CN115697652A - Camera Position Deviation Measuring Method - Google Patents
Camera Position Deviation Measuring Method Download PDFInfo
- Publication number
- CN115697652A CN115697652A CN202080101511.6A CN202080101511A CN115697652A CN 115697652 A CN115697652 A CN 115697652A CN 202080101511 A CN202080101511 A CN 202080101511A CN 115697652 A CN115697652 A CN 115697652A
- Authority
- CN
- China
- Prior art keywords
- camera
- positional deviation
- deviation
- coordinate system
- rotational
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/04—Viewing devices
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Image Analysis (AREA)
Abstract
相机的位置偏差测定方法应用于具有机器人臂、手及相机的机器人,上述手经由旋转轴而安装于机器人臂的前端部,上述相机以使光轴与旋转轴平行的方式安装于机器人臂。该方法具备:步骤(a),向手安装具有标记的工具;步骤(b),使手绕着旋转轴旋转并在多个旋转位置处利用相机拍摄标记;及步骤(c),基于在多个旋转位置处分别拍摄到的各拍摄图像中拍到的标记的位置与理想的标记的位置之间的差值来求出相机的位置偏差。
The method for measuring the positional deviation of the camera is applied to a robot having a robot arm attached to the front end of the robot arm via a rotation axis, a hand attached to the robot arm so that the optical axis is parallel to the rotation axis, and a camera attached to the robot arm. The method comprises: step (a), attaching a tool with markings to the hand; step (b), rotating the hand around a rotation axis and photographing the markings with a camera at a plurality of rotational positions; and step (c), based on multiple The difference between the position of the mark captured in each captured image captured at each rotation position and the position of the ideal mark is used to find the positional deviation of the camera.
Description
技术领域technical field
本说明书公开了相机的位置偏差测定方法。This specification discloses a method for measuring positional deviation of a camera.
背景技术Background technique
以往,在具备臂的机器人中,提出了进行与臂相独立地设置的相机的校正的机器人(例如,参照专利文献1)。该相机的校正的处理工序首先设定钳爪坐标系的三个旋转轴X、Y、Z,以使保持于手末端的校正用图案以各旋转轴为中心分别旋转的方式使臂进行动作。接着,利用相机来拍摄以各旋转轴为中心的旋转的多个旋转位置处的校正用图案的图案图像。并且,使用这些图案图像来推定钳爪坐标系与相机坐标系之间的坐标变换矩阵。根据该处理工序,可得到能够计算钳爪坐标系与相机坐标系之间的坐标变换的外部参数,因此能够进行使用了相机的对象物的位置检测。Conventionally, among robots equipped with arms, a robot that performs calibration of a camera provided independently of the arm has been proposed (for example, refer to Patent Document 1). The camera calibration processing procedure first sets three rotation axes X, Y, and Z of the jaw coordinate system, and operates the arm so that the calibration pattern held at the end of the hand rotates around each rotation axis. Next, pattern images of the calibration pattern at a plurality of rotational positions rotated about each rotational axis are captured by a camera. Then, a coordinate transformation matrix between the gripper coordinate system and the camera coordinate system is estimated using these pattern images. According to this processing procedure, external parameters capable of calculating the coordinate transformation between the gripper coordinate system and the camera coordinate system can be obtained, so that position detection of an object using a camera can be performed.
现有技术文献prior art literature
专利文献1:日本特开2019-14031号公报Patent Document 1: Japanese Patent Laid-Open No. 2019-14031
发明内容Contents of the invention
发明所要解决的课题The problem to be solved by the invention
在上述的专利文献1中,虽然关于进行与臂相独立地设置的相机的校正进行了记载,但关于进行安装于臂的相机的校正(位置偏差的测定)没有任何提及。In the above-mentioned Patent Document 1, there is description about performing calibration of a camera installed independently of the arm, but there is no mention about performing calibration (measurement of positional deviation) of the camera attached to the arm.
本公开的主要目的在于通过简易的手法来进行安装于臂的相机的位置偏差的测定。The main purpose of the present disclosure is to measure the positional deviation of a camera attached to an arm with a simple method.
用于解决课题的手段means to solve the problem
本公开的相机的位置偏差量测定方法为了达成上述的主要目的而采用了以下的手段。The method for measuring the amount of positional deviation of a camera of the present disclosure employs the following means in order to achieve the above-mentioned main purpose.
本公开的相机的位置偏差量测定方法测定具有机器人臂、手及相机的机器人中的上述相机的位置偏差,上述手经由旋转轴而安装于上述机器人臂的前端部,上述相机以使光轴与上述旋转轴平行的方式安装于上述机器人臂,The method for measuring the amount of positional deviation of a camera of the present disclosure measures the positional deviation of the camera in a robot having a robot arm, a hand attached to the front end of the robot arm via a rotation axis, and a camera such that the optical axis is aligned with the camera. The above-mentioned rotating shaft is installed on the above-mentioned robot arm in a parallel manner,
上述相机的位置偏差测定方法具备如下的步骤:The method for measuring the positional deviation of the above-mentioned camera has the following steps:
步骤(a),向上述手安装具有标记的工具;Step (a), installing a marked tool to the hand;
步骤(b),使上述手绕着上述旋转轴旋转并在多个旋转位置处利用上述相机拍摄上述标记;及step (b), rotating said hand about said axis of rotation and photographing said mark with said camera at a plurality of rotational positions; and
步骤(c),基于在上述多个旋转位置处分别拍摄到的各拍摄图像中拍到的标记的位置与理想的标记的位置之间的差值来求出上述相机的位置偏差。Step (c), calculating the positional deviation of the camera based on the difference between the position of the mark captured in each of the captured images captured at the plurality of rotation positions and an ideal position of the mark.
本公开的相机的位置偏差量测定方法测定具有机器人臂、手及相机的机器人中的相机的位置偏差,上述手经由旋转轴而安装于机器人臂的前端部,上述相机以使光轴与旋转轴平行的方式安装于机器人臂。在该方法中,向手安装附设有标记的工具,使手绕着旋转轴旋转并在多个旋转位置处利用相机拍摄标记。并且,基于在多个旋转位置处分别拍摄到的各拍摄图像中拍到的标记的位置与理想的标记的位置之间的差值来求出相机的位置偏差。由此,能够通过简易的工序进行安装于臂的相机的位置偏差的测定。The method for measuring the amount of positional deviation of a camera of the present disclosure measures the positional deviation of a camera in a robot having a robot arm, a hand attached to the front end of the robot arm via a rotation axis, and a camera whose optical axis is aligned with the rotation axis. Mounted on the robot arm in parallel. In this method, a tool with a marker is attached to a hand, the hand is rotated around a rotation axis, and the marker is photographed with a camera at a plurality of rotational positions. Then, the positional deviation of the camera is obtained based on the difference between the position of the mark captured in each of the captured images captured at the plurality of rotation positions and the position of the ideal mark. Thereby, the measurement of the positional deviation of the camera attached to an arm can be performed with a simple process.
附图说明Description of drawings
图1是作业机器人的外观立体图。FIG. 1 is an external perspective view of a working robot.
图2是机器人主体的侧视图。Fig. 2 is a side view of the main body of the robot.
图3是示出机器人主体与控制装置的电连接关系的框图。Fig. 3 is a block diagram showing the electrical connection relationship between the robot main body and the control device.
图4是示出相机位置偏差测定工序的一例的说明图。FIG. 4 is an explanatory view showing an example of a camera positional deviation measurement step.
图5是示出带标记工具的安装的情形的说明图。FIG. 5 is an explanatory diagram showing a state of attachment of the marking tool.
图6是示出在相机产生了位置偏差时的设计上的相机视野和实际的相机视野的说明图。FIG. 6 is an explanatory view showing a designed camera field of view and an actual camera field of view when the camera is misaligned.
图7是说明以实际的相机视野为基准的XvrYvr坐标系中的位置偏差(Xc,Yc)和旋转偏差θc的说明图。FIG. 7 is an explanatory diagram illustrating positional deviation (X c , Y c ) and rotational deviation θ c in the X vr Y vr coordinate system based on the actual camera field of view.
图8是说明以设计上的相机视野为基准的XviYvi坐标系中的位置偏差(Xci,Yci)的说明图。FIG. 8 is an explanatory diagram illustrating positional deviation (X ci , Y ci ) in the X vi Y vi coordinate system based on the designed camera field of view.
具体实施方式Detailed ways
接着,一边参照附图一边对用于实施本公开的方式进行说明。Next, an embodiment for implementing the present disclosure will be described with reference to the drawings.
图1是作业机器人的外观立体图。图2是机器人主体的侧视图。图3是示出机器人主体与控制装置的电连接关系的框图。FIG. 1 is an external perspective view of a working robot. Fig. 2 is a side view of the main body of the robot. Fig. 3 is a block diagram showing the electrical connection relationship between the robot main body and the control device.
作业机器人1构成为对工件W进行预定的作业(例如,拾取并输送工件W的输送作业、拾取工件W并向对象物组装的组装作业等)的水平多关节机器人。作业机器人1具备机器人主体10(参照图1~图3)和控制机器人主体10的控制装置70(参照图3)。如图1、图2所示,机器人主体10具备基台11和多关节臂20。The work robot 1 is configured as a horizontal articulated robot that performs predetermined operations on the workpiece W (for example, conveyance operation of picking up and conveying the workpiece W, assembly operation of picking up the workpiece W and assembling it to an object, etc.). The working robot 1 includes a robot main body 10 (see FIGS. 1 to 3 ) and a control device 70 (see FIG. 3 ) that controls the robot
基台11固定于作业台2,支撑多关节臂20的基端侧。多关节臂20具备第一臂21、第一臂驱动部30、第二臂22、第二臂驱动部40、轴23、轴驱动部50及相机60。第一臂21构成为基端部经由第一关节轴J1而连结于基台11,能够通过第一关节轴J1的转动而相对于基台11在水平面内转动(水平回旋)。第二臂22构成为基端部经由第二关节轴J2而连结于第一臂21的前端部,能够通过第二关节轴J2的转动而相对于第一臂21在水平面内转动(水平回旋)。轴23构成为经由第三关节轴J3而连结于第二臂22的前端部,能够相对于第二臂22绕着第三关节轴J3的轴旋转且能够沿着第三关节轴J3的轴向进行升降。在轴23的前端设置有用于保持用于对工件W进行作业的各种工具的工具保持部24。The
如图3所示,第一臂驱动部30具备电动机32和编码器34。电动机32的旋转轴经由未图示的减速机而连结于第一关节轴J1。第一臂驱动部30利用通过驱动电动机32而经由减速机向第一关节轴J1传递的转矩,以第一关节轴J1为支点使第一臂21水平回旋。编码器34构成为安装于电动机32的旋转轴且检测电动机32的旋转位移量的旋转编码器。As shown in FIG. 3 , the first
第二臂驱动部40与第一臂驱动部30相同地具备电动机42和编码器44。电动机42的旋转轴经由未图示的减速机而连结于第二关节轴J2。第二臂驱动部40利用通过驱动电动机42而经由减速机向第二关节轴J2传递的转矩,以第二关节轴J2为支点使第二臂22水平回旋。编码器44构成为安装于电动机42的旋转轴且检测电动机42的旋转位移量的旋转编码器。The second
如图3所示,轴驱动部50具备电动机52a、52b和编码器54a、54b。电动机52a的旋转轴经由带(未图示)而连接于轴23,使轴23绕着轴旋转。电动机52b的旋转轴经由带而连接于贯通轴23的滚珠丝杠螺母(未图示),通过使该滚珠丝杠螺母旋转而使轴23上下升降。编码器54a构成为检测轴23的旋转位移量的旋转编码器。编码器54b构成为检测轴23的升降位置的线性编码器。As shown in FIG. 3 , the
相机60以使光轴与轴23的轴平行的方式安装于第二臂22的前端部侧面。相机60拍摄作为作业对象的工件W,并将其拍摄图像向控制装置70输出。控制装置70通过对拍摄图像进行处理来识别工件W的位置。The
如图3所示,控制装置70具备:CPU71、ROM72、RAM73、非易失性存储器(存储装置74)及输入输出接口(未图示)。对控制装置70经由输入输出接口而输入来自编码器34、44、54a、54b的位置信号和来自相机60的图像信号等。从控制装置70经由输入输出接口而输出对于电动机32、42、52a、52b的驱动信号等。As shown in FIG. 3 , the control device 70 includes a
接着,对这样构成的作业机器人1的动作进行说明。控制装置70的CPU71首先为了使相机60向工件W的上方移动而以使手末端向预先确定的目标位置移动的方式控制第一臂驱动部30、第二臂驱动部40及轴驱动部50,并利用相机60拍摄工件W。接着,CPU71进行处理得到的拍摄图像的图像处理而在相机坐标系中计测工件W的位置。图像处理通过计测在拍摄图像中拍到的工件W的坐标值且使用修正值对计测到的坐标值执行位置偏移修正及旋转偏移修正来进行。在此,修正值用于修正因相机60的加工误差或组装误差等而产生的相机60与手末端之间的位置关系的偏差。修正值通过后述的相机位置偏差测定工序而预先测定,并存储于存储装置74。接着,CPU71将工件W的位置变换为机器人坐标系,基于变换后的工件W的位置来设定用于拾取工件W的手末端的目标位置。并且,CPU71以使手末端向设定的目标位置移动的方式控制第一臂驱动部30、第二臂驱动部40及轴驱动部50。工件W通过手末端向目标位置移动而由手末端(工件保持部24)拾取。Next, the operation of the working robot 1 configured in this way will be described. The
接着,对相机位置偏差测定工序进行说明。图4是示出相机位置偏差测定工序的一例的说明图。相机位置偏差测定工序通过步骤S100~S150来执行。Next, the camera position deviation measurement step will be described. FIG. 4 is an explanatory view showing an example of a camera positional deviation measurement step. The camera position deviation measurement step is executed through steps S100 to S150.
在步骤S100中,如图5所示,在设置于轴23的前端的工具保持部24(手末端)保持带标记工具100。带标记工具100在从安装于工具保持部24的安装部位向与轴23正交的方向离开的位置具有标记M。在步骤S110中,以使轴23每次旋转预定角度(例如,每次10度)的方式控制轴驱动部50,每当轴23旋转了预定角度时,利用相机60拍摄标记M。由此,在多个旋转位置n(n=1,2,3…)处得到标记M的拍摄图像。在步骤S120中,从拍摄图像在以包含相机60的位置偏差的实际的相机视野为基准的坐标系(XvrYvr坐标系)中测定每个旋转位置n的标记位置(Xvn,Yvn)(n=1,2,3…)。标记位置(Xvn,Yvn)的测定通过处理拍摄图像而求出在图像中拍到的标记M的中心坐标来进行。In step S100 , as shown in FIG. 5 , the marking tool 100 is held on the tool holding portion 24 (hand end) provided at the tip of the
在步骤S130中,基于在XvrYvr坐标系中测定到的标记位置(Xvn,Yvn)(n=1,2,3…)与在XvrYvr坐标系中预先存储于ROM72的理想的标记位置(Xvi,Yvi)(n=1,2,3…)的差值来导出相机60的位置偏差(Xc,Yc)和旋转偏差θc。位置偏差(Xc,Yc)分别表示Xvr轴方向上的位置偏差量和Yvr轴方向上的位置偏差量。另外,旋转偏差θc表示包含相机60的位置偏差的实际的相机视野相对于不包含相机60的位置偏差的设计上的相机视野的旋转方向上的偏差量。在本实施方式中,步骤S130通过使用遗传算法、牛顿-拉夫逊方法等周知的最小化算法导出使由如下的式(1)~(3)定义的Xvr轴方向上的差值fxk与Yvr轴方向上的差值fyk的平方和F最小的位置偏差(Xc,Yc)和旋转偏差θc的组合来进行。在步骤S140中,使用旋转偏差θc,通过如下的式(4)及(5)将位置偏差(Xc,Yc)从以实际的相机视野为基准的坐标系(XvrYvr坐标系)变换为以设计上的相机视野为基准的坐标系(XviYvi坐标系)。由此,在XviYvi坐标系中,导出相机60的XviYvi轴方向上的位置偏差(Xci,Yci)。在步骤S150中,将与位置偏差(Xci,Yci)同量且方向相反的位置偏移值和与旋转偏差θc同量且方向相反的旋转偏移值作为修正值而登记于存储装置74。由此,在拾取工件W时,通过对利用相机60拍摄工件W而测定到的工件W的位置进行偏移修正(位置偏移及旋转偏移),能够不管相机60的位置偏差而正确地识别工件W的位置。其结果是,能够进一步提高作业(拾取)的精度。In step S130, based on the marker position (X vn , Y vn ) (
[数1][number 1]
fxk=xin-{(xrn+xc)cosθc-(yrn+yc)sinθc}…(1)f xk =x in -{(x rn +x c )cosθ c -(y rn +y c )sinθ c }…(1)
fyk=yin-{(xrn+xc)sinθc+(yrn+yc)cosθc}…(2)f yk =y in -{(x rn +x c )sinθ c +(y rn +y c )cosθ c }…(2)
xci=xccosθc-ycsinθc…(4)x ci =x c cosθ c -y c sinθ c …(4)
yci=xcsinθc+yccosθc…(5)y ci =x c sinθ c +y c cosθ c …(5)
在此,在步骤S130中,在测定到的标记位置(Xvn,Yvn)与理想的标记位置(Xvi,Yvi)之间,理论上,如下的式(6)及(7)成立。因此,能够使用式(6)及(7)来导出相机60的位置偏差(Xc,Yc)和旋转偏差θc。但是,实际上,在两者的关系中包含各种各样的误差,因此,能够通过求出使与差值fxk、fyk的平方和F最小的位置偏差(Xc,Yc)及旋转偏差θc的组合,来进一步提高修正精度。Here, in step S130, between the measured mark position (X vn , Y vn ) and the ideal mark position (X vi , Y vi ), theoretically, the following equations (6) and (7) hold true . Therefore, the positional deviation (X c , Y c ) and the rotational deviation θ c of the
[数2][number 2]
xin=(xrn+xc)cosθc-(yrn+yc)sinθc…(6)x in =(x rn +x c )cosθ c -(y rn +y c )sinθ c …(6)
yin=(xrn+xc)sinθc+(yrn+yc)cosθc…(7)y in =(x rn +x c )sinθ c +(y rn +y c )cosθ c …(7)
在此,对实施方式的主要要素与权利要求书所记载的本公开的主要要素之间的对应关系进行说明。即,在本实施方式中,多关节臂20相当于机器人臂,工具保持部24相当于手,相机60相当于相机。Here, the correspondence relationship between the main elements of the embodiment and the main elements of the present disclosure described in the claims will be described. That is, in the present embodiment, the
另外,本公开不受上述的实施方式的任何限定,只要属于本公开的技术范围就能够以各种各样的方案来实施,这是不言而喻的。In addition, this disclosure is not limited at all by the above-mentioned embodiment, It goes without saying that it can implement in various aspects as long as it belongs to the technical scope of this disclosure.
例如,在上述的实施方式中,将本公开的相机的位置偏差测定方法应用于水平多关节机器人而进行了说明。但是,不限定于此,只要是例如垂直多关节机器人等具有机器人臂、经由旋转轴而安装于机器人臂的前端部的手及以使光轴与旋转轴平行的方式安装于机器人臂的相机的结构,则能够应用于任何结构的机器人。For example, in the above-mentioned embodiments, the method of measuring the positional deviation of the camera according to the present disclosure was applied to a horizontal articulated robot and described. However, the invention is not limited thereto, as long as it has a robot arm such as a vertical articulated robot, a hand attached to the front end of the robot arm via a rotation axis, and a camera attached to the robot arm so that the optical axis is parallel to the rotation axis. structure, it can be applied to robots of any structure.
如以上说明的那样,本公开的相机的位置偏差测定方法测定具有机器人臂、手及相机的机器人中的上述相机的位置偏差,上述手经由旋转轴而安装于上述机器人臂的前端部,上述相机以使光轴与上述旋转轴平行的方式安装于上述机器人臂,上述相机的位置偏差测定方法具备如下的步骤:步骤(a),向上述手安装具有标记的工具;步骤(b),使上述手绕着上述旋转轴旋转并在多个旋转位置处利用上述相机拍摄上述标记;及步骤(c),基于在上述多个旋转位置处分别拍摄到的各拍摄图像中拍到的标记的位置与理想的标记的位置之间的差值来求出上述相机的位置偏差。As described above, the camera positional deviation measurement method of the present disclosure measures the positional deviation of the camera in a robot having a robot arm, a hand attached to the front end of the robot arm via a rotation shaft, and a camera. The method for measuring the position deviation of the above-mentioned camera includes the following steps: step (a), attaching a tool with a mark to the above-mentioned hand; step (b), making the above-mentioned The hand rotates around the above-mentioned rotation axis and uses the above-mentioned camera to take pictures of the above-mentioned marks at a plurality of rotational positions; and step (c), based on the position and The difference between the ideal marker positions is used to find the positional deviation of the camera above.
本公开的相机的位置偏差量测定方法测定具有机器人臂、手及相机的机器人中的相机的位置偏差,上述手经由旋转轴而安装于机器人臂的前端部,上述相机以使光轴与旋转轴平行的方式安装于机器人臂。在该方法中,向手安装附设有标记的工具,使手绕着旋转轴旋转并在多个旋转位置处利用相机拍摄标记。并且,基于在多个旋转位置处分别拍摄到的各拍摄图像中拍到的标记的位置与理想的标记的位置之间的差值来求出相机的位置偏差。由此,能够通过简易的工序进行安装于臂的相机的位置偏差的测定。The method for measuring the amount of positional deviation of a camera of the present disclosure measures the positional deviation of a camera in a robot having a robot arm, a hand attached to the front end of the robot arm via a rotation axis, and a camera whose optical axis is aligned with the rotation axis. Mounted on the robot arm in parallel. In this method, a tool with a marker is attached to a hand, the hand is rotated around a rotation axis, and the marker is photographed with a camera at a plurality of rotational positions. Then, the positional deviation of the camera is obtained based on the difference between the position of the mark captured in each of the captured images captured at the plurality of rotation positions and the position of the ideal mark. Thereby, the measurement of the positional deviation of the camera attached to an arm can be performed with a simple process.
在本公开的相机的位置偏差测定方法中,也可以设为:在上述步骤(c)中,在以实际的相机视野为基准的XvrYvr坐标系中,将通过上述步骤(b)在各旋转位置n(n=1,2…)处分别拍摄而测定到的标记的位置设为(Xvn,Yvn)、将上述各旋转位置n(n=1,2…)处的理想的标记的位置设为(Xin,Yin)、将Xvr轴方向及Yvr轴方向上的上述相机的各位置偏差设为(Xc,Yc)并且将上述实际的相机视野相对于设计上的相机视野的旋转方向上的旋转偏差设为θc时,使用表示上述测定到的标记位置(Xvn,Yvn)与上述理想的标记位置(Xin,Yin)之间的关系的关系式来求出上述位置偏差(Xc,Yc)和上述旋转偏差θc,基于上述旋转偏差θc而将上述位置偏差(Xc,Yc)的坐标系从上述XvrYvr坐标系变换为以上述设计上的相机视野为基准的XviYvi坐标系,从而求出上述相机的位置偏差。这样一来,能够根据在各旋转位置n处分别由相机拍摄而测定到的标记的位置而通过简易的处理来求出相机的位置偏差。In the position deviation measurement method of the camera of the present disclosure, it may also be set as follows: in the above step (c), in the X vr Y vr coordinate system based on the actual camera field of view, the above step (b) will be The positions of the markers that are imaged and measured at each rotation position n (n=1, 2...) are taken as (X vn , Y vn ), and the ideal position at each rotation position n (n=1, 2...) The position of the mark is set as (X in , Y in ), the positional deviations of the above-mentioned cameras in the X vr axis direction and the Y vr axis direction are set as (X c , Y c ), and the actual camera field of view is compared with the design When the rotation deviation in the rotation direction of the camera field of view above is set to θ c , use The above-mentioned position deviation (X c , Y c ) and the above-mentioned rotation deviation θ c are obtained by using the relational expression, and the coordinate system of the above-mentioned position deviation (X c , Y c ) is changed from the above-mentioned X vr Y vr coordinates based on the above-mentioned rotation deviation θ c The positional deviation of the above-mentioned camera is obtained by transforming the system into an X vi Y vi coordinate system based on the field of view of the camera in the above-mentioned design. In this way, the positional deviation of the camera can be obtained by simple processing based on the position of the mark measured by the camera at each rotation position n.
在该情况下,也可以设为:在上述步骤(c)中,使用预定的最小化算法来求出使由式(1)~(3)定义的平方和F最小的上述位置偏差(Xc,Yc)和上述旋转偏差θc的组合,利用式(4)及(5)将上述位置偏差(Xc,Yc)的坐标系从上述XvrYvr坐标系变换为上述XviYvi坐标系,从而求出上述XviYvi坐标系中的位置偏差(Xci,Yci)。这样一来,能够进一步提高相机的位置偏差、旋转偏差的测定精度。In this case, in the above step (c), a predetermined minimization algorithm may be used to obtain the positional deviation (X c , Y c ) and the above-mentioned rotation deviation θ c , the coordinate system of the above-mentioned position deviation (X c , Y c ) is transformed from the above-mentioned X vr Y vr coordinate system to the above-mentioned X vi Y by using equations (4) and (5) vi coordinate system, thereby obtaining the position deviation (X ci , Y ci ) in the above X vi Y vi coordinate system. In this way, it is possible to further improve the measurement accuracy of the positional deviation and the rotational deviation of the camera.
另外,在本公开的相机的位置偏差测定方法中,也可以设为:将与在上述步骤(c)中求出的上述相机的位置偏差及旋转偏差对应的偏移值登记为用于修正利用上述相机拍摄而测定出的对象物的位置的修正值。这样一来,能够使用相机来高精度地识别对象物的位置。In addition, in the positional deviation measurement method of the camera of the present disclosure, it is also possible to register an offset value corresponding to the positional deviation and rotational deviation of the camera obtained in the above step (c) as a value used for correction. The correction value of the position of the object measured by the above-mentioned camera imaging. In this way, the position of the object can be recognized with high precision using the camera.
产业上的可利用性Industrial availability
本公开能够利用于机器人的制造产业等。The present disclosure can be utilized in the robot manufacturing industry and the like.
附图标记说明Explanation of reference signs
1作业机器人,2作业台,10机器人主体,11基台,20多关节臂,21第一臂,22第二臂,23轴,30第一臂驱动部,32电动机,34编码器,40第二臂驱动部,42电动机,44编码器,50轴驱动部,52a、52b电动机,54a、54b编码器,60相机,70控制装置,71CPU,72ROM,73RAM,74存储装置,J1第一关节轴,J2第二关节轴,J3第三关节轴。1 working robot, 2 working table, 10 robot main body, 11 base, 20 multi-joint arm, 21 first arm, 22 second arm, 23 axis, 30 first arm driving part, 32 motor, 34 encoder, 40 Two-arm drive unit, 42 motor, 44 encoder, 50 shaft drive unit, 52a, 52b motor, 54a, 54b encoder, 60 camera, 70 control device, 71CPU, 72ROM, 73RAM, 74 storage device, J1 first joint axis , J2 second joint axis, J3 third joint axis.
Claims (4)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2020/027861 WO2022014043A1 (en) | 2020-07-17 | 2020-07-17 | Positional deviation measurement method for camera |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115697652A true CN115697652A (en) | 2023-02-03 |
| CN115697652B CN115697652B (en) | 2025-10-03 |
Family
ID=79554589
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202080101511.6A Active CN115697652B (en) | 2020-07-17 | 2020-07-17 | Method for measuring camera position deviation |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP7576620B2 (en) |
| CN (1) | CN115697652B (en) |
| WO (1) | WO2022014043A1 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS642889A (en) * | 1987-06-23 | 1989-01-06 | Omron Tateisi Electron Co | Calibrating method for robot visual coordinate system |
| JPH058185A (en) * | 1991-06-29 | 1993-01-19 | Fanuc Ltd | Automatic operation error measuring method of robot body |
| JPH0798208A (en) * | 1993-09-29 | 1995-04-11 | Nippondenso Co Ltd | Method and system for recognizing three-dimensional position and attitude on the basis of sense of sight |
| CN107639653A (en) * | 2016-07-22 | 2018-01-30 | 精工爱普生株式会社 | control device, robot and robot system |
| US20190015989A1 (en) * | 2017-07-11 | 2019-01-17 | Seiko Epson Corporation | Robot Control Device, Robot, Robot System, And Calibration Method Of Camera |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3296643B2 (en) * | 1992-12-21 | 2002-07-02 | 松下電工株式会社 | Component supply method and device |
| JP2014180720A (en) * | 2013-03-19 | 2014-09-29 | Yaskawa Electric Corp | Robot system and calibration method |
| JP6429473B2 (en) * | 2014-03-20 | 2018-11-28 | キヤノン株式会社 | Robot system, robot system calibration method, program, and computer-readable recording medium |
| JP2018094648A (en) * | 2016-12-09 | 2018-06-21 | セイコーエプソン株式会社 | Control device, robot, and robot system |
| JP7003463B2 (en) * | 2017-07-11 | 2022-01-20 | セイコーエプソン株式会社 | Robot control device, robot system, and camera calibration method |
-
2020
- 2020-07-17 JP JP2022536096A patent/JP7576620B2/en active Active
- 2020-07-17 CN CN202080101511.6A patent/CN115697652B/en active Active
- 2020-07-17 WO PCT/JP2020/027861 patent/WO2022014043A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS642889A (en) * | 1987-06-23 | 1989-01-06 | Omron Tateisi Electron Co | Calibrating method for robot visual coordinate system |
| JPH058185A (en) * | 1991-06-29 | 1993-01-19 | Fanuc Ltd | Automatic operation error measuring method of robot body |
| JPH0798208A (en) * | 1993-09-29 | 1995-04-11 | Nippondenso Co Ltd | Method and system for recognizing three-dimensional position and attitude on the basis of sense of sight |
| CN107639653A (en) * | 2016-07-22 | 2018-01-30 | 精工爱普生株式会社 | control device, robot and robot system |
| US20190015989A1 (en) * | 2017-07-11 | 2019-01-17 | Seiko Epson Corporation | Robot Control Device, Robot, Robot System, And Calibration Method Of Camera |
Non-Patent Citations (1)
| Title |
|---|
| 解则晓;辛少辉;李绪勇;徐尚;: "基于单目视觉的机器人标定方法", 机械工程学报, no. 05, 5 March 2011 (2011-03-05) * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2022014043A1 (en) | 2022-01-20 |
| JPWO2022014043A1 (en) | 2022-01-20 |
| JP7576620B2 (en) | 2024-10-31 |
| CN115697652B (en) | 2025-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4267005B2 (en) | Measuring apparatus and calibration method | |
| JP7153085B2 (en) | ROBOT CALIBRATION SYSTEM AND ROBOT CALIBRATION METHOD | |
| CN107443377A (en) | Sensor robot coordinate system conversion method and Robotic Hand-Eye Calibration method | |
| CN107053167A (en) | Control device, robot and robot system | |
| JP4289619B2 (en) | Tool position correction method for articulated robots | |
| CN110303505B (en) | Position information recovery method for robot | |
| CN105313127A (en) | Robot, control method of robot, and control device of robot | |
| CN110154038B (en) | Method for recovering position information of robot | |
| JP6807450B2 (en) | Articulated robot parallelism determination method and articulated robot tilt adjustment device | |
| CN116803628A (en) | Object detection method and detection device | |
| CN110815203A (en) | Method for correcting end effector of robot arm | |
| US20240269853A1 (en) | Calibration method, calibration device, and robotic system | |
| CN115697652B (en) | Method for measuring camera position deviation | |
| CN110977950B (en) | Robot grabbing and positioning method | |
| CN108413896B (en) | mechanical arm calibration method | |
| CN117260712A (en) | Method, system, device and medium for automatically calibrating coordinates of end assembly of robot | |
| CN113905859B (en) | Robot control system and robot control method | |
| JP6965422B2 (en) | Camera parallelism judgment method | |
| JP7744979B2 (en) | Camera position deviation correction method and robot device | |
| US20200023522A1 (en) | Robot system | |
| CN113492401A (en) | Correction method | |
| CN114571199A (en) | Screw locking machine and screw positioning method | |
| JP7510514B2 (en) | Offset value setting method and robot control device | |
| CN115996821B (en) | Arm robot | |
| JP7562827B2 (en) | Camera position deviation measuring device and method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant |