主控因子为自变量以NEE为目标变量的数据库,采用支持向量回归机理论和人工蜂群优化算法,建立了NEE最优化预测模型,有效地提高了NEE的预测精度。 CO2 net ecosystem exchange (NEE) has received extensive attention, and accurate prediction of NEE is extremely important. However, there are many factors affecting NEE, and the relationship is highly nonlinear. Existing methods cannot accurately predict it. The present invention takes a variety of environmental driving factors into consideration, and uses the maximum mutual information coefficient MIC to screen the main controlling factors affecting NEE, constructs a database with the main controlling factors as independent variables and NEE as the target variable, and uses support vector regression machine theory and artificial bee colony optimization algorithm to establish an optimal prediction model for NEE, which effectively improves the prediction accuracy of NEE.
发明内容Summary of the invention
为了针对现有NEE环境影响因子众多且为高度非线性关系而无法精确预测的问题,本发明提供一种净生态系统CO2交换量的预测方法,方法包括以下步骤:In order to solve the problem that the existing NEE environmental influencing factors are numerous and highly nonlinear and cannot be accurately predicted, the present invention provides a method for predicting the net ecosystem CO2 exchange amount, which includes the following steps:
S1、获取涡度相关系统连续性观测数据;所述涡度相关系统连续性观测数据包括:净生态系统CO2交换量和环境驱动变量数据;S1. Acquire continuous observation data of the eddy covariance system; the continuous observation data of the eddy covariance system includes: net ecosystem CO2 exchange and environmental driving variable data;
S2、对涡度相关系统连续性观测数据进行数据预处理,得到有效的净生态系统CO2交换量和环境驱动变量数据;S2. Preprocess the continuous observation data of the eddy covariance system to obtain effective net ecosystem CO2 exchange and environmental driving variable data;
S3、利用最大互信息系数法MIC析有效的净生态系统CO2交换量与环境驱动变量数据的相关性,从环境驱动变量数据中筛选与净生态系统CO2交换量相关性较大的前N个主控因子;以N个主控因子为输入变量,对应的净生态系统CO2交换量为输出变量,构建有效数据库;S3. Use the maximum mutual information coefficient method MIC to analyze the correlation between the effective net ecosystem CO2 exchange and the environmental driving variable data, and select the top N main controlling factors with greater correlation with the net ecosystem CO2 exchange from the environmental driving variable data; use the N main controlling factors as input variables and the corresponding net ecosystem CO2 exchange as output variables to build an effective database;
S4、对有效数据库中的每一项数据作归一化处理,得到归一化后的数据;将将归一化后的数据分为训练集和测试集;S4, normalizing each item of data in the valid database to obtain normalized data; dividing the normalized data into a training set and a test set;
S5、建立净生态系统CO2交换量支持向量机预测模型,利用训练集训练所述支持向量机模型,得到训练完成的模型;S5, establishing a support vector machine prediction model for net ecosystem CO2 exchange, and training the support vector machine model using a training set to obtain a trained model;
S6、利用人工蜂群优化算法优化所述训练完成的模型,得到最优预测模型;S6. Optimizing the trained model using an artificial bee colony optimization algorithm to obtain an optimal prediction model;
S7、利用测试集测试最优预测模型,并对最优预测模型进行指标评价,得到最终模型;S7, using the test set to test the optimal prediction model, and performing index evaluation on the optimal prediction model to obtain the final model;
S8、利用最终模型进行净生态系统CO2交换量预测。S8. Use the final model to predict net ecosystem CO2 exchange.
本发明提供的有益效果是:具体考虑了NEE与其各主控环境驱动变量之间的关系,采用筛选的主控因子作为NEE模型的输入变量,有效改善了模型的预测性能。The beneficial effects provided by the present invention are: specifically considering the relationship between NEE and its main controlled environmental driving variables, using the selected main controlled factors as input variables of the NEE model, and effectively improving the prediction performance of the model.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明方法的流程图;Fig. 1 is a flow chart of the method of the present invention;
图2是训练数据库预测结果;Figure 2 is the prediction result of the training database;
图3是验证数据库预测结果。Figure 3 is the prediction result of the verification database.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。In order to make the objectives, technical solutions and advantages of the present invention more clear, the embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
请参考图1,图1是本发明方法流程图。本发明提供了一种净生态系统CO2交换量的预测方法,包括以下步骤:Please refer to Figure 1, which is a flow chart of the method of the present invention. The present invention provides a method for predicting the net ecosystem CO2 exchange amount, comprising the following steps:
S1、获取涡度相关系统连续性观测数据;所述涡度相关系统连续性观测数据包括:净生态系统CO2交换量和环境驱动变量数据;S1. Acquire continuous observation data of the eddy covariance system; the continuous observation data of the eddy covariance system includes: net ecosystem CO2 exchange and environmental driving variable data;
具体的说,本发明通过神农架大九湖亚高山泥炭湿地通量观测塔的开路涡度相关系统获取净生态系统CO2交换量(NEE)数据及环境驱动变量数据(气象因子数据),气象因子主要包括空气温度(Ta)、相对湿度(RH)、光量子通量密度(PPFD)、净辐射(RN)、向下短波辐射(SWIN)、三层土壤温度(Ts1、Ts2、Ts3)、三层土壤含水量(SWC1、SWC2、SWC3)、饱和水汽压差(VPD)等12个变量;Specifically, the present invention obtains net ecosystem CO 2 exchange (NEE) data and environmental driving variable data (meteorological factor data) through the open-path eddy covariance system of the flux observation tower of Dajiu Lake in Shennongjia subalpine peat wetland. The meteorological factors mainly include 12 variables, including air temperature (Ta), relative humidity (RH), photon flux density (PPFD), net radiation (RN), downward shortwave radiation (SWIN), three-layer soil temperature (Ts1, Ts2, Ts3), three-layer soil moisture content (SWC 1 , SWC 2 , SWC 3 ), and saturated vapor pressure difference (VPD);
S2、对涡度相关系统连续性观测数据进行数据预处理,得到有效的净生态系统CO2交换量和环境驱动变量数据;S2. Preprocess the continuous observation data of the eddy covariance system to obtain effective net ecosystem CO2 exchange and environmental driving variable data;
步骤S2中数据预处理具体为:根据预设阈值区间,对处于阈值区间范围外数据异常值进行剔除。作为一种实施例而言:本发明30min的NEE由涡动相关通量计算软件EddyPro6.1对10Hz的湍流原始资料进行处理得到,其主要步骤包括:野点剔除、时间延迟校正、坐标旋转、超声虚温修正、空气密度效应修正和频率响应修正。对计算得到的30min通量资料,进一步根据质量等级标志剔除低质量的数据,并剔除由于红外气体分析仪镜面污染所造成的不可信数据。进一步对NEE资料进行夜间摩擦风速修正,即剔除夜间摩擦风速小0.2m/s的NEE数据。所形成的无缺失的数据将作为建模的有效数据集;The data preprocessing in step S2 is specifically as follows: according to the preset threshold interval, the data outliers outside the threshold interval are eliminated. As an embodiment: the 30-min NEE of the present invention is obtained by processing the 10 Hz turbulence original data by the eddy-related flux calculation software EddyPro6.1, and its main steps include: wild point elimination, time delay correction, coordinate rotation, ultrasonic virtual temperature correction, air density effect correction and frequency response correction. For the calculated 30-min flux data, low-quality data are further eliminated according to the quality grade mark, and unreliable data caused by the contamination of the infrared gas analyzer mirror are eliminated. The NEE data is further corrected for the night friction wind speed, that is, the NEE data with a night friction wind speed less than 0.2 m/s is eliminated. The resulting non-missing data will be used as a valid data set for modeling;
总体说,本发明步骤S2剔除异常值时,共进行三个方面的处理,(1)剔除夜间临界摩擦风速取0.2m/s的数据;(2)剔除降水量大于0的数据;(3)剔除-22.72μmol·s-1·m-2≤NEE≤22.72μmol·s-1·m-2以外的数据;(4)剔除NEE与平均值相差超过4倍标准差的数据。去除后获得的有效数据率为36.32%。高于国际通量网(FLUXNET)35%的平均值。Generally speaking, when removing abnormal values in step S2 of the present invention, three aspects of processing are performed: (1) removing data with a critical friction wind speed of 0.2 m/s at night; (2) removing data with precipitation greater than 0; (3) removing data other than -22.72 μmol·s -1 ·m -2 ≤ NEE ≤ 22.72 μmol·s -1 ·m -2 ; (4) removing data with a difference of more than 4 standard deviations between NEE and the average value. The effective data rate obtained after removal is 36.32%, which is higher than the average value of 35% of the international flux network (FLUXNET).
S3、利用最大互信息系数法分析有效的净生态系统CO2交换量与环境驱动变量数据的相关性,从环境驱动变量数据中筛选与净生态系统CO2交换量相关性较大的前N个主控因子;以N个主控因子为输入量,对应的净生态系统CO2交换量为输出量,构建有效数据库;S3. Use the maximum mutual information coefficient method to analyze the correlation between the effective net ecosystem CO2 exchange and the environmental driving variable data, and select the top N main controlling factors with the largest correlation with the net ecosystem CO2 exchange from the environmental driving variable data; use the N main controlling factors as input and the corresponding net ecosystem CO2 exchange as output to build an effective database;
6、步骤S3具体为:6. Step S3 is specifically:
S31、将净生态系统CO2交换量X和任一环境驱动变量数据Y按照数据对的形式D={(X1,Y1),(X2,Y2),···,(Xn,Yn)构建一个散点图,然后在水平和竖直方向上分别划分a和b个网格,一组a和b的值对应一种划分尺度,而每一种划分尺度对应多种划分方案,每一种划分方案下变量X和Y的互信息值为:S31. Construct a scatter plot of the net ecosystem CO2 exchange X and any environmental driving variable data Y in the form of data pairs D = {( X1 , Y1 ), ( X2 , Y2 ), ..., ( Xn , Yn ). Then divide the grids into a and b grids in the horizontal and vertical directions respectively. A set of a and b values corresponds to a division scale, and each division scale corresponds to multiple division schemes. The mutual information value of variables X and Y under each division scheme is:
S32、通过步骤S31计算所有的划分方案下的互信息值,取最大值即为该划分尺度的最大互信息系数:S32, calculate the mutual information values under all the partitioning schemes through step S31, and take the maximum value as the maximum mutual information coefficient of the partitioning scale:
I*(X,Y)=max(I(X,Y));I * (X, Y) = max(I(X, Y));
S33:对步骤S32所述的公式采用log2 min(a,b)进行归一化处理,即可获得X和Y在该划分尺度上的归一化信息值:S33: The formula in step S32 is normalized using log 2 min(a,b) to obtain the normalized information values of X and Y on the division scale:
S33、不同的a和b对应不同的M(D),计算所有划分尺度的M(D)构成信息值特征矩阵M(D)a,b,则X和Y的最大互信息MIC的值即可通过计算信息值的特征矩阵的最大值获得:S33. Different a and b correspond to different M(D). The M(D) of all partitioning scales is calculated to form the information value characteristic matrix M(D) a,b . Then the value of the maximum mutual information MIC of X and Y can be obtained by calculating the maximum value of the characteristic matrix of the information value:
其中,B*(n)=n0.6是网格数的上限,n是数据量的大小;Among them, B*(n)=n 0.6 is the upper limit of the number of grids, and n is the size of the data;
S34、计算所有环境驱动变量数据与净生态系统CO2交换量之间的MIC值,优先选择与净生态系统CO2交换量之间MIC值较大的环境驱动变量数据;MIC的物理意义等同于传统回归分析方法中的决定系数(R2),MIC(X,Y)的取值范围为[0,1],当MIC(X,Y)值为1时,表示变量Y与变量X完全相关,当MIC(X,Y)值为0时,表示变量Y与变量X完全独立。S34. Calculate the MIC value between all environmental driving variable data and the net ecosystem CO2 exchange, and give priority to environmental driving variable data with larger MIC values between them and the net ecosystem CO2 exchange; the physical meaning of MIC is equivalent to the determination coefficient ( R2 ) in the traditional regression analysis method. The value range of MIC(X,Y) is [0,1]. When the MIC(X,Y) value is 1, it means that variable Y is completely correlated with variable X. When the MIC(X,Y) value is 0, it means that variable Y is completely independent of variable X.
S35、计算所有环境驱动变量数据之间的MIC值,最终确定N个NEE的主控因子[xi|i=1,…,N]。S35. Calculate the MIC values among all environmental driving variable data, and finally determine the main controlling factors [xi | i=1,…,N] of NEEs.
S4、对有效数据库中的每一项数据作归一化处理,得到归一化后的数据;将将归一化后的数据分为训练集和测试集;S4, normalizing each item of data in the valid database to obtain normalized data; dividing the normalized data into a training set and a test set;
本发明中以归一化后的数据集的75%作为训练数据库,剩余的25%作为验证数据库;In the present invention, 75% of the normalized data set is used as the training database, and the remaining 25% is used as the validation database;
需要说明的是,步骤S4中在进行归一化处理时采用以下公式:It should be noted that the following formula is used when performing normalization processing in step S4:
x'=(x-xmin)/(xmax-xmin)x'=(xx min )/(x max -x min )
其中:x’为归一化后样本值,x为样本真实值,xmax为样本最大值,xmin为样本最小值;所述样本真实值包括从数据库中的带入数据。Wherein: x' is the normalized sample value, x is the true value of the sample, x max is the maximum value of the sample, and x min is the minimum value of the sample; the true value of the sample includes the data brought in from the database.
S5、建立净生态系统CO2交换量支持向量机预测模型,利用训练集训练所述支持向量机模型,得到训练完成的模型;S5, establishing a support vector machine prediction model for net ecosystem CO2 exchange, and training the support vector machine model using a training set to obtain a trained model;
需要说明的是,结合支持向量机理论和步骤S4得到的训练数据库[(xi,j,yj)|i=1,…,N;j=1,…,l1](xi是得到的影响NEE的主控因子,yi是对应的NEE值,l1是训练数据库的样本总量),可以建立NEE的预测模型,其表达式如下:It should be noted that, by combining the support vector machine theory and the training database [( xi , j, yj ) | i = 1, ..., N; j = 1, ..., l1 ] obtained in step S4 ( xi is the main control factor affecting NEE, yi is the corresponding NEE value, l1 is the total number of samples in the training database), a prediction model for NEE can be established, and its expression is as follows:
其中f(x)是预测值,是非线性映射函数,w和b是待调整系数,可通过求解如下被约束的二次最优化问题得到待调整系数(w和b):Where f(x) is the predicted value, is a nonlinear mapping function, w and b are coefficients to be adjusted, and the coefficients to be adjusted (w and b) can be obtained by solving the following constrained quadratic optimization problem:
约束条件为: The constraints are:
式中,c是惩罚因子,p为描述模型解的稀疏性的敏感损失系数,ξ和ξ*是松弛变量。引入拉格朗日乘子(α,α*)可以将所述最优化问题转化为双偶问题:Where c is the penalty factor, p is the sensitive loss coefficient describing the sparsity of the model solution, and ξ and ξ* are relaxation variables. The introduction of Lagrange multipliers (α, α*) can transform the optimization problem into a dual problem:
约束条件为: The constraints are:
式中,K(xi,xj)为核函数。Where K( xi , xj ) is the kernel function.
支持向量机核函数选择最适用于非线性预测的高斯径向基(RBF)核函数:The support vector machine kernel function selects the Gaussian radial basis (RBF) kernel function that is most suitable for nonlinear prediction:
g为核函数参数。g is the kernel function parameter.
待调整参数w可以由拉格朗日乘子和核函数计算得到,其表达式为:The parameter w to be adjusted can be calculated by Lagrange multipliers and kernel functions, and its expression is:
最终,NEE的SVR预测模型为:Finally, the SVR prediction model of NEE is:
S6、利用人工蜂群优化算法优化所述训练完成的模型,得到最优预测模型;S6. Optimizing the trained model using an artificial bee colony optimization algorithm to obtain an optimal prediction model;
上述三个参数(p,c,g)对SVR模型的预测精度具有重要的影响,需要对三个参数进行同时寻优得到最优参数组合,通过所述的最优参数组合建立最优化的NEE预测模型,本发明采用人工蜂群优化算法进行参数寻优,具体步骤如下:The above three parameters (p, c, g) have an important influence on the prediction accuracy of the SVR model. It is necessary to optimize the three parameters simultaneously to obtain the optimal parameter combination. The optimal NEE prediction model is established through the optimal parameter combination. The present invention adopts the artificial bee colony optimization algorithm to optimize the parameters. The specific steps are as follows:
S61、采用十折交叉验证方法,构建人工蜂群优化算法的优化目标函数(fu),计算公式如下:S61. Using the ten-fold cross validation method, the optimization objective function (f u ) of the artificial bee colony optimization algorithm is constructed. The calculation formula is as follows:
u是三个参数(p,c,g)的取值,fu是训练数据库的交叉验证均方误差(CVMSE),M是训练数据库的数量,S是交叉验证将训练数据库划分的分数,GS是用于验证的第S份数据,yi是通量塔测得的实际值,f(xi)|u是当(p,c,g)等于u时通过SVR模型计算得到的NEE的预测值。u is the value of the three parameters (p, c, g), fu is the cross-validation mean square error (CVMSE) of the training database, M is the number of training databases, S is the score by which the training database is divided by cross-validation, G S is the Sth data used for validation, yi is the actual value measured by the flux tower, and f( xi )|u is the predicted value of NEE calculated by the SVR model when (p, c, g) is equal to u.
S62:对算法进行初始化设置,设置最大迭代次数maxCycle、蜜蜂总数NP、食物源数量SN(NP/2)、维数D、个体最大更新次数limit以及待优化参数c,g,p的取值范围,采用人工蜂群优化算法即可获得参数组合(p,c,g)的最优解;S62: Initialize the algorithm, set the maximum number of iterations maxCycle, the total number of bees NP, the number of food sources SN (NP/2), the dimension D, the maximum number of individual updates limit, and the value ranges of the parameters to be optimized c, g, and p, and use the artificial bee colony optimization algorithm to obtain the optimal solution of the parameter combination (p, c, g);
S63:人工蜂群优化算法共包含三个阶段,即雇佣蜂阶段、观察蜂阶段和侦查蜂阶段。在雇佣蜂阶段,根据公式vij=uij+θij(uij-ukj)生成NP个备选解,并通过步骤S61得到的fu对备选解进行评估,然后通过轮盘赌的方式更新雇佣蜂的解;在观察蜂阶段,从根据公式选择的解中生成NP个备选解,并通过步骤S61得到的fu对备选解进行评估,然后通过轮盘赌的方式更新观察蜂的解;在侦查蜂阶段,如果存在某个解在迭代limit次后仍没有被更新,则采用公式uij=uimin+rand(0,1)(ujmax-ujmin)对其进行更新。S63: The artificial bee colony optimization algorithm includes three stages, namely the employed bee stage, the observation bee stage and the scout bee stage. In the employed bee stage, NP candidate solutions are generated according to the formula v ij = u ij + θ ij (u ij - u kj ), and the candidate solutions are evaluated by f u obtained in step S61, and then the employed bee solutions are updated by roulette. In the observation bee stage, the solution is updated according to the formula v ij = u ij + θ ij (u ij - u kj ). NP candidate solutions are generated from the solution selected by the formula, and the candidate solutions are evaluated by f u obtained in step S61, and then the solution of the observer bee is updated by roulette. In the scout bee stage, if a solution has not been updated after iteration limit times, it is updated by the formula u ij =u imin +rand(0,1)(u jmax -u jmin ).
S64:记录每个循环中最小的CVMSE对应的参数组合(p,c,g);S64: Record the parameter combination (p, c, g) corresponding to the minimum CVMSE in each cycle;
S65:重复步骤S63和步骤S64,直到达到终止条件,输出所有循环中最小的fu对应的参数组合(p,c,g),所述参数组合即为最优参数组合.S65: Repeat steps S63 and S64 until the termination condition is reached, and output the parameter combination (p, c, g) corresponding to the smallest fu in all cycles, which is the optimal parameter combination.
S7、利用测试集测试最优预测模型,并对最优预测模型进行指标评价,得到最终模型;S7, using the test set to test the optimal prediction model, and performing index evaluation on the optimal prediction model to obtain the final model;
S8、利用最终模型进行净生态系统CO2交换量预测。S8. Use the final model to predict net ecosystem CO2 exchange.
需要说明的是,在最后进行预测时,还需要将归一化后的预测结果进行反归一化,反归一化处理时采用以下公式:x=x'(xmax-xmin)+xmin。It should be noted that, when the prediction is finally performed, the normalized prediction result needs to be denormalized, and the following formula is used for the denormalization process: x=x'(x max -x min )+x min .
本发明所述的一种净生态系统CO2交换量的预测方法中,通过收集通量观测塔的开路涡度相关系统监测到环境驱动变量和NEE数据,采用MIC–SVR预测方法,有效的筛选预测模型的特征变量,构建环境驱动变量与NEE之间SVR模型,提高对NEE预测精度。In the method for predicting the net ecosystem CO2 exchange amount described in the present invention, the environmental driving variables and NEE data are monitored by collecting the open-path eddy covariance system of the flux observation tower, and the MIC-SVR prediction method is adopted to effectively screen the characteristic variables of the prediction model, construct the SVR model between the environmental driving variables and NEE, and improve the prediction accuracy of NEE.
最后,作为一种实施例,本发明具体实验过程如下:Finally, as an embodiment, the specific experimental process of the present invention is as follows:
L1、对建立在神农架大九湖3号湖附近的通量观测塔的数据进行收集,数据时间从2018年1月–2018年12月。数据主要包括CO2净生态系统交换量NEE原始数据及12个环境变量(Ta、RH、PPFD、RN、SWIN、VPD、Ts1、Ts2、Ts3、SWC1、SWC2、SWC3)的原始数据。L1. Collect data from the flux observation tower built near Lake No. 3 of Dajiu Lake in Shennongjia from January to December 2018. The data mainly include the original data of CO2 net ecosystem exchange (NEE) and 12 environmental variables (Ta, RH, PPFD, RN, SWIN, VPD, Ts 1 , Ts 2 , Ts 3 , SWC 1 , SWC 2 , SWC 3 ).
L2、对采集到的原始数据进行质量控制,采用MATLAB按照前述方法对原始数据进行剔除,最终获得2018年的有效数据集。L2. Perform quality control on the collected raw data, use MATLAB to eliminate the raw data according to the above method, and finally obtain the valid data set for 2018.
表1 2018年神农架大九湖亚高山泥碳湿地半小时尺度NEE通量缺失情况Table 1 Missing half-hourly NEE flux in the Dajiuhu subalpine peat wetland in Shennongjia in 2018
L3、基于上述得到的有效数据集,通过最大互信息系数MIC方法分析环境变量与NEE的相关性,根据计算得到的MIC值并结合权利要求3所述的原则选择NEE的主控因子,最终确定六个主控因子:PPFD、Ta、Ts3、VPD、RH、SWC3。L3. Based on the valid data set obtained above, the correlation between environmental variables and NEE is analyzed by the maximum mutual information coefficient MIC method. The main controlling factors of NEE are selected according to the calculated MIC value and the principle described in claim 3. Finally, six main controlling factors are determined: PPFD, Ta, Ts 3 , VPD, RH, and SWC 3 .
表2最大互信息系数(MIC)计算结果Table 2 Maximum Mutual Information Coefficient (MIC) calculation results
L4、以L3确定的主控因子为输入变量,以对应的NEE为输出变量,构建用于SVR建模的有效数据库[(PPFDj,Taj,Ts3j,VPDj,RHj,SWC3j,yj)|j=1,…,l],l是数据库的样本数量,共6364个样本;L4, using the main control factors determined in L3 as input variables and the corresponding NEE as output variables, construct an effective database for SVR modeling [(PPFD j , Ta j , Ts 3j , VPD j , RH j , SWC 3j , y j )|j=1,…,l], where l is the number of samples in the database, a total of 6364 samples;
L5、对所述数据库中的每一项数据进行归一化处理,以有效数据集的75%作为训练数据库(4773个样本),剩余的25%作为验证数据库(1591个样本);L5. Normalize each item of data in the database, use 75% of the valid data set as the training database (4773 samples), and the remaining 25% as the verification database (1591 samples);
L6、采用支持向量机机器学习算法,将步骤L5归一化处理后的数据作为输入变量,带入到支持向量回归公式,建立支持向量回归机模型;所述向量回归公式为:L6, using the support vector machine machine learning algorithm, the data normalized in step L5 is used as input variables, and is introduced into the support vector regression formula to establish a support vector regression model; the vector regression formula is:
L7、采用人工蜂群优化算法,对步骤L6建立的支持向量回归模型进行优化,建立最优化的NEE预测模型。L7. Use the artificial bee colony optimization algorithm to optimize the support vector regression model established in step L6 and establish the optimal NEE prediction model.
L8、请参考图2,图2是训练数据库预测结果;将L5的训练数据库带入L7建立的NEE预测模型,决定性系数R2为0.91,预测均方根误差Rmse为0.011。L8. Please refer to Figure 2, which is the prediction result of the training database; the training database of L5 is brought into the NEE prediction model established by L7, the determination coefficient R2 is 0.91, and the prediction root mean square error Rmse is 0.011.
L9、请参考图3,图3是验证数据库预测结果;将L5的训练数据库带入L7建立的NEE模型进行预测并反归一化,即可获得NEE的预测值,决定性系数R2为0.85,预测均方根误差Rmse为0.025。L9, please refer to Figure 3, which is the prediction result of the verification database; bring the training database of L5 into the NEE model established by L7 for prediction and denormalization to obtain the predicted value of NEE. The determination coefficient R2 is 0.85 and the prediction root mean square error Rmse is 0.025.
综合来看,本发明的有益效果是:具体考虑了NEE与其各主控环境驱动变量之间的关系,采用筛选的主控因子作为NEE模型的输入变量,有效改善了模型的预测性能。In summary, the beneficial effects of the present invention are as follows: the relationship between NEE and its main controlled environmental driving variables is specifically considered, and the selected main controlled factors are used as input variables of the NEE model, which effectively improves the prediction performance of the model.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211522956.9A CN115907178B (en) | 2022-11-30 | 2022-11-30 | Clean ecosystem CO 2 Exchange amount prediction method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211522956.9A CN115907178B (en) | 2022-11-30 | 2022-11-30 | Clean ecosystem CO 2 Exchange amount prediction method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115907178A true CN115907178A (en) | 2023-04-04 |
| CN115907178B CN115907178B (en) | 2023-12-15 |
Family
ID=86486577
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211522956.9A Active CN115907178B (en) | 2022-11-30 | 2022-11-30 | Clean ecosystem CO 2 Exchange amount prediction method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115907178B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118114561A (en) * | 2024-03-06 | 2024-05-31 | 重庆师范大学 | Water-gas interface CO based on water surface fluctuation intensity2Exchange coefficient model construction method |
| CN119272240A (en) * | 2024-12-09 | 2025-01-07 | 南京信息工程大学 | A model construction method and system for calculating the NEE change of farmland caused by high temperature |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102495919A (en) * | 2011-11-18 | 2012-06-13 | 华南农业大学 | Extraction method for influence factors of carbon exchange of ecosystem and system |
| CN105447510A (en) * | 2015-11-11 | 2016-03-30 | 上海大学 | Fluctuating wind velocity prediction method based on artificial bee colony optimized least square support vector machine (LSSVM) |
| CN108427845A (en) * | 2018-03-16 | 2018-08-21 | 中南大学 | A kind of Pb-Zn deposits mining process carbon emission short term prediction method |
| CN110263299A (en) * | 2019-05-31 | 2019-09-20 | 西南大学 | A kind of alpine meadow ecosystem breathing carbon emission evaluation method based on remote sensing |
| CN110533475A (en) * | 2019-08-30 | 2019-12-03 | 东南大学 | A kind of county, cities and towns, domain motor vehicle's amount prediction method based on support vector machines |
| CN110674947A (en) * | 2019-09-02 | 2020-01-10 | 三峡大学 | Spectral feature variable selection and optimization method based on Stacking integrated framework |
| CN111401792A (en) * | 2020-04-16 | 2020-07-10 | 三峡大学 | A dynamic security assessment method based on extreme gradient boosting decision tree |
| CN111967506A (en) * | 2020-07-31 | 2020-11-20 | 西安工程大学 | Electroencephalogram signal classification method for optimizing BP neural network by artificial bee colony |
| WO2022160705A1 (en) * | 2021-01-26 | 2022-08-04 | 中国电力科学研究院有限公司 | Method and apparatus for constructing dispatching model of integrated energy system, medium, and electronic device |
| CN114881356A (en) * | 2022-05-31 | 2022-08-09 | 江苏地质矿产设计研究院(中国煤炭地质总局检测中心) | Prediction method of urban traffic carbon emission based on particle swarm optimization optimization of BP neural network |
| CN114970184A (en) * | 2022-06-07 | 2022-08-30 | 中国科学院地理科学与资源研究所 | Assimilation method and system for simultaneous retrieval of high-resolution anthropogenic CO2 emissions and natural CO2 fluxes |
| CN115204618A (en) * | 2022-06-22 | 2022-10-18 | 中国气象科学研究院 | CCMVS Regional Carbon Source-Sink Assimilation Inversion Evaluation System |
| US20220344934A1 (en) * | 2021-04-27 | 2022-10-27 | Accenture Global Solutions Limited | Energy demand forecasting and sustainable energy management using machine learning |
-
2022
- 2022-11-30 CN CN202211522956.9A patent/CN115907178B/en active Active
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102495919A (en) * | 2011-11-18 | 2012-06-13 | 华南农业大学 | Extraction method for influence factors of carbon exchange of ecosystem and system |
| CN105447510A (en) * | 2015-11-11 | 2016-03-30 | 上海大学 | Fluctuating wind velocity prediction method based on artificial bee colony optimized least square support vector machine (LSSVM) |
| CN108427845A (en) * | 2018-03-16 | 2018-08-21 | 中南大学 | A kind of Pb-Zn deposits mining process carbon emission short term prediction method |
| CN110263299A (en) * | 2019-05-31 | 2019-09-20 | 西南大学 | A kind of alpine meadow ecosystem breathing carbon emission evaluation method based on remote sensing |
| CN110533475A (en) * | 2019-08-30 | 2019-12-03 | 东南大学 | A kind of county, cities and towns, domain motor vehicle's amount prediction method based on support vector machines |
| CN110674947A (en) * | 2019-09-02 | 2020-01-10 | 三峡大学 | Spectral feature variable selection and optimization method based on Stacking integrated framework |
| CN111401792A (en) * | 2020-04-16 | 2020-07-10 | 三峡大学 | A dynamic security assessment method based on extreme gradient boosting decision tree |
| CN111967506A (en) * | 2020-07-31 | 2020-11-20 | 西安工程大学 | Electroencephalogram signal classification method for optimizing BP neural network by artificial bee colony |
| WO2022160705A1 (en) * | 2021-01-26 | 2022-08-04 | 中国电力科学研究院有限公司 | Method and apparatus for constructing dispatching model of integrated energy system, medium, and electronic device |
| US20220344934A1 (en) * | 2021-04-27 | 2022-10-27 | Accenture Global Solutions Limited | Energy demand forecasting and sustainable energy management using machine learning |
| CN114881356A (en) * | 2022-05-31 | 2022-08-09 | 江苏地质矿产设计研究院(中国煤炭地质总局检测中心) | Prediction method of urban traffic carbon emission based on particle swarm optimization optimization of BP neural network |
| CN114970184A (en) * | 2022-06-07 | 2022-08-30 | 中国科学院地理科学与资源研究所 | Assimilation method and system for simultaneous retrieval of high-resolution anthropogenic CO2 emissions and natural CO2 fluxes |
| CN115204618A (en) * | 2022-06-22 | 2022-10-18 | 中国气象科学研究院 | CCMVS Regional Carbon Source-Sink Assimilation Inversion Evaluation System |
Non-Patent Citations (6)
| Title |
|---|
| 彭凤姣;葛继稳;李艳元;李金群;周颖;张志麒;: "神农架大九湖泥炭湿地CO_2通量特征及其影响因子", 生态环境学报, no. 03 * |
| 徐龙琴;刘双印;: "基于PSO-WSVR的短期水质预测模型研究", 郑州大学学报(工学版), no. 03 * |
| 王琳;张;彭文辉;徐波;王前程;: "基于人工蜂群优化的支持向量回归预测方法", 系统工程与电子技术, no. 02 * |
| 陈强;蒋卫国;陈曦;袁丽华;王文杰;潘英姿;王维;刘孝富;刘海江;: "基于支持向量回归模型的水稻田甲烷排放通量预测研究", 环境科学, no. 08, pages 1 * |
| 颜弋凡;安路达;吕志民;: "基于最大互信息系数属性选择的冷轧产品机械性能预测", 中南大学学报(自然科学版), no. 01, pages 121 - 127 * |
| 高雷阜;高晶;赵世杰;: "人工蜂群算法优化SVR的预测模型", 计算机工程与应用, no. 11, pages 1 - 4 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118114561A (en) * | 2024-03-06 | 2024-05-31 | 重庆师范大学 | Water-gas interface CO based on water surface fluctuation intensity2Exchange coefficient model construction method |
| CN118114561B (en) * | 2024-03-06 | 2024-08-13 | 重庆师范大学 | Construction method of CO2 exchange coefficient model between water and air interface based on water surface fluctuation intensity |
| CN119272240A (en) * | 2024-12-09 | 2025-01-07 | 南京信息工程大学 | A model construction method and system for calculating the NEE change of farmland caused by high temperature |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115907178B (en) | 2023-12-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110532674B (en) | A method for measuring the furnace temperature of a coal-fired power station boiler | |
| WO2022160771A1 (en) | Method for classifying hyperspectral images on basis of adaptive multi-scale feature extraction model | |
| CN103440528B (en) | Thermal power unit operation optimization method and device based on power consumption analysis | |
| CN115907178A (en) | Clean ecosystem CO 2 Method for predicting exchange amount | |
| CN109858700A (en) | BP neural network heating system energy consumption prediction technique based on similar screening sample | |
| CN111931983B (en) | Precipitation prediction method and system | |
| CN112861429B (en) | Wind turbine engine room transfer function calculation method | |
| CN108984995A (en) | A kind of ecology garden landscape design method of evaluation simulation | |
| CN107798383A (en) | Improved core extreme learning machine localization method | |
| CN119228590B (en) | A method and system for intelligent control of building water use | |
| CN118761859A (en) | Building energy consumption prediction and control system based on machine learning | |
| CN111914488A (en) | Data regional hydrological parameter calibration method based on antagonistic neural network | |
| CN110942182A (en) | Method for establishing typhoon prediction model based on support vector regression | |
| CN116842358A (en) | Soft measurement modeling method based on multi-scale convolution and self-adaptive feature fusion | |
| CN119066913A (en) | A high-performance computing method for multi-scale simulations | |
| CN103885867A (en) | Online evaluation method of performance of analog circuit | |
| CN117972625A (en) | Data assimilation method of attention neural network based on four-dimensional variational constraints | |
| CN116722545A (en) | Photovoltaic power generation prediction method and related equipment based on multi-source data | |
| CN114819382A (en) | A photovoltaic power prediction method based on LSTM | |
| CN114118401A (en) | Neural network-based power distribution network flow prediction method, system, device and storage medium | |
| CN111125629B (en) | Domain-adaptive PLS regression model modeling method | |
| CN118627925A (en) | A method for evaluating causes of short-term wind power forecasting errors based on principal component analysis | |
| CN113742989A (en) | Combustion optimization control method and device, storage medium and electronic equipment | |
| CN119787294A (en) | Photovoltaic output combination prediction method based on error reciprocal method | |
| CN117313917A (en) | Photovoltaic power prediction method based on time coding and machine learning |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |