CN115729343A - Function adjusting method and related device - Google Patents
Function adjusting method and related device Download PDFInfo
- Publication number
- CN115729343A CN115729343A CN202110997718.2A CN202110997718A CN115729343A CN 115729343 A CN115729343 A CN 115729343A CN 202110997718 A CN202110997718 A CN 202110997718A CN 115729343 A CN115729343 A CN 115729343A
- Authority
- CN
- China
- Prior art keywords
- gesture
- adjustment
- radar
- target
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- User Interface Of Digital Computer (AREA)
Abstract
Description
技术领域technical field
本申请涉及雷达领域,尤其涉及一种功能调节方法以及相关装置。The present application relates to the field of radar, and in particular to a function adjustment method and a related device.
背景技术Background technique
随着社会的进步和物质生活的快速发展,人们对于更加智能、便捷的人机交互方式的需求越来越强烈。人机交互是一门研究系统与用户之间的交互关系的学问,系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互技术在未来终端、智能座舱等应用场景具有极高的发展潜力和应用价值。With the progress of society and the rapid development of material life, people's demand for more intelligent and convenient human-computer interaction methods is becoming stronger and stronger. Human-computer interaction is a study of the interactive relationship between the system and the user. The system can be a variety of machines, or computerized systems and software. Human-computer interaction technology has extremely high development potential and application value in application scenarios such as future terminals and smart cockpits.
人机交互方式正持续发展中,可分为接触式交互与非接触式交互。最初键盘或物理按键的交互方式有较高的准确率,无冗余操作,但交互不直观且需要复杂的设备接口以此覆盖所有操作;图形用户界面的诞生摆脱了抽象的命令,交互设备一般是鼠标,但鼠标设备的控制与界面显现的显示域是分离的,因而用户需要对目标进行间接的交互操作,从而更加增加了交互的难度;触摸交互界面实现了直接的交互操作,从而在保留了一部分触觉反馈的同时,进一步降低了用户的学习和认知成本。然而在触屏上点击时往往难以精确地控制落点位置,输入信号的粒度远远低于交互元素的响应粒度,同时,其交互形态仍然为二维界面;而当前非接触式交互主要有声控交互、动作交互等方式。其中声控交互对噪声环境的严苛要求限制了其应用场景。The human-computer interaction method is continuously developing, which can be divided into contact interaction and non-contact interaction. Initially, the interaction method of keyboard or physical buttons has a high accuracy rate and no redundant operation, but the interaction is not intuitive and requires a complex device interface to cover all operations; the birth of the graphical user interface got rid of abstract commands, and interactive devices generally It is a mouse, but the control of the mouse device is separated from the display domain where the interface appears, so the user needs to perform indirect interactive operations on the target, which further increases the difficulty of interaction; the touch interactive interface realizes direct interactive operations, thus retaining While reducing part of the tactile feedback, it further reduces the user's learning and cognitive costs. However, when clicking on the touch screen, it is often difficult to accurately control the position of the landing point. The granularity of the input signal is far lower than the response granularity of the interactive elements. At the same time, its interactive form is still a two-dimensional interface; while the current non-contact interaction mainly includes voice control interaction, action interaction, etc. Among them, the strict requirements of voice-activated interaction on the noise environment limit its application scenarios.
手势识别作为人机交互的重要方式之一,成为了研究的热点,在各个领域得到了广泛的应用。例如在车载环境中,由于行车过程中环境噪声过大以及车内可能存在多人说话的场景,语音识别的准确率往往不尽如人意。对于触控屏方式,驾驶员必须转移视线进行操作,影响行车安全。因此在车载环境中,手势识别作为一种容许盲操、非接触的交互方式有极高的需求。As one of the important ways of human-computer interaction, gesture recognition has become a research hotspot and has been widely used in various fields. For example, in the vehicle environment, the accuracy of speech recognition is often not satisfactory due to the excessive environmental noise during driving and the possibility of multiple people talking in the vehicle. For the touch screen mode, the driver must shift his sight to operate, which affects driving safety. Therefore, in the vehicle environment, gesture recognition has a very high demand as a blind operation and non-contact interaction method.
传统的手势识别技术主要是利用光学摄像头进行的,光学图像可以清晰地表征手势的形状和纹理,但其限制性也较大,首先光学摄像头在强光或者昏暗光照下的效果较差;其次它对视距的限制也较大,用户必须在某个空间内进行动作识别,并且不能有障碍物的存在;再者,光学图像的存贮代价以及计算成本都相对较高;另外,光学技术存在较大的隐私泄漏风险,无法确保安全性。相比之下,基于毫米波的手势识别就体现出了它的优势,不仅不受光照条件的影响,而且使用范围也有了较大的提高,并且其低功耗的优点能让它很好地集成,且没有涉及用户隐私的问题。Traditional gesture recognition technology is mainly carried out by using optical cameras. Optical images can clearly represent the shape and texture of gestures, but its limitations are also relatively large. First, optical cameras have poor effects under strong or dim light; secondly, they There is also a large restriction on the viewing distance, and the user must perform action recognition in a certain space, and there must be no obstacles; moreover, the storage cost and calculation cost of optical images are relatively high; in addition, optical technology exists Large risk of privacy leakage, unable to ensure security. In contrast, gesture recognition based on millimeter waves has shown its advantages, not only is not affected by lighting conditions, but also has a greatly improved range of use, and its low power consumption allows it to work well Integrated, and there is no issue involving user privacy.
基于雷达的手势识别具有精准度高、流畅性好、环境适应性强、保护隐私的特点,可用于隔空精细调节,在智能座舱、未来终端等场景具有重要应用价值。当前单一的毫米波手势识别系统其输出结果只能实现单指令操作而无法完成对设备某些功能的双向精确调节,但未来同样要求利用手势进行如音量调节、地图缩放等精细调节功能。Radar-based gesture recognition has the characteristics of high accuracy, good fluency, strong environmental adaptability, and privacy protection. It can be used for fine adjustment in the air, and has important application value in scenarios such as smart cockpits and future terminals. The output of the current single millimeter-wave gesture recognition system can only achieve single-instruction operations and cannot complete two-way precise adjustments to certain functions of the device. However, in the future, gestures will also be required to perform fine-tuning functions such as volume adjustment and map zooming.
发明内容Contents of the invention
第一方面,本申请提供了一种功能调节方法,所述方法包括:In a first aspect, the present application provides a function adjustment method, the method comprising:
获取第一雷达数据;Obtain the first radar data;
应理解,本申请实施例中的第一雷达数据可以指雷达系统中接收天线在模拟处理电路处接收的反射信号,该反射信号为模拟信号。在得到模拟信号后,模拟信号可以被发射到模数转换器电路并由该电路进行信号的数字化,以得到数字信号。It should be understood that the first radar data in this embodiment of the present application may refer to a reflected signal received by a receiving antenna in a radar system at an analog processing circuit, where the reflected signal is an analog signal. After obtaining the analog signal, the analog signal may be transmitted to an analog-to-digital converter circuit and digitized by the circuit to obtain a digital signal.
应理解,模拟处理电路所得到的模拟信号可以被发射到模数转换器电路并由该电路进行信号的数字化,以得到数字信号,本申请实施例中的第一雷达数据还可以指上述数字化得到的数字信号,这里并不限定;It should be understood that the analog signal obtained by the analog processing circuit can be transmitted to the analog-to-digital converter circuit and digitized by the circuit to obtain a digital signal. The first radar data in the embodiment of the present application can also refer to the above digitized The digital signal of is not limited here;
基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,开启针对于目标功能的调节功能;based on the first radar data indicating a first gesture, and the duration of the first gesture exceeds a first threshold, enabling an adjustment function for a target function;
其中,第一手势可以为预设类型的手势(也就是预先配置的可以开启精细调节功能的手势类型),例如悬停手势等;Wherein, the first gesture may be a preset type of gesture (that is, a pre-configured gesture type that can enable a fine adjustment function), such as a hovering gesture, etc.;
在获取第一雷达数据之后,可以从信号层对第一雷达数据指示的用户的手势的运动特征(例如距离、速度、角度等)进行分析,当用户的手势的持续时间超过第一阈值,且运动特征可以指示第一手势时,开启针对于目标功能的调节功能;After the first radar data is acquired, the motion characteristics (such as distance, speed, angle, etc.) of the user's gesture indicated by the first radar data may be analyzed from the signal layer, when the duration of the user's gesture exceeds the first threshold, and When the motion feature can indicate the first gesture, the adjustment function for the target function is turned on;
其中,获取第一雷达数据之后,当用户的手势的持续时间超过第一阈值时,可以从第一雷达数据中截取部分雷达数据,并通过预训练的神经网络(或者其他手势类别识别方式)对部分雷达数据进行手势识别,当识别结果为第一手势时,开启针对于目标功能的调节功能;Wherein, after the first radar data is acquired, when the duration of the user's gesture exceeds the first threshold, part of the radar data can be intercepted from the first radar data, and a pre-trained neural network (or other gesture category recognition methods) can be used to identify Part of the radar data is used for gesture recognition, and when the recognition result is the first gesture, the adjustment function for the target function is turned on;
在一种可能的实现中,所述第一阈值大于0.7秒且小于1.5秒。In a possible implementation, the first threshold is greater than 0.7 seconds and less than 1.5 seconds.
其中,本申请实施例中的雷达手势(例如第一手势、第二手势、第三手势)为基于雷达且与触摸无关的手势(radar-based touch-independent gesture),也可以称之为“3Dgesture(3D手势)”,雷达手势是指手势在空间上远离电子设备的性质(例如,该手势不需要用户触摸设备,尽管该手势并未排除触摸)。雷达手势本身通常可能仅具有二维的活动信息分量,诸如由左上至右下轻扫组成的雷达手势,但是由于雷达手势距电子设备有一定距离(“third(第三)”维或深度),本申请实施例中的雷达手势通常可以被视为三维;Among them, the radar gestures (such as the first gesture, the second gesture, and the third gesture) in the embodiment of the present application are radar-based touch-independent gestures (radar-based touch-independent gesture), which can also be called " 3Dgesture (3D gesture), radar gesture refers to the nature of a gesture that is spatially distant from the electronic device (eg, the gesture does not require the user to touch the device, although the gesture does not preclude touch). A radar gesture itself may typically only have a two-dimensional active information component, such as a radar gesture consisting of an upper-left to lower-right swipe, but since a radar gesture is some distance from the electronic device (the "third" dimension or depth), The radar gestures in the embodiments of the present application can generally be regarded as three-dimensional;
在一种可能的实现中,第一雷达数据中的部分数据或者全部数据可以为与第一手势相对应的雷达数据,在获取到第一雷达数据之后,需要从中识别出与用户的手势相关的雷达数据,进而可以这部分识别出的雷达数据进行第一手势的相关处理(例如手势类别的确定、手势持续时间的确定等等)。In a possible implementation, some or all of the data in the first radar data may be radar data corresponding to the first gesture. After the first radar data is acquired, it is necessary to identify the The radar data, and further processing related to the first gesture (such as determination of the gesture category, determination of the duration of the gesture, etc.) can be performed on this part of the recognized radar data.
其中,精细调节可以包括功能的开启、以及功能的程度调节,该程度调节可以为数值的增大或减小、显示位置的方向调节、显示区域的缩放调节、硬件的位置或者是形态的调节,例如精细调节可以包括音量大小调节、显示亮度调节或者显示图像的缩放调节、显示界面的移动调节、车窗高度调节、车舱内座椅的前后位置调节等。由于涉及功能的程度调节,因此精细调节的手势需要持续一定的时间来进行调节程度的选择,持续的时间较长。Among them, the fine adjustment may include the opening of the function and the adjustment of the degree of the function. The adjustment of the degree may be the increase or decrease of the value, the direction adjustment of the display position, the zoom adjustment of the display area, the adjustment of the position or form of the hardware, For example, fine adjustments may include volume adjustments, display brightness adjustments or zoom adjustments of displayed images, display interface movement adjustments, window height adjustments, front and rear position adjustments of seats in the cabin, and the like. Since it involves level adjustment of functions, the gesture of fine adjustment needs to last for a certain period of time to select the level of adjustment, and the duration is relatively long.
在一种可能的实现中,可以从检测到手势数据时开启计时,若手势数据的持续时间未超过第一阈值就终止了,则可以开启独立手势调节模式。In a possible implementation, the timing can be started when the gesture data is detected, and if the duration of the gesture data is terminated before exceeding the first threshold, the independent gesture adjustment mode can be started.
其中,独立手势调节模式可以包括功能的开启或者关闭,由于不涉及功能的程度调节,因此独立手势可以为单独的手势,且持续时间很短,例如左挥手、右挥手等。Wherein, the independent gesture adjustment mode may include turning on or off the function, and since it does not involve the degree adjustment of the function, the independent gesture may be a single gesture with a short duration, such as waving left or right.
在基于第一雷达数据指示的第一手势的持续时间超过第一阈值时,可以对第一雷达数据中与第一手势相关的雷达数据进行手势类别的识别(也就是进行第一手势的手势类别的识别),之所以进行第一手势的手势类别的识别,是因为需要基于第一手势的手势类别确定后续精细调节的功能类型(也就是确定目标功能)。应理解,这里的手势类别可以理解为手型类别,不同手势类别的手势之间的手型特征不同。When the duration of the first gesture indicated based on the first radar data exceeds the first threshold, the radar data related to the first gesture in the first radar data can be identified for the gesture category (that is, the gesture category for the first gesture The recognition of the gesture category of the first gesture is performed because it is necessary to determine the function type of the subsequent fine adjustment based on the gesture category of the first gesture (that is, to determine the target function). It should be understood that the gesture category here may be understood as a hand shape category, and gestures of different gesture categories have different hand shape characteristics.
获取第二雷达数据;Obtain the second radar data;
具体的,处理器可以获取到第二雷达数据,其中,第二雷达数据可以是对用户的手势(第二手势)的反射信号得到的;Specifically, the processor may acquire the second radar data, where the second radar data may be obtained from a reflected signal of the user's gesture (second gesture);
响应于所述针对于目标功能的调节功能的开启,根据所述第二雷达数据,确定所述第二雷达数据指示的第二手势、以及所述第二手势的运动特征;In response to the activation of the adjustment function for the target function, according to the second radar data, determine a second gesture indicated by the second radar data and a motion characteristic of the second gesture;
应理解,第一手势和第二手势之间也存在预设的映射关系,具体的,第一手势可以用于开启与第一手势的手势类型对应的目标功能的调节模式,在开启目标功能的调节模式的情况下,用户也只能基于与目标功能的调节模式所对应的手势类型(第二手势的手势类型)进行目标功能的调节。It should be understood that there is also a preset mapping relationship between the first gesture and the second gesture. Specifically, the first gesture can be used to enable the adjustment mode of the target function corresponding to the gesture type of the first gesture. In the case of the adjustment mode of the target function, the user can only adjust the target function based on the gesture type (the gesture type of the second gesture) corresponding to the adjustment mode of the target function.
根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对所述目标功能进行调节。According to the motion characteristics, adjustment information is determined, the adjustment information includes at least one of adjustment range, adjustment direction, and adjustment speed, and the target function is adjusted based on the adjustment information.
其中,调节幅度指示了精细调节的调节大小,例如音量调节的大小、车窗的升起高度等,调节方向可以指示精细调节的调节方向,例如音量调大或者调小,车辆升起或者降低等,调节速度指示了精细调节时单位时间内的调节大小,也就是调节的数值变化速率,例如音量在调节时的大小变化速率,车窗的升起速率等。Among them, the adjustment range indicates the adjustment size of the fine adjustment, such as the size of the volume adjustment, the lift height of the window, etc., and the adjustment direction may indicate the adjustment direction of the fine adjustment, such as increasing or decreasing the volume, raising or lowering the vehicle, etc. , the adjustment speed indicates the adjustment size per unit time during fine adjustment, that is, the rate of change of the value of the adjustment, such as the rate of change of the volume during adjustment, the rate of raising the window, etc.
其中,在精细调节的场景中,上述各个调节信息之间可以相互组合;Wherein, in the scenario of fine adjustment, the above adjustment information can be combined with each other;
需要说明的是,在一些精细调节的实现中,可以只基于调节方向进行精细调节,例如进行左挥手,表示将音量的调大到相邻的固定位点(例如100为最大音量,固定位点可以为0、10、20、30、40、50、60、70、80、90、100),每次左挥手可以调大到相邻的音量位点(例如从10调大到20),进行右挥手,则表示将音量的调小到相邻的固定位点。It should be noted that, in some implementations of fine adjustment, the fine adjustment can be performed only based on the adjustment direction, such as waving the left hand, indicating that the volume will be increased to the adjacent fixed position (for example, 100 is the maximum volume, and the fixed position It can be 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), and each time you wave your hand to the left, you can increase it to the adjacent volume point (for example, increase it from 10 to 20). Waving right means to turn down the volume to the adjacent fixed point.
本申请实施例中,将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,这部分雷达数据可以不作为后续进行精细调节时调节程度的确定依据,而仅仅作为是否开启精细调节的触发条件(本申请实施例中也可以称之为唤醒手势),基于手势持续时间的方式来开启精细调节具有如下的好处:由于手势类型是有限的,在未来功能类型不断丰富的情况下,将手势类型作为开启精细调节功能的方案中手势类型可能不够用(独立手势功能占用一部分手势类型,唤醒手势再占据另一部分手势类型,两者之间不能重叠,否则会出现错误),而基于手势持续时间作为是否开启精细调节模式的依据,则可以让独立手势功能使用的手势类别和唤醒手势重叠,进而可以减少在进行手势实现的功能调节时所需的手势类别。此外,在针对于手势相关的功能调节场景中,尤其是精细调节的场景中,需要尽可能保证整体的手势设计是连续的,当用户想进行基于手势的精细调节时,会下意识知晓调节过程需要连续的一段时间内的手势,在唤醒精细调节的功能时,若将唤醒手势的规则也定义为基于持续时间是否足够长,那么作为用户来说,会认为这部分唤醒手势的操作过程和后续是连贯的。将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,更符合用户的思维惯式和使用习惯,减少用户的学习成本。In the embodiment of the present application, the duration of the gesture indicated by the first radar data is used as the basis for whether to enable the fine adjustment mode. This part of the radar data may not be used as the basis for determining the degree of adjustment in the subsequent fine adjustment, but only as whether to enable the fine adjustment mode. The trigger condition of the adjustment (which can also be referred to as a wake-up gesture in the embodiment of this application), enabling fine adjustment based on the duration of the gesture has the following benefits: Since the types of gestures are limited, in the case of continuous enrichment of future function types , the gesture type may not be enough in the scheme of enabling the fine-tuning function (the independent gesture function occupies a part of the gesture type, and the wake-up gesture occupies another part of the gesture type. The two cannot overlap, otherwise an error will occur), and based on The duration of the gesture is used as the basis for whether to enable the fine adjustment mode, so that the gesture categories used by the independent gesture function and the wake-up gesture can overlap, thereby reducing the gesture categories required for the function adjustment of the gesture implementation. In addition, in the gesture-related function adjustment scenario, especially the fine adjustment scenario, it is necessary to ensure that the overall gesture design is as continuous as possible. When the user wants to perform fine adjustment based on gestures, he will subconsciously know that the adjustment process requires Gestures for a continuous period of time, when waking up the fine-tuning function, if the rules for waking up gestures are also defined based on whether the duration is long enough, then as a user, they will think that the operation process and follow-up of this part of the waking up gesture are coherent. Taking the duration of the gesture indicated by the first radar data as the basis for whether to enable the fine-tuning mode is more in line with the user's thinking and usage habits, and reduces the learning cost of the user.
在一种可能的实现中,所述第一雷达数据为在所述第二雷达数据之前获取的。In a possible implementation, the first radar data is acquired before the second radar data.
在一种可能的实现中,所述第一雷达数据和所述第二雷达数据为在时域上连续获取的雷达数据;或者,所述第一雷达数据和所述第二雷达数据为在时域上间隔目标时间段获取的雷达数据,所述目标时间段的时长小于第二阈值。其中,第二阈值可以是处理器在进行第一雷达数据的相关处理的时间,在该时间内,针对于目标功能的调节功能还未开启。In a possible implementation, the first radar data and the second radar data are radar data acquired continuously in the time domain; or, the first radar data and the second radar data are Radar data acquired at intervals of a target time period on the domain, where the duration of the target time period is less than a second threshold. Wherein, the second threshold may be the time when the processor is processing the first radar data, and during this time, the adjustment function for the target function has not been activated.
在一种可能的实现中,第一手势和第二手势还可以为用户连续的手势动作,所谓连续的手势动作,可以理解为第一手势和所述第二手势的手型相同(或者差异很小),可选的,所述第一手势可以为静止手势或者移动幅度小于阈值的手势,由于第二手势需要对目标功能进行一定调节幅度的调节,因此所述第二手势可以为移动幅度大于阈值的手势。In a possible implementation, the first gesture and the second gesture can also be continuous gesture actions of the user. The so-called continuous gesture actions can be understood as the hand shapes of the first gesture and the second gesture are the same (or The difference is very small), optionally, the first gesture may be a static gesture or a gesture whose movement range is smaller than a threshold, and since the second gesture needs to adjust the target function to a certain extent, the second gesture may be It is a gesture whose movement range is greater than the threshold.
本申请实施例中,第一手势和所述第二手势的手型相同,使得用户在进行精细调节的功能唤醒时的手势和进行精细调节时采用的手势为相同手型的手势,可以让用户在很小的学习成本下就能准确的进行功能调节。In the embodiment of the present application, the hand shapes of the first gesture and the second gesture are the same, so that the gesture when the user wakes up the fine-tuning function and the gesture used when fine-tuning are the same hand-shaped gestures, which can make The user can accurately adjust the function with a small learning cost.
在一种可能的实现中,所述第一手势为手指捏合的手势,所述第二手势为保持所述手指捏合且拖动的手势;或者,所述第一手势为手掌悬停手势,所述第二手势为上抬手势或者下压手势;或者,所述第一手势为手掌悬停手势,所述第二手势为左右挥手手势;或者,所述第一手势为手掌悬停手势,所述第二手势为前后推手势;或者,所述第一手势为握拳的手势,所述第二手势为保持所述握拳且移动的手势;或者,所述第一手势为手掌轻晃手势,所述第二手势为上抬手势或者下压手势;或者,所述第一手势为握拳且伸出大拇指的手势,所述第二手势为保持所述握拳且伸出大拇指并前后推的手势。上述第二手势的手势语义贴合调节功能,符合用户习惯,可以助于降低学习成本。In a possible implementation, the first gesture is a finger pinching gesture, and the second gesture is a gesture of holding the fingers pinching and dragging; or, the first gesture is a palm hovering gesture, The second gesture is an upward gesture or a downward gesture; or, the first gesture is a palm hovering gesture, and the second gesture is a left and right waving gesture; or, the first gesture is a palm hovering gesture Gesture, the second gesture is a gesture of pushing back and forth; or, the first gesture is a gesture of making a fist, and the second gesture is a gesture of keeping the fist and moving; or, the first gesture is a palm For a jiggling gesture, the second gesture is a lifting gesture or a pressing gesture; or, the first gesture is a gesture of making a fist and extending a thumb, and the second gesture is maintaining the fist and extending a thumb. Thumbs up and push back and forth gesture. The gesture-semantic fit adjustment function of the above-mentioned second gesture conforms to user habits and can help reduce learning costs.
在一种可能的实现中,所述开启针对于所述目标功能的调节功能之前,所述方法还包括:基于预设的对应关系,确定所述第一手势的手势类型对应于所述目标功能,其中所述预设的对应关系包括手势类型与功能之间的映射。In a possible implementation, before enabling the adjustment function for the target function, the method further includes: based on a preset correspondence, determining that the gesture type of the first gesture corresponds to the target function , wherein the preset correspondence includes a mapping between gesture types and functions.
在一种可能的实现中,所述第一手势的手势类型为手指捏合,所述目标功能为应用播放的视频或音频的进度调节;或者,In a possible implementation, the gesture type of the first gesture is finger pinching, and the target function is to adjust the progress of the video or audio played by the application; or,
所述第一手势的手势类型为画圈,所述目标功能为音量大小调节;或者,The gesture type of the first gesture is circle drawing, and the target function is volume adjustment; or,
所述第一手势的手势类型为手掌悬停,所述目标功能为显示亮度调节或者显示图像的缩放调节;或者,The gesture type of the first gesture is palm hovering, and the target function is display brightness adjustment or zoom adjustment of a display image; or,
所述第一手势的手势类型为握拳,所述目标功能为显示界面的移动调节;或者,The gesture type of the first gesture is making a fist, and the target function is movement adjustment of the display interface; or,
所述第一手势的手势类型为手掌轻晃,所述目标功能为车窗高度调节;或者,The gesture type of the first gesture is palm flickering, and the target function is window height adjustment; or,
所述第一手势的手势类型为握拳且伸出大拇指,所述目标功能为车舱内座椅的前后位置调节。The gesture type of the first gesture is to make a fist and extend a thumb, and the target function is to adjust the front and rear positions of the seats in the vehicle cabin.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为手指捏合,进而可以开启针对于应用播放的视频或音频的进度调节的功能调节模式。Specifically, the processor may recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds a first threshold, and then recognize that the gesture category of the user's gesture is finger pinching , and then you can turn on the function adjustment mode for adjusting the progress of the video or audio played by the application.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为画圈,进而可以开启针对于音量大小调节的功能调节模式。Specifically, the processor may recognize that there is a gesture of the user in the monitoring area of the radar system at a certain moment, and determine that the duration of the gesture of the user exceeds the first threshold, and then may recognize that the gesture category of the gesture of the user is circle drawing , and then you can turn on the function adjustment mode for volume adjustment.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为手掌悬停,进而可以开启针对于显示亮度调节或者显示图像的缩放调节的功能调节模式。Specifically, the processor can recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds the first threshold, and then can recognize that the gesture category of the user's gesture is palm hanging Stop, and then you can start the function adjustment mode for display brightness adjustment or display image zoom adjustment.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为握拳,进而可以开启针对于显示界面的移动调节的功能调节模式。Specifically, the processor may recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds a first threshold, and then recognize that the gesture category of the user's gesture is a fist, Furthermore, a function adjustment mode for mobile adjustment of the display interface can be enabled.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为手掌轻晃,进而可以开启车窗高度调节的功能调节模式。Specifically, the processor may recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds the first threshold, and then may recognize that the gesture type of the user's gesture is a light palm Shake, and then you can turn on the function adjustment mode of window height adjustment.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为握拳且伸出大拇指,进而可以开启针对于车舱内座椅的前后位置调节的功能调节模式。Specifically, the processor may recognize that there is a gesture of the user in the monitoring area of the radar system at a certain moment, and determine that the duration of the gesture of the user exceeds the first threshold, and then may recognize that the gesture category of the gesture of the user is fist and Stretch out your thumb, and then you can turn on the function adjustment mode for adjusting the front and rear positions of the seats in the cabin.
本申请实施例中,在基于第一雷达数据,确定出存在第一手势,且第一手势的持续时间超过第一阈值时,可以开启针对于目标功能的调节功能。In the embodiment of the present application, when it is determined based on the first radar data that there is a first gesture and the duration of the first gesture exceeds a first threshold, the adjustment function for the target function may be enabled.
具体的,在开启针对于目标功能的调节功能时,可以呈现一定的反馈信息,该反馈信息可以指示针对于目标功能的调节功能已开启,具体的,在开启针对于目标功能的调节功能时,可以进行所述目标功能相对应的目标呈现,所述目标呈现用于指示已开启针对于目标功能的调节功能。Specifically, when the adjustment function for the target function is turned on, certain feedback information may be presented, and the feedback information may indicate that the adjustment function for the target function has been turned on. Specifically, when the adjustment function for the target function is turned on, A target presentation corresponding to the target function may be performed, and the target presentation is used to indicate that the adjustment function for the target function has been turned on.
在一种可能的实现中,所述目标呈现可以包括:进行所述目标功能的调节的控件显示。在智能家居的应用场景中,可以在具有显示屏的电子设备上进行目标呈现;在智能座舱的场景中,可以在车舱内的中控屏上进行目标呈现。In a possible implementation, the target presentation may include: displaying controls for adjusting the target function. In the application scenario of a smart home, the target presentation can be performed on an electronic device with a display; in the scenario of a smart cockpit, the target presentation can be performed on the central control screen in the car cabin.
以目标功能为应用播放的视频或音频的进度调节为例,则目标呈现可以为进度条的显示。Taking the target function as the progress adjustment of the video or audio played by the application as an example, the target presentation may be the display of a progress bar.
以目标功能为音量大小调节为例,则目标呈现可以为音量调节控件的显示。Taking the target function as volume adjustment as an example, the target presentation may be the display of a volume adjustment control.
以目标功能为显示亮度调节为例,则目标呈现可以为显示亮度调节控件的显示。Taking the target function as display brightness adjustment as an example, the target presentation may be the display of a display brightness adjustment control.
以目标功能为显示图像的缩放调节为例,则目标呈现可以为图像的缩放控件的显示。Taking the target function as an example of displaying zoom adjustment of an image, the target presentation may be the display of a zoom control of an image.
以目标功能为显示界面的移动调节为例,则目标呈现可以为显示界面的移动控件的显示。Taking the target function as the mobile adjustment of the display interface as an example, the target presentation may be the display of the mobile controls of the display interface.
在一种可能的实现中,所述目标呈现可以包括:与所述目标功能相关的硬件的震动提示,例如在智能车舱的场景中,目标呈现可以为座椅的震动提示。In a possible implementation, the target presentation may include: a vibration prompt of hardware related to the target function, for example, in the scenario of a smart car cabin, the target presentation may be a seat vibration prompt.
以目标功能为车舱内座椅的前后位置调节为例,则目标呈现可以为要进行座椅位置调节的座椅的震动提示。Taking the target function as an example of adjusting the front and rear positions of the seats in the vehicle cabin, the target presentation may be a vibration reminder of the seat to be adjusted.
在一种可能的实现中,所述目标呈现可以包括:声音提示,该声音提示可以包含已开启针对于目标功能的调节功能的语音,例如以目标功能为应用播放的视频或音频的进度调节为例,则目标呈现可以为播放语音“应用播放的视频或音频的进度调节功能已开启”;以目标功能为音量大小调节为例,则目标呈现可以为播放语音“音量调节功能已开启”;以目标功能为显示亮度调节为例,则目标呈现可以为播放语音“显示亮度调节功能已开启”;以目标功能为显示图像的缩放调节为例,则目标呈现可以为播放语音“图像的缩放功能已开启”;以目标功能为车窗高度调节为例,则目标呈现可以为播放语音“车窗高度调节功能已开启”;以目标功能为车舱内座椅的前后位置调节为例,则目标呈现可以为播放语音“车舱内座椅的前后位置调节功能已开启”。In a possible implementation, the target presentation may include: a sound prompt, which may include a voice that the adjustment function for the target function has been turned on, for example, the progress of the video or audio played by the application with the target function is adjusted as For example, the target presentation can be to play the voice "The progress adjustment function of the video or audio played by the application has been turned on"; if the target function is volume adjustment as an example, the target presentation can be to play the voice "The volume adjustment function has been turned on"; If the target function is display brightness adjustment as an example, the target presentation can be to play the voice "The display brightness adjustment function has been turned on"; if the target function is the zoom adjustment of the displayed image, the target presentation can be to play the voice "The zoom function of the image is turned on". If the target function is the height adjustment of the car window as an example, the target presentation can be to play the voice "The window height adjustment function has been turned on"; if the target function is the front and rear position adjustment of the seat in the cabin, the target presentation The voice "The front and rear position adjustment function of the seat in the cabin has been turned on" can be played.
在一种可能的实现中,所述基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,包括:基于所述第一雷达数据指示用户的手势,且所述用户的手势的持续时间超过第一阈值,根据所述第一雷达数据,确定所述用户的手势为第一手势,所述第一手势用于指示开启所述的调节功能。In a possible implementation, the indicating the first gesture based on the first radar data and the duration of the first gesture exceeds a first threshold includes: indicating the user's gesture based on the first radar data, And the duration of the user's gesture exceeds a first threshold, and according to the first radar data, it is determined that the user's gesture is a first gesture, and the first gesture is used to indicate to turn on the adjustment function.
在一种可能的实现中,可以从所述第一雷达数据中截取部分雷达数据,并根据所述部分雷达数据,确定所述用户的手势为第一手势。可选的,所述部分雷达数据为所述第一雷达数据中前N个雷达数据。区别于手势检测,手势截取是在手势动作进行过程中截取部分合适长度的手势,进行手势识别。因此,截取长度是手势截取的关键,截取太短或太长都会导致该部分手势识别的失效。可选的,可以通过时间截取法和手势特征截取法进行手势截取。In a possible implementation, part of the radar data may be intercepted from the first radar data, and according to the part of the radar data, it is determined that the user's gesture is the first gesture. Optionally, the part of radar data is the first N radar data in the first radar data. Different from gesture detection, gesture interception is to intercept some gestures of appropriate length during the process of gesture action for gesture recognition. Therefore, the interception length is the key to gesture interception, if the interception is too short or too long, this part of the gesture recognition will fail. Optionally, the gesture interception may be performed through a time interception method and a gesture feature interception method.
时间截取法与独立手势判断的思想一致,从时间角度出发,截取自手势开始后的N个雷达数据(例如截取N个chirp信号),将截取后的信号进行手势识别。时间截取法简单、直接但有效,其有效性来源于以下几个方面:第一,在后续进行手势类别确定时可以利用基于自注意力机制的多维特征融合网络的手势识别算法,该算法对手势信号长度变化不敏感,相似手势特征,时间长度(即手势动作快慢)略有差异,对识别结果影响很小,不同用户的同一手势长度本身也存在差异性;第二,独立手势长度短于第一阈值,基于持续时间的判断可以保证独立手势不会被截取,因此不会对独立手势的识别产生影响。The time interception method is consistent with the idea of independent gesture judgment. From the perspective of time, N radar data (for example, N chirp signals are intercepted) are intercepted after the gesture starts, and gesture recognition is performed on the intercepted signals. The time interception method is simple, direct but effective, and its effectiveness comes from the following aspects: First, the gesture recognition algorithm based on the multi-dimensional feature fusion network based on the self-attention mechanism can be used in the subsequent determination of the gesture category. The length of the signal is not sensitive to the change of the signal length, similar to the characteristics of gestures, and the length of time (that is, the speed of gestures) is slightly different, which has little impact on the recognition results, and the length of the same gesture itself of different users is also different; A threshold, the judgment based on the duration can ensure that independent gestures will not be intercepted, and thus will not affect the recognition of independent gestures.
手势特征截取法是指分析特定手势的特征变化,完成手势截取,截取长度不固定,随手势情况变化。例如:从距离或速度变化可完成悬停手势截取,从距离、角度、速度变化完成对连续画圈动作中第一圈的截取,手势特征截取可以解决不同用户、不同手势带来的手势长度差异性对截取的影响问题,对单个手势的截取更加准确。The gesture feature interception method refers to analyzing the characteristic changes of a specific gesture and completing the gesture interception. The interception length is not fixed and changes with the gesture situation. For example: Hover gesture interception can be completed from distance or speed changes, and the first circle of continuous circle drawing can be intercepted from distance, angle, and speed changes. Gesture feature interception can solve the difference in gesture length caused by different users and different gestures The influence of sex on interception, the interception of a single gesture is more accurate.
基于上述描述,时间截取法适用于不同唤醒手势的时间长度相仿的情况;而手势特征截取法适用于不同唤醒手势具有特征相仿的某一相同特征,能用单一特征实现不同唤醒手势的截取。在实际应用时,可以根据唤醒手势的种类和特点综合考虑选择何种截取方式。Based on the above description, the time interception method is applicable to situations where the time lengths of different wake-up gestures are similar; and the gesture feature interception method is suitable for different wake-up gestures having the same feature with similar features, and a single feature can be used to realize the interception of different wake-up gestures. In practical applications, which interception method to choose can be comprehensively considered according to the type and characteristics of the wake-up gesture.
在一种可能的实现中,运动特征为手势动作某个单一的显著特征(例如距离、速度、角度特征等),通过对该特征的分析可以实现对某一类手势的识别。基于手势的运动特征进行的手势类型识别只需进行部分特征分析,无需经过特征融合和神经网络,故可以简化一部分手势识别工作,减少计算量,提高实时性。In a possible implementation, the motion feature is a single salient feature of the gesture (such as distance, speed, angle feature, etc.), and the recognition of a certain type of gesture can be realized by analyzing the feature. Gesture type recognition based on the motion characteristics of gestures only needs to perform some feature analysis, without feature fusion and neural network, so it can simplify part of the gesture recognition work, reduce the amount of calculation, and improve real-time performance.
在一种可能的实现中,所述根据所述第一雷达数据,确定所述用户的手势为第一手势,包括:根据所述第一雷达数据,获取所述用户的手势的运动特征,并根据所述用户的手势的运动特征确定所述用户的手势为第一手势;或者,根据所述第一雷达数据,通过预训练的手势分类网络,确定所述用户的手势为第一手势。In a possible implementation, the determining that the user's gesture is a first gesture according to the first radar data includes: acquiring a motion feature of the user's gesture according to the first radar data, and Determining that the user's gesture is the first gesture according to the motion characteristics of the user's gesture; or, according to the first radar data, determining that the user's gesture is the first gesture through a pre-trained gesture classification network.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:所述第二手势的距离信息,所述距离信息包括所述第二手势与所述雷达系统之间的距离随时间的变化、所述距离的变化速率、以及所述距离的变化方向中的至少一种。In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include: Distance information, where the distance information includes at least one of a change over time of a distance between the second gesture and the radar system, a change rate of the distance, and a change direction of the distance.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:所述第二手势的速率信息,所述速率信息包括所述第二手势在所述雷达场中的移动速率随时间的变化大小。In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include: Velocity information, where the velocity information includes the variation of the moving velocity of the second gesture in the radar field with time.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:所述第二手势的角度信息,所述角度信息包括所述第二手势与雷达系统之间的角度随时间的变化,所述角度包括方位角和/或俯仰角。In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include: Angle information, where the angle information includes a change over time of an angle between the second gesture and the radar system, where the angle includes an azimuth angle and/or an elevation angle.
本申请实施例在手势特征提取的基础上,对手势特征进行精细量化,包括距离,速度,水平角度,俯仰角度等。获取反映特征变化方向、特征变化量、特征变化速度的变量,进而可以实现双向、不同幅度、不同快慢、高稳定性、强泛化性的精细调节。In the embodiment of the present application, on the basis of gesture feature extraction, gesture features are finely quantified, including distance, speed, horizontal angle, pitch angle, and the like. Obtain variables that reflect the direction of feature change, the amount of feature change, and the speed of feature change, and then fine-tuning can be achieved in two directions, with different amplitudes, different speeds, high stability, and strong generalization.
在一种可能的实现中,在所述基于所述调节信息对所述目标功能进行调节之后,所述方法还包括:获取第三雷达数据;基于所述第三雷达数据指示第三手势,关闭针对于目标功能的调节功能;所述第三手势为撤手手势或者悬停手势。In a possible implementation, after the adjustment of the target function based on the adjustment information, the method further includes: acquiring third radar data; indicating a third gesture based on the third radar data, closing For the adjustment function of the target function; the third gesture is a hand-off gesture or a hovering gesture.
第二方面,本申请提供了一种功能调节方法,所述方法包括:In a second aspect, the present application provides a function adjustment method, the method comprising:
获取目标雷达数据,所述目标雷达数据为基于用户的目标手势在雷达系统提供的雷达场中的反射得到的;其中,在存在唤醒手势的设计中,目标雷达数据可以为第一方面中描述的第二雷达数据;Acquiring target radar data, the target radar data is obtained based on the reflection of the user's target gesture in the radar field provided by the radar system; wherein, in the design where there is a wake-up gesture, the target radar data can be as described in the first aspect second radar data;
根据所述目标雷达数据,确定所述目标手势的运动特征;所述目标手势的运动特征的特征类型包括距离信息、速率信息或角度信息中的至少两种,所述距离信息包括所述目标手势和所述雷达系统之间的距离随时间的变化,所述速度信息包括所述目标手势和所述雷达系统的相对速度随时间的变化,所述角度信息包括所述目标手势在所述雷达场中的角度随时间的变化,所述角度包括方位角和/或俯仰角;According to the target radar data, determine the motion feature of the target gesture; the feature type of the motion feature of the target gesture includes at least two of distance information, velocity information, or angle information, and the distance information includes the target gesture. The distance between the radar system and the radar system changes over time, the speed information includes the relative speed of the target gesture and the radar system changes over time, and the angle information includes the target gesture in the radar field The change in angle over time, said angle including azimuth and/or elevation angle;
根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对目标功能进行调节。According to the movement characteristics, adjustment information is determined, the adjustment information includes at least one of adjustment range, adjustment direction and adjustment speed, and the target function is adjusted based on the adjustment information.
在现有的实现中,采用飞行时间(time of flight,TOF)的方式实现精细调节,由于TOF相关的硬件的限制,精细调节的灵敏度以及操作的精准度很低,本申请实施例采用雷达(例如毫米波雷达)实现精细调节,可以提高操作的精准度,且在进行功能的精细调节时,调节动作都至少具有某一显著变化的特征,如距离或角度或速度,本申请实施例在手势的运动特征提取的基础上,对手势特征进行精细量化,包括距离,速度,水平角度,俯仰角度等。获取反映特征变化方向、特征变化量、特征变化速度的变量,进而可以实现双向、不同幅度、不同快慢、高稳定性、强泛化性的精细调节。In existing implementations, time of flight (TOF) is used to achieve fine adjustment. Due to the limitation of TOF-related hardware, the sensitivity of fine adjustment and the accuracy of operation are very low. The embodiment of the present application adopts radar ( For example, the millimeter-wave radar) realizes fine adjustment, which can improve the accuracy of the operation, and when the fine adjustment of the function is performed, the adjustment action has at least a certain characteristic of significant change, such as distance or angle or speed. On the basis of the motion feature extraction, the gesture features are finely quantified, including distance, speed, horizontal angle, pitch angle, etc. Obtain variables that reflect the direction of feature change, the amount of feature change, and the speed of feature change, and then fine-tuning can be achieved in two directions, with different amplitudes, different speeds, high stability, and strong generalization.
在一种可能的实现中,所述距离随时间的变化包括:In a possible implementation, the change of the distance over time includes:
所述距离随时间的变化数值、所述距离随时间的变化速率或所述距离随时间的变化方向中的至少一种;At least one of the change value of the distance over time, the rate of change of the distance over time, or the direction of change of the distance over time;
所述调节幅度与所述距离随时间的变化数值有关,所述调节速度与所述距离随时间的变化速率有关,所述调节方向与所述距离随时间的变化方向有关。The adjustment range is related to the change value of the distance with time, the adjustment speed is related to the change rate of the distance with time, and the adjustment direction is related to the change direction of the distance with time.
在一种可能的实现中,所述目标手势为周期性手势,所述相对速度随时间的变化用于确定所述目标手势的手势周期数量;In a possible implementation, the target gesture is a periodic gesture, and the change of the relative speed over time is used to determine the number of gesture cycles of the target gesture;
所述调节幅度与所述周期数量有关,所述调节速度与固定时间内所述目标手势的手势周期数量有关。The adjustment range is related to the number of cycles, and the adjustment speed is related to the number of gesture cycles of the target gesture within a fixed time.
应理解,针对于周期性手势,还可以采用其他类型的运动特征进行精细调节,这里并不限定。It should be understood that for periodic gestures, other types of motion features may also be used for fine adjustment, which is not limited here.
在一种可能的实现中,所述角度随时间的变化包括:In a possible implementation, the change of the angle over time includes:
所述角度随时间的变化数值、所述角度随时间的变化速率或所述角度随时间的变化方向中的至少一种;At least one of the change value of the angle over time, the rate of change of the angle over time, or the direction of change of the angle over time;
所述调节幅度与所述角度随时间的变化数值有关,所述调节速度与所述角度随时间的变化速率有关,所述调节方向与所述角度随时间的变化方向有关。The adjustment range is related to the change value of the angle with time, the adjustment speed is related to the change rate of the angle with time, and the adjustment direction is related to the change direction of the angle with time.
在一种可能的实现中,在所述根据所述目标雷达数据,确定所述目标手势的运动特征之前,所述方法还包括:In a possible implementation, before determining the motion feature of the target gesture according to the target radar data, the method further includes:
基于所述目标手势为周期性手势或者为与所述雷达系统之间的相对速率不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述速度信息;When the target gesture is a periodic gesture or a gesture whose relative velocity to the radar system is constantly changing, determining that the feature type of the motion feature of the target gesture includes the velocity information;
基于所述目标手势为与所述雷达系统之间的距离不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述距离信息;When the target gesture is a gesture whose distance from the radar system is constantly changing, determining that the feature type of the motion feature of the target gesture includes the distance information;
基于所述目标手势为在所述雷达场中角度不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述角度信息。Based on the fact that the target gesture is a gesture whose angle is constantly changing in the radar field, the feature type for determining the motion feature of the target gesture includes the angle information.
针对于不同的手势类别,可以获取对应的运动特征类型,在保证准确识别的前提下,降低了数据的处理量。For different gesture categories, the corresponding motion feature types can be obtained, which reduces the amount of data processing on the premise of ensuring accurate recognition.
第三方面,本申请提供了一种功能调节装置,所述装置包括:In a third aspect, the present application provides a function adjustment device, the device comprising:
获取模块,用于获取第一雷达数据;an acquisition module, configured to acquire the first radar data;
功能开启模块,用于基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,开启针对于目标功能的调节功能;A function enabling module, configured to enable an adjustment function for a target function based on the first radar data indicating a first gesture and the duration of the first gesture exceeds a first threshold;
所述获取模块,还用于获取第二雷达数据;The acquisition module is also used to acquire the second radar data;
功能调节模块,用于响应于所述针对于目标功能的调节功能的开启,根据所述第二雷达数据,确定所述第二雷达数据指示的第二手势、以及所述第二手势的运动特征;以及,A function adjustment module, configured to determine, according to the second radar data, the second gesture indicated by the second radar data and the Movement characteristics; and,
根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对所述目标功能进行调节。According to the motion characteristics, adjustment information is determined, the adjustment information includes at least one of adjustment range, adjustment direction, and adjustment speed, and the target function is adjusted based on the adjustment information.
本申请实施例中,将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,这部分雷达数据可以不作为后续进行精细调节时调节程度的确定依据,而仅仅作为是否开启精细调节的触发条件(本申请实施例中也可以称之为唤醒手势),基于手势持续时间的方式来开启精细调节具有如下的好处:由于手势类型是有限的,在未来功能类型不断丰富的情况下,将手势类型作为开启精细调节功能的方案中手势类型可能不够用(独立手势功能占用一部分手势类型,唤醒手势再占据另一部分手势类型,两者之间不能重叠,否则会出现错误),而基于手势持续时间作为是否开启精细调节模式的依据,则可以让独立手势功能使用的手势类别和唤醒手势重叠,进而可以减少在进行手势实现的功能调节时所需的手势类别。此外,在针对于手势相关的功能调节场景中,尤其是精细调节的场景中,需要尽可能保证整体的手势设计是连续的,当用户想进行基于手势的精细调节时,会下意识知晓调节过程需要连续的一段时间内的手势,在唤醒精细调节的功能时,若将唤醒手势的规则也定义为基于持续时间是否足够长,那么作为用户来说,会认为这部分唤醒手势的操作过程和后续是连贯的。将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,更符合用户的思维惯式和使用习惯,减少用户的学习成本。In the embodiment of the present application, the duration of the gesture indicated by the first radar data is used as the basis for whether to enable the fine adjustment mode. This part of the radar data may not be used as the basis for determining the degree of adjustment in the subsequent fine adjustment, but only as whether to enable the fine adjustment mode. The trigger condition of the adjustment (which can also be referred to as a wake-up gesture in the embodiment of this application), enabling fine adjustment based on the duration of the gesture has the following benefits: Since the types of gestures are limited, in the case of continuous enrichment of future function types , the gesture type may not be enough in the scheme of enabling the fine-tuning function (the independent gesture function occupies a part of the gesture type, and the wake-up gesture occupies another part of the gesture type. The two cannot overlap, otherwise an error will occur), and based on The duration of the gesture is used as the basis for whether to enable the fine adjustment mode, so that the gesture categories used by the independent gesture function and the wake-up gesture can overlap, thereby reducing the gesture categories required for the function adjustment of the gesture implementation. In addition, in the gesture-related function adjustment scenario, especially the fine adjustment scenario, it is necessary to ensure that the overall gesture design is as continuous as possible. When the user wants to perform fine adjustment based on gestures, he will subconsciously know that the adjustment process requires Gestures for a continuous period of time, when waking up the fine-tuning function, if the rules for waking up gestures are also defined based on whether the duration is long enough, then as a user, they will think that the operation process and follow-up of this part of the waking up gesture are coherent. Taking the duration of the gesture indicated by the first radar data as the basis for whether to enable the fine-tuning mode is more in line with the user's thinking and usage habits, and reduces the learning cost of the user.
在一种可能的实现中,所述第一阈值大于0.7秒且小于1.5秒。In a possible implementation, the first threshold is greater than 0.7 seconds and less than 1.5 seconds.
在一种可能的实现中,所述第一雷达数据为在所述第二雷达数据之前获取的。In a possible implementation, the first radar data is acquired before the second radar data.
在一种可能的实现中,所述第一雷达数据和所述第二雷达数据为在时域上连续获取的雷达数据;或者,In a possible implementation, the first radar data and the second radar data are radar data acquired continuously in the time domain; or,
所述第一雷达数据和所述第二雷达数据为在时域上间隔目标时间段获取的雷达数据,所述目标时间段的时长小于阈值。The first radar data and the second radar data are radar data acquired at intervals of a target time period in the time domain, and the duration of the target time period is less than a threshold.
在一种可能的实现中,所述第一手势与第二手势为用户连续的手势动作。In a possible implementation, the first gesture and the second gesture are continuous gesture actions of the user.
在一种可能的实现中,所述第一手势和所述第二手势的手势类型相同,所述第一手势为静止手势或者移动幅度小于阈值的手势,所述第二手势为移动幅度大于阈值的手势。In a possible implementation, the gesture types of the first gesture and the second gesture are the same, the first gesture is a static gesture or a gesture with a movement range smaller than a threshold, and the second gesture is a movement range Gestures greater than the threshold.
在一种可能的实现中,所述第一手势为手指捏合的手势,所述第二手势为保持所述手指捏合且拖动的手势;或者,In a possible implementation, the first gesture is a gesture of pinching fingers, and the second gesture is a gesture of keeping the fingers pinched and dragging; or,
所述第一手势为手掌悬停手势,所述第二手势为上抬手势或者下压手势;或者,The first gesture is a palm hovering gesture, and the second gesture is an upward gesture or a downward gesture; or,
所述第一手势为手掌悬停手势,所述第二手势为左右挥手手势;或者,The first gesture is a palm hovering gesture, and the second gesture is a left and right waving gesture; or,
所述第一手势为手掌悬停手势,所述第二手势为前后推手势;或者,The first gesture is a palm hovering gesture, and the second gesture is a forward and backward push gesture; or,
所述第一手势为握拳的手势,所述第二手势为保持所述握拳且移动的手势;或者,The first gesture is a gesture of making a fist, and the second gesture is a gesture of keeping the fist and moving; or,
所述第一手势为手掌轻晃手势,所述第二手势为上抬手势或者下压手势;或者,The first gesture is a flicking gesture of the palm, and the second gesture is an upward gesture or a downward gesture; or,
所述第一手势为握拳且伸出大拇指的手势,所述第二手势为保持所述握拳且伸出大拇指并前后推的手势。The first gesture is a gesture of making a fist and extending a thumb, and the second gesture is a gesture of maintaining the fist and extending a thumb and pushing back and forth.
在一种可能的实现中,所述第一手势和所述第二手势为所述第一手势的手势类型相同,且所述第一手势和所述第二手势均为移动幅度大于阈值的手势。In a possible implementation, the first gesture and the second gesture are of the same gesture type as the first gesture, and both the first gesture and the second gesture have a movement range greater than a threshold gesture.
在一种可能的实现中,所述第一手势和所述第二手势均为画圈手势。In a possible implementation, both the first gesture and the second gesture are circle-drawing gestures.
在一种可能的实现中,所述功能开启模块,还用于:In a possible implementation, the function enabling module is also used for:
在所述启针对于所述目标功能的调节功能之前,基于预设的对应关系,确定所述第一手势的手势类型对应于所述目标功能,其中所述预设的对应关系包括手势类型与功能之间的映射。Before enabling the adjustment function for the target function, based on a preset correspondence, it is determined that the gesture type of the first gesture corresponds to the target function, wherein the preset correspondence includes gesture type and Mapping between functions.
在一种可能的实现中,所述第一手势的手势类型为手指捏合,所述目标功能为应用播放的视频或音频的进度调节;或者,In a possible implementation, the gesture type of the first gesture is finger pinching, and the target function is to adjust the progress of the video or audio played by the application; or,
所述第一手势的手势类型为画圈,所述目标功能为音量大小调节;或者,The gesture type of the first gesture is circle drawing, and the target function is volume adjustment; or,
所述第一手势的手势类型为手掌悬停,所述目标功能为显示亮度调节或者显示图像的缩放调节;或者,The gesture type of the first gesture is palm hovering, and the target function is display brightness adjustment or zoom adjustment of a display image; or,
所述第一手势的手势类型为握拳,所述目标功能为显示界面的移动调节;或者,The gesture type of the first gesture is making a fist, and the target function is movement adjustment of the display interface; or,
所述第一手势的手势类型为手掌轻晃,所述目标功能为车窗高度调节;或者,The gesture type of the first gesture is palm flickering, and the target function is window height adjustment; or,
所述第一手势的手势类型为握拳且伸出大拇指,所述目标功能为车舱内座椅的前后位置调节。The gesture type of the first gesture is to make a fist and extend a thumb, and the target function is to adjust the front and rear positions of the seats in the vehicle cabin.
在一种可能的实现中,所述装置还包括:In a possible implementation, the device also includes:
呈现模块,用于在所述基于所述调节信息对所述目标功能进行调节之前,进行所述目标功能相对应的目标呈现,所述目标呈现用于指示已开启针对于目标功能的调节功能。A presenting module, configured to present a target corresponding to the target function before the adjustment of the target function based on the adjustment information, where the target presentation is used to indicate that the adjustment function for the target function has been enabled.
在一种可能的实现中,所述目标呈现包括如下的至少一种:In a possible implementation, the target presentation includes at least one of the following:
进行所述目标功能的调节的控件显示;a display of controls for making adjustments to said target function;
与所述目标功能相关的硬件的震动提示;以及,Vibration alerts for hardware associated with said target function; and,
声音提示。Sound prompt.
在一种可能的实现中,所述基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,包括:In a possible implementation, the indicating the first gesture based on the first radar data and the duration of the first gesture exceeds a first threshold includes:
基于所述第一雷达数据指示用户的手势,且所述用户的手势的持续时间超过第一阈值,根据所述第一雷达数据,确定所述用户的手势为第一手势,所述第一手势用于指示开启所述的调节功能。Based on the first radar data indicating the user's gesture, and the duration of the user's gesture exceeds a first threshold, according to the first radar data, determine that the user's gesture is a first gesture, and the first gesture It is used to indicate that the adjustment function is turned on.
在一种可能的实现中,所述根据所述第一雷达数据,确定所述用户的手势为第一手势,包括:In a possible implementation, the determining that the user's gesture is the first gesture according to the first radar data includes:
从所述第一雷达数据中截取部分雷达数据;intercepting part of the radar data from the first radar data;
根据所述部分雷达数据,确定所述用户的手势为第一手势。According to the part of the radar data, it is determined that the user's gesture is a first gesture.
在一种可能的实现中,所述部分雷达数据为所述第一雷达数据中前N个雷达数据。In a possible implementation, the part of radar data is the first N radar data in the first radar data.
在一种可能的实现中,所述根据所述第一雷达数据,确定所述用户的手势为第一手势,包括:In a possible implementation, the determining that the user's gesture is the first gesture according to the first radar data includes:
根据所述第一雷达数据,获取所述用户的手势的运动特征,并根据所述用户的手势的运动特征确定所述用户的手势为第一手势;或者,According to the first radar data, acquiring a motion feature of the user's gesture, and determining that the user's gesture is a first gesture according to the motion feature of the user's gesture; or,
根据所述第一雷达数据,通过预训练的手势分类网络,确定所述用户的手势为第一手势。According to the first radar data, the user's gesture is determined to be the first gesture through a pre-trained gesture classification network.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include:
所述第二手势的距离信息,所述距离信息包括所述第二手势与所述雷达系统之间的距离随时间的变化、所述距离的变化速率、以及所述距离的变化方向中的至少一种。The distance information of the second gesture, the distance information including the change over time of the distance between the second gesture and the radar system, the change rate of the distance, and the change direction of the distance at least one of .
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include:
所述第二手势的速率信息,所述速率信息包括所述第二手势在所述雷达场中的移动速率随时间的变化大小。Velocity information of the second gesture, where the velocity information includes a change over time of a moving velocity of the second gesture in the radar field.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include:
所述第二手势的角度信息,所述角度信息包括所述第二手势与雷达系统之间的角度随时间的变化,所述角度包括方位角和/或俯仰角。Angle information of the second gesture, where the angle information includes a change over time of an angle between the second gesture and the radar system, and the angle includes an azimuth and/or an elevation angle.
在一种可能的实现中,所述获取模块,还用于:In a possible implementation, the acquisition module is also used to:
在所述基于所述调节信息对所述目标功能进行调节之后,获取第三雷达数据;acquiring third radar data after said adjusting said target function based on said adjustment information;
所述装置还包括:The device also includes:
功能关闭模块,用于基于所述第三雷达数据指示第三手势,关闭针对于目标功能的调节功能;所述第三手势为撤手手势或者悬停手势。A function closing module, configured to indicate a third gesture based on the third radar data, and close the adjustment function for the target function; the third gesture is a hand-off gesture or a hovering gesture.
第四方面,本申请提供了一种功能调节装置,所述装置包括:In a fourth aspect, the present application provides a function adjustment device, the device comprising:
获取模块,用于获取目标雷达数据,所述目标雷达数据为基于用户的目标手势在雷达系统提供的雷达场中的反射得到的;An acquisition module, configured to acquire target radar data, which is obtained based on the reflection of the user's target gesture in the radar field provided by the radar system;
运动特征确定模块,用于根据所述目标雷达数据,确定所述目标手势的运动特征;所述目标手势的运动特征的特征类型包括距离信息、速率信息或角度信息中的至少两种,所述距离信息包括所述目标手势和所述雷达系统之间的距离随时间的变化,所述速度信息包括所述目标手势和所述雷达系统的相对速度随时间的变化,所述角度信息包括所述目标手势在所述雷达场中的角度随时间的变化,所述角度包括方位角和/或俯仰角;The motion feature determination module is configured to determine the motion feature of the target gesture according to the target radar data; the feature type of the motion feature of the target gesture includes at least two of distance information, velocity information or angle information, the The distance information includes the change over time of the distance between the target gesture and the radar system, the speed information includes the change over time of the relative speed between the target gesture and the radar system, and the angle information includes the The angle of the target gesture in the radar field changes over time, the angle includes an azimuth and/or an elevation angle;
功能调节模块,用于根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对目标功能进行调节。A function adjustment module, configured to determine adjustment information according to the movement characteristics, the adjustment information includes at least one of adjustment range, adjustment direction and adjustment speed, and adjust the target function based on the adjustment information.
在进行功能的精细调节时,调节动作都至少具有某一显著变化的特征,如距离或角度或速度,本申请实施例在手势的运动特征提取的基础上,对手势特征进行精细量化,包括距离,速度,水平角度,俯仰角度等。获取反映特征变化方向、特征变化量、特征变化速度的变量,进而可以实现双向、不同幅度、不同快慢、高稳定性、强泛化性的精细调节。When fine-tuning the function, the adjustment action has at least one significant change feature, such as distance or angle or speed. The embodiment of the present application finely quantifies the gesture features on the basis of the motion feature extraction of gestures, including distance , speed, horizontal angle, pitch angle, etc. Obtain variables that reflect the direction of feature change, the amount of feature change, and the speed of feature change, and then fine-tuning can be achieved in two directions, with different amplitudes, different speeds, high stability, and strong generalization.
在一种可能的实现中,所述距离随时间的变化包括:In a possible implementation, the change of the distance over time includes:
所述距离随时间的变化数值、所述距离随时间的变化速率或所述距离随时间的变化方向中的至少一种;At least one of the change value of the distance over time, the rate of change of the distance over time, or the direction of change of the distance over time;
所述调节幅度与所述距离随时间的变化数值有关,所述调节速度与所述距离随时间的变化速率有关,所述调节方向与所述距离随时间的变化方向有关。The adjustment range is related to the change value of the distance with time, the adjustment speed is related to the change rate of the distance with time, and the adjustment direction is related to the change direction of the distance with time.
在一种可能的实现中,所述目标手势为周期性手势,所述相对速度随时间的变化用于确定所述目标手势的手势周期数量;In a possible implementation, the target gesture is a periodic gesture, and the change of the relative speed over time is used to determine the number of gesture cycles of the target gesture;
所述调节幅度与所述周期数量有关,所述调节速度与固定时间内所述目标手势的手势周期数量有关。The adjustment range is related to the number of cycles, and the adjustment speed is related to the number of gesture cycles of the target gesture within a fixed time.
在一种可能的实现中,所述角度随时间的变化包括:In a possible implementation, the change of the angle over time includes:
所述角度随时间的变化数值、所述角度随时间的变化速率或所述角度随时间的变化方向中的至少一种;At least one of the change value of the angle over time, the rate of change of the angle over time, or the direction of change of the angle over time;
所述调节幅度与所述角度随时间的变化数值有关,所述调节速度与所述角度随时间的变化速率有关,所述调节方向与所述角度随时间的变化方向有关。The adjustment range is related to the change value of the angle with time, the adjustment speed is related to the change rate of the angle with time, and the adjustment direction is related to the change direction of the angle with time.
在一种可能的实现中,所述运动特征确定模块,还用于:在所述根据所述目标雷达数据,确定所述目标手势的运动特征之前,基于所述目标手势为周期性手势或者为与所述雷达系统之间的相对速率不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述速度信息;In a possible implementation, the motion feature determining module is further configured to: before determining the motion feature of the target gesture according to the target radar data, based on the target gesture being a periodic gesture or being determining the type of feature that characterizes the motion of the target gesture includes the velocity information when the relative velocity of the gesture to the radar system is changing;
基于所述目标手势为与所述雷达系统之间的距离不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述距离信息;When the target gesture is a gesture whose distance from the radar system is constantly changing, determining that the feature type of the motion feature of the target gesture includes the distance information;
基于所述目标手势为在所述雷达场中角度不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述角度信息。Based on the fact that the target gesture is a gesture whose angle is constantly changing in the radar field, the feature type for determining the motion feature of the target gesture includes the angle information.
第五方面,本申请提供了一种功能调节装置,包括:一个或多个处理器和存储器;其中,所述存储器中存储有计算机可读指令;In a fifth aspect, the present application provides a function adjustment device, including: one or more processors and a memory; wherein, computer-readable instructions are stored in the memory;
所述一个或多个处理器读取所述计算机可读指令,以使所述计算机设备实现如第一方面及其任一可选的方法、以及第二方面及其任一可选的方法。The one or more processors read the computer-readable instructions to cause the computer device to implement the method of the first aspect and any optional method thereof, and the second aspect and any optional method thereof.
在一种可能的实现中,所述装置还包括雷达系统,用于:In a possible implementation, the device further includes a radar system for:
提供雷达场;provide a radar field;
感测来自所述雷达场中的用户的反射;sensing reflections from users in the radar field;
分析来自所述雷达场中的所述用户的反射;以及analyzing reflections from the user in the radar field; and
基于对所述反射的分析,提供雷达数据。Based on the analysis of the reflections, radar data is provided.
第六方面,本申请实施例提供了一种计算机可读存储介质,其特征在于,包括计算机可读指令,当该计算机可读指令在计算机设备上运行时,使得该计算机设备执行上述第一方面及其任一可选的方法、以及第二方面及其任一可选的方法。In the sixth aspect, the embodiment of the present application provides a computer-readable storage medium, which is characterized by comprising computer-readable instructions, and when the computer-readable instructions are run on a computer device, the computer device is made to execute the above-mentioned first aspect. and any optional method thereof, and the second aspect and any optional method thereof.
第七方面,本申请实施例提供了一种计算机程序产品,其特征在于,包括计算机可读指令,当该计算机可读指令在计算机设备上运行时,使得该计算机设备执行上述第一方面及其任一可选的方法、以及第二方面及其任一可选的方法。In the seventh aspect, the embodiment of the present application provides a computer program product, which is characterized in that it includes computer-readable instructions, and when the computer-readable instructions are run on a computer device, the computer device executes the above-mentioned first aspect and its Any optional method, and the second aspect and any optional method thereof.
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持执行设备或训练设备实现上述方面中所涉及的功能,例如,发送或处理上述方法中所涉及的数据;或,信息。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存执行设备或训练设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。In an eighth aspect, the present application provides a chip system, which includes a processor, configured to support an execution device or a training device to implement the functions involved in the above aspect, for example, send or process the data involved in the above method; or, information. In a possible design, the system-on-a-chip further includes a memory, and the memory is used for storing necessary program instructions and data of the execution device or the training device. The system-on-a-chip may consist of chips, or may include chips and other discrete devices.
第九方面,本申请提供了一种车辆,包括:一个或多个处理器和存储器;其中,所述存储器中存储有计算机可读指令;In a ninth aspect, the present application provides a vehicle, including: one or more processors and a memory; wherein, computer-readable instructions are stored in the memory;
所述一个或多个处理器读取所述计算机可读指令,以使所述计算机设备实现如上述第一方面及其任一可选的方法、以及第二方面及其任一可选的方法;The one or more processors read the computer-readable instructions, so that the computer device implements the above-mentioned first aspect and any optional method thereof, and the second aspect and any optional method thereof ;
所述车辆的车舱内还包括雷达系统,用于:The vehicle also includes a radar system in the cabin for:
提供雷达场;provide a radar field;
感测来自所述雷达场中的用户的反射;sensing reflections from users in the radar field;
分析来自所述雷达场中的所述用户的反射;以及analyzing reflections from the user in the radar field; and
基于对所述反射的分析,提供雷达数据。Based on the analysis of the reflections, radar data is provided.
在一种可能的实现中,所述车舱还包括主驾驶位、副驾驶位以及固定于所述主驾驶位前方的方向盘;其中,In a possible implementation, the cabin further includes a main driving position, a co-driving position, and a steering wheel fixed in front of the main driving position; wherein,
所述雷达系统包括:The radar system includes:
第一雷达系统,所述第一雷达系统包括第一雷达集成电路,所述第一雷达集成电路包括:A first radar system comprising a first radar integrated circuit comprising:
至少一个第一发射天线;at least one first transmit antenna;
至少一个第一接收天线;at least one first receive antenna;
所述第一雷达集成电路位于所述方向盘上靠近所述副驾驶位的一侧,其中,所述方向盘处于未被用户旋转的状态。The first radar integrated circuit is located on the side of the steering wheel close to the passenger seat, wherein the steering wheel is not rotated by the user.
在一种可能的实现中,所述至少一个第一发射天线用于向如下区域的至少一个提供雷达场:In a possible implementation, the at least one first transmitting antenna is used to provide a radar field to at least one of the following areas:
所述主驾驶位中靠近所述副驾驶位的区域;以及,an area of the primary driver's seat that is close to the passenger seat; and,
所述主驾驶位与所述副驾驶位之间的区域。The area between the main driver's seat and the passenger driver's seat.
在一种可能的实现中,所述车舱还包括主驾驶位、副驾驶位以及中控台;In a possible implementation, the cabin also includes a main driver's seat, a co-pilot's seat and a center console;
所述雷达系统包括:The radar system includes:
第二雷达系统,所述第二雷达系统包括第二雷达集成电路,所述第二雷达集成电路包括:A second radar system comprising a second radar integrated circuit comprising:
至少一个第二发射天线;at least one second transmit antenna;
至少一个第二接收天线;at least one second receive antenna;
所述第二雷达集成电路位于所述中控台上背离所述车辆车头方向的一侧。The second radar integrated circuit is located on the side of the center console away from the direction of the front of the vehicle.
在一种可能的实现中,所述至少一个第二发射天线用于向如下区域的至少一个提供雷达场:In a possible implementation, the at least one second transmitting antenna is used to provide a radar field to at least one of the following areas:
主驾驶位中靠近所述副驾驶位的区域;The area near the co-pilot's seat in the main driver's seat;
所述副驾驶位中靠近所述主驾驶位的区域;以及an area of the passenger seat close to the main driver's seat; and
所述主驾驶位与所述副驾驶位之间的区域。The area between the main driver's seat and the passenger driver's seat.
在一种可能的实现中,所述车舱还包括主驾驶位、副驾驶位以及扶手箱,所述扶手箱固定于所述主驾驶位与所述副驾驶位之间的区域;In a possible implementation, the cabin further includes a main driver's seat, a passenger seat and an armrest box, and the armrest box is fixed in an area between the main driver's seat and the passenger seat;
所述雷达系统包括:The radar system includes:
第三雷达系统,所述第三雷达系统包括第三雷达集成电路,所述第三雷达集成电路包括:A third radar system, the third radar system including a third radar integrated circuit, the third radar integrated circuit including:
至少一个第三发射天线;at least one third transmit antenna;
至少一个第三接收天线;at least one third receive antenna;
所述第三雷达集成电路位于所述扶手箱上朝向所述主控台的一侧。The third radar integrated circuit is located on the side of the armrest box facing the main console.
在一种可能的实现中,所述至少一个第三发射天线用于向如下区域的至少一个提供雷达场:In a possible implementation, the at least one third transmitting antenna is used to provide a radar field to at least one of the following areas:
主驾驶位中靠近所述副驾驶位的区域;The area near the co-pilot's seat in the main driver's seat;
所述副驾驶位中靠近所述主驾驶位的区域;以及an area of the passenger seat close to the main driver's seat; and
所述主驾驶位与所述副驾驶位之间的区域。The area between the main driver's seat and the passenger driver's seat.
其中,位于方向盘右侧的雷达系统(例如本申请实施例中的第一雷达系统)的雷达波束向右斜方照射,该部署位置主要针对主驾人员操控,可主要减少驾驶员躯体以及驾驶员手臂操控方向盘动作造成的信号干扰。Among them, the radar system located on the right side of the steering wheel (such as the first radar system in the embodiment of the present application) emits the radar beam obliquely to the right. This deployment position is mainly for the driver to control, which can mainly reduce the driver's body and Signal interference caused by the movement of the arm to control the steering wheel.
其中,部署在中控台附近雷达系统(例如本申请实施例中的第二雷达系统)的雷达波束朝中间照射,可同时供主副驾人员使用,乘客躯体干扰小。Among them, the radar beam of the radar system (such as the second radar system in the embodiment of the present application) deployed near the center console is irradiated toward the middle, which can be used by the main and co-drivers at the same time, and the passenger's body interference is small.
其中,位于扶手箱位置的雷达系统(例如本申请实施例中的第三雷达系统)的雷达波束朝上方照射,可同时供主副驾人员使用,乘客躯体干扰小。Among them, the radar system (for example, the third radar system in the embodiment of the present application) located at the position of the armrest box illuminates the radar beam upwards, which can be used by the main driver and the co-pilot at the same time, and the passenger's body interference is small.
本申请实施例允许用户在无接触、无视线转移、短手臂移动距离的条件下完成手势操控,保证了行车安全和操作便捷性。The embodiment of the present application allows the user to complete gesture control under the conditions of no contact, no line of sight transfer, and short arm movement distance, which ensures driving safety and convenient operation.
在一种可能的实现中,所述车辆还包括:座椅;In a possible implementation, the vehicle further includes: a seat;
所述一个或多个处理器还用于读取所述计算机可读指令,以便在所述开启针对于目标功能的调节功能时,控制所述座椅进行震动提醒。The one or more processors are further configured to read the computer-readable instructions, so as to control the seat to vibrate when the adjustment function for the target function is turned on.
第十方面,本申请提供了一种车辆,包括:车舱;所述车舱内包括雷达系统;In a tenth aspect, the present application provides a vehicle, including: a cabin; the cabin includes a radar system;
所述雷达系统,用于:The radar system for:
提供雷达场;provide a radar field;
感测来自所述雷达场中的用户的反射;sensing reflections from users in the radar field;
分析来自所述雷达场中的所述用户的反射;以及analyzing reflections from the user in the radar field; and
基于对所述反射的分析,提供雷达数据;providing radar data based on the analysis of the reflection;
所述雷达系统包括:The radar system includes:
第一雷达系统,所述第一雷达系统包括第一雷达集成电路,所述第一雷达集成电路包括:A first radar system comprising a first radar integrated circuit comprising:
至少一个第一发射天线;at least one first transmit antenna;
至少一个第一接收天线;at least one first receive antenna;
所述第一雷达集成电路位于所述方向盘上靠近所述副驾驶位的一侧,其中,所述方向盘处于未被用户旋转的状态。The first radar integrated circuit is located on the side of the steering wheel close to the passenger seat, wherein the steering wheel is not rotated by the user.
在一种可能的实现中,所述至少一个第一发射天线用于向如下区域的至少一个提供雷达场:In a possible implementation, the at least one first transmitting antenna is used to provide a radar field to at least one of the following areas:
所述主驾驶位中靠近所述副驾驶位的区域;以及,an area of the primary driver's seat that is close to the passenger seat; and,
所述主驾驶位与所述副驾驶位之间的区域。The area between the main driver's seat and the passenger driver's seat.
在一种可能的实现中,所述车舱还包括主驾驶位、副驾驶位以及中控台;In a possible implementation, the cabin also includes a main driver's seat, a co-pilot's seat and a center console;
所述雷达系统包括:The radar system includes:
第二雷达系统,所述第二雷达系统包括第二雷达集成电路,所述第二雷达集成电路包括:A second radar system comprising a second radar integrated circuit comprising:
至少一个第二发射天线;at least one second transmit antenna;
至少一个第二接收天线;at least one second receive antenna;
所述第二雷达集成电路位于所述中控台上背离所述车辆车头方向的一侧。The second radar integrated circuit is located on the side of the center console away from the direction of the front of the vehicle.
在一种可能的实现中,所述至少一个第二发射天线用于向如下区域的至少一个提供雷达场:In a possible implementation, the at least one second transmitting antenna is used to provide a radar field to at least one of the following areas:
主驾驶位中靠近所述副驾驶位的区域;The area near the co-pilot's seat in the main driver's seat;
所述副驾驶位中靠近所述主驾驶位的区域;以及an area of the passenger seat close to the main driver's seat; and
所述主驾驶位与所述副驾驶位之间的区域。The area between the main driver's seat and the passenger driver's seat.
在一种可能的实现中,所述车舱还包括主驾驶位、副驾驶位以及扶手箱,所述扶手箱固定于所述主驾驶位与所述副驾驶位之间的区域;In a possible implementation, the cabin further includes a main driver's seat, a passenger seat and an armrest box, and the armrest box is fixed in an area between the main driver's seat and the passenger seat;
所述雷达系统包括:The radar system includes:
第三雷达系统,所述第三雷达系统包括第三雷达集成电路,所述第三雷达集成电路包括:A third radar system, the third radar system including a third radar integrated circuit, the third radar integrated circuit including:
至少一个第三发射天线;at least one third transmit antenna;
至少一个第三接收天线;at least one third receive antenna;
所述第三雷达集成电路位于所述扶手箱上朝向所述主控台的一侧。The third radar integrated circuit is located on the side of the armrest box facing the main console.
在一种可能的实现中,所述至少一个第三发射天线用于向如下区域的至少一个提供雷达场:In a possible implementation, the at least one third transmitting antenna is used to provide a radar field to at least one of the following areas:
主驾驶位中靠近所述副驾驶位的区域;The area near the co-pilot's seat in the main driver's seat;
所述副驾驶位中靠近所述主驾驶位的区域;以及an area of the passenger seat close to the main driver's seat; and
所述主驾驶位与所述副驾驶位之间的区域。The area between the main driver's seat and the passenger driver's seat.
其中,位于方向盘右侧的雷达系统(例如本申请实施例中的第一雷达系统)的雷达波束向右斜方照射,该部署位置主要针对主驾人员操控,可主要减少驾驶员躯体以及驾驶员手臂操控方向盘动作造成的信号干扰。Among them, the radar system located on the right side of the steering wheel (such as the first radar system in the embodiment of the present application) emits the radar beam obliquely to the right. This deployment position is mainly for the driver to control, which can mainly reduce the driver's body and Signal interference caused by the movement of the arm to control the steering wheel.
其中,部署在中控台附近雷达系统(例如本申请实施例中的第二雷达系统)的雷达波束朝中间照射,可同时供主副驾人员使用,乘客躯体干扰小。Among them, the radar beam of the radar system (such as the second radar system in the embodiment of the present application) deployed near the center console is irradiated toward the middle, which can be used by the main and co-drivers at the same time, and the passenger's body interference is small.
其中,位于扶手箱位置的雷达系统(例如本申请实施例中的第三雷达系统)的雷达波束朝上方照射,可同时供主副驾人员使用,乘客躯体干扰小。Among them, the radar system (for example, the third radar system in the embodiment of the present application) located at the position of the armrest box illuminates the radar beam upwards, which can be used by the main driver and the co-pilot at the same time, and the passenger's body interference is small.
本申请实施例允许用户在无接触、无视线转移、短手臂移动距离的条件下完成手势操控,保证了行车安全和操作便捷性。The embodiment of the present application allows the user to complete gesture control under the conditions of no contact, no line of sight transfer, and short arm movement distance, which ensures driving safety and convenient operation.
本申请实施例提供了一种功能调节方法,所述方法包括:获取第一雷达数据;基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,开启针对于目标功能的调节功能;获取第二雷达数据;响应于所述针对于目标功能的调节功能的开启,根据所述第二雷达数据,确定所述第二雷达数据指示的第二手势、以及所述第二手势的运动特征;根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对所述目标功能进行调节。本申请实施例中,将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,这部分雷达数据可以不作为后续进行精细调节时调节程度的确定依据,而仅仅作为是否开启精细调节的触发条件(本申请实施例中也可以称之为唤醒手势),基于手势持续时间的方式来开启精细调节具有如下的好处:由于手势类型是有限的,在未来功能类型不断丰富的情况下,将手势类型作为开启精细调节功能的方案中手势类型可能不够用(独立手势功能占用一部分手势类型,唤醒手势再占据另一部分手势类型,两者之间不能重叠,否则会出现错误),而基于手势持续时间作为是否开启精细调节模式的依据,则可以让独立手势功能使用的手势类别和唤醒手势重叠,进而可以减少在进行手势实现的功能调节时所需的手势类别。此外,在针对于手势相关的功能调节场景中,尤其是精细调节的场景中,需要尽可能保证整体的手势设计是连续的,当用户想进行基于手势的精细调节时,会下意识知晓调节过程需要连续的一段时间内的手势,在唤醒精细调节的功能时,若将唤醒手势的规则也定义为基于持续时间是否足够长,那么作为用户来说,会认为这部分唤醒手势的操作过程和后续是连贯的。将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,更符合用户的思维惯式和使用习惯,减少用户的学习成本。An embodiment of the present application provides a function adjustment method, the method including: acquiring first radar data; based on the first radar data indicating a first gesture, and the duration of the first gesture exceeds a first threshold, turning on The adjustment function for the target function; acquiring second radar data; in response to the activation of the adjustment function for the target function, according to the second radar data, determine the second gesture indicated by the second radar data, and the motion characteristics of the second gesture; according to the motion characteristics, determine adjustment information, the adjustment information includes at least one of adjustment range, adjustment direction, and adjustment speed, and adjust the target based on the adjustment information function to adjust. In the embodiment of the present application, the duration of the gesture indicated by the first radar data is used as the basis for whether to enable the fine adjustment mode. This part of the radar data may not be used as the basis for determining the degree of adjustment in the subsequent fine adjustment, but only as whether to enable the fine adjustment mode. The trigger condition of the adjustment (which can also be referred to as a wake-up gesture in the embodiment of this application), enabling fine adjustment based on the duration of the gesture has the following benefits: Since the types of gestures are limited, in the case of continuous enrichment of future function types , the gesture type may not be enough in the scheme of enabling the fine-tuning function (the independent gesture function occupies a part of the gesture type, and the wake-up gesture occupies another part of the gesture type. The two cannot overlap, otherwise an error will occur), and based on The duration of the gesture is used as the basis for whether to enable the fine adjustment mode, so that the gesture categories used by the independent gesture function and the wake-up gesture can overlap, thereby reducing the gesture categories required for the function adjustment of the gesture implementation. In addition, in the gesture-related function adjustment scenario, especially the fine adjustment scenario, it is necessary to ensure that the overall gesture design is as continuous as possible. When the user wants to perform fine adjustment based on gestures, he will subconsciously know that the adjustment process requires Gestures for a continuous period of time, when waking up the fine-tuning function, if the rules for waking up gestures are also defined based on whether the duration is long enough, then as a user, they will think that the operation process and follow-up of this part of the waking up gesture are coherent. Taking the duration of the gesture indicated by the first radar data as the basis for whether to enable the fine-tuning mode is more in line with the user's thinking and usage habits, and reduces the learning cost of the user.
附图说明Description of drawings
图1a为本申请实施例提供的场景示意;Figure 1a is a schematic diagram of the scene provided by the embodiment of the present application;
图1b为本申请实施例提供的场景示意;Figure 1b is a schematic diagram of the scene provided by the embodiment of the present application;
图1c为本申请实施例提供的场景示意;Figure 1c is a schematic diagram of the scene provided by the embodiment of the present application;
图2为本申请实施例提供的场景示意;FIG. 2 is a schematic diagram of a scene provided by an embodiment of the present application;
图3为本申请实施例提供的场景示意;FIG. 3 is a schematic diagram of a scene provided by an embodiment of the present application;
图4为本申请实施例提供的场景示意;FIG. 4 is a schematic diagram of a scene provided by an embodiment of the present application;
图5为本申请实施例提供的场景示意;FIG. 5 is a schematic diagram of a scene provided by an embodiment of the present application;
图6为本申请实施例提供的一个功能调节方法的流程示意;FIG. 6 is a schematic flowchart of a function adjustment method provided by the embodiment of the present application;
图7a为本申请实施例提供的场景示意;Figure 7a is a schematic diagram of the scene provided by the embodiment of the present application;
图7b为本申请实施例提供的一个雷达信号示意;Figure 7b is a schematic diagram of a radar signal provided by the embodiment of the present application;
图8为本申请实施例提供的一个雷达数据处理示意;FIG. 8 is a schematic diagram of radar data processing provided by the embodiment of the present application;
图9为本申请实施例提供的一个雷达数据处理示意;FIG. 9 is a schematic diagram of radar data processing provided by the embodiment of the present application;
图10为本申请实施例提供的一个手势数据示意;Figure 10 is a schematic diagram of gesture data provided by the embodiment of the present application;
图11a为本申请实施例提供的一个手势数据示意;Figure 11a is a schematic diagram of gesture data provided by the embodiment of the present application;
图11b为本申请实施例提供的一个手势数据示意;Figure 11b is a schematic diagram of gesture data provided by the embodiment of the present application;
图11c为本申请实施例提供的一个雷达数据处理示意;Fig. 11c is a schematic diagram of radar data processing provided by the embodiment of the present application;
图12a为本申请实施例提供的一个手势示意;Figure 12a is a schematic diagram of a gesture provided by the embodiment of the present application;
图12b为本申请实施例提供的一个功能调节方法的流程示意;Fig. 12b is a schematic flowchart of a function adjustment method provided by the embodiment of the present application;
图13为本申请实施例提供的一个雷达数据处理示意;FIG. 13 is a schematic diagram of radar data processing provided by the embodiment of the present application;
图14为本申请实施例提供的一个手势数据示意;Figure 14 is a schematic diagram of gesture data provided by the embodiment of the present application;
图15为本申请实施例提供的一个手势数据示意;Figure 15 is a schematic diagram of gesture data provided by the embodiment of the present application;
图16为本申请实施例提供的一个手势数据示意;Figure 16 is a schematic diagram of gesture data provided by the embodiment of the present application;
图17为本申请实施例提供的一个手势数据示意;Fig. 17 is a schematic diagram of gesture data provided by the embodiment of the present application;
图18为本申请实施例提供的一个手势数据示意;Figure 18 is a schematic diagram of gesture data provided by the embodiment of the present application;
图19为本申请实施例提供的一个雷达天线示意;Fig. 19 is a schematic diagram of a radar antenna provided by the embodiment of the present application;
图20为本申请实施例提供的一个手势数据示意;Fig. 20 is a schematic diagram of gesture data provided by the embodiment of the present application;
图21为本申请实施例提供的一个雷达角度示意;Figure 21 is a schematic diagram of a radar angle provided by the embodiment of the present application;
图22为本申请实施例提供的一个手势数据示意;Figure 22 is a schematic diagram of gesture data provided by the embodiment of the present application;
图23为本申请实施例提供的一个手势数据示意;Figure 23 is a schematic diagram of gesture data provided by the embodiment of the present application;
图24a为本申请实施例提供的一个功能调节方法的流程示意;Fig. 24a is a schematic flowchart of a function adjustment method provided by the embodiment of the present application;
图24b为本申请实施例提供的一个功能调节方法的流程示意;Fig. 24b is a schematic flowchart of a function adjustment method provided by the embodiment of the present application;
图25为本申请实施例提供的功能调节装置的一种结构示意图;Fig. 25 is a schematic structural diagram of a function adjustment device provided by an embodiment of the present application;
图26为本申请实施例提供的功能调节装置的一种结构示意图;Fig. 26 is a schematic structural diagram of a function adjustment device provided by an embodiment of the present application;
图27为本申请实施例提供的功能调节装置的一种结构示意图;Fig. 27 is a schematic structural diagram of a function adjustment device provided by an embodiment of the present application;
图28为本申请实施例提供的芯片的一种结构示意图。FIG. 28 is a schematic structural diagram of a chip provided by an embodiment of the present application.
具体实施方式Detailed ways
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。Embodiments of the present application are described below with reference to the drawings in the embodiments of the present application. The terms used in the embodiments of the present application are only used to explain specific embodiments of the present application, and are not intended to limit the present application.
本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。The terms "first", "second", etc. in the specification and claims of the present application and the above-mentioned accompanying drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequential order. It should be understood that the terms used like this It can be interchanged under appropriate circumstances, and this is only to describe the distinguishing method adopted when describing the object of the same attribute in the embodiments of the application.In addition, the terms "comprising" and "having" and any deformation thereof are intended to be Covers a non-exclusive inclusion such that a process, method, system, product, or apparatus comprising a series of elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to the process, method, product, or apparatus .
下面结合附图,对本申请的实施例进行描述。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。首先介绍本申请实施例的应用场景:Embodiments of the present application are described below in conjunction with the accompanying drawings. Those of ordinary skill in the art know that, with the development of technology and the emergence of new scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems. Firstly, the application scenario of the embodiment of this application is introduced:
本申请实施例可以应用于智能家居、智能座舱等需要进行功能调节的场景中。The embodiments of the present application can be applied to scenarios requiring function adjustments such as smart homes and smart cockpits.
接下来结合场景所包括的产品架构,分别对上述应用场景的架构进行描述。Next, combined with the product architecture included in the scenario, the architecture of the above application scenarios is described respectively.
场景一、智能家居:
参考图1a,图1a示出了本申请实施例提供的智能家居系统的结构示意图。如图1a所示,该智能家居系统可包括:电子设备100(可选的)、一个或多个智能家居设备200、云服务器300(可选的)。Referring to FIG. 1a, FIG. 1a shows a schematic structural diagram of a smart home system provided by an embodiment of the present application. As shown in Fig. 1a, the smart home system may include: an electronic device 100 (optional), one or more
关于电子设备100:About Electronics 100:
其中,电子设备100可以为手机、平板电脑、个人数字助理(personal digitalassistant,PDA)、可穿戴设备等便携式电子设备。便携式电子设备的示例性实施例包括但不限于搭载iOS、android、microsoft或者其他操作系统的便携式电子设备。上述便携式电子设备也可以是其他便携式电子设备,诸如具有触敏表面(例如触控面板)的膝上型计算机(laptop)等。还应当理解的是,在本申请其他一些实施例中,电子设备100也可以不是便携式电子设备,而是具有触敏表面(例如触控面板)的台式计算机。Wherein, the
电子设备100可以安装有用于管理智能家居设备的应用(application,APP),或者,电子设备100可以访问用于管理智能家居设备的万维网(world wide web,web)页面。用于管理智能家居设备的应用或者web页面可以由智能家居设备的生产厂商(例如智能路由器的生产厂商(例如华为))开发并提供。The
关于智能家居设备200:About the Smart Home Device 200:
智能家居设备是指能够通过无线通信技术实现信息交换、甚至能够自主学习的智能化设备,能够为用户提供方便有效的服务,减少用户的劳动量。智能家居设备200可包括智能插座、智能门锁、智能灯具、智能风扇、智能空调、智能窗帘、智能电视、智能电饭煲、智能路由器等等。示例性地,如图1a所示,智能家居设备200可包括智能灯具201、智能电视202和智能音箱203。其中,智能灯具201可以控制灯光的变化,例如灯光颜色及亮度的变化。智能电视202可以和用户进行语音交互,例如可以接收用户的语音控制指令播放用户喜爱的电视节目。智能音箱203可以和用户进行语音交互,例如可以接收用户的语音控制指令播放用户喜爱的歌曲。在一些实现方式中,智能音箱203可以带有集成的语音助手模块,可通过一个“唤醒词”(例如,“你好,小艺”)提供交互式语音对话或查询功能。Smart home devices refer to intelligent devices that can exchange information and even learn independently through wireless communication technology, which can provide users with convenient and effective services and reduce the workload of users. The
智能家居设备200可以配置有雷达系统(雷达系统的架构可以参照图2所示),雷达系统可以向监视的区域发射雷达信号,并接收雷达信号的反射信号(本申请实施例中可以称之为雷达数据),通过对反射信号的分析处理,可以实现对监视的区域内的对象的状态确定(例如移动状态、睡眠状态、静止状态等等)、或者手势的信息识别(例如手势类别的确定、手势的运动特征的确定)。The
关于雷达系统:About the radar system:
根据雷达系统的不同具体实现,该雷达信号可以有多种载体,例如:当该雷达系统是微波雷达时,该雷达信号为微波信号;当该雷达系统是超声波雷达时,该雷达信号为超声波信号;当雷达系统是激光雷达时,该雷达信号为激光信号。需要说明的是,当该雷达系统为集成多种不同的雷达时,该雷达信号可以是多种雷达信号的集合,此处不作限定。According to different specific implementations of the radar system, the radar signal can have multiple carriers, for example: when the radar system is a microwave radar, the radar signal is a microwave signal; when the radar system is an ultrasonic radar, the radar signal is an ultrasonic signal ; When the radar system is a laser radar, the radar signal is a laser signal. It should be noted that when the radar system integrates multiple different radars, the radar signal may be a collection of multiple radar signals, which is not limited here.
雷达系统可以生成雷达信号并将雷达信号发射到雷达系统正在监视的区域中。参照图2,信号的生成和发射可以由射频(radio frequency,RF)信号发生器12、雷达发射电路14和发射天线32来实现。雷达发射电路14通常包括生成经由发射天线32发射的信号所需的任何电路,例如脉冲整形电路、发射触发电路、RF开关电路或其他适当的发射电路。RF信号发生器12和雷达发射电路14可经由处理器20来得以控制,该处理器经由控制线34发出命令和控制信号,使得在发射天线32处发射具有期望的配置和信号参数的期望的RF信号。A radar system may generate and transmit radar signals into an area that the radar system is monitoring. Referring to FIG. 2 , signal generation and transmission may be implemented by a radio frequency (radio frequency, RF)
雷达系统还可以经由接收天线30在模拟处理电路16处接收返回的雷达信号,此返回的雷达信号可以称为“回波”、“雷达数据”、“回波信号”、“回波数据”或“反射信号”。模拟处理电路16通常包括处理经由接收天线30接收的信号(例如信号分离、混合、外差和/或零差转换、放大、滤波、接收信号触发、信号切换和路由,以及/或者其他适当的雷达信号接收功能)所需的任何电路。因此,模拟处理电路16生成一个或多个模拟信号,例如同相(I)模拟信号和正交(Q)模拟信号。所得到的模拟信号被发射到模数转换器电路(analog-to-digital converter,ADC)18并由该电路数字化。然后,数字化的信号被转发到处理器20以进行反射信号处理。The radar system may also receive return radar signals at the
应理解,上述雷达系统也可以不部署于智能家居设备200中,而是与智能家居设备200独立部署。It should be understood that the above radar system may also not be deployed in the
示例性的,以智能家居设备200为智慧屏为例,参照图1b,雷达系统可以部署在但不局限于图1b中所示的显示屏的上边框的边角位置,参照图1c,雷达系统还可以与智能家居设备200独立部署,其作为独立的传感单元设置于智能家居场景内。Exemplarily, taking the
关于处理器:About the processor:
处理器20可以是实现下述功能的各种类型的处理器中的一种:其能够对数字化的接收信号进行处理并且控制RF信号发生器12和雷达发射电路14以提供终端设备100的雷达操作和功能。因此,处理器20可以是数字信号处理器(digital signal processor,DSP)、微处理器、微控制器或其他此类设备。
在一些实现中,处理器20可以包括硬件电路(如专用集成电路(applicationspecific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gatearray,FPGA)、通用处理器、数字信号处理器(digital signal processing,DSP)、微处理器或微控制器等等)、或这些硬件电路的组合,例如,处理器20可以为具有执行指令功能的硬件系统,如CPU、DSP等,或者为不具有执行指令功能的硬件系统,如ASIC、FPGA等,或者为上述不具有执行指令功能的硬件系统以及具有执行指令功能的硬件系统的组合。In some implementations, the
为了执行雷达系统的雷达操作和功能,处理器20经由系统总线22与一个或多个其他所需电路(例如由一种或多种类型的存储器组成的一个或多个存储器设备24、任何所需的外围电路26标识以及任何所需的输入/输出电路28对接。In order to perform the radar operations and functions of the radar system, the
如上该,处理器20可以经由控制线34对接RF信号发生器12和雷达发射电路14。在替代实施例中,RF信号发生器12和/或雷达发射电路14可连接到总线22,使得它们可经由总线22与处理器20、存储器设备24、外围电路26和输入/输出电路28中的一者或多者通信。As mentioned above, the
其中,目标对象(例如本申请实施例中用户的手势)可以位于雷达系统的监视区域内,因此雷达系统可以接收到目标对象对雷达信号反射后的反射信号(例如本申请实施例中的第一雷达数据、第二雷达数据、第三雷达数据)。Wherein, the target object (such as the user's gesture in the embodiment of the present application) may be located in the surveillance area of the radar system, so the radar system can receive the reflected signal of the radar signal reflected by the target object (such as the first signal in the embodiment of the present application). radar data, second radar data, third radar data).
在一种可选的实现中,处理器20在接收到雷达数据后,可以对雷达数据进行处理以确定反射信号所指示的手势以及手势相关的信息,并基于手势相关的信息进行相关的功能控制。In an optional implementation, after receiving the radar data, the
应理解,智能家居系统中可以包括多个具有数据处理能力的智能家居设备,且各个智能家居设备之间存在通信连接关系,因此可以通过智能家具系统中的多个智能家居设备实现分布式计算,进而上述处理以确定反射信号所指示的手势以及手势相关的信息的动作可以由智能家具系统中的多个智能家居设备来实现。It should be understood that the smart home system may include multiple smart home devices with data processing capabilities, and there is a communication connection relationship between each smart home device, so distributed computing can be realized through multiple smart home devices in the smart home system, Further, the above-mentioned processing to determine the gesture indicated by the reflected signal and the information related to the gesture may be implemented by multiple smart home devices in the smart furniture system.
本申请实施例中,处理器20可以获取到存储器设备24(或者是与处理器20分离部署的存储器设备)中存储的代码来实现本申请实施例中的功能调节方法。In the embodiment of the present application, the
具体的,处理器20可以为具有执行指令功能的硬件系统,本申请实施例提供的功能调节方法可以为存储在存储器中的软件代码,处理器20可以从存储器中获取到软件代码,并执行获取到的软件代码来实现本申请实施例提供的功能调节方法。Specifically, the
应理解,处理器20还可以为不具有执行指令功能的硬件系统以及具有执行指令功能的硬件系统的组合,本申请实施例提供的功能调节方法中的部分步骤还可以通过处理器20中不具有执行指令功能的硬件系统来实现,这里并不限定。It should be understood that the
在一些可能的实现中,上述确定目标对象的身份的步骤也可以基于智能家居设备200与云服务器300的交互来实现。In some possible implementations, the above step of determining the identity of the target object may also be implemented based on the interaction between the
智能家居设备200可以配置有无线通信模块,智能家居设备200可以通过无线通信模块与云服务器300建立通讯连接。The
关于无线通信模块:About the wireless communication module:
该无线通信模块可以提供应用在智能家居设备200上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信方式中的一个或多个。在一些实施例中,智能家居设备200还可以配置有移动通信模块,该移动通信模块可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信技术的解决方案。The wireless communication module can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), short-distance One or more of wireless communication methods such as wireless communication technology (near field communication, NFC) and infrared technology (infrared, IR). In some embodiments, the
智能家居设备200可以通过该无线通信模块或者移动通信模块连接到网络,进而和云服务器300通信,以接收云服务器300的数据、指令等,或者,智能家居设备200可以将数据、自身的工作状态和工作参数等上报给云服务器300。The
在一种可选的实现中,处理器20在接收到雷达数据后,可以将雷达数据传递至云服务器300,进而服务器可以对雷达数据进行处理以确定反射信号所指示的手势以及手势相关的信息。In an optional implementation, after receiving the radar data, the
在一种可选的实现中,处理器20可以接收到云服务器发送的反射信号所指示的手势以及手势相关的信息等。In an optional implementation, the
关于云服务器300:About cloud server 300:
云服务器300是提供安全可靠的弹性计算服务的设备,能够作为媒介平台实现家庭内部与外部控制设备的通信交流,满足远程控制、检测和信息交换的需求。可理解的,云服务器300可以包括一个或多个服务器,例如云服务器300可以为服务器集群,不同的服务器可用于提供不同的服务。云服务器300和智能家居设备200的制造商或服务提供商相关联。例如,云服务器300可以向智能家居设备200自动地发送软件更新或者为智能家居设备200提供云服务。在本申请实施例中,云服务器300提供用于管理智能家居设备的应用或者web页面的接口。云服务器300可通过该接口接收到电子设备100发送的用于管理智能家居设备的指令,并基于该指令向对应的智能家居设备发送指令,以管理智能家居设备。例如,云服务器300可根据电子设备100发送的指令指示智能灯具201开启/关闭、调节亮度或色温等。The
场景二、智能座舱Scenario 2: Intelligent cockpit
图3为本申请实施例提供的一种汽车内部的结构示意图。目前在汽车领域中,车机(也称为车内影音娱乐系统)等车载终端可以固定位于汽车的中控台,其屏幕也可以称之为中控显示屏或中控屏。另外,有一些高端汽车,座舱内逐步全面数字化显示,座舱内设置有多块或一块显示屏,用于显示数字仪表盘、车载娱乐系统等内容。如图3所示,座舱内设置有多块显示屏,如数字仪表显示屏101,中控屏102,副驾驶位上的乘客(也称为前排乘客)面前的显示屏103,左侧后排乘客面前的显示屏104以及右侧后排乘客面前的显示屏105。FIG. 3 is a schematic structural diagram of an interior of a car provided by an embodiment of the present application. At present, in the field of automobiles, in-vehicle terminals such as car machines (also known as in-car audio-visual entertainment systems) can be fixed on the center console of the car, and their screens can also be called central control display screens or central control screens. In addition, in some high-end cars, the cockpit is gradually fully digitalized, and there are multiple or one display screens in the cockpit, which are used to display content such as digital dashboards and in-vehicle entertainment systems. As shown in Figure 3, multiple display screens are arranged in the cockpit, such as a digital
另外,汽车内部还可以部署有雷达系统(后续实施例中也可以简称为雷达),虽然图3中仅在驾驶员侧的A柱(pillar)附近示出一个雷达106,座舱内可以设置有多个雷达,且雷达的位置较为灵活,例如,有的座舱的雷达可以设置于车辆中控屏上方,有的座舱的雷达可以设置于车辆中控屏左侧,有的座舱的雷达可以设置于A柱或B柱,有的座舱的雷达可以设置于车辆的座舱顶前部。关于雷达的具体描述可以参照上述实施例中图2中关于雷达系统的描述。In addition, a radar system (also referred to simply as radar in subsequent embodiments) can also be deployed inside the car. Although only one
为了能够识别出主驾驶和副驾驶的手势信息,可以将雷达设置在方向盘上靠近副驾驶位的一侧、主控台上、以及主驾驶位和副驾驶位之间的扶手箱上。In order to be able to recognize the gesture information of the main driver and the co-pilot, the radar can be set on the side of the steering wheel close to the co-pilot, on the main console, and on the armrest box between the main driver and the co-pilot.
例如,可以参照图4,其中,图4示出了一种雷达在车舱内的布局示意,如图4所示,可以在方向盘上靠近副驾驶位的一侧设置雷达1,雷达1提供雷达场的方向可以朝向主驾驶位中靠近副驾驶位的区域,以及主驾驶位与副驾驶位之间的区域,此外,还可以在中控台上朝向主驾驶位和副驾驶位的一侧设置雷达2,雷达2提供雷达场的方向可以朝向主驾驶位中靠近副驾驶位的区域、副驾驶位中靠近主驾驶位的区域、以及主驾驶位与副驾驶位之间的区域。For example, reference can be made to Fig. 4, wherein Fig. 4 shows a schematic layout of a radar in the cabin. The direction of the field can be towards the area close to the passenger seat in the main driver's seat, and the area between the main driver's seat and the passenger seat. In addition, it can also be set on the center console towards the side of the main driver's seat and the
例如,可以参照图5,其中,图5示出了一种雷达在车舱内的布局示意,如图4所示,可以在方向盘上靠近副驾驶位的一侧设置雷达1,雷达1提供雷达场的方向可以朝向主驾驶位中靠近副驾驶位的区域,以及主驾驶位与副驾驶位之间的区域,此外,还可以在中控台上朝向主驾驶位和副驾驶位的一侧设置雷达2,雷达2提供雷达场的方向可以朝向主驾驶位中靠近副驾驶位的区域、副驾驶位中靠近主驾驶位的区域、以及主驾驶位与副驾驶位之间的区域,此外,还可以在主驾驶位与副驾驶位之间的扶手箱上朝向主控台的一侧设置雷达3,雷达3提供雷达场的方向可以朝向主驾驶位中靠近副驾驶位的区域、副驾驶位中靠近主驾驶位的区域、以及主驾驶位与副驾驶位之间的区域。For example, reference can be made to Fig. 5, wherein Fig. 5 shows a schematic layout of a radar in the cabin. As shown in Fig. 4, a
本申请实施例从方便乘客使用、保证安全,降低信号干扰,增强手势动作特征的角度提出了三种雷达系统的部署位置。The embodiment of the present application proposes three deployment positions of the radar system from the perspectives of facilitating the use of passengers, ensuring safety, reducing signal interference, and enhancing gesture characteristics.
其中,位于方向盘右侧的雷达系统(例如本申请实施例中的第一雷达系统)的雷达波束向右斜方照射,该部署位置主要针对主驾人员操控,可主要减少驾驶员躯体以及驾驶员手臂操控方向盘动作造成的信号干扰。Among them, the radar system located on the right side of the steering wheel (such as the first radar system in the embodiment of the present application) emits the radar beam obliquely to the right. This deployment position is mainly for the driver to control, which can mainly reduce the driver's body and Signal interference caused by the movement of the arm to control the steering wheel.
其中,部署在中控台附近雷达系统(例如本申请实施例中的第二雷达系统)的雷达波束朝中间照射,可同时供主副驾人员使用,乘客躯体干扰小。Among them, the radar beam of the radar system (such as the second radar system in the embodiment of the present application) deployed near the center console is irradiated toward the middle, which can be used by the main and co-drivers at the same time, and the passenger's body interference is small.
其中,位于扶手箱位置的雷达系统(例如本申请实施例中的第三雷达系统)的雷达波束朝上方照射,可同时供主副驾人员使用,乘客躯体干扰小。Among them, the radar system (for example, the third radar system in the embodiment of the present application) located at the position of the armrest box illuminates the radar beam upwards, which can be used by the main driver and the co-pilot at the same time, and the passenger's body interference is small.
本申请实施例允许用户在无接触、无视线转移、短手臂移动距离的条件下完成手势操控,保证了行车安全和操作便捷性。The embodiment of the present application allows the user to complete gesture control under the conditions of no contact, no line of sight transfer, and short arm movement distance, which ensures driving safety and convenient operation.
上述车辆200可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。The above-mentioned
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。Embodiments of the present application are described below with reference to the drawings in the embodiments of the present application. The terms used in the embodiments of the present application are only used to explain specific embodiments of the present application, and are not intended to limit the present application.
参照图6,图6为本申请实施例提供的一种功能调节方法的实施例示意图,本申请实施例提供的功能调节方法可以应用于电子设备或服务器,其中,电子设备可以为车载设备、计算机、智能手机或智能手表等产品。如图6示出的那样,本申请实施例提供的功能调节方法可以包括:Referring to FIG. 6, FIG. 6 is a schematic diagram of an embodiment of a function adjustment method provided by the embodiment of the present application. The function adjustment method provided by the embodiment of the present application can be applied to an electronic device or a server, wherein the electronic device can be a vehicle-mounted device, a computer , smartphones or smart watches. As shown in Figure 6, the function adjustment method provided by the embodiment of the present application may include:
601、获取第一雷达数据。601. Acquire first radar data.
以智能家居的应用场景为例,室内的用户可以在雷达的探测范围内进行雷达手势的操作,用户可以通过雷达手势的操作对智能家居中特定的功能进行调节。Taking the application scenario of smart home as an example, indoor users can perform radar gesture operations within the detection range of radar, and users can adjust specific functions in smart home through radar gesture operations.
以智能座舱的应用场景为例,车上的乘客(例如主驾驶员与副驾位置乘客)可以在雷达的探测范围内进行雷达手势的操作,用户可以通过雷达手势的操作对车载系统中特定的功能进行调节。Taking the application scenario of the smart cockpit as an example, passengers in the car (such as the main driver and co-pilot passengers) can perform radar gesture operations within the detection range of the radar, and the user can control specific functions in the vehicle system through radar gesture operations. Make adjustments.
其中,本申请实施例中的雷达手势(例如第一手势、第二手势、第三手势、目标手势)为基于雷达且与触摸无关的手势(radar-based touch-independent gesture),也可以称之为“3Dgesture(3D手势)”,雷达手势是指手势在空间上远离电子设备的性质(例如,该手势不需要用户触摸设备,尽管该手势并未排除触摸)。雷达手势本身通常可能仅具有二维的活动信息分量,诸如由左上至右下轻扫组成的雷达手势,但是由于雷达手势距电子设备有一定距离(“third(第三)”维或深度),本申请实施例中的雷达手势通常可以被视为三维。Among them, the radar gestures (such as the first gesture, the second gesture, the third gesture, and the target gesture) in the embodiments of the present application are radar-based touch-independent gestures (radar-based touch-independent gestures), which can also be called Dubbed "3Dgesture", a radar gesture refers to the nature of a gesture that is spatially distant from the electronic device (eg, the gesture does not require the user to touch the device, although the gesture does not preclude touch). A radar gesture itself may typically only have a two-dimensional active information component, such as a radar gesture consisting of an upper-left to lower-right swipe, but since a radar gesture is some distance from the electronic device (the "third" dimension or depth), The radar gestures in the embodiments of the present application can generally be regarded as three-dimensional.
在一种可能的实现中,用户在进行手势操作时,用户的手势可以位于雷达系统的监视区域内,雷达系统可以向监测的区域发射雷达信号,并接收到用户的手势对雷达信号的反射信号。例如,信号的生成和发射可以由上述实施例中的RF信号发生器12、雷达发射电路14和发射天线32来实现。In a possible implementation, when the user performs a gesture operation, the user's gesture can be located in the monitoring area of the radar system, and the radar system can transmit radar signals to the monitored area and receive the reflection signal of the radar signal from the user's gesture . For example, the generation and transmission of signals can be realized by the
其中,雷达系统可以生成雷达信号,雷达信号的种类可以包括但不限于连续波(continuous wave,CW)信号和chirp信号(或者称之为啁啾)。Wherein, the radar system may generate a radar signal, and types of the radar signal may include but not limited to a continuous wave (continuous wave, CW) signal and a chirp signal (or called chirp).
以chirp信号为例,chirp信号是频率随时间变化的电磁信号。通常,上升chirp信号的频率随时间推移增大,而下降chirp信号的频率随时间推移减小。chirp信号的频率变化可以呈现许多不同的形式。例如,线性调频(linear frequency modulated,LFM)信号的频率线性地变化。chirp信号中的其他形式的频率变化包括指数变化。除了频率根据某些预定函数(即线性函数或指数函数)连续变化的类型的chirp信号之外,还可以生成步进chirp信号形式的chirp信号,其中频率步进变化。也就是说,典型的步进chirp信号包括多个频率步进,其中频率在每个步进处在某个预定持续时间内恒定。步进chirp信号还可脉冲式开启和关闭,其中该脉冲在chirp扫描的各个步进期间的某个预定时间段期间开启。Take the chirp signal as an example, the chirp signal is an electromagnetic signal whose frequency changes with time. Typically, the frequency of rising chirp signals increases over time, while the frequency of falling chirp signals decreases over time. Frequency changes in chirp signals can take on many different forms. For example, the frequency of a linear frequency modulated (LFM) signal varies linearly. Other forms of frequency variation in chirp signals include exponential variation. In addition to chirp signals of the type in which the frequency varies continuously according to some predetermined function (ie, linear or exponential), chirp signals can also be generated in the form of stepped chirp signals, in which the frequency is varied in steps. That is, a typical stepped chirp signal includes a number of frequency steps, where the frequency is constant at each step for some predetermined duration. The step chirp signal can also be pulsed on and off, where the pulse is on during some predetermined period of time during each step of the chirp scan.
在一种可能的实现中,雷达系统可以发射chirp信号,其中chirp信号数学表达式可以示例性的为:In a possible implementation, the radar system can transmit a chirp signal, where the mathematical expression of the chirp signal can be exemplarily:
其中,B为带宽,为固定初始相位,tc为chirp信号周期,A为幅值,f0为起始频率。in, B is the bandwidth, For the fixed initial phase, t c is the period of the chirp signal, A is the amplitude, and f 0 is the starting frequency.
在一种可能的实现中,雷达系统可以发射雷达信号并接收来自用户的手势反射的反射信号。In one possible implementation, the radar system may transmit radar signals and receive reflected signals from the user's gesture reflection.
其中,所谓“用户的手势反射的反射信号”可以理解为:雷达信号撞击用户的手势并被用户的手势反射的信号。其中,在智能家居的场景中,雷达信号可以是雷达信号撞击行走时的目标对象并被目标对象反射的信号,在智能座舱的场景中,雷达信号可以是雷达信号撞击上下车时的目标对象并被目标对象反射的信号。Wherein, the so-called "reflection signal reflected by the user's gesture" can be understood as: a signal that the radar signal hits the user's gesture and is reflected by the user's gesture. Among them, in the scene of smart home, the radar signal can be the signal that the radar signal hits the target object when walking and is reflected by the target object; The signal reflected by the target object.
进而,处理器可以获取到第一雷达数据,并基于第一雷达数据对用户的手势进行识别和手势信息的分析。Furthermore, the processor may acquire the first radar data, and perform recognition on the gesture of the user and analysis of the gesture information based on the first radar data.
应理解,本申请实施例中的第一雷达数据可以指雷达系统中接收天线在模拟处理电路处接收的反射信号,该反射信号为模拟信号。在得到模拟信号后,模拟信号可以被发射到模数转换器电路并由该电路进行信号的数字化,以得到数字信号。It should be understood that the first radar data in this embodiment of the present application may refer to a reflected signal received by a receiving antenna in a radar system at an analog processing circuit, where the reflected signal is an analog signal. After obtaining the analog signal, the analog signal may be transmitted to an analog-to-digital converter circuit and digitized by the circuit to obtain a digital signal.
应理解,模拟处理电路所得到的模拟信号可以被发射到模数转换器电路并由该电路进行信号的数字化,以得到数字信号,本申请实施例中的第一雷达数据还可以指上述数字化得到的数字信号,这里并不限定。It should be understood that the analog signal obtained by the analog processing circuit can be transmitted to the analog-to-digital converter circuit and digitized by the circuit to obtain a digital signal. The first radar data in the embodiment of the present application can also refer to the above digitized The digital signal is not limited here.
接下来基于处理器以及雷达系统部署位置的情况对处理器获取第一雷达数据的实现进行描述:Next, based on the situation of the processor and the deployment position of the radar system, the implementation of the processor to obtain the first radar data is described:
1、雷达系统和处理器部署在同一个电子设备中:1. The radar system and processor are deployed in the same electronic device:
其中,电子设备可以为智能家居中的一个终端或者是智能座舱中的车载设备;Wherein, the electronic device may be a terminal in a smart home or a vehicle-mounted device in a smart cockpit;
在一种可能的实现中,雷达系统可以部署在电子设备中,雷达系统在获取到第一雷达数据后,可以将第一雷达数据传递至电子设备中的处理器(若第一雷达数据为模拟信号,则模数转换电路可以将模拟信号转换为数字信号后,将数字信号传递至处理器),处理器可以对第一雷达数据进行处理。In a possible implementation, the radar system can be deployed in the electronic device, and after the radar system acquires the first radar data, it can transmit the first radar data to the processor in the electronic device (if the first radar data is an analog signal, the analog-to-digital conversion circuit can convert the analog signal into a digital signal, and then transmit the digital signal to the processor), and the processor can process the first radar data.
2、雷达系统和处理器部署在不同的电子设备(为方便描述,以下将不同的电子设备描述为A电子设备和B电子设备)中:2. The radar system and the processor are deployed in different electronic devices (for convenience of description, different electronic devices are described as A electronic device and B electronic device below):
在一种可能的实现中,雷达系统可以部署在A电子设备中,雷达系统在获取到第一雷达数据后,可以将第一雷达数据传递至B电子设备中的处理器(若第一雷达数据为模拟信号,则A电子设备中的模数转换电路可以将模拟信号转换为数字信号后,将数字信号传递至B电子设备中的处理器,或者可以将模拟信号传递至B电子设备,由B电子设备中的处理器模数转换电路将模拟信号转换为数字信号后,将数字信号传递至B电子设备中的处理器),进而B电子设备中的处理器可以对第一雷达数据进行处理。In a possible implementation, the radar system can be deployed in electronic device A, and after acquiring the first radar data, the radar system can transfer the first radar data to the processor in electronic device B (if the first radar data If it is an analog signal, then the analog-to-digital conversion circuit in A electronic equipment can convert the analog signal into a digital signal, and then transmit the digital signal to the processor in B electronic equipment, or can transmit the analog signal to B electronic equipment, and B After the analog-to-digital conversion circuit of the processor in the electronic device converts the analog signal into a digital signal, the digital signal is transmitted to the processor in the B electronic device), and then the processor in the B electronic device can process the first radar data.
3、雷达系统部署在电子设备中,处理器部署在云服务器中:3. The radar system is deployed in the electronic equipment, and the processor is deployed in the cloud server:
在一种可能的实现中,雷达系统可以部署在电子设备中,雷达系统在获取到第一雷达数据后,可以将第一雷达数据传递至云服务器中的处理器(若第一雷达数据为模拟信号,则电子设备中的模数转换电路可以将模拟信号转换为数字信号后,将数字信号传递至云服务器中的处理器,或者可以将模拟信号传递至云服务器,由云服务器的处理器模数转换电路将模拟信号转换为数字信号),进而云服务器中的处理器可以对第一雷达数据进行处理。In a possible implementation, the radar system can be deployed in the electronic device, and after the radar system acquires the first radar data, it can transmit the first radar data to the processor in the cloud server (if the first radar data is an analog signal, the analog-to-digital conversion circuit in the electronic device can convert the analog signal into a digital signal, and then transmit the digital signal to the processor in the cloud server, or can transmit the analog signal to the cloud server, and the processor module of the cloud server The digital conversion circuit converts the analog signal into a digital signal), and then the processor in the cloud server can process the first radar data.
参照图7a,图7a示出了雷达系统102的一个示例性操作。其中雷达系统102被实现为调频连续波雷达。在环境中,用户302位于距雷达系统102的监测环境处。为了检测用户302,雷达系统102发射雷达发射信号306(图7a中描述为雷达发射信号306)。雷达发射信号306的至少一部分被用户302反射。该反射部分表示反射信号308(图7a中描述为雷达接收信号308)。雷达系统102接收反射信号308,并处理反射信号308以提取用于基于雷达的应用206的数据。如所描绘的,由于在传播和反射期间引起的损耗,反射信号308的幅度小于雷达发射信号306的幅度。Referring to FIG. 7 a , an exemplary operation of the
雷达发射信号306包括啁啾a310-1至310-N的序列,其中N表示大于一的正整数。雷达系统102可以以连续突发发射啁啾310-1至310-N,或者作为时间分离的脉冲发射啁啾310-1至310-N。例如,每个啁啾310-1至310-N的持续时间可以在数十或数千微秒的数量级上(例如,在近似30微秒(μs)至5毫秒(ms)之间)。
啁啾310 1至310-N的各个频率可以随时间增加或减少。在所描绘的示例中,雷达系统102采用双斜率循环(例如,三角频率调制)以随着时间线性增大和线性减小啁啾310-1至310-N的频率。双斜率循环使雷达系统102能够测量由用户302的运动引起的多普勒频移。The individual frequencies of
通常,啁啾310-1至310-N的发射特性(例如,带宽、中心频率、持续时间和发射功率)可以被定制以实现特定的检测范围、范围分辨率或多普勒灵敏度,以检测用户302的一个或多个特征或用户302执行的一个或多个手势动作。In general, the transmit characteristics (e.g., bandwidth, center frequency, duration, and transmit power) of chirps 310-1 through 310-N can be tailored to achieve a specific detection range, range resolution, or Doppler sensitivity to detect user One or more features of 302 or one or more gestures performed by
在雷达系统102处,反射信号308表示雷达发射信号306的延迟版本。延迟量与从雷达系统102的天线阵列212到用户302的倾斜范围(例如,距离)成比例。具体来说,此延迟表示雷达发射信号306从雷达系统102传播到用户302所花费的时间与反射信号308从用户302传播到雷达系统102所花费的时间的总和。如果用户302和/或雷达系统102正在移动,则由于多普勒效应反射信号308在频率中相对于雷达发射信号306被偏移。换句话说,反射信号308的特性取决于手的运动和/或雷达系统102的运动。类似于雷达发射信号306,反射信号308由啁啾310-1至310N中的一个或多个组成。At
在一种可能的实现中,可以基于第一雷达数据来提取雷达场中物体的运动信息(例如用户的手势的运动信息),运动信息可以包括但不限于距离信息、速率信息、角度信息等,其中,距离信息蕴含于各回波脉冲的频率中,可通过在快时间对单个脉冲进行快速傅立叶变换,获得手势于当前脉冲时间内的距离信息,对各脉冲距离信息进行整合,即可得到单个手势的整体距离变化信息。在对手势原始回波快时间进行FFT后,在慢时间维再进行FFT,其峰值可反应目标的多普勒频率,即蕴含目标的速度信息。慢时间域FFT需在同一距离门内进行,而因目标的整体运动存在距离徙动,不能直接对整体手势的某一距离门进行FFT,而应合理设置积累脉冲数,使得每次FFT操作内的手势截断基本无距离徙动。In a possible implementation, motion information of objects in the radar field (such as motion information of a user's gesture) can be extracted based on the first radar data, and the motion information can include but not limited to distance information, velocity information, angle information, etc., Among them, the distance information is contained in the frequency of each echo pulse, and the distance information of the gesture in the current pulse time can be obtained by performing fast Fourier transform on a single pulse in a fast time, and the distance information of each pulse can be integrated to obtain a single gesture The overall distance change information of . After FFT is performed on the fast time of the original gesture echo, FFT is performed on the slow time dimension, and its peak value can reflect the Doppler frequency of the target, which contains the speed information of the target. The slow time domain FFT needs to be performed in the same range gate, and because of the distance migration of the overall movement of the target, it is not possible to directly perform FFT on a certain range gate of the overall gesture, but the number of accumulated pulses should be set reasonably so that each FFT operation Gesture truncation basically has no distance migration.
具体的,在获取到第一雷达数据后,可以对第一雷达数据进行初步的处理(例如快速傅里叶变换(fast fourier transform,FFT)),具体的,处理器可以对第一雷达数据进行一维(1D)快速傅里叶变换(fast fourier transform,FFT)计算获取距离傅里叶谱Range-FFT,通过二维(2D)FFT计算获取距离多普勒谱Range-Doppler,接下来针对于上述1D-FFT、2D-FFT的过程进行详细描述:Specifically, after the first radar data is acquired, preliminary processing (such as fast Fourier transform (FFT)) may be performed on the first radar data, and specifically, the processor may perform processing on the first radar data One-dimensional (1D) fast Fourier transform (fast fourier transform, FFT) calculation to obtain the range Fourier spectrum Range-FFT, and two-dimensional (2D) FFT calculation to obtain the range Doppler spectrum Range-Doppler, and then for The process of the above 1D-FFT and 2D-FFT is described in detail:
在一种可能的实现中,第一雷达数据可以包括多个chirp信号,可以对每个chirp信号进行处理,得到对应的距离傅里叶谱Range-FFT。例如,若r(n)为数字化的反射信号,其中n为单个chirp信号周期内的采样数,则可以对r(n)做N1点FFT(或者称之为1D-FFT)计算,得到R(k):In a possible implementation, the first radar data may include multiple chirp signals, and each chirp signal may be processed to obtain a corresponding range Fourier spectrum Range-FFT. For example, if r(n) is a digitized reflection signal, where n is the number of samples in a single chirp signal period, then N1-point FFT (or 1D-FFT) calculation can be performed on r(n), and R( k):
R(k)=FFT(r(n),N1),N1≥n;R(k)=FFT(r(n), N 1 ), N 1 ≥ n;
即,可以对反射信号进行1D-FFT计算,得到对应的距离傅里叶频谱Range-FFT,其中距离傅里叶频谱Range-FFT可以由多个距离点Range-bin组成,距离点Range-bin可以表示为其中αi为R(k)正频域复数值的模值,可以定义单个距离点Range-bin对应的单位距离为距离分辨率dres,则距离值di=αi×dres,最大探测距离为距离傅里叶谱Range-FFT的横轴可以为上述距离值,距离傅里叶谱Range-FFT的纵轴可以为每个距离值对应的信号反射强度,信号反射强度可以定义为复数信号的模值(例如,若复数信号为a+bj,则信号反射强度可以表示为),距离傅里叶谱Range-FFT可以包括N1/2个距离值,以及每个距离值对应的信号反射强度。That is, the 1D-FFT calculation can be performed on the reflected signal to obtain the corresponding range Fourier spectrum Range-FFT, wherein the range Fourier spectrum Range-FFT can be composed of multiple range points Range-bin, and the distance point Range-bin can be Expressed as Where α i is the modulus of the complex value of R(k) in the positive frequency domain, and the unit distance corresponding to a single range point Range-bin can be defined as the distance resolution d res , then the distance value d i =α i ×d res , the maximum detection distance is The horizontal axis of the Range-FFT of the distance Fourier spectrum can be the above-mentioned distance value, and the vertical axis of the Range-FFT of the distance Fourier spectrum can be the signal reflection intensity corresponding to each distance value, and the signal reflection intensity can be defined as the modulus of the complex signal value (for example, if the complex signal is a+bj, the signal reflection intensity can be expressed as ), the range Fourier spectrum Range-FFT may include N 1 /2 distance values, and the signal reflection intensity corresponding to each distance value.
示例性的,可以参照图5,图5为一种距离傅里叶谱Range-FFT的示意,如图5示出的那样,距离傅里叶谱Range-FFT的横坐标为距离值d(包括),纵轴表示信号反射强度。Exemplarily, can refer to Fig. 5, Fig. 5 is the schematic diagram of a kind of distance Fourier spectrum Range-FFT, as shown in Fig. 5, the abscissa of distance Fourier spectrum Range-FFT is the distance value d (including ), and the vertical axis represents the signal reflection intensity.
在一种可能的实现中,在计算出一个chirp信号的距离傅里叶谱Range-FFT之后,类似的,可以对一帧内所有K个chirp信号进行1D-FFT处理,得到K个距离傅里叶谱Range-FFT。In a possible implementation, after calculating the range Fourier spectrum Range-FFT of a chirp signal, similarly, 1D-FFT processing can be performed on all K chirp signals in a frame to obtain K range Fourier spectrum Leaf spectrum Range-FFT.
在一种可能的实现中,可以对距离傅里叶谱Range-FFT上同一个距离Range-bin上的K个值构成的序列再进行一次FFT计算(也可以称之为2D-FFT),得到距离多普勒谱Range-Doppler。In a possible implementation, an FFT calculation (also called 2D-FFT) can be performed on the sequence composed of K values on the same distance Range-bin on the Range-FFT of the distance Fourier spectrum, and it can be obtained Range-Doppler spectrum.
以雷达数据为chirp信号为例,第一雷达数据可以包括多个chirp信号,参照图7b,图7b所示的矩阵中的每一行为一个chirp信号,多个chirp信号以行叠加成手势数据(例如第一雷达数据)。Taking the radar data as a chirp signal as an example, the first radar data may include multiple chirp signals, referring to FIG. 7b, each row in the matrix shown in FIG. 7b is a chirp signal, and multiple chirp signals are superimposed into gesture data ( e.g. first radar data).
在一种可能的实现中,雷达系统可以具有远距离、大角度的探测范围,同时优异的雷达性能使得对微小运动也十分敏感,可以通过距离维滤波和速度维滤波对与手势不相关的干扰信息进行滤除。In a possible implementation, the radar system can have a long-distance and large-angle detection range, and at the same time, the excellent radar performance makes it very sensitive to small movements, and the interference unrelated to gestures can be eliminated through distance-dimensional filtering and velocity-dimensional filtering. Information is filtered.
其中,距离维滤波是指将手势区域以外的目标(包括动目标与静目标,例如智能座舱场景中的驾驶员肢体动作、驾驶员呼吸等)滤除。如图8所示,手势动作与人体范围在距离上是分开的,可以利用距离维的滤波器将手势距离以外的其他目标滤除。Among them, distance-dimension filtering refers to filtering out objects outside the gesture area (including moving objects and static objects, such as the driver's body movements and driver's breathing in the smart cockpit scene). As shown in Figure 8, the gesture action and the range of the human body are separated in distance, and the distance dimension filter can be used to filter out other targets beyond the gesture distance.
其中,速度维滤波是指利用四阶反馈型滤波器将手势区域内的静止目标与低速目标(例如车内显示器、静止或晃动的摆件等)滤除。Among them, the speed-dimensional filtering refers to using a fourth-order feedback filter to filter out stationary targets and low-speed targets (such as in-vehicle displays, stationary or shaking ornaments, etc.) in the gesture area.
602、基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,开启针对于目标功能的调节功能。602. Based on the first radar data indicating a first gesture and the duration of the first gesture exceeds a first threshold, enable an adjustment function for a target function.
本申请实施例中,在获取到第一雷达数据之后,可以对第一雷达数据进行手势相关的数据分析。In the embodiment of the present application, after the first radar data is acquired, gesture-related data analysis may be performed on the first radar data.
在一种可能的实现中,第一雷达数据中的部分数据或者全部数据可以为与第一手势相对应的雷达数据,在获取到第一雷达数据之后,需要从中识别出与用户的手势相关的雷达数据,进而可以这部分识别出的雷达数据进行第一手势的相关处理(例如手势类别的确定、手势持续时间的确定等等)。In a possible implementation, some or all of the data in the first radar data may be radar data corresponding to the first gesture. After the first radar data is acquired, it is necessary to identify the The radar data, and further processing related to the first gesture (such as determination of the gesture category, determination of the duration of the gesture, etc.) can be performed on this part of the recognized radar data.
在一种可能的实现中,可以通过方差检测法来判断第一雷达数据中第一手势的起始时刻与结束时刻。例如:可以对手势回波的每一个chirp求取方差,由于在有手势动作时的回波方差相较于无动作时的方差显著增加,利用这个特性即可判断一个手势的起止时刻,在有手势时,回波方差增大,当一段雷达信号数据的回波方差大于设置的门限θ时,判断为手势起始时刻。如图9所示的一个一段雷达数据,某点的回波方差大于门限θ,则确定从此点开始的雷达波数据为手势数据,如图9中“手势起始点a”所示。在手势终止的判断过程中,由于手势过程中可能有短暂静止情况,会出现某一时间段的方差小于门限的情况(如图9所示的从b点到c点数据段),如果将这一段数据计入用于手势识别的雷达信号数据,就会有冗余的数据,增加了计算量,因此将手势的结束标志设置为连续n帧(例如大约为1/30s)的回波方差都小于门限θ(如图9所示,从b点开始连续n帧的回波方差都小于门限θ,则将b点标识为手势终止点)。判断收到一个手势的回波后,n帧后的结束点(图9中所示的c点)不作为手势终止点,而将最后一个小于门限的回波作为手势数据的终止点(图9中所示的b点)。In a possible implementation, the start time and end time of the first gesture in the first radar data may be judged by a variance detection method. For example: the variance can be calculated for each chirp of the gesture echo. Since the variance of the echo when there is gesture action is significantly higher than the variance when there is no action, this feature can be used to judge the start and end moments of a gesture. When the gesture is performed, the echo variance increases. When the echo variance of a piece of radar signal data is greater than the set threshold θ, it is judged as the gesture start moment. For a segment of radar data as shown in Figure 9, if the echo variance at a certain point is greater than the threshold θ, then the radar wave data starting from this point is determined to be gesture data, as shown in "gesture starting point a" in Figure 9. In the process of judging the termination of the gesture, because there may be a short-term static situation during the gesture process, the variance of a certain period of time will be less than the threshold (as shown in Figure 9 from point b to point c data segment), if this A piece of data is included in the radar signal data used for gesture recognition, there will be redundant data, which increases the amount of calculation, so the end flag of the gesture is set to the echo variance of consecutive n frames (for example, about 1/30s). is less than the threshold θ (as shown in FIG. 9 , starting from point b, the echo variances of n consecutive frames are all smaller than the threshold θ, and point b is identified as the gesture termination point). After judging that the echo of a gesture is received, the end point after n frames (point c shown in Figure 9) is not used as the gesture end point, but the last echo smaller than the threshold is used as the end point of the gesture data (Figure 9 point b shown in).
本申请实施例中,可以从检测到手势数据时开启计时,若手势数据的持续时间超过第一阈值则可以开启精细调节模式。其中,第一阈值可以大于0.7秒且小于1.5秒,例如第一阈值可以为0.7秒、0.8秒、0.9秒、1秒、1.1秒等。In the embodiment of the present application, the timing can be started when the gesture data is detected, and the fine adjustment mode can be started if the duration of the gesture data exceeds the first threshold. Wherein, the first threshold may be greater than 0.7 seconds and less than 1.5 seconds, for example, the first threshold may be 0.7 seconds, 0.8 seconds, 0.9 seconds, 1 second, 1.1 seconds and so on.
其中,精细调节可以包括功能的开启、以及功能的程度调节,该程度调节可以为数值的增大或减小、显示位置的方向调节、显示区域的缩放调节、硬件的位置或者是形态的调节,例如精细调节可以包括音量大小调节、显示亮度调节或者显示图像的缩放调节、显示界面的移动调节、车窗高度调节、车舱内座椅的前后位置调节等。由于涉及功能的程度调节,因此精细调节的手势需要持续一定的时间来进行调节程度的选择,持续的时间较长。Among them, the fine adjustment may include the opening of the function and the adjustment of the degree of the function. The adjustment of the degree may be the increase or decrease of the value, the direction adjustment of the display position, the zoom adjustment of the display area, the adjustment of the position or form of the hardware, For example, fine adjustments may include volume adjustments, display brightness adjustments or zoom adjustments of displayed images, display interface movement adjustments, window height adjustments, front and rear position adjustments of seats in the cabin, and the like. Since it involves level adjustment of functions, the gesture of fine adjustment needs to last for a certain period of time to select the level of adjustment, and the duration is relatively long.
在一种可能的实现中,可以从检测到手势数据时开启计时,若手势数据的持续时间未超过第一阈值就终止了,则可以开启独立手势调节模式。In a possible implementation, the timing can be started when the gesture data is detected, and if the duration of the gesture data is terminated before exceeding the first threshold, the independent gesture adjustment mode can be started.
其中,独立手势调节模式可以包括功能的开启或者关闭,由于不涉及功能的程度调节,因此独立手势可以为单独的手势,且持续时间很短,例如左挥手、右挥手等。Wherein, the independent gesture adjustment mode may include turning on or off the function, and since it does not involve the degree adjustment of the function, the independent gesture may be a single gesture with a short duration, such as waving left or right.
随着交互方案的逐渐丰富,手势动作数量逐渐增加,各手势动作的特征各不相同,因此独立手势与精细调节手势在动作特征上具有很多重叠性,不易直接区分,其最大的区别在于手势时间长度,独立手势都为单独手势,持续时间很短。如下表1所示,表1以画圈为例示出了连续画圈动作时长统计示例。With the gradual enrichment of interaction schemes, the number of gestures gradually increases, and the characteristics of each gesture are different. Therefore, independent gestures and fine-tuning gestures have a lot of overlap in action characteristics, and it is difficult to directly distinguish them. The biggest difference lies in the gesture time. Length, Independent gestures are all single gestures with a short duration. As shown in Table 1 below, Table 1 shows an example of statistics on the duration of continuous circle-drawing actions by taking circle-drawing as an example.
表1Table 1
表1以连续画圈动作为例,考虑个体手势差异,取判断界限为1s,在上表1测试雷达参数配置下1s对应1440chirps,小于1s的手势动作判定为独立手势,大于1s的手势视为精细调节手势,即可保证在进行第二圈动作的初始,系统即可获知已在进行精细调节。Table 1 takes continuous circle-drawing actions as an example, considering individual gesture differences, and taking the judgment limit as 1s. Under the test radar parameter configuration in Table 1 above, 1s corresponds to 1440 chirps. Gestures less than 1s are judged as independent gestures, and gestures greater than 1s are regarded as The fine adjustment gesture can ensure that at the beginning of the second round of action, the system can know that the fine adjustment has been carried out.
本申请实施例中,将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,这部分雷达数据可以不作为后续进行精细调节时调节程度的确定依据,而仅仅作为是否开启精细调节的触发条件(本申请实施例中也可以称之为唤醒手势),基于手势持续时间的方式来开启精细调节具有如下的好处:由于手势类型是有限的,在未来功能类型不断丰富的情况下,将手势类型作为开启精细调节功能的方案中手势类型可能不够用(独立手势功能占用一部分手势类型,唤醒手势再占据另一部分手势类型,两者之间不能重叠,否则会出现错误),而基于手势持续时间作为是否开启精细调节模式的依据,则可以让独立手势功能使用的手势类别和唤醒手势重叠,进而可以减少在进行手势实现的功能调节时所需的手势类别。此外,在针对于手势相关的功能调节场景中,尤其是精细调节的场景中,需要尽可能保证整体的手势设计是连续的,当用户想进行基于手势的精细调节时,会下意识知晓调节过程需要连续的一段时间内的手势,在唤醒精细调节的功能时,若将唤醒手势的规则也定义为基于持续时间是否足够长,那么作为用户来说,会认为这部分唤醒手势的操作过程和后续是连贯的。In the embodiment of the present application, the duration of the gesture indicated by the first radar data is used as the basis for whether to enable the fine adjustment mode. This part of the radar data may not be used as the basis for determining the degree of adjustment in the subsequent fine adjustment, but only as whether to enable the fine adjustment mode. The trigger condition of the adjustment (which can also be referred to as a wake-up gesture in the embodiment of this application), enabling fine adjustment based on the duration of the gesture has the following benefits: Since the types of gestures are limited, in the case of continuous enrichment of future function types , the gesture type may not be enough in the scheme of enabling the fine-tuning function (the independent gesture function occupies a part of the gesture type, and the wake-up gesture occupies another part of the gesture type. The two cannot overlap, otherwise an error will occur), and based on The duration of the gesture is used as the basis for whether to enable the fine adjustment mode, so that the gesture categories used by the independent gesture function and the wake-up gesture can overlap, thereby reducing the gesture categories required for the function adjustment of the gesture implementation. In addition, in the gesture-related function adjustment scenario, especially the fine adjustment scenario, it is necessary to ensure that the overall gesture design is as continuous as possible. When the user wants to perform fine adjustment based on gestures, he will subconsciously know that the adjustment process requires Gestures for a continuous period of time, when waking up the fine-tuning function, if the rules for waking up gestures are also defined based on whether the duration is long enough, then as a user, they will think that the operation process and follow-up of this part of the waking up gesture are coherent.
在基于第一雷达数据指示的第一手势的持续时间超过第一阈值时,可以对第一雷达数据中与第一手势相关的雷达数据进行手势类别的识别(也就是进行第一手势的手势类别的识别),之所以进行第一手势的手势类别的识别,是因为需要机遇第一手势的手势类别确定后续精细调节的功能类型(也就是确定目标功能)。应理解,这里的手势类别可以理解为手型类别,不同手势类别的手势之间的手型特征不同。When the duration of the first gesture indicated based on the first radar data exceeds the first threshold, the radar data related to the first gesture in the first radar data can be identified for the gesture category (that is, the gesture category for the first gesture The recognition of the gesture category of the first gesture is performed because the gesture category of the first gesture needs to be used to determine the type of function for subsequent fine-tuning (that is, to determine the target function). It should be understood that the gesture category here may be understood as a hand shape category, and gestures of different gesture categories have different hand shape characteristics.
在一种可能的实现中,处理器可以基于所述第一雷达数据指示用户的手势,且所述用户的手势的持续时间超过第一阈值,根据所述第一雷达数据,确定所述用户的手势为第一手势,所述第一手势用于指示开启所述的调节功能。In a possible implementation, the processor may indicate the user's gesture based on the first radar data, and the duration of the user's gesture exceeds a first threshold, and determine the user's gesture according to the first radar data. The gesture is a first gesture, and the first gesture is used to indicate to start the adjustment function.
在一种可能的实现中,可以从所述第一雷达数据中截取部分雷达数据,并根据所述部分雷达数据,确定所述用户的手势为第一手势。可选的,所述部分雷达数据为所述第一雷达数据中前N个雷达数据。区别于手势检测,手势截取是在手势动作进行过程中截取部分合适长度的手势,进行手势识别。因此,截取长度是手势截取的关键,截取太短或太长都会导致该部分手势识别的失效。可选的,可以通过时间截取法和手势特征截取法进行手势截取。In a possible implementation, part of the radar data may be intercepted from the first radar data, and according to the part of the radar data, it is determined that the user's gesture is the first gesture. Optionally, the part of radar data is the first N radar data in the first radar data. Different from gesture detection, gesture interception is to intercept some gestures of appropriate length during the process of gesture action for gesture recognition. Therefore, the interception length is the key to gesture interception, if the interception is too short or too long, this part of the gesture recognition will fail. Optionally, the gesture interception may be performed through a time interception method and a gesture feature interception method.
时间截取法与独立手势判断的思想一致,从时间角度出发,截取自手势开始后的N个雷达数据(例如截取N个chirp信号),将截取后的信号进行手势识别。时间截取法简单、直接但有效,其有效性来源于以下几个方面:第一,在后续进行手势类别确定时可以利用基于自注意力机制的多维特征融合网络的手势识别算法,该算法对手势信号长度变化不敏感,相似手势特征,时间长度(即手势动作快慢)略有差异,对识别结果影响很小,不同用户的同一手势长度本身也存在差异性;第二,独立手势长度短于第一阈值,基于持续时间的判断可以保证独立手势不会被截取,因此不会对独立手势的识别产生影响。The time interception method is consistent with the idea of independent gesture judgment. From the perspective of time, N radar data (for example, N chirp signals are intercepted) are intercepted after the gesture starts, and gesture recognition is performed on the intercepted signals. The time interception method is simple, direct but effective, and its effectiveness comes from the following aspects: First, the gesture recognition algorithm based on the multi-dimensional feature fusion network based on the self-attention mechanism can be used in the subsequent determination of the gesture category. The length of the signal is not sensitive to the change of the signal length, similar to the characteristics of gestures, and the length of time (that is, the speed of gestures) is slightly different, which has little impact on the recognition results, and the length of the same gesture itself of different users is also different; A threshold, the judgment based on the duration can ensure that independent gestures will not be intercepted, and thus will not affect the recognition of independent gestures.
以连续画圈精细调节为例,根据表1可知,第一圈顺逆时针唤醒手势的长度一般不超过1000chirps,故可取截取长度N为1000chirps。参照图10,图10为逆时针画2圈手势进行手势截取前的示意,参照图11a,图11a为逆时针画2圈手势进行手势截取后的示意。Taking the fine adjustment of continuous circle drawing as an example, according to Table 1, the length of the first clockwise and counterclockwise wake-up gesture generally does not exceed 1000 chirps, so the interception length N can be selected as 1000 chirps. Referring to FIG. 10 , FIG. 10 is a schematic diagram before gesture interception by drawing 2 circles counterclockwise. Referring to FIG. 11 a , FIG. 11 a is a schematic diagram after gesture interception by drawing 2 circles counterclockwise.
在上述连续画圈精细调节示例中,手势动作进行到1s时系统判定正在进行精细调节操作,截取1s中前1000chirps(当前雷达参数配置下1s为1440chirps,大于1000chirps)数据进行识别,识别结果即为唤醒手势的类别。In the above fine adjustment example of continuous circle drawing, the system determines that the fine adjustment operation is being performed when the gesture action lasts for 1 second, and intercepts the data of the first 1000 chirps in 1 second (1 second is 1440 chirps under the current radar parameter configuration, which is greater than 1000 chirps) for recognition, and the recognition result is The category of the wake gesture.
手势特征截取法是指分析特定手势的特征变化,完成手势截取,截取长度不固定,随手势情况变化。例如:从距离或速度变化可完成悬停手势截取,从距离、角度、速度变化完成对连续画圈动作中第一圈的截取,手势特征截取可以解决不同用户、不同手势带来的手势长度差异性对截取的影响问题,对单个手势的截取更加准确。The gesture feature interception method refers to analyzing the characteristic changes of a specific gesture and completing the gesture interception. The interception length is not fixed and changes with the gesture situation. For example: Hover gesture interception can be completed from distance or speed changes, and the first circle of continuous circle drawing can be intercepted from distance, angle, and speed changes. Gesture feature interception can solve the difference in gesture length caused by different users and different gestures The influence of sex on interception, the interception of a single gesture is more accurate.
基于上述描述,时间截取法适用于不同唤醒手势的时间长度相仿的情况;而手势特征截取法适用于不同唤醒手势具有特征相仿的某一相同特征,能用单一特征实现不同唤醒手势的截取。在实际应用时,可以根据唤醒手势的种类和特点综合考虑选择何种截取方式。Based on the above description, the time interception method is applicable to situations where the time lengths of different wake-up gestures are similar; and the gesture feature interception method is suitable for different wake-up gestures having the same feature with similar features, and a single feature can be used to realize the interception of different wake-up gestures. In practical applications, which interception method to choose can be comprehensively considered according to the type and characteristics of the wake-up gesture.
在得到上述截取后的雷达数据后,可以根据所述第一雷达数据,获取所述用户的手势的运动特征,并根据所述用户的手势的运动特征确定所述用户的手势为第一手势;或者,根据所述第一雷达数据,通过预训练的手势分类网络,确定所述用户的手势为第一手势。After obtaining the above-mentioned intercepted radar data, the motion characteristics of the user's gesture may be obtained according to the first radar data, and the user's gesture may be determined as the first gesture according to the motion characteristics of the user's gesture; Or, according to the first radar data, determine that the user's gesture is the first gesture through a pre-trained gesture classification network.
接下来描述如何根据所述第一雷达数据,获取所述用户的手势的运动特征,并根据所述用户的手势的运动特征确定所述用户的手势为第一手势:The following describes how to obtain the motion feature of the user's gesture according to the first radar data, and determine that the user's gesture is the first gesture according to the motion feature of the user's gesture:
在一种可能的实现中,运动特征为手势动作某个单一的显著特征(例如距离、速度、角度特征等),通过对该特征的分析可以实现对某一类手势的识别。基于手势的运动特征进行的手势类型识别只需进行部分特征分析,无需经过特征融合和神经网络,故可以简化一部分手势识别工作,减少计算量,提高实时性。In a possible implementation, the motion feature is a single salient feature of the gesture (such as distance, speed, angle feature, etc.), and the recognition of a certain type of gesture can be realized by analyzing the feature. Gesture type recognition based on the motion characteristics of gestures only needs to perform some feature analysis, without feature fusion and neural network, so it can simplify part of the gesture recognition work, reduce the amount of calculation, and improve real-time performance.
在唤醒手势中,以悬停动作为例,悬停动作为静止动作,距离、速度、角度特征维持不变,十分适合从信号层进行判断,且考虑在常规硬件性能下,距离分辨率远高于角度分辨率,故利用距离特征进行判断悬停动作。具体的,可以获取当前接受信号距离特征,提取每一时间信号能量最大值位置,以信号末端位置为基准,不断向信号起点向延伸,直到连续出现若干个时间手势位置与基准位置距离差值超过门限时,认为此时非悬停,存在较大位移。通过该方法,可以定量获取悬停时间。此外,还可以类似距离特征精细量化,当一定时间内一阶距离变化拟合直线的斜率值持续较低时,可认为是悬停动作。In the wake-up gesture, take the hovering action as an example. The hovering action is a static action, and the distance, speed, and angle characteristics remain unchanged. It is very suitable for judging from the signal layer, and considering the conventional hardware performance, the distance resolution is much higher. Due to the angular resolution, the distance feature is used to judge the hovering action. Specifically, it is possible to obtain the distance characteristics of the current received signal, extract the position of the maximum value of signal energy at each time, and take the position of the end of the signal as the reference, and continue to extend toward the starting point of the signal until the distance difference between the gesture position of several times and the reference position exceeds When the threshold is set, it is considered to be non-hovering at this time, and there is a large displacement. Through this method, the hover time can be obtained quantitatively. In addition, it can also be quantified similarly to the distance feature. When the slope value of the first-order distance change fitting line continues to be low within a certain period of time, it can be considered as a hovering action.
参照图11b,图11b为采用上述方法进行的悬停手势信号层判断示例,其各阶段斜率值分别为-7.2967、-1.5059e-14、-2.8360、-1.5059e-14、1.2219、-1.5059e-14、0.1450、0.5360、0.5165、-0.0956、-0.7544、2.3507、-0.8567、-0.6055、0.4787。若将斜率判定界限设为3,则可知悬停手势持续了2秒钟左右。Referring to Figure 11b, Figure 11b is an example of the hover gesture signal layer judgment using the above method, and the slope values at each stage are -7.2967, -1.5059e-14, -2.8360, -1.5059e-14, 1.2219, -1.5059e -14, 0.1450, 0.5360, 0.5165, -0.0956, -0.7544, 2.3507, -0.8567, -0.6055, 0.4787. If the slope judgment limit is set to 3, it can be known that the hover gesture lasts for about 2 seconds.
接下来描述如何根据所述第一雷达数据,通过预训练的手势分类网络,确定所述用户的手势为第一手势:Next, describe how to determine the user's gesture as the first gesture through the pre-trained gesture classification network according to the first radar data:
在一种可能的实现中,上述预训练的手势分类网络可以为基于结合自注意力机制的卷积层多维度特征融合识别算法实现的网络,融合手势动作的距离、角度、速度特征,可以得到识别结果。应理解上述预训练的手势分类网络也可以应用在独立手势模式中的独立手势类别识别中。In a possible implementation, the above-mentioned pre-trained gesture classification network can be a network based on a convolutional layer multi-dimensional feature fusion recognition algorithm combined with a self-attention mechanism, which can be obtained by fusing the distance, angle, and speed features of gesture actions. recognition result. It should be understood that the above-mentioned pre-trained gesture classification network can also be applied to the independent gesture category recognition in the independent gesture mode.
其中,手势识别的实现主要包括网络识别与信号层识别两种方式,网络层识别即利用本申请基于的结合注意力机制的多维度特征融合识别算法,算法的整体架构如图11c所示,算法首先对单个手势的三类信息进行堆叠,获得三通道格式的信息,类似于计算机视觉中深度学习算法普遍输入的RGB图像,作为单个手势的数据输入。后对输入数据进行特征提取,此部分通过多层卷积层完成,卷积层的卷积核大小为3。特征提取部分使得数据尺寸减小,通道数增加,数据输出通过基于自注意力机制的通道间特征融合步骤,在各通道上叠加注意力值信息。后通过全连接层及Softmax层,对特征数据一维化,并缩短长度至手势类别数量,输出对各类别手势的预测概率。进而,可以将预测概率最高的手势类别作为第一手势的手势类型。Among them, the realization of gesture recognition mainly includes two ways of network recognition and signal layer recognition. Network layer recognition uses the multi-dimensional feature fusion recognition algorithm combined with the attention mechanism based on this application. The overall structure of the algorithm is shown in Figure 11c. First, the three types of information of a single gesture are stacked to obtain information in a three-channel format, which is similar to the RGB image commonly input by deep learning algorithms in computer vision, as the data input of a single gesture. Finally, feature extraction is performed on the input data. This part is completed through a multi-layer convolutional layer, and the convolution kernel size of the convolutional layer is 3. The feature extraction part reduces the data size and increases the number of channels. The data output passes through the inter-channel feature fusion step based on the self-attention mechanism, and the attention value information is superimposed on each channel. Afterwards, through the fully connected layer and the Softmax layer, the feature data is one-dimensionalized, and the length is shortened to the number of gesture categories, and the predicted probability of each category of gestures is output. Furthermore, the gesture category with the highest prediction probability may be used as the gesture type of the first gesture.
通过上述方式,可以得到第一手势的手势类型,进而可以基于预设的对应关系,确定所述第一手势的手势类型对应于所述目标功能,其中所述预设的对应关系包括手势类型与功能之间的映射。Through the above method, the gesture type of the first gesture can be obtained, and then it can be determined that the gesture type of the first gesture corresponds to the target function based on the preset correspondence, wherein the preset correspondence includes gesture type and Mapping between functions.
也就是说,可以基于第一手势的手势类型来确定后续开启的精细调节时的调节对象(即目标功能)是什么。That is to say, it may be determined based on the gesture type of the first gesture to determine what the adjustment object (ie, the target function) is for subsequent fine adjustments.
在一种可能的实现中,所述第一手势的手势类型为手指捏合(例如图12a所示),所述目标功能为应用播放的视频或音频的进度调节;或者,所述第一手势的手势类型为画圈,所述目标功能为音量大小调节;或者,所述第一手势的手势类型为手掌悬停,所述目标功能为显示亮度调节或者显示图像的缩放调节;或者,所述第一手势的手势类型为握拳,所述目标功能为显示界面的移动调节;或者,所述第一手势的手势类型为手掌轻晃,所述目标功能为车窗高度调节;或者,所述第一手势的手势类型为握拳且伸出大拇指,所述目标功能为车舱内座椅的前后位置调节。In a possible implementation, the gesture type of the first gesture is finger pinching (such as shown in FIG. 12a ), and the target function is to adjust the progress of the video or audio played by the application; or, the The gesture type is circle drawing, and the target function is volume adjustment; or, the gesture type of the first gesture is palm hovering, and the target function is display brightness adjustment or display image zoom adjustment; or, the second gesture The gesture type of a gesture is a fist, and the target function is movement adjustment of the display interface; or, the gesture type of the first gesture is palm flicking, and the target function is window height adjustment; or, the first gesture The gesture type of the gesture is to make a fist and extend a thumb, and the target function is to adjust the front and rear positions of the seats in the vehicle cabin.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为手指捏合,进而可以开启针对于应用播放的视频或音频的进度调节的功能调节模式。Specifically, the processor may recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds a first threshold, and then recognize that the gesture category of the user's gesture is finger pinching , and then you can turn on the function adjustment mode for adjusting the progress of the video or audio played by the application.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为画圈,进而可以开启针对于音量大小调节的功能调节模式。Specifically, the processor may recognize that there is a gesture of the user in the monitoring area of the radar system at a certain moment, and determine that the duration of the gesture of the user exceeds the first threshold, and then may recognize that the gesture category of the gesture of the user is circle drawing , and then you can turn on the function adjustment mode for volume adjustment.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为手掌悬停,进而可以开启针对于显示亮度调节或者显示图像的缩放调节的功能调节模式。Specifically, the processor can recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds the first threshold, and then can recognize that the gesture category of the user's gesture is palm hanging Stop, and then you can start the function adjustment mode for display brightness adjustment or display image zoom adjustment.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为握拳,进而可以开启针对于显示界面的移动调节的功能调节模式。Specifically, the processor may recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds a first threshold, and then recognize that the gesture category of the user's gesture is a fist, Furthermore, a function adjustment mode for mobile adjustment of the display interface can be enabled.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为手掌轻晃,进而可以开启车窗高度调节的功能调节模式。Specifically, the processor may recognize that there is a user's gesture in the monitoring area of the radar system at a certain moment, and determine that the duration of the user's gesture exceeds the first threshold, and then may recognize that the gesture type of the user's gesture is a light palm Shake, and then you can turn on the function adjustment mode of window height adjustment.
具体的,处理器可以识别出某一时刻在雷达系统的监测区域内存在用户的手势,且确定出用户的手势的持续时间超过第一阈值,进而可以识别出用户的手势的手势类别为握拳且伸出大拇指,进而可以开启针对于车舱内座椅的前后位置调节的功能调节模式。Specifically, the processor may recognize that there is a gesture of the user in the monitoring area of the radar system at a certain moment, and determine that the duration of the gesture of the user exceeds the first threshold, and then may recognize that the gesture category of the gesture of the user is fist and Stretch out your thumb, and then you can turn on the function adjustment mode for adjusting the front and rear positions of the seats in the cabin.
本申请实施例中,在基于第一雷达数据,确定出存在第一手势,且第一手势的持续时间超过第一阈值时,可以开启针对于目标功能的调节功能。In the embodiment of the present application, when it is determined based on the first radar data that there is a first gesture and the duration of the first gesture exceeds a first threshold, the adjustment function for the target function may be enabled.
具体的,参照图12b,在开启针对于目标功能的调节功能时,可以呈现一定的反馈信息,该反馈信息可以指示针对于目标功能的调节功能已开启,具体的,在开启针对于目标功能的调节功能时,可以进行所述目标功能相对应的目标呈现,所述目标呈现用于指示已开启针对于目标功能的调节功能。Specifically, referring to FIG. 12b, when the adjustment function for the target function is turned on, certain feedback information may be presented, and the feedback information may indicate that the adjustment function for the target function has been turned on. Specifically, when the adjustment function for the target function is turned on, When adjusting a function, a target presentation corresponding to the target function may be performed, and the target presentation is used to indicate that the adjustment function for the target function has been enabled.
在一种可能的实现中,所述目标呈现可以包括:进行所述目标功能的调节的控件显示。在智能家居的应用场景中,可以在具有显示屏的电子设备上进行目标呈现;在智能座舱的场景中,可以在车舱内的中控屏上进行目标呈现。In a possible implementation, the target presentation may include: displaying controls for adjusting the target function. In the application scenario of a smart home, the target presentation can be performed on an electronic device with a display; in the scenario of a smart cockpit, the target presentation can be performed on the central control screen in the car cabin.
以目标功能为应用播放的视频或音频的进度调节为例,则目标呈现可以为进度条的显示。Taking the target function as the progress adjustment of the video or audio played by the application as an example, the target presentation may be the display of a progress bar.
以目标功能为音量大小调节为例,则目标呈现可以为音量调节控件的显示。Taking the target function as volume adjustment as an example, the target presentation may be the display of a volume adjustment control.
以目标功能为显示亮度调节为例,则目标呈现可以为显示亮度调节控件的显示。Taking the target function as display brightness adjustment as an example, the target presentation may be the display of a display brightness adjustment control.
以目标功能为显示图像的缩放调节为例,则目标呈现可以为图像的缩放控件的显示。Taking the target function as an example of displaying zoom adjustment of an image, the target presentation may be the display of a zoom control of an image.
以目标功能为显示界面的移动调节为例,则目标呈现可以为显示界面的移动控件的显示。Taking the target function as the mobile adjustment of the display interface as an example, the target presentation may be the display of the mobile controls of the display interface.
在一种可能的实现中,所述目标呈现可以包括:与所述目标功能相关的硬件的震动提示,例如在智能车舱的场景中,目标呈现可以为座椅的震动提示。In a possible implementation, the target presentation may include: a vibration prompt of hardware related to the target function, for example, in the scenario of a smart car cabin, the target presentation may be a seat vibration prompt.
以目标功能为车舱内座椅的前后位置调节为例,则目标呈现可以为要进行座椅位置调节的座椅的震动提示。Taking the target function as an example of adjusting the front and rear positions of the seats in the vehicle cabin, the target presentation may be a vibration reminder of the seat to be adjusted.
在一种可能的实现中,所述目标呈现可以包括:声音提示,该声音提示可以包含已开启针对于目标功能的调节功能的语音,例如以目标功能为应用播放的视频或音频的进度调节为例,则目标呈现可以为播放语音“应用播放的视频或音频的进度调节功能已开启”;以目标功能为音量大小调节为例,则目标呈现可以为播放语音“音量调节功能已开启”;以目标功能为显示亮度调节为例,则目标呈现可以为播放语音“显示亮度调节功能已开启”;以目标功能为显示图像的缩放调节为例,则目标呈现可以为播放语音“图像的缩放功能已开启”;以目标功能为车窗高度调节为例,则目标呈现可以为播放语音“车窗高度调节功能已开启”;以目标功能为车舱内座椅的前后位置调节为例,则目标呈现可以为播放语音“车舱内座椅的前后位置调节功能已开启”。In a possible implementation, the target presentation may include: a sound prompt, which may include a voice that the adjustment function for the target function has been turned on, for example, the progress of the video or audio played by the application with the target function is adjusted as For example, the target presentation can be to play the voice "The progress adjustment function of the video or audio played by the application has been turned on"; if the target function is volume adjustment as an example, the target presentation can be to play the voice "The volume adjustment function has been turned on"; If the target function is display brightness adjustment as an example, the target presentation can be to play the voice "The display brightness adjustment function has been turned on"; if the target function is the zoom adjustment of the displayed image, the target presentation can be to play the voice "The zoom function of the image is turned on". If the target function is the height adjustment of the car window as an example, the target presentation can be to play the voice "The window height adjustment function has been turned on"; if the target function is the front and rear position adjustment of the seat in the cabin, the target presentation The voice "The front and rear position adjustment function of the seat in the cabin has been turned on" can be played.
603、获取第二雷达数据。603. Acquire second radar data.
在开启针对于目标功能的调节功能(精细调节)后,用户可以在雷达系统的监测区域内通过手势来进行针对于目标功能的调节。After turning on the adjustment function (fine adjustment) for the target function, the user can adjust the target function through gestures in the monitoring area of the radar system.
具体的,处理器可以获取到第二雷达数据,其中,第二雷达数据可以是对用户的手势(第二手势)的反射信号得到的,关于处理器如何获取第二雷达数据,可以参照上述实施例中关于第一雷达数据的获取方式的描述,这里不再赘述。Specifically, the processor may obtain the second radar data, wherein the second radar data may be obtained from a reflected signal of the user's gesture (second gesture). For how the processor obtains the second radar data, please refer to the above-mentioned The description about the manner of acquiring the first radar data in the embodiment will not be repeated here.
在一种可能的实现中,所述第一雷达数据为在所述第二雷达数据之前获取的。In a possible implementation, the first radar data is acquired before the second radar data.
在一种可能的实现中,所述第一雷达数据和所述第二雷达数据为在时域上连续获取的雷达数据;或者,所述第一雷达数据和所述第二雷达数据为在时域上间隔目标时间段获取的雷达数据,所述目标时间段的时长小于第二阈值;其中,第二阈值可以是处理器在进行第一雷达数据的相关处理的时间,在该时间内,针对于目标功能的调节功能还未开启。In a possible implementation, the first radar data and the second radar data are radar data acquired continuously in the time domain; or, the first radar data and the second radar data are The radar data acquired at intervals of the target time period on the domain, and the duration of the target time period is less than the second threshold; wherein, the second threshold may be the time when the processor is performing related processing on the first radar data, and within this time, for The adjustment function for the target function has not been turned on.
604、响应于所述针对于目标功能的调节功能的开启,根据所述第二雷达数据,确定所述第二雷达数据指示的第二手势、以及所述第二手势的运动特征。604. In response to enabling the adjustment function for the target function, according to the second radar data, determine a second gesture indicated by the second radar data and a motion feature of the second gesture.
本申请实施例中,基于针对于目标功能的调节功能的已开启,可以根据所述第二雷达数据,确定所述第二雷达数据指示的第二手势、以及所述第二手势的运动特征。In the embodiment of the present application, based on the adjustment function for the target function being turned on, the second gesture indicated by the second radar data and the movement of the second gesture can be determined according to the second radar data feature.
应理解,第一手势和第二手势之间也存在预设的映射关系,具体的,第一手势可以用于开启与第一手势的手势类型对应的目标功能的调节模式,在开启目标功能的调节模式的情况下,用户也只能基于与目标功能的调节模式所对应的手势类型(第二手势的手势类型)进行目标功能的调节。It should be understood that there is also a preset mapping relationship between the first gesture and the second gesture. Specifically, the first gesture can be used to enable the adjustment mode of the target function corresponding to the gesture type of the first gesture. In the case of the adjustment mode of the target function, the user can only adjust the target function based on the gesture type (the gesture type of the second gesture) corresponding to the adjustment mode of the target function.
其中,第二雷达手势是用户进行精细调节时的手势,第一手势作为精细调节功能的唤醒手势,可以和第二手势之间的手势差异较大,也就是可以认为第一手势和第二手势之间为独立手势。Among them, the second radar gesture is a gesture when the user performs fine adjustment, and the first gesture, as a wake-up gesture for the fine adjustment function, can be quite different from the second gesture, that is, it can be considered that the first gesture and the second gesture Gestures are independent gestures.
在一种可能的实现中,第一手势和第二手势还可以为用户连续的手势动作,所谓连续的手势动作,可以理解为第一手势和所述第二手势的手型相同(或者差异很小),可选的,所述第一手势可以为静止手势或者移动幅度小于阈值的手势,由于第二手势需要对目标功能进行一定调节幅度的调节,因此所述第二手势可以为移动幅度大于阈值的手势。In a possible implementation, the first gesture and the second gesture can also be continuous gesture actions of the user. The so-called continuous gesture actions can be understood as the hand shapes of the first gesture and the second gesture are the same (or The difference is very small), optionally, the first gesture may be a static gesture or a gesture whose movement range is smaller than a threshold, and since the second gesture needs to adjust the target function to a certain extent, the second gesture may be It is a gesture whose movement range is greater than the threshold.
本申请实施例中,第一手势和所述第二手势的手型相同,使得用户在进行精细调节的功能唤醒时的手势和进行精细调节时采用的手势为相同手型的手势,可以让用户在很小的学习成本下就能准确的进行功能调节。In the embodiment of the present application, the hand shapes of the first gesture and the second gesture are the same, so that the gesture when the user wakes up the fine-tuning function and the gesture used when fine-tuning are the same hand-shaped gestures, which can make The user can accurately adjust the function with a small learning cost.
在一种可能的实现中,所述第一手势为手指捏合的手势,所述第二手势为保持所述手指捏合且拖动的手势;或者,所述第一手势为手掌悬停手势,所述第二手势为上抬手势或者下压手势;或者,所述第一手势为手掌悬停手势,所述第二手势为左右挥手手势;或者,所述第一手势为手掌悬停手势,所述第二手势为前后推手势;或者,所述第一手势为握拳的手势,所述第二手势为保持所述握拳且移动的手势;或者,所述第一手势为手掌轻晃手势,所述第二手势为上抬手势或者下压手势;或者,所述第一手势为握拳且伸出大拇指的手势,所述第二手势为保持所述握拳且伸出大拇指并前后推的手势。上述第二手势的手势语义贴合调节功能,符合用户习惯,可以助于降低学习成本。In a possible implementation, the first gesture is a finger pinching gesture, and the second gesture is a gesture of holding the fingers pinching and dragging; or, the first gesture is a palm hovering gesture, The second gesture is an upward gesture or a downward gesture; or, the first gesture is a palm hovering gesture, and the second gesture is a left and right waving gesture; or, the first gesture is a palm hovering gesture Gesture, the second gesture is a gesture of pushing back and forth; or, the first gesture is a gesture of making a fist, and the second gesture is a gesture of keeping the fist and moving; or, the first gesture is a palm For a jiggling gesture, the second gesture is a lifting gesture or a pressing gesture; or, the first gesture is a gesture of making a fist and extending a thumb, and the second gesture is maintaining the fist and extending a thumb. Thumbs up and push back and forth gesture. The gesture-semantic fit adjustment function of the above-mentioned second gesture conforms to user habits and can help reduce learning costs.
在一种可能的实现中,所述第一手势和所述第二手势为所述第一手势的手势类型相同,且所述第一手势和所述第二手势均为移动幅度大于阈值的手势。例如,所述第一手势和所述第二手势可以均为画圈手势。In a possible implementation, the first gesture and the second gesture are of the same gesture type as the first gesture, and both the first gesture and the second gesture have a movement range greater than a threshold gesture. For example, the first gesture and the second gesture may both be circle-drawing gestures.
本申请实施例中,可以对第二雷达数据进行分析以确定第二手势的运动特征,该运动特征可以用于进行精细调节时调节信息的确定。精细调节方案中不需要对每个调节动作的所有特征进行精细量化,根据手势特点,可以选择手势的某一个或部分运动特征来实现精细调节功能。其中,不同手势可以采用不同的运动特征。In the embodiment of the present application, the second radar data may be analyzed to determine the motion feature of the second gesture, and the motion feature may be used to determine adjustment information when fine adjustment is performed. In the fine adjustment scheme, it is not necessary to finely quantify all the features of each adjustment action. According to the characteristics of the gesture, one or part of the motion features of the gesture can be selected to realize the fine adjustment function. Wherein, different gestures may adopt different motion characteristics.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,可以包括:所述第二手势的距离信息,所述距离信息包括所述第二手势与所述雷达系统之间的距离随时间的变化、所述距离的变化速率、以及所述距离的变化方向中的至少一种。In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture may include: the second gesture The distance information includes at least one of a change over time of a distance between the second gesture and the radar system, a change rate of the distance, and a change direction of the distance.
其中,基于距离特征实现精细调节的适用情况可以为手势动作与雷达之间相对距离不断变化的情况,以及手部反射点区域较为集中,有利于距离探测的情况。Among them, the application of fine adjustment based on distance features can be the situation where the relative distance between the gesture action and the radar is constantly changing, and the hand reflection point area is relatively concentrated, which is conducive to distance detection.
例如适合采用距离特征精细量化的手势可以包括但不限于:手掌上抬/下压、左右挥动、前后移动等。For example, gestures suitable for fine quantification of distance features may include, but are not limited to: lifting/pressing the palm, swaying left and right, moving back and forth, and the like.
其中,距离信息蕴含于各回波脉冲的频率中,可通过在快时间对单个脉冲进行快速傅立叶变换,获得手势于当前脉冲时间内的距离信息,对各脉冲距离信息进行整合,即可得到单个手势的整体距离变化信息。Among them, the distance information is contained in the frequency of each echo pulse, and the distance information of the gesture in the current pulse time can be obtained by performing fast Fourier transform on a single pulse in a fast time, and the distance information of each pulse can be integrated to obtain a single gesture The overall distance change information of .
中频信号可简化为:The intermediate frequency signal can be simplified as:
即可通过FFT获得信号频谱,找出谱峰位置:The signal spectrum can be obtained by FFT, and the peak position can be found:
其同目标距离成正比,可得目标距离为:It is proportional to the target distance, and the target distance can be obtained as:
距离信息提取示意图如图13。距离分辨率是指区分两个临近目标的能力,即能保证回波信号不混叠的目标最小间距,其满足:The schematic diagram of distance information extraction is shown in Figure 13. Range resolution refers to the ability to distinguish two adjacent targets, that is, the minimum distance between targets that can ensure that echo signals do not alias, which satisfies:
其中c为光速,B为chirp信号调频带宽。在60GHz频段常用带宽及距离分辨率对应关系可以如下表2所示:Among them, c is the speed of light, and B is the frequency modulation bandwidth of the chirp signal. The corresponding relationship between commonly used bandwidth and distance resolution in the 60GHz frequency band can be shown in Table 2 below:
表2Table 2
因此,增大扫频带宽的提高可提高距离分辨率。此时距离维度精细调节的最小刻度为距离分辨率。本申请实施例中,还可以在提取距离特征时通过调整Range-FFT来提升距离分辨能力。具体的,在进行Range_FFT处理后,一个频谱间隔对应一个距离门单元,满足以下关系:Therefore, increasing the sweep bandwidth improves the range resolution. At this time, the minimum scale for fine adjustment of the distance dimension is the distance resolution. In the embodiment of the present application, the distance resolution capability can also be improved by adjusting the Range-FFT when extracting distance features. Specifically, after Range_FFT processing, a spectrum interval corresponds to a range gate unit, which satisfies the following relationship:
其中,Ns表示I/Q路Chirp信号采样点数,NFFT表示FFT采样点数。一般情况下,Ns与NFFT相等,此时若增大NFFT,即可减小a。Among them, N s represents the number of sampling points of the Chirp signal of the I/Q channel, and N FFT represents the number of sampling points of the FFT. In general, N s is equal to N FFT , at this time If increase NFFT , can reduce a.
举例说明:若设置Ns为128,NFFT为512,信号的128个采样点作为FFT的首个1/4输入,其余3/4用0填补,此时距离门间隔降低为之前的1/4。此时超分辨的精细调节的最小刻度可以为距离分辨率的1/4。For example: If N s is set to 128, and NFFT is set to 512, the 128 sampling points of the signal are used as the first 1/4 input of the FFT, and the remaining 3/4 is filled with 0. At this time, the range gate interval is reduced to 1/4 of the previous value. 4. At this time, the minimum scale of the fine adjustment of the super-resolution can be 1/4 of the distance resolution.
在一种可能的实现中,可以通过range-FFT获取距离特征图,特征图横轴对应chirp信号数,可表示时间。纵轴表示距离,每一单位对应距离分辨Rres所对应的长度。由于毫米波雷达对亚毫米级位移的敏感,同一chirp信号上不同距离门上都有强度不一的回波信号。之后可以提取每一chirp回波信号内能量最大值位置,该位置对应纵轴值即为当前手势动作所处位置。结果中一般存在极少数位置突变点,分析原因主要是由于噪声导致。为减弱突变点的影响,使用滑窗平均法进行平滑处理,同时可以平滑距离点之间的跃式跳变,便于后续处理。滑窗长度可以根据提取精细特征时间窗(n frames)长度确定。之后可以对每段距离特征数据进行一阶拟合,提取一阶拟合函数斜率k,以得到以下表3所示的距离调节依据信息:In a possible implementation, the distance feature map can be obtained through range-FFT, and the horizontal axis of the feature map corresponds to the number of chirp signals, which can represent time. The vertical axis represents the distance, and each unit corresponds to the length corresponding to the distance resolution R res . Due to the sensitivity of millimeter-wave radar to submillimeter displacement, there are echo signals with different strengths on different range gates on the same chirp signal. Afterwards, the position of the energy maximum value in each chirp echo signal can be extracted, and the value corresponding to the position on the vertical axis is the position of the current gesture action. There are generally very few positional mutation points in the results, and the reason for the analysis is mainly due to noise. In order to weaken the influence of abrupt points, the sliding window average method is used for smoothing, and the jumps between distance points can be smoothed, which is convenient for subsequent processing. The length of the sliding window can be determined according to the length of the time window (n frames) for extracting fine features. Afterwards, first-order fitting can be performed on each segment of distance feature data, and the slope k of the first-order fitting function can be extracted to obtain the distance adjustment basis information shown in Table 3 below:
表3table 3
以上抬手势和下压手势为例,对于上抬动作,参照图14,上抬动作可以持续5/6秒左右,产生了5个斜率值。分别为-4.4657、2.4895、5.7985、8.8039、12.5691,其中第一个斜率为负数,其原因在于,伸手进入雷达探测过程是相对距离减小过程,后续动作不断远离雷达。数值大小反映了动作速率。Take the up gesture and the down gesture as examples. For the up gesture, referring to FIG. 14 , the up gesture can last for about 5/6 seconds, and 5 slope values are generated. They are -4.4657, 2.4895, 5.7985, 8.8039, and 12.5691, respectively. The first slope is a negative number. The reason is that the process of reaching into the radar detection is a process of relative distance reduction, and the subsequent actions keep moving away from the radar. The numerical size reflects the movement rate.
对于下压动作,参照图15,与上抬动作相反,下压动作作为相对距离不断减小的过程。上述动作同样持续了约5/6秒左右,所有斜率值均为负数,分别为-9.4675、-8.8054、-4.7695、-8.7964、-6.6660。同理,斜率绝对值大小反映了动作速度。For the pressing action, referring to FIG. 15 , contrary to the lifting action, the pressing action is a process of decreasing relative distance. The above actions also lasted about 5/6 seconds, and all slope values were negative, respectively -9.4675, -8.8054, -4.7695, -8.7964, -6.6660. Similarly, the absolute value of the slope reflects the movement speed.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征可以包括:所述第二手势的速率信息,所述速率信息包括所述第二手势在所述雷达场中的移动速率随时间的变化大小。In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture may include: Velocity information, where the velocity information includes the variation of the moving velocity of the second gesture in the radar field with time.
基于速度特征实现的精细调节可以适用于有明显速度变化的精细调节过程,尤其适用于周期性运动。此时速度随时间呈现清晰的正弦曲线关系变化。据此分析,适合采用速度特征精细量化的手势例如顺、逆时针画圈、连续点击、拨滑块等。The fine adjustment based on the velocity feature can be applied to the fine adjustment process with obvious velocity changes, especially for periodic motion. At this time, the speed shows a clear sinusoidal relationship with time. Based on this analysis, gestures that are suitable for fine quantification of speed characteristics, such as clockwise and counterclockwise circles, continuous clicking, and sliders, etc.
在一种可能的实现中,在对手势原始回波快时间进行FFT后,在慢时间维再进行FFT,其峰值可反应目标的多普勒频率,即蕴含目标的速度信息。慢时间域FFT需在同一距离门内进行,而因目标的整体运动存在距离徙动,不能直接对整体手势的某一距离门进行FFT,而应合理设置积累脉冲数,使得每次FFT操作内的手势截断基本无距离徙动。本文通过短时傅里叶变换完成对手势信号的时频分析,从而提取手势多普勒信息,合理设计积累脉冲数,即为合理设置短时傅里叶变换的窗长。In a possible implementation, after FFT is performed on the fast time of the original gesture echo, FFT is performed on the slow time dimension, and its peak value can reflect the Doppler frequency of the target, that is, it contains the speed information of the target. The slow time domain FFT needs to be performed in the same range gate, and because of the distance migration of the overall movement of the target, it is not possible to directly perform FFT on a certain range gate of the overall gesture, but the number of accumulated pulses should be set reasonably so that each FFT operation Gesture truncation basically has no distance migration. In this paper, the time-frequency analysis of the gesture signal is completed through the short-time Fourier transform, so as to extract the gesture Doppler information, and reasonably design the number of accumulated pulses, that is, to reasonably set the window length of the short-time Fourier transform.
对于本文的数据处理,首先对原始信号进行快时间FFT得到距离信息,后提取各脉冲峰值位置数据并重组成一列,对此列数据利用STFT进行时频分析,从而获得单个手势的多普勒变化规律。For the data processing in this paper, the original signal is firstly subjected to fast-time FFT to obtain the distance information, and then the peak position data of each pulse is extracted and recombined into a column, and STFT is used for time-frequency analysis of this column of data to obtain the Doppler variation law of a single gesture .
若目标处于运动状态,则:If the target is in motion, then:
信号频率同时含有距离及速度信息,即出现距离同速度的耦合,无法直接通过一维FFT求得。设信号采样周期为Ts,脉冲重复间隔为T,单脉冲采样点数为N,接收L个脉冲,改写为:The signal frequency contains distance and speed information at the same time, that is, the coupling of distance and speed occurs, which cannot be obtained directly through one-dimensional FFT. Suppose the signal sampling period is T s , the pulse repetition interval is T, the number of single pulse sampling points is N, and L pulses are received, rewritten as:
其中n=0,1,2,…,N-1,代表单脉冲的采样点序列,l=0,1,2,…,L-1,代表脉冲序列。Where n=0,1,2,...,N-1, represents a single pulse sampling point sequence, and l=0,1,2,...,L-1, represents a pulse sequence.
观察可知,信号的相位部分带有速度信息,相位部分在进行一维FFT后呈现为信号复包络的形式。故再对一维FFT过后的信号于第二维做FFT(即以慢时间lT为变量),可得反应目标速度的信号中心频率(即为目标多普勒频率):It can be seen from the observation that the phase part of the signal carries velocity information, and the phase part presents the form of the complex envelope of the signal after one-dimensional FFT. Therefore, FFT is performed on the signal after the one-dimensional FFT in the second dimension (that is, the slow time lT is used as a variable), and the center frequency of the signal that reflects the target speed (that is, the target Doppler frequency) can be obtained:
可得:Available:
信号的时频分析指对于信号各时间范围的频率成分组成方式进行描述。因平稳信号常为为理想状况或人为制造,而一般情况下信号呈现非平稳,故傅里叶变换不足以对其进行分析,需要通过时频分析的手段进行分析。短时傅里叶变换进行时频分析手段。The time-frequency analysis of the signal refers to the description of the composition of the frequency components in each time range of the signal. Since the stationary signal is often ideal or man-made, and the signal is generally non-stationary, the Fourier transform is not enough to analyze it, and it needs to be analyzed by means of time-frequency analysis. The short-time Fourier transform is a means of time-frequency analysis.
短时傅里叶变换(STFT)通过时间窗内的一段信号来表示某一时刻的信号特征。在短时傅里叶变换过程中,时频图的时间分辨率和频率分辨率由窗长确定,窗长的增加导致截取信号长度增加,使得STFT获得的频率分辨率越高,时间分辨率越差,反之亦然。具体操作而言,短时傅里叶变换就首先把一个函数和窗函数进行相乘,然后再进行一维傅里叶变换。并通过窗函数的滑动得到一系列的傅立叶变换结果,将这些结果排开便得到一个横轴为时域,纵轴为频域的二维表象。设s(t)为待分析信号,STFT(t,ω)为信号时频分析结果,则短时傅里叶变换公式如:The short-time Fourier transform (STFT) represents the signal characteristics at a certain moment through a section of the signal within the time window. In the short-time Fourier transform process, the time resolution and frequency resolution of the time-frequency map are determined by the window length. The increase of the window length leads to an increase in the length of the intercepted signal, so that the higher the frequency resolution obtained by STFT, the better the time resolution. Poor and vice versa. In terms of specific operations, the short-time Fourier transform first multiplies a function and the window function, and then performs a one-dimensional Fourier transform. And through the sliding of the window function, a series of Fourier transform results are obtained, and these results are arranged to obtain a two-dimensional representation with the time domain on the horizontal axis and the frequency domain on the vertical axis. Let s(t) be the signal to be analyzed, and STFT(t,ω) be the time-frequency analysis result of the signal, then the short-time Fourier transform formula is as follows:
STFT(t,ω)=∫s(t′)ω(t′-t)e-jωt′dt′;STFT(t,ω)=∫s(t′)ω(t′-t)e -jωt′ dt′;
如上所述,使用STFT时需要设置窗长,而窗长会影响时间分辨率及频率分辨率,高频信号适合使用小窗长,从而获得时域高分辨率,低频信号适合使用大窗长,从而获得频域高分辨率,但STFT窗长固定,故对信号的时频分析能力仍有一定缺陷。不同频率下的STFT基函数可以如图16所示。多普勒信息提取示意图可以如图17所示。As mentioned above, the window length needs to be set when using STFT, and the window length will affect the time resolution and frequency resolution. High-frequency signals are suitable for using small window lengths to obtain high resolution in the time domain. Low-frequency signals are suitable for using large window lengths. In order to obtain high resolution in the frequency domain, but the STFT window length is fixed, so the time-frequency analysis ability of the signal still has certain defects. The STFT basis functions at different frequencies can be shown in FIG. 16 . A schematic diagram of Doppler information extraction may be shown in FIG. 17 .
示例性的,在进行基于速度信息的精细调节时,可以获取速度特征图,并提取每一chirp回波信号内能量最大值位置,该位置对应纵轴值即为当前手势速度值。局部速度值可以存在波动,这是由于手势动作无法保持绝对稳定的速度所致。为消除速度变化曲线局部的波动情况,采用滑窗平均法进行平滑处理。得到的速度曲线可以反映手势动作的相对匀变速运动。根据上述所得的速度曲线的形状特征,可以提取反映手势精细特征的变量。以正弦类型速度变化曲线为例,可通过介值定理确定正弦速度曲线零点数目:函数在[a,b]内单调性不变,且f(a)*f(b)<0,则函数f(x)在[a,b]有且仅有一个零点。一个零点对应1/2周期。通过一阶求导,可确定满足导数值为0的波峰波谷数目。一个波峰到波谷对应1/2周期。进行正弦函数拟合,获取速度变换正弦函数的频率。其中,手势总时长/正弦函数周期T=周期数。Exemplarily, when performing fine adjustment based on speed information, a speed characteristic map may be obtained, and the energy maximum position in each chirp echo signal may be extracted, and the vertical axis value corresponding to the position is the current gesture speed value. There can be fluctuations in the local velocity value, which is due to the inability of gestures to maintain an absolutely constant velocity. In order to eliminate the local fluctuation of the speed change curve, the sliding window average method is used for smoothing. The obtained speed curve can reflect the relatively uniform motion of the gesture. According to the shape characteristics of the velocity curve obtained above, variables reflecting the fine features of gestures can be extracted. Taking the sinusoidal speed change curve as an example, the number of zero points of the sinusoidal speed curve can be determined by the intermediate value theorem: the function is monotonic in [a,b], and f(a)*f(b)<0, then the function f (x) has one and only one zero at [a,b]. A zero corresponds to 1/2 period. Through the first-order derivation, the number of peaks and troughs satisfying that the derivative value is 0 can be determined. One peak to trough corresponds to 1/2 cycle. Perform sine function fitting to obtain the frequency of the velocity transformation sine function. Wherein, total gesture duration/sine function period T=period number.
与距离特征类似,同样可以单独基于变换域速度特征的变化实现调节幅度、调节快慢的控制。调节方向的实现既可以基于唤醒手势识别结果,如顺时针、逆时针画圈,或同时利用角度特征实现判断,例如顺时针、逆时针的角度变化方向相反。Similar to the distance feature, the control of the adjustment range and the adjustment speed can also be realized based on the change of the speed feature in the transform domain alone. The adjustment direction can be realized based on the recognition result of the wake-up gesture, such as drawing a circle clockwise or counterclockwise, or at the same time using the angle feature to realize the judgment, for example, the direction of the angle change of clockwise and counterclockwise is opposite.
以画圈手势为例,依据上述分析,顺逆时针画圈是采用速度特征进行精细调节的典型动作,速度信息经过STFT之后的周期性变化比距离周期性起伏变化更加明显。Taking the circle gesture as an example, according to the above analysis, the clockwise and counterclockwise circle is a typical action that uses velocity features for fine adjustment, and the periodic change of velocity information after STFT is more obvious than the periodic fluctuation of distance.
图18所示的速度特征图为逆时针画圈5圈动作的速度特征图,经过上述步骤处理后可得零点数为11,波峰波谷数为11。根据手势分类结果判断为逆时针,根据波峰波谷数及零点数每过1/4个周期可对用户进行反馈,通过在固定处理时间间隔内的波峰波谷数目多少即可判断调节快慢。The speed characteristic diagram shown in Figure 18 is the speed characteristic diagram of 5 circles drawn counterclockwise. After the above steps, the number of zero points can be 11, and the number of peaks and valleys can be 11. According to the gesture classification result, it is judged to be counterclockwise. According to the number of peaks and valleys and zero points, the user can be fed back every 1/4 cycle. The adjustment speed can be judged by the number of peaks and valleys within a fixed processing time interval.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征可以包括所述第二手势的角度信息,所述角度信息包括所述第二手势与雷达系统之间的角度随时间的变化,所述角度包括方位角和/或俯仰角。In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture may include the angle of the second gesture Information, the angle information includes a change over time of an angle between the second gesture and the radar system, and the angle includes an azimuth angle and/or an elevation angle.
其中,基于角度特征实现的精细调节可以适用于手势动作无较大距离、速度起伏变化的情况下,尤其适用于轨迹存在于示意图不同高度的XOY平面中的手势。例如,可以适用于沿不同方向移动的动作(当前受限于硬件性能,角度分辨率较低,可将360°平面分为4个区域,如图21所示),目标角度的获取基于雷达的多接收天线,通过测量各接收回波的相位差实现。多天线接收目标回波示意图如图19。Among them, the fine adjustment based on the angle feature can be applied to the situation where the gesture action does not have a large distance and the speed fluctuates, especially for gestures whose trajectories exist in the XOY plane at different heights of the schematic diagram. For example, it can be applied to actions moving in different directions (currently limited by hardware performance, the angle resolution is low, and the 360° plane can be divided into 4 areas, as shown in Figure 21), and the acquisition of the target angle is based on the radar Multiple receiving antennas are realized by measuring the phase difference of each received echo. The schematic diagram of multi-antenna receiving target echo is shown in Figure 19.
示例性的,可以采用多信号分类算法(multiple signal classification,MUSIC),利用雷达四接收天线阵列,对手势的角度变化进行测量,不同于前序有关算法所使用的对阵列接收信号的协方差矩阵直接进行处理的思想,MUSIC算法将任意阵列输出数据的协方差矩阵进行特征分解,从而得到与信号分量相对应的信号子空间和与信号分量相正交的噪声子空间,后利用这两个子空间的正交性来估计入射方向、极化信息和信号强度等信号参数。MUSIC算法具有普遍的适用性,具有精度高,多信号同时测量等优势。MUSIC算法的使用需要雷达满足阵元间距不大于载波半波长。Exemplarily, a multi-signal classification algorithm (multiple signal classification, MUSIC) can be used to measure the angle change of the gesture by using the radar four-receiving antenna array, which is different from the covariance matrix of the array received signals used by the preamble-related algorithm The idea of direct processing, the MUSIC algorithm decomposes the covariance matrix of any array output data into eigenvalues, so as to obtain the signal subspace corresponding to the signal component and the noise subspace orthogonal to the signal component, and then use these two subspaces Orthogonality can be used to estimate signal parameters such as incident direction, polarization information and signal strength. The MUSIC algorithm has universal applicability and has the advantages of high precision and simultaneous measurement of multiple signals. The use of the MUSIC algorithm requires the radar to satisfy that the inter-array spacing is not greater than half the wavelength of the carrier.
示例性的,雷达线阵阵元数为K,间距为d,则两阵元间接收信号时延为dsinθ/c,假设存在M个目标,其角度分别为θm,m=1,…,M,则M个目标接收信号为:Exemplarily, the number of radar line array elements is K, and the spacing is d, then the time delay of receiving signals between two array elements is dsinθ/c, assuming that there are M targets, and their angles are respectively θ m , m=1,..., M, then the received signals of M targets are:
S(t)=[S1(t),S2(t),…,SM(t)]T;S(t)=[S 1 (t), S 2 (t),..., S M (t)] T ;
信号的方向矢量为:The direction vector of the signal is:
其中,in,
设阵元噪声矢量为:Let the array element noise vector be:
N(t)=[n1(t),n2(t),…,nK(t)]T;N(t)=[n 1 (t),n 2 (t),...,n K (t)] T ;
则可得接收信号为:Then the received signal can be obtained as:
X(t)=AS(t)+N(t);X(t)=AS(t)+N(t);
假设各阵元信号不相关,得接收信号协方差矩阵为:Assuming that the signals of each array element are not correlated, the covariance matrix of the received signal is:
R=E[XXH]=APAH+σ2I;R=E[XX H ]=APA H +σ 2 I;
其中,P=E[SSH],为信号相关矩阵,σ2是噪声功率,I为K×K阶单位矩阵。由于R为满秩矩阵且特征值为正,将R特征分解得特征向量vi(i=1,2,…,K),由于噪声子空间与信号子空间正交,用噪声特征向量为列,构造噪声矩阵:Among them, P=E[SS H ] is the signal correlation matrix, σ 2 is the noise power, and I is the K×K order identity matrix. Since R is a full-rank matrix and the eigenvalues are positive, the eigenvectors v i (i=1,2,...,K) are obtained by decomposing R eigenvalues. Since the noise subspace is orthogonal to the signal subspace, the noise eigenvectors are used as columns , to construct the noise matrix:
En=[vM+1,…,vK];E n =[v M+1 ,...,v K ];
定义空间谱函数:Define the spatial spectral function:
当a(θ)和En各列正交时,分母达到最小值,故可对Pmu(θ)进行谱峰搜索,通过寻找波峰估计到达角。When the columns of a(θ) and E n are orthogonal, the denominator reaches the minimum value, so the spectral peak search can be performed on P mu (θ), and the angle of arrival can be estimated by finding the peak.
基于雷达的多接收天线,通过MUSIC算法可获取手势过程的角度变化。对本文而言,每次角度计算利用的脉冲数为8,即首先将单通道接收回波的8个原始回波脉冲进行拼接。Based on the multi-receiving antenna of the radar, the angle change of the gesture process can be obtained through the MUSIC algorithm. For this paper, the number of pulses used for each angle calculation is 8, that is, the 8 original echo pulses of the single-channel received echo are spliced first.
Xi=[xi1,xi2,…,xiN];X i = [x i1 , x i2 ,..., x iN ];
其中N=4096,即8脉冲的总长度,i为通道序数。后将四通道数据拼接,得MUSIC算法的输入矩阵:Among them, N=4096, that is, the total length of 8 pulses, and i is the channel number. After splicing the four-channel data, the input matrix of the MUSIC algorithm is obtained:
通过MUSIC算法获得该段回波信号对应的手势角度分布。对全部回波中的每8个脉冲进行如上操作,可获得单个手势全阶段的角度信息。角度信息提取示意图如图20所示。The gesture angle distribution corresponding to the segment echo signal is obtained through the MUSIC algorithm. By performing the above operation on every 8 pulses in all echoes, the angle information of the whole stage of a single gesture can be obtained. The schematic diagram of angle information extraction is shown in Figure 20.
角度分辨率表征能够分辨在相同距离上的两个目标的能力,用此时的夹角表示。一般来说,FMCW毫米波角度测量时的角度分辨率与接收天线的数目相关,接收天线越多,精度越高。其满足:Angular resolution characterizes the ability to distinguish two targets at the same distance, expressed by the angle at this time. Generally speaking, the angular resolution of FMCW millimeter wave angle measurement is related to the number of receiving antennas, the more receiving antennas, the higher the accuracy. which satisfies:
通过使用多发射端能够进一步提高角度分辨率,MIMO阵列一系列发射、接收天线能够构成虚拟阵列,此时角度分辨率满足:The angular resolution can be further improved by using multiple transmitters. A series of transmitting and receiving antennas of the MIMO array can form a virtual array. At this time, the angular resolution satisfies:
根据以上公式,计算两种常用收发机制下角度分辨率结果如下表3所示:According to the above formula, the results of calculating the angular resolution under the two commonly used transceiver mechanisms are shown in Table 3 below:
综上,可以看出,角度分辨率能够通过提高雷达硬件配置得到大幅提升。In summary, it can be seen that the angular resolution can be greatly improved by improving the radar hardware configuration.
在基于角度特征进行目标功能的精细调节时,可以利用角度特征提取方法,获取角度特征图,并将角度特征图散射点分布按照角度进行区域划分,根据角度随着时间的变化即可确定手掌移动方向,之后可以确定角度特征的变化方向、变化大小、变化快慢,可以通过区域的变化来体现角度特征的调节方向、通过角度差值来体现调节的幅度大小、通过单位时间内的角度差来体现调节的快慢。When fine-tuning the target function based on the angle feature, the angle feature extraction method can be used to obtain the angle feature map, and the distribution of the scattering points of the angle feature map is divided into regions according to the angle, and the palm movement can be determined according to the change of the angle over time Direction, and then you can determine the change direction, change size, and change speed of the angle feature. The adjustment direction of the angle feature can be reflected through the change of the area, the adjustment range can be reflected through the angle difference, and the angle difference per unit time can be reflected. The speed of adjustment.
示例性的,由于当前角度分辨率的限制,可将雷达探测区域大致分为四个部分(如图21所示)。随着雷达性能的提升,可以更为精细地划分区域,从而实现更为精准的方向判断。在划分4个区域的情况下,每个区域对应90°。手掌在雷达上方从Area 4水平移动至Area2可得特征图可以如图22所示。Exemplarily, due to the limitation of the current angular resolution, the radar detection area can be roughly divided into four parts (as shown in FIG. 21 ). With the improvement of radar performance, areas can be divided more finely, so as to achieve more accurate direction judgment. In the case of dividing into 4 areas, each area corresponds to 90°. Figure 22 shows the feature map obtained when the palm moves horizontally from
此外,参照图23,还可以基于上述多个运动特征来进行目标功能的精细调节,具体的,可以对于多种高自由度手势均需要进行精细调节时,在距离、速度、角度(方位角、俯仰角)单一维度不容易实现,采用融合特征进行精细调节。可以通过增加收发天线数量,或采用虚拟孔径技术,使雷达测角分辨率与精度进一步提升后,角度特征与距离特征、速度特征可进行融合,实现对手势的实时空间定位与追踪,从而实现类似空鼠移动功能。In addition, referring to FIG. 23 , the fine adjustment of the target function can also be performed based on the above-mentioned multiple motion features. Specifically, when fine adjustments are required for various high-degree-of-freedom gestures, the distance, speed, angle (azimuth, angle, etc.) Pitch angle) is not easy to achieve in a single dimension, and the fusion features are used for fine adjustment. By increasing the number of transmitting and receiving antennas, or using virtual aperture technology, the resolution and accuracy of radar angle measurement can be further improved, and the angle feature, distance feature, and speed feature can be fused to realize real-time spatial positioning and tracking of gestures, so as to achieve similar Air mouse movement function.
可选的,为了保证实时性,可以采用短间隔特征精细量化方法,每一段时间窗(nframes)提取一次精细特征,每段处理的手势数据不会保存,快速更新,这样的小规模的数据处理模式,提高了特征反馈速度。Optionally, in order to ensure real-time performance, a short-interval feature fine quantification method can be used to extract fine features every time window (nframes), and the gesture data processed in each segment will not be saved and updated quickly, such small-scale data processing mode, which improves feature feedback speed.
本申请实施例在手势特征提取的基础上,对手势特征进行精细量化,包括距离,速度,水平角度,俯仰角度等。获取反映特征变化方向、特征变化量、特征变化速度的变量,进而可以实现双向、不同幅度、不同快慢、高稳定性、强泛化性的精细调节。In the embodiment of the present application, on the basis of gesture feature extraction, gesture features are finely quantified, including distance, speed, horizontal angle, pitch angle, and the like. Obtain variables that reflect the direction of feature change, the amount of feature change, and the speed of feature change, and then fine-tuning can be achieved in two directions, with different amplitudes, different speeds, high stability, and strong generalization.
605、根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对所述目标功能进行调节。605. Determine adjustment information according to the motion feature, where the adjustment information includes at least one of an adjustment range, an adjustment direction, and an adjustment speed, and adjust the target function based on the adjustment information.
其中,以目标功能为应用播放的视频或音频的进度调节为例,调节幅度可以指示进度的调节大小,调节方向可以指示进度的调节方向(例如是向前或者是向后调节进度),调节速度可以指示进度的调节速度。Wherein, taking the target function as the progress adjustment of the video or audio played by the application as an example, the adjustment range can indicate the adjustment size of the progress, the adjustment direction can indicate the adjustment direction of the progress (for example, adjust the progress forward or backward), and adjust the speed The speed at which the progress can be indicated.
其中,以目标功能为音量大小调节为例,调节幅度可以指示进度的调节大小,调节方向可以指示进度的调节方向(例如是向前或者是向后调节进度),调节速度可以指示进度的调节速度。Wherein, taking the target function as volume adjustment as an example, the adjustment range may indicate the adjustment size of the progress, the adjustment direction may indicate the adjustment direction of the progress (for example, adjust the progress forward or backward), and the adjustment speed may indicate the adjustment speed of the progress .
其中,以目标功能为显示亮度调节为例,调节幅度可以指示进度的调节大小,调节方向可以指示进度的调节方向(例如是向前或者是向后调节进度),调节速度可以指示进度的调节速度。Wherein, taking the target function as display brightness adjustment as an example, the adjustment range can indicate the adjustment size of the progress, the adjustment direction can indicate the adjustment direction of the progress (for example, adjust the progress forward or backward), and the adjustment speed can indicate the adjustment speed of the progress .
其中,以目标功能为显示图像的缩放调节为例,调节幅度可以指示显示图像的缩放比例大小,调节方向可以指示是放大或者是缩小调节,调节速度可以指示缩放的调节速度。Wherein, taking the zooming adjustment of the displayed image as the target function as an example, the adjustment range may indicate the zoom ratio of the displayed image, the adjustment direction may indicate whether it is zooming in or zooming out, and the adjustment speed may indicate the zooming adjustment speed.
其中,以目标功能为显示界面的移动调节为例,调节幅度可以指示调节时移动的位移大小,调节方向可以指示调节时移动的方向,调节速度可以指示调节时移动的速度。Wherein, taking the target function as the movement adjustment of the display interface as an example, the adjustment range can indicate the displacement of the adjustment, the adjustment direction can indicate the direction of the movement during the adjustment, and the adjustment speed can indicate the speed of the movement during the adjustment.
其中,以目标功能为车窗高度调节为例,调节幅度可以指示车窗高度的调节大小,调节方向可以指示车窗高度是向上调节或者是向下调节,调节速度可以指示车窗高度的调节速度。Wherein, taking the target function as the window height adjustment as an example, the adjustment range can indicate the adjustment size of the window height, the adjustment direction can indicate whether the window height is adjusted upward or downward, and the adjustment speed can indicate the adjustment speed of the window height .
其中,以目标功能为车舱内座椅的前后位置调节为例,调节幅度可以指示车舱内座椅的前后位置的调节大小,调节方向可以指示车舱内座椅是向前调节或者是向后调节,调节速度可以指示车舱内座椅的前后位置调节速度。Wherein, taking the target function as the adjustment of the front and rear positions of the seats in the cabin as an example, the adjustment range can indicate the adjustment size of the front and rear positions of the seats in the cabin, and the adjustment direction can indicate whether the seats in the cabin are adjusted forward or toward Rear adjustment, the adjustment speed can indicate the front and rear position adjustment speed of the seat in the cabin.
在一种可能的实现中,用户可以通过终止手势(第三手势)来关闭精细调节功能,具体的,处理器可以获取第三雷达数据,进而可以基于所述第三雷达数据指示第三手势,关闭针对于目标功能的调节功能,其中所述第三手势为撤手手势或者悬停手势。其中,停止动作的作用是充当精细调节的标志,避免多余动作造成误调节,大多数精细调节功能可直接撤手停止,部分对距离变化敏感的采用悬停停止。可选的,第三手势与第二手势之间可以具有强连贯性。In a possible implementation, the user may close the fine adjustment function by terminating the gesture (the third gesture). Specifically, the processor may acquire the third radar data, and then may indicate the third gesture based on the third radar data, Turning off the adjustment function for the target function, wherein the third gesture is a hand-off gesture or a hovering gesture. Among them, the function of the stop action is to serve as a sign of fine adjustment to avoid misadjustment caused by redundant actions. Most of the fine adjustment functions can be stopped directly by withdrawing the hand, and some of the functions that are sensitive to distance changes use hovering to stop. Optionally, there may be strong continuity between the third gesture and the second gesture.
示例性的,可以参照图24a,图24a为本申请实施例提供的一种功能调节方法的流程示意。如图24a所示,本申请实施例可以将精细调节与手势分类识别有机结合,既保证了手势分类识别输出识别结果完成单指令操作,同时兼容采用组合手势或连续重复手势进入精细调节功能。For example, refer to FIG. 24a , which is a schematic flowchart of a function adjustment method provided by an embodiment of the present application. As shown in Figure 24a, the embodiment of the present application can organically combine fine adjustment with gesture classification and recognition, which not only ensures that the gesture classification and recognition outputs the recognition result to complete a single command operation, but is also compatible with using combined gestures or continuous repeated gestures to enter the fine adjustment function.
本申请实施例提供了一种功能调节方法,所述方法包括:获取第一雷达数据;基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,开启针对于目标功能的调节功能;获取第二雷达数据;响应于所述针对于目标功能的调节功能的开启,根据所述第二雷达数据,确定所述第二雷达数据指示的第二手势、以及所述第二手势的运动特征;根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对所述目标功能进行调节。本申请实施例中,将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,这部分雷达数据可以不作为后续进行精细调节时调节程度的确定依据,而仅仅作为是否开启精细调节的触发条件(本申请实施例中也可以称之为唤醒手势),基于手势持续时间的方式来开启精细调节具有如下的好处:由于手势类型是有限的,在未来功能类型不断丰富的情况下,将手势类型作为开启精细调节功能的方案中手势类型可能不够用(独立手势功能占用一部分手势类型,唤醒手势再占据另一部分手势类型,两者之间不能重叠,否则会出现错误),而基于手势持续时间作为是否开启精细调节模式的依据,则可以让独立手势功能使用的手势类别和唤醒手势重叠,进而可以减少在进行手势实现的功能调节时所需的手势类别。此外,在针对于手势相关的功能调节场景中,尤其是精细调节的场景中,需要尽可能保证整体的手势设计是连续的,当用户想进行基于手势的精细调节时,会下意识知晓调节过程需要连续的一段时间内的手势,在唤醒精细调节的功能时,若将唤醒手势的规则也定义为基于持续时间是否足够长,那么作为用户来说,会认为这部分唤醒手势的操作过程和后续是连贯的。将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,更符合用户的思维惯式和使用习惯,减少用户的学习成本。An embodiment of the present application provides a function adjustment method, the method including: acquiring first radar data; based on the first radar data indicating a first gesture, and the duration of the first gesture exceeds a first threshold, turning on The adjustment function for the target function; acquiring second radar data; in response to the activation of the adjustment function for the target function, according to the second radar data, determine the second gesture indicated by the second radar data, and the motion characteristics of the second gesture; according to the motion characteristics, determine adjustment information, the adjustment information includes at least one of adjustment range, adjustment direction, and adjustment speed, and adjust the target based on the adjustment information function to adjust. In the embodiment of the present application, the duration of the gesture indicated by the first radar data is used as the basis for whether to enable the fine adjustment mode. This part of the radar data may not be used as the basis for determining the degree of adjustment in the subsequent fine adjustment, but only as whether to enable the fine adjustment mode. The trigger condition of the adjustment (which can also be referred to as a wake-up gesture in the embodiment of this application), enabling fine adjustment based on the duration of the gesture has the following benefits: Since the types of gestures are limited, in the case of continuous enrichment of future function types , the gesture type may not be sufficient in the scheme of enabling the fine-tuning function (the independent gesture function occupies a part of the gesture type, and the wake-up gesture occupies another part of the gesture type. The two cannot overlap, otherwise an error will occur), and based on The duration of the gesture is used as the basis for whether to enable the fine adjustment mode, so that the gesture categories used by the independent gesture function and the wake-up gesture can overlap, thereby reducing the gesture categories required for the function adjustment of the gesture implementation. In addition, in the gesture-related function adjustment scenario, especially the fine adjustment scenario, it is necessary to ensure that the overall gesture design is as continuous as possible. When the user wants to perform fine adjustment based on gestures, he will subconsciously know that the adjustment process requires Gestures for a continuous period of time, when waking up the fine-tuning function, if the rules for waking up gestures are also defined based on whether the duration is long enough, then as a user, they will think that the operation process and follow-up of this part of waking up gestures are coherent. Taking the duration of the gesture indicated by the first radar data as the basis for whether to enable the fine adjustment mode is more in line with the user's thinking and usage habits, and reduces the user's learning cost.
参照图24b,图24b为本申请实施例提供的一种功能调节方法的流程示意,所述方法可以包括:Referring to Figure 24b, Figure 24b is a schematic flowchart of a function adjustment method provided in the embodiment of the present application, the method may include:
2401、获取目标雷达数据,所述目标雷达数据为基于用户的目标手势在雷达系统提供的雷达场中的反射得到的;2401. Acquire target radar data, where the target radar data is obtained based on the reflection of the user's target gesture in the radar field provided by the radar system;
其中,在存在唤醒手势的设计中,目标雷达数据可以为第一方面中描述的第二雷达数据,相似之处,这里不再赘述。Wherein, in the design where there is a wake-up gesture, the target radar data can be the second radar data described in the first aspect, and the similarities will not be repeated here.
2402、根据所述目标雷达数据,确定所述目标手势的运动特征;所述目标手势的运动特征的特征类型包括距离信息、速率信息或角度信息中的至少两种,所述距离信息包括所述目标手势和所述雷达系统之间的距离随时间的变化,所述速度信息包括所述目标手势和所述雷达系统的相对速度随时间的变化,所述角度信息包括所述目标手势在所述雷达场中的角度随时间的变化,所述角度包括方位角和/或俯仰角。2402. Determine the motion feature of the target gesture according to the target radar data; the feature type of the motion feature of the target gesture includes at least two of distance information, velocity information, or angle information, and the distance information includes the The distance between the target gesture and the radar system varies with time, the velocity information includes the relative velocity of the target gesture and the radar system varies with time, and the angle information includes the target gesture at the The change over time of angles in a radar field, including azimuth and/or elevation.
在一种可能的实现中,所述距离随时间的变化包括:In a possible implementation, the change of the distance over time includes:
所述距离随时间的变化数值、所述距离随时间的变化速率或所述距离随时间的变化方向中的至少一种;At least one of the change value of the distance over time, the rate of change of the distance over time, or the direction of change of the distance over time;
所述调节幅度与所述距离随时间的变化数值有关,所述调节速度与所述距离随时间的变化速率有关,所述调节方向与所述距离随时间的变化方向有关。The adjustment range is related to the change value of the distance with time, the adjustment speed is related to the change rate of the distance with time, and the adjustment direction is related to the change direction of the distance with time.
在一种可能的实现中,所述目标手势为周期性手势,所述相对速度随时间的变化用于确定所述目标手势的手势周期数量;In a possible implementation, the target gesture is a periodic gesture, and the change of the relative speed over time is used to determine the number of gesture cycles of the target gesture;
所述调节幅度与所述周期数量有关,所述调节速度与固定时间内所述目标手势的手势周期数量有关。The adjustment range is related to the number of cycles, and the adjustment speed is related to the number of gesture cycles of the target gesture within a fixed time.
在一种可能的实现中,所述角度随时间的变化包括:In a possible implementation, the change of the angle over time includes:
所述角度随时间的变化数值、所述角度随时间的变化速率或所述角度随时间的变化方向中的至少一种;At least one of the change value of the angle over time, the rate of change of the angle over time, or the direction of change of the angle over time;
所述调节幅度与所述角度随时间的变化数值有关,所述调节速度与所述角度随时间的变化速率有关,所述调节方向与所述角度随时间的变化方向有关。The adjustment range is related to the change value of the angle with time, the adjustment speed is related to the change rate of the angle with time, and the adjustment direction is related to the change direction of the angle with time.
在一种可能的实现中,可以基于所述目标手势为周期性手势或者为与所述雷达系统之间的相对速率不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述速度信息;In a possible implementation, based on the fact that the target gesture is a periodic gesture or a gesture whose relative rate to the radar system is constantly changing, the feature type for determining the motion feature of the target gesture includes the speed information;
基于所述目标手势为与所述雷达系统之间的距离不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述距离信息;When the target gesture is a gesture whose distance from the radar system is constantly changing, determining that the feature type of the motion feature of the target gesture includes the distance information;
基于所述目标手势为在所述雷达场中角度不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述角度信息。Based on the fact that the target gesture is a gesture whose angle is constantly changing in the radar field, the feature type for determining the motion feature of the target gesture includes the angle information.
本申请实施例针对于不同的手势类别,可以获取对应的运动特征类型,在保证准确识别的前提下,降低了数据的处理量。According to the embodiment of the present application, for different gesture categories, corresponding motion feature types can be acquired, and the amount of data processing is reduced on the premise of ensuring accurate recognition.
更多关于步骤2402的描述可以参照上述实施例中步骤604的描述,这里不再赘述。For more descriptions about
2403、根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对目标功能进行调节。2403. Determine adjustment information according to the motion feature, where the adjustment information includes at least one of adjustment range, adjustment direction, and adjustment speed, and adjust the target function based on the adjustment information.
在进行功能的精细调节时,调节动作都至少具有某一显著变化的特征,如距离或角度或速度,本申请实施例在手势的运动特征提取的基础上,对手势特征进行精细量化,包括距离,速度,水平角度,俯仰角度等。获取反映特征变化方向、特征变化量、特征变化速度的变量,进而可以实现双向、不同幅度、不同快慢、高稳定性、强泛化性的精细调节。When fine-tuning the function, the adjustment action has at least one significant change feature, such as distance or angle or speed. The embodiment of the present application finely quantifies the gesture features on the basis of the motion feature extraction of gestures, including distance , speed, horizontal angle, pitch angle, etc. Obtain variables that reflect the direction of feature change, the amount of feature change, and the speed of feature change, and then fine-tuning can be achieved in two directions, with different amplitudes, different speeds, high stability, and strong generalization.
参照图25,图25为本申请实施例提供的一种功能调节装置的结构示意,其中,所述装置2500包括:Referring to Fig. 25, Fig. 25 is a schematic structural diagram of a function adjustment device provided by an embodiment of the present application, wherein the
获取模块2501,用于获取第一雷达数据;An
其中,关于获取模块2501的具体描述可以参照步骤601以及步骤603,相似之处这里不再赘述。Wherein, for the specific description of the obtaining
功能开启模块2502,用于基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,开启针对于目标功能的调节功能;A
其中,关于功能开启模块2502的具体描述可以参照步骤602,相似之处这里不再赘述。Wherein, for the specific description of the
所述获取模块2501,还用于获取第二雷达数据;The obtaining
功能调节模块2503,用于响应于所述针对于目标功能的调节功能的开启,根据所述第二雷达数据,确定所述第二雷达数据指示的第二手势、以及所述第二手势的运动特征;以及,A
根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对所述目标功能进行调节。According to the motion characteristics, adjustment information is determined, the adjustment information includes at least one of adjustment range, adjustment direction, and adjustment speed, and the target function is adjusted based on the adjustment information.
其中,关于功能调节模块2503的具体描述可以参照步骤604和步骤605,相似之处这里不再赘述。Wherein, for the specific description of the
在一种可能的实现中,所述第一阈值大于0.7秒且小于1.5秒。In a possible implementation, the first threshold is greater than 0.7 seconds and less than 1.5 seconds.
在一种可能的实现中,所述第一雷达数据为在所述第二雷达数据之前获取的。In a possible implementation, the first radar data is acquired before the second radar data.
在一种可能的实现中,所述第一雷达数据和所述第二雷达数据为在时域上连续获取的雷达数据;或者,In a possible implementation, the first radar data and the second radar data are radar data acquired continuously in the time domain; or,
所述第一雷达数据和所述第二雷达数据为在时域上间隔目标时间段获取的雷达数据,所述目标时间段的时长小于阈值。The first radar data and the second radar data are radar data acquired at intervals of a target time period in the time domain, and the duration of the target time period is less than a threshold.
在一种可能的实现中,所述第一手势与第二手势为用户连续的手势动作。In a possible implementation, the first gesture and the second gesture are continuous gesture actions of the user.
在一种可能的实现中,所述第一手势和所述第二手势的手势类型相同,所述第一手势为静止手势或者移动幅度小于阈值的手势,所述第二手势为移动幅度大于阈值的手势。In a possible implementation, the gesture types of the first gesture and the second gesture are the same, the first gesture is a static gesture or a gesture with a movement range smaller than a threshold, and the second gesture is a movement range Gestures greater than the threshold.
在一种可能的实现中,所述第一手势为手指捏合的手势,所述第二手势为保持所述手指捏合且拖动的手势;或者,In a possible implementation, the first gesture is a gesture of pinching fingers, and the second gesture is a gesture of keeping the fingers pinched and dragging; or,
所述第一手势为手掌悬停手势,所述第二手势为上抬手势或者下压手势;或者,The first gesture is a palm-hovering gesture, and the second gesture is an upward gesture or a downward gesture; or,
所述第一手势为手掌悬停手势,所述第二手势为左右挥手手势;或者,The first gesture is a palm hovering gesture, and the second gesture is a left and right waving gesture; or,
所述第一手势为手掌悬停手势,所述第二手势为前后推手势;或者,The first gesture is a palm hovering gesture, and the second gesture is a forward and backward push gesture; or,
所述第一手势为握拳的手势,所述第二手势为保持所述握拳且移动的手势;或者,The first gesture is a gesture of making a fist, and the second gesture is a gesture of keeping the fist and moving; or,
所述第一手势为手掌轻晃手势,所述第二手势为上抬手势或者下压手势;或者,The first gesture is a flicking gesture of the palm, and the second gesture is an upward gesture or a downward gesture; or,
所述第一手势为握拳且伸出大拇指的手势,所述第二手势为保持所述握拳且伸出大拇指并前后推的手势。The first gesture is a gesture of making a fist and extending a thumb, and the second gesture is a gesture of maintaining the fist and extending a thumb and pushing back and forth.
在一种可能的实现中,所述第一手势和所述第二手势为所述第一手势的手势类型相同,且所述第一手势和所述第二手势均为移动幅度大于阈值的手势。In a possible implementation, the first gesture and the second gesture are of the same gesture type as the first gesture, and both the first gesture and the second gesture have a movement range greater than a threshold gesture.
在一种可能的实现中,所述第一手势和所述第二手势均为画圈手势。In a possible implementation, both the first gesture and the second gesture are circle-drawing gestures.
在一种可能的实现中,所述功能开启模块2502,还用于:In a possible implementation, the
在所述启针对于所述目标功能的调节功能之前,基于预设的对应关系,确定所述第一手势的手势类型对应于所述目标功能,其中所述预设的对应关系包括手势类型与功能之间的映射。Before enabling the adjustment function for the target function, based on a preset correspondence, it is determined that the gesture type of the first gesture corresponds to the target function, wherein the preset correspondence includes gesture type and Mapping between functions.
在一种可能的实现中,所述第一手势的手势类型为手指捏合,所述目标功能为应用播放的视频或音频的进度调节;或者,In a possible implementation, the gesture type of the first gesture is finger pinching, and the target function is to adjust the progress of the video or audio played by the application; or,
所述第一手势的手势类型为画圈,所述目标功能为音量大小调节;或者,The gesture type of the first gesture is circle drawing, and the target function is volume adjustment; or,
所述第一手势的手势类型为手掌悬停,所述目标功能为显示亮度调节或者显示图像的缩放调节;或者,The gesture type of the first gesture is palm hovering, and the target function is display brightness adjustment or zoom adjustment of a display image; or,
所述第一手势的手势类型为握拳,所述目标功能为显示界面的移动调节;或者,The gesture type of the first gesture is making a fist, and the target function is movement adjustment of the display interface; or,
所述第一手势的手势类型为手掌轻晃,所述目标功能为车窗高度调节;或者,The gesture type of the first gesture is palm flickering, and the target function is window height adjustment; or,
所述第一手势的手势类型为握拳且伸出大拇指,所述目标功能为车舱内座椅的前后位置调节。The gesture type of the first gesture is to make a fist and extend a thumb, and the target function is to adjust the front and rear positions of the seats in the vehicle cabin.
在一种可能的实现中,所述装置还包括:In a possible implementation, the device also includes:
呈现模块,用于在所述基于所述调节信息对所述目标功能进行调节之前,进行所述目标功能相对应的目标呈现,所述目标呈现用于指示已开启针对于目标功能的调节功能。A presenting module, configured to present a target corresponding to the target function before the adjustment of the target function based on the adjustment information, where the target presentation is used to indicate that the adjustment function for the target function has been enabled.
在一种可能的实现中,所述目标呈现包括如下的至少一种:In a possible implementation, the target presentation includes at least one of the following:
进行所述目标功能的调节的控件显示;a display of controls for making adjustments to said target function;
与所述目标功能相关的硬件的震动提示;以及,Vibration alerts for hardware associated with said target function; and,
声音提示。Sound prompt.
在一种可能的实现中,所述基于所述第一雷达数据指示第一手势、且所述第一手势的持续时间超过第一阈值,包括:In a possible implementation, the indicating the first gesture based on the first radar data and the duration of the first gesture exceeds a first threshold includes:
基于所述第一雷达数据指示用户的手势,且所述用户的手势的持续时间超过第一阈值,根据所述第一雷达数据,确定所述用户的手势为第一手势,所述第一手势用于指示开启所述的调节功能。Based on the first radar data indicating the user's gesture, and the duration of the user's gesture exceeds a first threshold, according to the first radar data, determine that the user's gesture is a first gesture, and the first gesture It is used to indicate that the adjustment function is turned on.
在一种可能的实现中,所述根据所述第一雷达数据,确定所述用户的手势为第一手势,包括:In a possible implementation, the determining that the user's gesture is the first gesture according to the first radar data includes:
从所述第一雷达数据中截取部分雷达数据;intercepting part of the radar data from the first radar data;
根据所述部分雷达数据,确定所述用户的手势为第一手势。According to the part of the radar data, it is determined that the user's gesture is a first gesture.
在一种可能的实现中,所述部分雷达数据为所述第一雷达数据中前N个雷达数据。In a possible implementation, the part of radar data is the first N radar data in the first radar data.
在一种可能的实现中,所述根据所述第一雷达数据,确定所述用户的手势为第一手势,包括:In a possible implementation, the determining that the user's gesture is the first gesture according to the first radar data includes:
根据所述第一雷达数据,获取所述用户的手势的运动特征,并根据所述用户的手势的运动特征确定所述用户的手势为第一手势;或者,According to the first radar data, acquiring a motion feature of the user's gesture, and determining that the user's gesture is a first gesture according to the motion feature of the user's gesture; or,
根据所述第一雷达数据,通过预训练的手势分类网络,确定所述用户的手势为第一手势。According to the first radar data, the user's gesture is determined to be the first gesture through a pre-trained gesture classification network.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include:
所述第二手势的距离信息,所述距离信息包括所述第二手势与所述雷达系统之间的距离随时间的变化、所述距离的变化速率、以及所述距离的变化方向中的至少一种。The distance information of the second gesture, the distance information including the change over time of the distance between the second gesture and the radar system, the change rate of the distance, and the change direction of the distance at least one of .
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include:
所述第二手势的速率信息,所述速率信息包括所述第二手势在所述雷达场中的移动速率随时间的变化大小。Velocity information of the second gesture, where the velocity information includes a change over time of a moving velocity of the second gesture in the radar field.
在一种可能的实现中,所述第二雷达数据为基于用户的手势在雷达系统提供的雷达场的反射得到的,所述第二手势的运动特征,包括:In a possible implementation, the second radar data is obtained based on the reflection of the user's gesture in the radar field provided by the radar system, and the motion characteristics of the second gesture include:
所述第二手势的角度信息,所述角度信息包括所述第二手势与雷达系统之间的角度随时间的变化,所述角度包括方位角和/或俯仰角。Angle information of the second gesture, where the angle information includes a change over time of an angle between the second gesture and the radar system, and the angle includes an azimuth and/or an elevation angle.
在一种可能的实现中,所述获取模块2501,还用于:In a possible implementation, the acquiring
在所述基于所述调节信息对所述目标功能进行调节之后,获取第三雷达数据;acquiring third radar data after said adjusting said target function based on said adjustment information;
所述装置还包括:The device also includes:
功能关闭模块,用于基于所述第三雷达数据指示第三手势,关闭针对于目标功能的调节功能;所述第三手势为撤手手势或者悬停手势。A function closing module, configured to indicate a third gesture based on the third radar data, and close the adjustment function for the target function; the third gesture is a hand-off gesture or a hovering gesture.
本申请实施例中,将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,这部分雷达数据可以不作为后续进行精细调节时调节程度的确定依据,而仅仅作为是否开启精细调节的触发条件(本申请实施例中也可以称之为唤醒手势),基于手势持续时间的方式来开启精细调节具有如下的好处:由于手势类型是有限的,在未来功能类型不断丰富的情况下,将手势类型作为开启精细调节功能的方案中手势类型可能不够用(独立手势功能占用一部分手势类型,唤醒手势再占据另一部分手势类型,两者之间不能重叠,否则会出现错误),而基于手势持续时间作为是否开启精细调节模式的依据,则可以让独立手势功能使用的手势类别和唤醒手势重叠,进而可以减少在进行手势实现的功能调节时所需的手势类别。此外,在针对于手势相关的功能调节场景中,尤其是精细调节的场景中,需要尽可能保证整体的手势设计是连续的,当用户想进行基于手势的精细调节时,会下意识知晓调节过程需要连续的一段时间内的手势,在唤醒精细调节的功能时,若将唤醒手势的规则也定义为基于持续时间是否足够长,那么作为用户来说,会认为这部分唤醒手势的操作过程和后续是连贯的。将第一雷达数据指示的手势的持续时间作为是否开启精细调节模式的依据,更符合用户的思维惯式和使用习惯,减少用户的学习成本。In the embodiment of the present application, the duration of the gesture indicated by the first radar data is used as the basis for whether to enable the fine adjustment mode. This part of the radar data may not be used as the basis for determining the degree of adjustment in the subsequent fine adjustment, but only as whether to enable the fine adjustment mode. The trigger condition of the adjustment (which can also be referred to as a wake-up gesture in the embodiment of this application), enabling fine adjustment based on the duration of the gesture has the following benefits: Since the types of gestures are limited, in the case of continuous enrichment of future function types , the gesture type may not be enough in the scheme of enabling the fine-tuning function (the independent gesture function occupies a part of the gesture type, and the wake-up gesture occupies another part of the gesture type. The two cannot overlap, otherwise an error will occur), and based on The duration of the gesture is used as the basis for whether to enable the fine adjustment mode, so that the gesture categories used by the independent gesture function and the wake-up gesture can overlap, thereby reducing the gesture categories required for the function adjustment of the gesture implementation. In addition, in the gesture-related function adjustment scenario, especially the fine adjustment scenario, it is necessary to ensure that the overall gesture design is as continuous as possible. When the user wants to perform fine adjustment based on gestures, he will subconsciously know that the adjustment process requires Gestures for a continuous period of time, when waking up the fine-tuning function, if the rules for waking up gestures are also defined based on whether the duration is long enough, then as a user, they will think that the operation process and follow-up of this part of the waking up gesture are coherent. Taking the duration of the gesture indicated by the first radar data as the basis for whether to enable the fine-tuning mode is more in line with the user's thinking and usage habits, and reduces the learning cost of the user.
参照图26,图26为本申请实施例提供的一种功能调节装置的结构示意,其中,所述装置2600包括:Referring to Fig. 26, Fig. 26 is a schematic structural diagram of a function adjustment device provided by an embodiment of the present application, wherein the
获取模块2601,用于获取目标雷达数据,所述目标雷达数据为基于用户的目标手势在雷达系统提供的雷达场中的反射得到的。The
关于获取模块2601的具体描述,可以参照上述实施例中步骤2401的描述,这里不再赘述。For a specific description of the obtaining
运动特征确定模块2602,用于根据所述目标雷达数据,确定所述目标手势的运动特征;所述目标手势的运动特征的特征类型包括距离信息、速率信息或角度信息中的至少两种,所述距离信息包括所述目标手势和所述雷达系统之间的距离随时间的变化,所述速度信息包括所述目标手势和所述雷达系统的相对速度随时间的变化,所述角度信息包括所述目标手势在所述雷达场中的角度随时间的变化,所述角度包括方位角和/或俯仰角;The motion
关于运动特征确定模块2602的具体描述,可以参照上述实施例中步骤2402的描述,这里不再赘述。For a specific description of the motion
功能调节模块2603,用于根据所述运动特征,确定调节信息,所述调节信息包括调节幅度、调节方向以及调节速度中的至少一种,并基于所述调节信息对目标功能进行调节。The
关于功能调节模块2603的具体描述,可以参照上述实施例中步骤2403的描述,这里不再赘述。For a specific description of the
在一种可能的实现中,所述距离随时间的变化包括:In a possible implementation, the change of the distance over time includes:
所述距离随时间的变化数值、所述距离随时间的变化速率或所述距离随时间的变化方向中的至少一种;At least one of the change value of the distance over time, the rate of change of the distance over time, or the direction of change of the distance over time;
所述调节幅度与所述距离随时间的变化数值有关,所述调节速度与所述距离随时间的变化速率有关,所述调节方向与所述距离随时间的变化方向有关。The adjustment range is related to the change value of the distance with time, the adjustment speed is related to the change rate of the distance with time, and the adjustment direction is related to the change direction of the distance with time.
在一种可能的实现中,所述目标手势为周期性手势,所述相对速度随时间的变化用于确定所述目标手势的手势周期数量;In a possible implementation, the target gesture is a periodic gesture, and the change of the relative speed over time is used to determine the number of gesture cycles of the target gesture;
所述调节幅度与所述周期数量有关,所述调节速度与固定时间内所述目标手势的手势周期数量有关。The adjustment range is related to the number of cycles, and the adjustment speed is related to the number of gesture cycles of the target gesture within a fixed time.
在一种可能的实现中,所述角度随时间的变化包括:In a possible implementation, the change of the angle over time includes:
所述角度随时间的变化数值、所述角度随时间的变化速率或所述角度随时间的变化方向中的至少一种;At least one of the change value of the angle over time, the rate of change of the angle over time, or the direction of change of the angle over time;
所述调节幅度与所述角度随时间的变化数值有关,所述调节速度与所述角度随时间的变化速率有关,所述调节方向与所述角度随时间的变化方向有关。The adjustment range is related to the change value of the angle with time, the adjustment speed is related to the change rate of the angle with time, and the adjustment direction is related to the change direction of the angle with time.
在一种可能的实现中,所述运动特征确定模块2602,还用于:在所述根据所述目标雷达数据,确定所述目标手势的运动特征之前,基于所述目标手势为周期性手势或者为与所述雷达系统之间的相对速率不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述速度信息;In a possible implementation, the motion
基于所述目标手势为与所述雷达系统之间的距离不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述距离信息;When the target gesture is a gesture whose distance from the radar system is constantly changing, determining that the feature type of the motion feature of the target gesture includes the distance information;
基于所述目标手势为在所述雷达场中角度不断变化的手势时,确定所述目标手势的运动特征的特征类型包括所述角度信息。Based on the fact that the target gesture is a gesture whose angle is constantly changing in the radar field, the feature type for determining the motion feature of the target gesture includes the angle information.
在进行功能的精细调节时,调节动作都至少具有某一显著变化的特征,如距离或角度或速度,本申请实施例在手势的运动特征提取的基础上,对手势特征进行精细量化,包括距离,速度,水平角度,俯仰角度等。获取反映特征变化方向、特征变化量、特征变化速度的变量,进而可以实现双向、不同幅度、不同快慢、高稳定性、强泛化性的精细调节。When fine-tuning the function, the adjustment action has at least one significant change feature, such as distance or angle or speed. The embodiment of the present application finely quantifies the gesture features on the basis of the motion feature extraction of gestures, including distance , speed, horizontal angle, pitch angle, etc. Obtain variables that reflect the direction of feature change, the amount of feature change, and the speed of feature change, and then fine-tuning can be achieved in two directions, with different amplitudes, different speeds, high stability, and strong generalization.
接下来介绍本申请实施例提供的一种功能调节装置,请参阅图27,图27为本申请实施例提供的功能调节装置的一种结构示意图。具体的,功能调节装置2700包括:接收器2701、发射器2702、处理器2703和存储器2704(其中功能调节装置2700中的处理器2703的数量可以一个或多个,图27中以一个处理器为例),其中,处理器2703可以包括应用处理器27031和通信处理器27032。在本申请的一些实施例中,接收器2701、发射器2702、处理器2703和存储器2704可通过总线或其它方式连接。Next, a function adjusting device provided by the embodiment of the present application is introduced, please refer to FIG. 27 , which is a schematic structural diagram of the function adjusting device provided by the embodiment of the present application. Specifically, the
存储器2704可以包括只读存储器和随机存取存储器,并向处理器2703提供指令和数据。存储器2704的一部分还可以包括非易失性随机存取存储器(non-volatile randomaccess memory,NVRAM)。存储器2704存储有处理器和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。The memory 2704 may include read-only memory and random-access memory, and provides instructions and data to the processor 2703 . A part of the memory 2704 may also include a non-volatile random access memory (non-volatile random access memory, NVRAM). The memory 2704 stores processors and operating instructions, executable modules or data structures, or their subsets, or their extended sets, wherein the operating instructions may include various operating instructions for implementing various operations.
处理器2703控制雷达系统(包括天线、接收器2701以及发射器2702)的操作。具体的应用中,雷达系统的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。The processor 2703 controls the operation of the radar system (including the antenna, receiver 2701 and transmitter 2702). In a specific application, various components of the radar system are coupled together through a bus system, where the bus system may include not only a data bus, but also a power bus, a control bus, and a status signal bus. However, for the sake of clarity, the various buses are referred to as bus systems in the figures.
上述本申请实施例揭示的功能调节方法(图6和图24b所示的)可以应用于处理器2703中,或者由处理器2703实现。处理器2703可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2703中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2703可以是通用处理器、数字信号处理器(digitalsignal processing,DSP)、微处理器或微控制器,还可进一步包括专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。该处理器2703可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2704,处理器2703读取存储器2704中的信息,结合其硬件完成上述实施例提供的功能调节方法的步骤。The function adjustment method (shown in FIG. 6 and FIG. 24 b ) disclosed in the above embodiments of the present application may be applied to the processor 2703 or implemented by the processor 2703 . The processor 2703 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 2703 or instructions in the form of software. The above-mentioned processor 2703 may be a general-purpose processor, a digital signal processor (digital signal processing, DSP), a microprocessor or a microcontroller, and may further include an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate Field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. The processor 2703 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present application. A general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like. The steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor. The software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register. The storage medium is located in the memory 2704, and the processor 2703 reads the information in the memory 2704, and completes the steps of the function adjustment method provided by the above-mentioned embodiments in combination with its hardware.
接收器2701可用于接收输入的数字或字符信息,以及产生与雷达系统的相关设置以及功能控制有关的信号输入。发射器2702可用于通过第一接口输出数字或字符信息;发射器2702还可用于通过第一接口向磁盘组发送指令,以修改磁盘组中的数据。The receiver 2701 can be used to receive input digital or character information, and generate signal input related to the settings and function control of the radar system. The transmitter 2702 can be used to output digital or character information through the first interface; the transmitter 2702 can also be used to send instructions to the disk group through the first interface, so as to modify the data in the disk group.
在一种可能的实现中,所述装置还包括雷达系统,用于:In a possible implementation, the device further includes a radar system for:
提供雷达场;provide a radar field;
感测来自所述雷达场中的用户的反射;sensing reflections from users in the radar field;
分析来自所述雷达场中的所述用户的反射;以及analyzing reflections from the user in the radar field; and
基于对所述反射的分析,提供雷达数据。Based on the analysis of the reflections, radar data is provided.
其中,功能调节装置2700可以为智能座舱场景中的车载设备、智能家居场景中的终端设备等。Wherein, the
本申请实施例中还提供一种包括计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中描述的功能调节方法。Embodiments of the present application also provide a computer program product, which, when run on a computer, enables the computer to execute the function adjustment method described in the foregoing embodiments.
本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有用于进行信号处理的程序,当其在计算机上运行时,使得计算机执行如上述实施例中描述的功能调节方法。An embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a program for signal processing, and when it is run on a computer, the computer executes the functions described in the above-mentioned embodiments Adjustment method.
本申请实施例提供的功能调节装置具体可以为芯片,芯片包括:处理单元和通信单元,该处理单元例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使执行设备内的芯片执行上述实施例描述的图像增强方法,或者,以使训练设备内的芯片执行上述实施例描述的图像增强方法。可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该无线接入设备端内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(randomaccess memory,RAM)等。The function adjustment device provided in the embodiment of the present application may specifically be a chip. The chip includes: a processing unit and a communication unit. The processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit. The processing unit can execute the computer-executed instructions stored in the storage unit, so that the chip in the execution device executes the image enhancement method described in the above embodiment, or the chip in the training device executes the image enhancement method described in the above embodiment. Optionally, the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the wireless access device, such as a read-only memory (read- only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
具体的,请参阅图28,图28为本申请实施例提供的芯片的一种结构示意图,该芯片可以表现为神经网络处理器NPU280,NPU 280作为协处理器挂载到主CPU(Host CPU)上,由Host CPU分配任务。NPU的核心部分为运算电路2803,通过控制器2804控制运算电路2803提取存储器中的矩阵数据并进行乘法运算。Specifically, please refer to FIG. 28. FIG. 28 is a schematic structural diagram of a chip provided by the embodiment of the present application. The chip can be represented as a neural network processor NPU280, and the NPU 280 is mounted to the main CPU (Host CPU) as a coprocessor. Above, the tasks are assigned by the Host CPU. The core part of the NPU is the operation circuit 2803, and the operation circuit 2803 is controlled by the controller 2804 to extract matrix data in the memory and perform multiplication operations.
在一些实现中,运算电路2803内部包括多个处理单元(Process Engine,PE)。在一些实现中,运算电路2803是二维脉动阵列。运算电路2803还可以是一维脉动阵列或者能够执行例如乘法和加法这样的数学运算的其它电子线路。在一些实现中,运算电路2803是通用的矩阵处理器。In some implementations, the operation circuit 2803 includes multiple processing units (Process Engine, PE). In some implementations, arithmetic circuit 2803 is a two-dimensional systolic array. The arithmetic circuit 2803 may also be a one-dimensional systolic array or other electronic circuits capable of performing mathematical operations such as multiplication and addition. In some implementations, arithmetic circuit 2803 is a general-purpose matrix processor.
举例来说,假设有输入矩阵A,权重矩阵B,输出矩阵C。运算电路从权重存储器2802中取矩阵B相应的数据,并缓存在运算电路中每一个PE上。运算电路从输入存储器2801中取矩阵A数据与矩阵B进行矩阵运算,得到的矩阵的部分结果或最终结果,保存在累加器(accumulator)2808中。For example, suppose there is an input matrix A, a weight matrix B, and an output matrix C. The operation circuit fetches the data corresponding to the matrix B from the weight memory 2802, and caches it in each PE in the operation circuit. The operation circuit takes the data of matrix A from the input memory 2801 and performs matrix operation with matrix B, and the obtained partial or final results of the matrix are stored in the accumulator (accumulator) 2808 .
统一存储器2806用于存放输入数据以及输出数据。权重数据直接通过存储单元访问控制器(direct memory access controller,DMAC)2805,DMAC被搬运到权重存储器2802中。输入数据也通过DMAC被搬运到统一存储器2806中。The unified memory 2806 is used to store input data and output data. The weight data directly accesses the controller (direct memory access controller, DMAC) 2805 through the storage unit, and the DMAC is transferred to the weight storage 2802 . Input data is also transferred to unified memory 2806 by DMAC.
BIU为Bus Interface Unit即,总线接口单元2810,用于AXI总线与DMAC和取指存储器(Instruction Fetch Buffer,IFB)2809的交互。The BIU is a Bus Interface Unit, that is, the bus interface unit 2810 , which is used for the interaction between the AXI bus, the DMAC and the instruction fetch buffer (Instruction Fetch Buffer, IFB) 2809 .
总线接口单元2810(Bus Interface Unit,简称BIU),用于取指存储器2809从外部存储器获取指令,还用于存储单元访问控制器2805从外部存储器获取输入矩阵A或者权重矩阵B的原数据。The bus interface unit 2810 (Bus Interface Unit, BIU for short) is used for the instruction fetch memory 2809 to obtain instructions from the external memory, and for the storage unit access controller 2805 to obtain the original data of the input matrix A or the weight matrix B from the external memory.
DMAC主要用于将外部存储器DDR中的输入数据搬运到统一存储器2806或将权重数据搬运到权重存储器2802中或将输入数据数据搬运到输入存储器2801中。The DMAC is mainly used to move the input data in the external memory DDR to the unified memory 2806 , to move the weight data to the weight memory 2802 , or to move the input data to the input memory 2801 .
向量计算单元2807包括多个运算处理单元,在需要的情况下,对运算电路的输出做进一步处理,如向量乘,向量加,指数运算,对数运算,大小比较等等。主要用于神经网络中非卷积/全连接层网络计算,如Batch Normalization(批归一化),像素级求和,对特征平面进行上采样等。The vector calculation unit 2807 includes a plurality of calculation processing units, and if necessary, further processes the output of the calculation circuit, such as vector multiplication, vector addition, exponent operation, logarithmic operation, size comparison and so on. It is mainly used for non-convolutional/fully connected layer network calculations in neural networks, such as Batch Normalization (batch normalization), pixel-level summation, and upsampling of feature planes.
在一些实现中,向量计算单元2807能将经处理的输出的向量存储到统一存储器2806。例如,向量计算单元2807可以将线性函数和/或非线性函数应用到运算电路2803的输出,例如对卷积层提取的特征平面进行线性插值,再例如累加值的向量,用以生成激活值。在一些实现中,向量计算单元2807生成归一化的值、像素级求和的值,或二者均有。在一些实现中,处理过的输出的向量能够用作到运算电路2803的激活输入,例如用于在神经网络中的后续层中的使用。In some implementations, vector computation unit 2807 can store the vector of the processed output to unified memory 2806 . For example, the vector calculation unit 2807 may apply a linear function and/or a nonlinear function to the output of the operation circuit 2803, such as performing linear interpolation on the feature plane extracted by the convolutional layer, and for example, a vector of accumulated values to generate an activation value. In some implementations, the vector computation unit 2807 generates normalized values, pixel-level summed values, or both. In some implementations, the vector of processed outputs can be used as an activation input to arithmetic circuitry 2803, eg, for use in subsequent layers in a neural network.
控制器2804连接的取指存储器(instruction fetch buffer)2809,用于存储控制器2804使用的指令;An instruction fetch buffer (instruction fetch buffer) 2809 connected to the controller 2804 is used to store instructions used by the controller 2804;
统一存储器2806,输入存储器2801,权重存储器2802以及取指存储器2809均为On-Chip存储器。外部存储器私有于该NPU硬件架构。The unified memory 2806, the input memory 2801, the weight memory 2802 and the fetch memory 2809 are all On-Chip memories. External memory is private to the NPU hardware architecture.
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC,或一个或多个用于控制上述实施例中描述的功能调节方法相关步骤的程序执行的集成电路。Wherein, the processor mentioned in any of the above-mentioned places may be a general-purpose central processing unit, a microprocessor, an ASIC, or one or more integrations used to control the execution of programs related to the steps of the function adjustment method described in the above-mentioned embodiments. circuit.
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。In addition, it should be noted that the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physically separated. A unit can be located in one place, or it can be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. In addition, in the drawings of the device embodiments provided in the present application, the connection relationship between the modules indicates that they have communication connections, which can be specifically implemented as one or more communication buses or signal lines.
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,训练设备,或者网络设备等)执行本申请各个实施例该的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the present application can be implemented by means of software plus necessary general-purpose hardware, and of course it can also be realized by special hardware including application-specific integrated circuits, dedicated CPUs, dedicated memories, Special components, etc. to achieve. In general, all functions completed by computer programs can be easily realized by corresponding hardware, and the specific hardware structure used to realize the same function can also be varied, such as analog circuits, digital circuits or special-purpose circuit etc. However, for this application, software program implementation is a better implementation mode in most cases. Based on this understanding, the essence of the technical solution of this application or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, training device, or network device, etc.) execute the method of each embodiment of the present application .
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。In the above embodiments, all or part of them may be implemented by software, hardware, firmware or any combination thereof. When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、训练设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、训练设备或数据中心进行传输。该计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的训练设备、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part. The computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be passed from a website site, computer, training device, or data center Wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) transmission to another website site, computer, training device, or data center. The computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a training device or a data center integrated with one or more available media. The available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)) and the like.
Claims (35)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110997718.2A CN115729343A (en) | 2021-08-27 | 2021-08-27 | Function adjusting method and related device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110997718.2A CN115729343A (en) | 2021-08-27 | 2021-08-27 | Function adjusting method and related device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115729343A true CN115729343A (en) | 2023-03-03 |
Family
ID=85290417
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110997718.2A Pending CN115729343A (en) | 2021-08-27 | 2021-08-27 | Function adjusting method and related device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115729343A (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160252607A1 (en) * | 2015-02-27 | 2016-09-01 | Texas Instruments Incorporated | Gesture Recognition using Frequency Modulated Continuous Wave (FMCW) Radar with Low Angle Resolution |
| US20160320854A1 (en) * | 2015-04-30 | 2016-11-03 | Google Inc. | Type-Agnostic RF Signal Representations |
| DE102016213667A1 (en) * | 2016-07-26 | 2018-02-01 | Audi Ag | Method for operating a driver assistance system to assist an occupant in the operation of vehicle systems and motor vehicle |
| CN108344995A (en) * | 2018-01-25 | 2018-07-31 | 宁波隔空智能科技有限公司 | A kind of gesture identifying device and gesture identification method based on microwave radar technology |
| CN108664120A (en) * | 2018-03-30 | 2018-10-16 | 斑马网络技术有限公司 | Gesture recognition system and its method |
| CN112639689A (en) * | 2020-04-30 | 2021-04-09 | 华为技术有限公司 | Control method, device and system based on air-separating gesture |
| CN113064483A (en) * | 2021-02-27 | 2021-07-02 | 华为技术有限公司 | A gesture recognition method and related device |
-
2021
- 2021-08-27 CN CN202110997718.2A patent/CN115729343A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160252607A1 (en) * | 2015-02-27 | 2016-09-01 | Texas Instruments Incorporated | Gesture Recognition using Frequency Modulated Continuous Wave (FMCW) Radar with Low Angle Resolution |
| US20160320854A1 (en) * | 2015-04-30 | 2016-11-03 | Google Inc. | Type-Agnostic RF Signal Representations |
| DE102016213667A1 (en) * | 2016-07-26 | 2018-02-01 | Audi Ag | Method for operating a driver assistance system to assist an occupant in the operation of vehicle systems and motor vehicle |
| CN108344995A (en) * | 2018-01-25 | 2018-07-31 | 宁波隔空智能科技有限公司 | A kind of gesture identifying device and gesture identification method based on microwave radar technology |
| CN108664120A (en) * | 2018-03-30 | 2018-10-16 | 斑马网络技术有限公司 | Gesture recognition system and its method |
| CN112639689A (en) * | 2020-04-30 | 2021-04-09 | 华为技术有限公司 | Control method, device and system based on air-separating gesture |
| CN113064483A (en) * | 2021-02-27 | 2021-07-02 | 华为技术有限公司 | A gesture recognition method and related device |
Non-Patent Citations (1)
| Title |
|---|
| 夏朝阳;周成龙;介钧誉;周涛;汪相锋;徐丰;: "基于多通道调频连续波毫米波雷达的微动手势识别", 电子与信息学报, no. 01, 15 January 2020 (2020-01-15) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP4131064B1 (en) | Gesture recognition method and related apparatus | |
| CN114661142B (en) | A gesture recognition method and device | |
| US11435468B2 (en) | Radar-based gesture enhancement for voice interfaces | |
| US10936185B2 (en) | Smartphone-based radar system facilitating ease and accuracy of user interactions with displayed objects in an augmented-reality interface | |
| US12055656B2 (en) | Detecting a frame-of-reference change in a smart-device-based radar system | |
| KR102805216B1 (en) | Smart-device-based radar system performing gesture recognition using space-time neural networks | |
| US10775483B1 (en) | Apparatus for detecting and recognizing signals and method thereof | |
| US10473762B2 (en) | Wireless radio module | |
| Wu et al. | Dynamic hand gesture recognition using FMCW radar sensor for driving assistance | |
| CN113064483A (en) | A gesture recognition method and related device | |
| JP2025530620A (en) | Target detection method, integrated circuit, sensor, device and medium | |
| CN113406610B (en) | A target detection method, device, equipment and storage medium | |
| CN115729343A (en) | Function adjusting method and related device | |
| CN217007681U (en) | A radar system and vehicle | |
| US20210156961A1 (en) | Apparatus for authenticating user and method thereof | |
| CN115512071A (en) | Object identification method and related device | |
| KR20230165914A (en) | Radar application programming interface | |
| KR102835950B1 (en) | Method, Apparatus and Computer-readable Recording Medium for Classifying Foot Motion based on Doppler Radar and Deep Learning Model | |
| US20240425054A1 (en) | Estimating surface conditions on a road | |
| CN120735703A (en) | Control method of vehicle, electronic device and vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |