+

CN115574829A - Method and device for determining vehicle trajectory - Google Patents

Method and device for determining vehicle trajectory Download PDF

Info

Publication number
CN115574829A
CN115574829A CN202211329514.2A CN202211329514A CN115574829A CN 115574829 A CN115574829 A CN 115574829A CN 202211329514 A CN202211329514 A CN 202211329514A CN 115574829 A CN115574829 A CN 115574829A
Authority
CN
China
Prior art keywords
vehicle
moment
coordinate system
measurement unit
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211329514.2A
Other languages
Chinese (zh)
Other versions
CN115574829B (en
Inventor
张振林
王伟
唐培培
王东科
马鑫军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Automotive Innovation Corp
Original Assignee
China Automotive Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Automotive Innovation Corp filed Critical China Automotive Innovation Corp
Priority to CN202211329514.2A priority Critical patent/CN115574829B/en
Publication of CN115574829A publication Critical patent/CN115574829A/en
Application granted granted Critical
Publication of CN115574829B publication Critical patent/CN115574829B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种车辆行驶轨迹确定方法和装置,该方法包括:获取全球卫星导航系统测量的车辆在各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的加速度信息;获取车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系;获取车辆的速度递推关系;确定各个时刻的第一旋转参数的值;根据各个时刻的第一旋转参数的值确定待标定时间段内车辆坐标系与惯性测量单元坐标系之间的角度偏差;根据角度偏差确定车辆在待标定时间段内的行驶轨迹。上述方案能有效地提高车辆坐标系和惯性测量单元坐标系之间角度偏差标定结果的精确性,减小惯性测量单元预测方向与车辆实际轨迹方向的误差,从而有效提高惯性测量单元对车辆的定位精度。

Figure 202211329514

The invention discloses a method and a device for determining a vehicle running track. The method includes: obtaining the speed information and vehicle attitude information of the vehicle at each moment measured by a global satellite navigation system, and obtaining the acceleration information measured by an inertial measurement unit; obtaining the vehicle coordinates The conversion relationship between the acceleration under the system and the acceleration under the inertial measurement unit coordinate system; obtain the velocity recursive relationship of the vehicle; determine the value of the first rotation parameter at each moment; determine the time to be calibrated according to the value of the first rotation parameter at each moment The angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system in the segment; determine the vehicle's driving trajectory in the time period to be calibrated according to the angular deviation. The above scheme can effectively improve the accuracy of the calibration results of the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system, reduce the error between the inertial measurement unit’s predicted direction and the vehicle’s actual track direction, and thus effectively improve the inertial measurement unit’s positioning of the vehicle precision.

Figure 202211329514

Description

一种车辆行驶轨迹确定方法和装置Method and device for determining vehicle trajectory

技术领域technical field

本发明涉及卫星导航技术领域,尤其涉及一种车辆行驶轨迹确定方法和装置。The invention relates to the technical field of satellite navigation, in particular to a method and a device for determining a vehicle trajectory.

背景技术Background technique

全球卫星导航系统(Global Navigation Satellite System,GNSS),也叫全球导航卫星系统,是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。包括一个或多个卫星星座及其支持特定工作所需的增强系统。惯性测量单元(Inertial Measurement Unit,IMU)是测量物体三轴姿态角或角速度以及加速度的装置。随着自动驾驶技术的发展,基于多传感器融合的融合定位技术成为了一个重要的研究方向,惯性测量单元通常与全球卫星导航系统、激光雷达和机器视觉定位等进行融合。Global Navigation Satellite System (GNSS), also known as GNSS, is a space-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information anywhere on the earth's surface or in near-earth space. system. Consists of one or more constellations of satellites and their augmentation systems required to support a particular mission. Inertial Measurement Unit (IMU) is a device that measures the three-axis attitude angle or angular velocity and acceleration of an object. With the development of autonomous driving technology, fusion positioning technology based on multi-sensor fusion has become an important research direction. Inertial measurement unit is usually integrated with global satellite navigation system, laser radar and machine vision positioning.

惯性测量单元在实际安装时,惯性测量单元的载体坐标系与车辆的载体坐标系无法完全重合,两个坐标系之间存在一定的角度偏差。When the inertial measurement unit is actually installed, the carrier coordinate system of the inertial measurement unit cannot completely coincide with the carrier coordinate system of the vehicle, and there is a certain angular deviation between the two coordinate systems.

目前,对惯性测量单元角度偏差的标定通常仅采用惯性测量单元的测量数据或全球卫星导航系统定位的位置数据进行标定,标定结果精确度较低,导致惯性测量单元预测方向与车辆实际轨迹方向存在偏差,进而影响车辆定位的精度。At present, the calibration of the angular deviation of the inertial measurement unit usually only uses the measurement data of the inertial measurement unit or the position data of the global satellite navigation system for calibration. deviation, which in turn affects the accuracy of vehicle positioning.

发明内容Contents of the invention

本发明提供了一种车辆行驶轨迹确定方法和装置,解决了惯性测量单元预测方向与车辆实际轨迹方向存在偏差导致的车辆定位精度低的问题。The invention provides a method and device for determining a vehicle track, which solves the problem of low vehicle positioning accuracy caused by the deviation between the direction predicted by the inertial measurement unit and the actual track direction of the vehicle.

为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

第一方面,本发明提供一种车辆行驶轨迹确定方法,该方法包括:In a first aspect, the present invention provides a method for determining a vehicle trajectory, the method comprising:

获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的所述各个时刻的加速度信息;Acquiring the speed information and vehicle attitude information of the vehicle measured by the global satellite navigation system at each moment in the time period to be calibrated, and obtaining the acceleration information at each moment measured by the inertial measurement unit;

获取预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系,所述转换关系中包含所述车辆坐标系和所述惯性测量单元坐标系之间的第一旋转参数;Acquiring a conversion relationship between the acceleration in the predetermined vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system, the conversion relationship includes a first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system;

获取预先确定的所述车辆的速度递推关系,所述速度递推关系中包含相邻时刻的速度参数、车辆姿态参数、时间间隔参数和所述车辆在所述惯性测量单元坐标系下的加速度参数;Obtaining a predetermined velocity recursion relationship of the vehicle, the velocity recursion relationship including velocity parameters at adjacent moments, vehicle attitude parameters, time interval parameters and acceleration of the vehicle in the inertial measurement unit coordinate system parameter;

根据所述各个时刻的速度信息、所述各个时刻的车辆姿态信息、所述各个时刻的加速度信息、所述各个时刻的时间间隔信息、所述速度递推关系和所述转换关系确定各个时刻的所述第一旋转参数的值;According to the speed information at each time, the vehicle attitude information at each time, the acceleration information at each time, the time interval information at each time, the speed recursive relationship and the conversion relationship to determine the the value of said first rotation parameter;

根据各个时刻的所述第一旋转参数的值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差;determining the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated according to the value of the first rotation parameter at each moment;

根据所述角度偏差确定所述车辆在所述待标定时间段内的行驶轨迹。The driving trajectory of the vehicle within the time period to be calibrated is determined according to the angular deviation.

在一种可能的实现方式中,在获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息之前,所述方法还包括:In a possible implementation, before acquiring the speed information and vehicle attitude information of the vehicle measured by the global satellite navigation system at various moments within the time period to be calibrated, the method further includes:

基于车辆坐标系和惯性测量单元坐标系之间的所述第一旋转参数,确定所述车辆坐标系下的加速度与所述惯性测量单元坐标系下的加速度的转换关系;determining a conversion relationship between acceleration in the vehicle coordinate system and acceleration in the inertial measurement unit coordinate system based on the first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system;

所述转换关系为:所述车辆坐标系下的加速度为所述惯性测量单元坐标系下的加速度和所述第一旋转参数的乘积。The conversion relationship is: the acceleration in the vehicle coordinate system is the product of the acceleration in the inertial measurement unit coordinate system and the first rotation parameter.

在一种可能的实现方式中,在获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息之前,所述方法还包括:In a possible implementation, before acquiring the speed information and vehicle attitude information of the vehicle measured by the global satellite navigation system at various moments within the time period to be calibrated, the method further includes:

基于车辆姿态参数确定惯性测量单元坐标系与全球卫星导航系统坐标系之间的第二旋转参数;determining a second rotation parameter between the inertial measurement unit coordinate system and the global satellite navigation system coordinate system based on the vehicle attitude parameter;

基于相邻时刻的速度参数、所述第二旋转参数、时间间隔参数和所述车辆在所述惯性测量单元坐标系下的加速度参数,确定所述车辆的速度递推关系;determining the velocity recursion relationship of the vehicle based on the velocity parameter at adjacent moments, the second rotation parameter, the time interval parameter and the acceleration parameter of the vehicle in the inertial measurement unit coordinate system;

所述速度递推关系为:The speed recursion relationship is:

所述车辆在当前时刻的速度参数等于所述车辆在当前时刻的上一时刻的速度参数与速度变化量的总和;The speed parameter of the vehicle at the current moment is equal to the sum of the speed parameter and the speed variation of the vehicle at the previous moment at the current moment;

所述速度变化量为所述车辆在所述上一时刻的第二旋转参数、所述上一时刻所述车辆在所述车辆坐标系下的加速度参数以及所述当前时刻与所述上一时刻之间的时间间隔参数的乘积。The speed variation is the second rotation parameter of the vehicle at the last moment, the acceleration parameter of the vehicle at the vehicle coordinate system at the last moment, and the current and last moment The product of the time interval parameter.

在一种可能的实现方式中,在确定各个时刻的所述第一旋转参数的值之前,所述方法还包括:In a possible implementation manner, before determining the value of the first rotation parameter at each moment, the method further includes:

将所述转换关系中的所述加速度参数代入所述速度递推关系中,得到包含相邻时刻的速度参数、所述第一旋转参数、所述第二旋转参数、所述车辆在所述惯性测量单元坐标系下的加速度参数以及时间间隔参数的目标速度递推关系。Substituting the acceleration parameter in the conversion relationship into the velocity recursive relationship to obtain the velocity parameter, the first rotation parameter, the second rotation parameter, and the inertia of the vehicle at adjacent moments The acceleration parameter in the coordinate system of the measurement unit and the target velocity recursive relationship of the time interval parameter.

在一种可能的实现方式中,所述根据所述各个时刻的速度信息、所述各个时刻的车辆姿态信息、所述各个时刻的加速度信息、所述各个时刻的时间间隔信息、所述速度递推关系和所述转换关系确定各个时刻的所述第一旋转参数的值,具体包括:In a possible implementation manner, the speed information at each time, the vehicle attitude information at each time, the acceleration information at each time, the time interval information at each time, the speed delivery The push relationship and the conversion relationship determine the value of the first rotation parameter at each moment, specifically including:

对所述待标定时间段内的各个时刻,分别将所述时刻的加速度信息、所述时刻的速度信息、所述时刻的上一时刻的速度信息、所述时刻的车辆姿态信息以及所述时刻与所述上一时刻的时间间隔信息代入所述目标速度递推关系中,分别得到所述各个时刻的所述第一旋转参数的值。For each moment in the time period to be calibrated, the acceleration information at the moment, the speed information at the moment, the speed information at the previous moment at the moment, the vehicle attitude information at the moment, and the The time interval information from the previous moment is substituted into the target speed recursive relationship to obtain the values of the first rotation parameter at each moment respectively.

在一种可能的实现方式中,所述第一旋转参数的值包括俯仰角角度、横滚角角度及航向角角度,所述根据各个时刻的所述第一旋转参数的值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差,具体包括:In a possible implementation manner, the value of the first rotation parameter includes a pitch angle, a roll angle, and a yaw angle, and the value to be calibrated is determined according to the value of the first rotation parameter at each moment. The angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period specifically includes:

获取所述各个时刻的所述俯仰角角度、横滚角角度和航向角角度;Obtain the pitch angle, roll angle and heading angle at each moment;

分别确定所述各个时刻的所述俯仰角角度的第一平均值、所述横滚角角度的第二平均值以及所述航向角角度的第三平均值;Respectively determine the first average value of the pitch angle angle, the second average value of the roll angle angle and the third average value of the yaw angle angle at the respective time points;

根据所述第一平均值、所述第二平均值以及所述第三平均值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差。The angle deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated is determined according to the first average value, the second average value and the third average value.

在一种可能的实现方式中,在获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息之前,所述方法还包括:In a possible implementation, before acquiring the speed information and vehicle attitude information of the vehicle measured by the global satellite navigation system at various moments within the time period to be calibrated, the method further includes:

获取预设时间段内全球卫星导航系统测量的车辆在各个时刻的车辆姿态信息;Obtain the vehicle attitude information of the vehicle at each moment measured by the global satellite navigation system within the preset time period;

筛选出所述预设时间段内所述车辆姿态信息满足预设条件的时间段子集,并记为待标定时间段;所述预设条件为所述车辆的所述航向角角度的变化范围小于第一预设角度、所述俯仰角角度的变化范围小于第二预设角度、以及所述横滚角角度的变化范围小于第三预设角度。Screening out a subset of the time period in which the vehicle attitude information meets a preset condition within the preset time period, and recording it as a time period to be calibrated; the preset condition is that the variation range of the heading angle of the vehicle is less than The first preset angle, the variation range of the pitch angle is smaller than the second preset angle, and the variation range of the roll angle is smaller than the third preset angle.

第二方面,本发明提供一种车辆行驶轨迹确定装置,所述装置包括:In a second aspect, the present invention provides a device for determining a vehicle trajectory, the device comprising:

第一获取模块,用于获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的所述各个时刻的加速度信息;The first obtaining module is used to obtain the speed information and vehicle attitude information of the vehicle measured by the global satellite navigation system at various moments within the time period to be calibrated, and obtain the acceleration information at each moment measured by the inertial measurement unit;

第二获取模块,用于获取预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系;所述转换关系中包含所述车辆坐标系和所述惯性测量单元坐标系之间的第一旋转参数;The second acquisition module is used to acquire the conversion relationship between the acceleration in the predetermined vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system; the conversion relationship includes the vehicle coordinate system and the inertial measurement unit coordinate system The first rotation parameter between;

第三获取模块,用于获取预先确定的所述车辆的速度递推关系;所述速度递推关系中包含相邻时刻的速度参数、车辆姿态参数、时间间隔参数和所述车辆在所述惯性测量单元坐标系下的加速度参数;The third acquisition module is used to acquire the predetermined speed recursive relationship of the vehicle; the speed recursive relationship includes the speed parameters at adjacent moments, the vehicle attitude parameters, the time interval parameters and the inertia of the vehicle Acceleration parameters in the coordinate system of the measurement unit;

第一确定模块,用于根据所述各个时刻的速度信息、所述各个时刻的车辆姿态信息、所述各个时刻的加速度信息、所述各个时刻的时间间隔信息、所述速度递推关系和所述转换关系确定各个时刻的所述第一旋转参数的值;The first determination module is configured to use the speed information at each moment, the vehicle attitude information at each moment, the acceleration information at each moment, the time interval information at each moment, the speed recurrence relationship and the The conversion relationship determines the value of the first rotation parameter at each moment;

第二确定模块,用于根据各个时刻的所述第一旋转参数的值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差;A second determining module, configured to determine the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated according to the value of the first rotation parameter at each moment;

第三确定模块,用于根据所述角度偏差确定所述车辆在所述待标定时间段内的行驶轨迹。A third determining module, configured to determine the driving trajectory of the vehicle within the time period to be calibrated according to the angular deviation.

第三方面,本发明提供一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述任一项所述的车辆行驶轨迹确定方法。In a third aspect, the present invention provides an electronic device, which is characterized in that the electronic device includes a processor and a memory, at least one instruction, at least one program, code set or instruction set are stored in the memory, and the at least one The instructions, the at least one segment of the program, the code set or the instruction set are loaded and executed by the processor to implement the vehicle trajectory determination method described in any one of the above.

第四方面,本发明提供一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述任一项所述的车辆行驶轨迹确定方法。In a fourth aspect, the present invention provides a computer-readable storage medium, which is characterized in that at least one instruction, at least one section of program, code set or instruction set is stored in the storage medium, and the at least one instruction, the at least one section The program, the code set or the instruction set is loaded and executed by the processor to realize the method for determining the vehicle trajectory described in any one of the above.

本发明实施例提供的车辆行驶轨迹确定方法和装置将获取到的全球卫星导航系统测量的待标定时间段内的速度信息和车辆姿态信息、惯性测量单元测量的各个时刻的加速度信息、以及预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系,带入到预先确定的车辆的速度递推关系中,计算得到各个时刻的第一旋转参数的值;之后根据各个时刻的第一旋转参数的值计算得到车辆坐标系与惯性测量单元坐标系之间的角度偏差;最后根据车辆坐标系与惯性测量单元坐标系之间的角度偏差确定车辆在待标定时间段内的行驶轨迹;本发明通过全球卫星导航系统测量的待标定时间段内的速度信息和车辆姿态信息,以及惯性测量单元测量的各个时刻的加速度信息的结合对惯性测量单元坐标系和车辆坐标系之间的角度偏差进行标定,有效地提高了对车辆坐标系和惯性测量单元坐标系之间角度偏差标定的精确性,从而减小了惯性测量单元预测方向与车辆实际轨迹方向的误差,进而有效地提高了惯性测量单元对车辆的定位精度。The method and device for determining the vehicle trajectory provided by the embodiments of the present invention will obtain the speed information and vehicle attitude information measured by the global satellite navigation system within the time period to be calibrated, the acceleration information at each moment measured by the inertial measurement unit, and the predetermined The conversion relationship between the acceleration in the vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system is brought into the predetermined vehicle speed recursive relationship, and the value of the first rotation parameter at each moment is calculated; then according to each moment The angle deviation between the vehicle coordinate system and the inertial measurement unit coordinate system is obtained by calculating the value of the first rotation parameter of track; the present invention uses the speed information and vehicle attitude information in the time period to be calibrated measured by the global satellite navigation system, and the combination of the acceleration information at each moment measured by the inertial measurement unit to the coordinate system of the inertial measurement unit and the vehicle coordinate system. Calibration of the angle deviation effectively improves the accuracy of the calibration of the angle deviation between the vehicle coordinate system and the inertial measurement unit coordinate system, thereby reducing the error between the inertial measurement unit predicted direction and the vehicle’s actual track direction, and thus effectively improving the The positioning accuracy of the inertial measurement unit for the vehicle.

附图说明Description of drawings

图1为本发明实施例提供的第一种车辆行驶轨迹确定方法的步骤流程图;FIG. 1 is a flow chart of the steps of the first method for determining a vehicle travel trajectory provided by an embodiment of the present invention;

图2为本发明实施例提供的第二种车辆行驶轨迹确定方法的步骤流程图;FIG. 2 is a flow chart of the steps of the second method for determining the vehicle trajectory provided by the embodiment of the present invention;

图3为本发明实施例提供的一种车辆行驶轨迹确定装置的结构框图。Fig. 3 is a structural block diagram of a device for determining a vehicle trajectory provided by an embodiment of the present invention.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,“基于”或“根据”的使用意味着开放和包容性,因为“基于”或“根据”一个或多个条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出的值。Hereinafter, the terms "first" and "second" are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more. In addition, the use of "based on" or "according to" is meant to be open and inclusive, because a process, step, calculation or other action "based on" or "according to" one or more conditions or values may in practice be based on additional conditions or value exceeded.

为了解决惯性测量单元预测方向与车辆实际轨迹方向存在偏差导致的车辆定位精度低的问题,本发明实施例提供了一种车辆行驶轨迹确定方法和装置。In order to solve the problem of low vehicle positioning accuracy caused by the deviation between the direction predicted by the inertial measurement unit and the actual track direction of the vehicle, the embodiments of the present invention provide a method and device for determining a vehicle track.

第一方面,本发明实施例提供了一种车辆行驶轨迹确定方法。In a first aspect, an embodiment of the present invention provides a method for determining a vehicle trajectory.

图1为本发明实施例提供的第一种车辆行驶轨迹确定方法的方法流程图。Fig. 1 is a method flow chart of the first method for determining a vehicle driving trajectory provided by an embodiment of the present invention.

如图1所示,在一种可能的实施方式中,车辆行驶轨迹确定方法包括:As shown in Figure 1, in a possible implementation manner, the method for determining the vehicle trajectory includes:

步骤101、获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的各个时刻的加速度信息。Step 101. Acquire the velocity information and vehicle attitude information of the vehicle at each moment in the time period to be calibrated measured by the global satellite navigation system, and acquire the acceleration information at each moment measured by the inertial measurement unit.

其中,全球卫星导航系统也叫全球导航卫星系统(Global Navigation SatelliteSystem,GNSS),是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。Among them, the global satellite navigation system is also called the global navigation satellite system (Global Navigation Satellite System, GNSS), which is a space-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any place on the earth's surface or in near-earth space. system.

惯性测量单元(Inertial Measurement Unit,IMU)是测量物体三轴姿态角或角速度以及加速度的装置。Inertial Measurement Unit (IMU) is a device that measures the three-axis attitude angle or angular velocity and acceleration of an object.

惯性测量单元包含三个单轴的加速度计和三个单轴的陀螺仪,通过加速度计检测物体在载体坐标系独立三轴的加速度信息。The inertial measurement unit includes three single-axis accelerometers and three single-axis gyroscopes, and the accelerometers detect the independent three-axis acceleration information of the object in the carrier coordinate system.

速度信息是全球卫星导航系统测量的在空旷平坦的道路上,沿直线行驶的车辆在待标定时间段内的各个时刻的速度。The speed information is the speed measured by the global satellite navigation system at each moment of the vehicle traveling in a straight line on an open and flat road during the time period to be calibrated.

车辆姿态信息是惯性测量单元坐标系与全球卫星导航系统坐标系之间的旋转关系。Vehicle attitude information is the rotational relationship between the inertial measurement unit coordinate system and the global satellite navigation system coordinate system.

加速度信息是惯性测量单元测量的在空旷平坦的道路上,沿直线行驶的车辆在待标定时间段内的各个时刻的加速度。Acceleration information is the acceleration measured by the inertial measurement unit at various moments of a vehicle traveling in a straight line on an open and flat road during the time period to be calibrated.

步骤102、获取预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系。其中,转换关系中包含车辆坐标系和惯性测量单元坐标系之间的第一旋转参数。Step 102 , acquiring the conversion relationship between the acceleration in the predetermined vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system. Wherein, the conversion relationship includes the first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system.

其中,车辆坐标系以OXbYbZb表示,车辆坐标系与载体固定连接,坐标原点为载体中心,OXb轴沿载体横轴向右,OYb轴沿载体纵轴向前,OZb轴沿载体立轴向上。Among them, the vehicle coordinate system is represented by OX b Y b Z b , the vehicle coordinate system is fixedly connected with the carrier, the coordinate origin is the center of the carrier, the OX b axis is rightward along the horizontal axis of the carrier, the OY b axis is forward along the longitudinal axis of the carrier, and OZ b The shaft is upright along the carrier shaft.

惯性测量单元坐标系的坐标原点在陀螺仪和加速度计的坐标原点,X轴、Y轴和Z轴三个方向分别与陀螺仪和加速度计的对应轴向平行,惯性测量单元与车辆固定连接,在不考虑安装造成的角度偏差时,车辆坐标系即为惯性测量单元坐标系。The coordinate origin of the inertial measurement unit coordinate system is at the coordinate origin of the gyroscope and the accelerometer, and the three directions of the X axis, the Y axis and the Z axis are respectively parallel to the corresponding axes of the gyroscope and the accelerometer, and the inertial measurement unit is fixedly connected to the vehicle. When the angular deviation caused by installation is not considered, the vehicle coordinate system is the inertial measurement unit coordinate system.

第一旋转参数为车辆坐标系与惯性测量单元坐标系之间的旋转角度,也就是说惯性测量单元坐标系旋转该旋转角度后就是车辆坐标系。The first rotation parameter is the rotation angle between the vehicle coordinate system and the IMU coordinate system, that is to say, the IMU coordinate system is the vehicle coordinate system after being rotated by the rotation angle.

车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系主要是根据第一旋转参数确定的,也就是说车辆坐标系下的加速度旋转该旋转角度后就是车辆坐标系下的加速度。The conversion relationship between the acceleration in the vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system is mainly determined according to the first rotation parameter, that is to say, the acceleration in the vehicle coordinate system rotated by the rotation angle is the acceleration in the vehicle coordinate system.

步骤103、获取预先确定的车辆的速度递推关系。其中,速度递推关系中包含相邻时刻的速度参数、车辆姿态参数、时间间隔参数和车辆在惯性测量单元坐标系下的加速度参数。Step 103, acquiring a predetermined vehicle speed recursive relationship. Among them, the speed recurrence relation includes the speed parameters at adjacent moments, the vehicle attitude parameters, the time interval parameters and the acceleration parameters of the vehicle in the inertial measurement unit coordinate system.

其中,车辆的速度递推关系是根据车辆相邻两时刻的速度参数、车辆的加速度参数以及相邻两时刻的时间间隔参数来确定的。在本发明中车辆相邻两时刻的速度参数以及车辆的加速度参数均为全球卫星导航系统坐标系下的参数;而车辆在全球卫星导航系统坐标系下的加速度参数可以用车辆在惯性测量单元坐标系下的加速度参数以及惯性测量单元坐标系与全球卫星导航系统坐标系之间的旋转关系即车辆姿态参数来确定。Wherein, the recursive relation of the speed of the vehicle is determined according to the speed parameters of the vehicle at two adjacent moments, the acceleration parameters of the vehicle and the time interval parameters between two adjacent moments. In the present invention, the speed parameters at two adjacent moments of the vehicle and the acceleration parameters of the vehicle are parameters under the global satellite navigation system coordinate system; The acceleration parameters under the system and the rotation relationship between the inertial measurement unit coordinate system and the global satellite navigation system coordinate system are determined by the vehicle attitude parameters.

步骤104、根据各个时刻的速度信息、各个时刻的车辆姿态信息、各个时刻的加速度信息、各个时刻的时间间隔信息、速度递推关系和转换关系确定各个时刻的第一旋转参数的值。Step 104: Determine the value of the first rotation parameter at each moment according to the speed information at each moment, the vehicle attitude information at each moment, the acceleration information at each moment, the time interval information at each moment, the velocity recursive relationship and the conversion relationship.

其中,将速度递推关系中的车辆载体坐标系下的加速度用转换关系中的第一旋转参数和惯性测量单元坐标系下的加速度进行替换,得到包含各个时刻的速度信息、各个时刻的车辆姿态信息、各个时刻的加速度信息、各个时刻的时间间隔信息以及第一旋转参数的速度递推公式。此时,各个时刻的速度信息以及各个时刻的车辆姿态信息均通过全球卫星导航系统测量得到,各个时刻的时间间隔信息可以根据相邻两时刻计算得到,各个时刻的加速度信息通过惯性测量单元测量得到,因此,将各个时刻的速度信息、各个时刻的车辆姿态信息、各个时刻的加速度信息以及各个时刻的时间间隔信息代入速度递推公式可以计算得到各个时刻的第一旋转参数的值。Among them, the acceleration in the vehicle carrier coordinate system in the velocity recursive relationship is replaced by the first rotation parameter in the conversion relationship and the acceleration in the inertial measurement unit coordinate system to obtain the velocity information at each moment and the vehicle attitude at each moment information, acceleration information at each moment, time interval information at each moment, and the speed recursion formula of the first rotation parameter. At this time, the speed information at each moment and the vehicle attitude information at each moment are measured by the global satellite navigation system, the time interval information at each moment can be calculated based on two adjacent moments, and the acceleration information at each moment is measured by the inertial measurement unit. Therefore, the value of the first rotation parameter at each moment can be calculated by substituting the speed information at each moment, the vehicle attitude information at each moment, the acceleration information at each moment, and the time interval information at each moment into the speed recurrence formula.

步骤105、根据各个时刻的第一旋转参数的值确定待标定时间段内车辆坐标系与惯性测量单元坐标系之间的角度偏差。Step 105. Determine the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated according to the value of the first rotation parameter at each moment.

其中,各个时刻的第一旋转参数的值就是该时刻车辆坐标系与惯性测量单元坐标系之间的角度偏差。Wherein, the value of the first rotation parameter at each moment is the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system at that moment.

具体的,待标定时间段内车辆坐标系与惯性测量单元坐标系之间的角度偏差可以是待标定时间段内各个时刻的第一旋转参数的值的中值、平均值或加权平均值中的一种。Specifically, the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system in the time period to be calibrated may be the median, average or weighted average of the values of the first rotation parameter at each moment in the time period to be calibrated A sort of.

步骤106、根据角度偏差确定车辆在待标定时间段内的行驶轨迹。Step 106: Determine the vehicle's driving trajectory within the time period to be calibrated according to the angular deviation.

具体的,首先根据惯性测量单元预测方向与角度偏差确定车辆实际轨迹方向,之后根据车辆实际轨迹方向确定车辆的行驶轨迹。Specifically, firstly, the actual track direction of the vehicle is determined according to the predicted direction and angle deviation of the inertial measurement unit, and then the driving track of the vehicle is determined according to the actual track direction of the vehicle.

综上,本发明实施例中,根据获取到的全球卫星导航系统测量的待标定时间段内的速度信息和车辆姿态信息、惯性测量单元测量的各个时刻的加速度信息、预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系、以及预先确定的车辆的速度递推关系确定各个时刻的第一旋转参数的值;之后,根据各个时刻的第一旋转参数的值确定待标定时间段内车辆坐标系与惯性测量单元坐标系之间的角度偏差;最后,根据角度偏差确定车辆在待标定时间段内的行驶轨迹。在上述方法中,通过全球卫星导航系统测量的待标定时间段内的速度信息和车辆姿态信息,以及惯性测量单元测量的各个时刻的加速度信息的结合对惯性测量单元坐标系和车辆坐标系之间的角度偏差进行标定,有效地提高了对车辆坐标系与惯性测量单元坐标系之间角度偏差标定的精确性,从而减小了惯性测量单元预测方向与车辆实际轨迹方向的误差,进而有效地提高了惯性测量单元对车辆的定位精度。To sum up, in the embodiment of the present invention, according to the acquired speed information and vehicle attitude information within the time period to be calibrated measured by the global satellite navigation system, the acceleration information at each moment measured by the inertial measurement unit, and the predetermined vehicle coordinate system The conversion relationship between the acceleration of the acceleration and the acceleration under the inertial measurement unit coordinate system, and the predetermined recursive relationship of the speed of the vehicle determine the value of the first rotation parameter at each moment; after that, determine the value of the first rotation parameter according to the value of the first rotation parameter at each moment. The angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the calibration time period; finally, the driving trajectory of the vehicle within the calibration time period is determined according to the angular deviation. In the above method, the combination of the speed information and vehicle attitude information measured by the global satellite navigation system within the time period to be calibrated, and the acceleration information at each moment measured by the inertial measurement unit is effective between the inertial measurement unit coordinate system and the vehicle coordinate system. Calibration of the angular deviation of the vehicle coordinate system effectively improves the accuracy of the calibration of the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system, thereby reducing the error between the inertial measurement unit predicted direction and the vehicle's actual trajectory direction, thereby effectively improving The positioning accuracy of the inertial measurement unit for the vehicle is improved.

图2为本发明实施例提供的第二种车辆行驶轨迹确定方法的方法流程图;Fig. 2 is a method flowchart of a second method for determining a vehicle trajectory provided by an embodiment of the present invention;

如图2所示,在另一种可能的实施方式中,车辆行驶轨迹确定方法包括:As shown in Figure 2, in another possible implementation manner, the method for determining the vehicle trajectory includes:

步骤201、基于车辆坐标系和惯性测量单元坐标系之间的第一旋转参数,确定车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系。Step 201, based on the first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system, determine the conversion relationship between the acceleration in the vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system.

其中,转换关系为:车辆坐标系下的加速度为惯性测量单元坐标系下的加速度和第一旋转参数的乘积。Wherein, the conversion relationship is: the acceleration in the vehicle coordinate system is the product of the acceleration in the inertial measurement unit coordinate system and the first rotation parameter.

在本发明实施例中,第一旋转参数的值包括俯仰角角度、横滚角角度及航向角角度。In the embodiment of the present invention, the value of the first rotation parameter includes a pitch angle, a roll angle, and a yaw angle.

具体的,转换关系为:Specifically, the conversion relationship is:

Figure BDA0003913063500000081
Figure BDA0003913063500000081

其中,k为当前时刻,

Figure BDA0003913063500000082
为惯性测量单元坐标系与车辆坐标系的第一旋转参数,av为车辆载体坐标系下的加速度,ab为惯性测量单元坐标系下的加速度。Among them, k is the current moment,
Figure BDA0003913063500000082
is the first rotation parameter of the inertial measurement unit coordinate system and the vehicle coordinate system, a v is the acceleration in the vehicle carrier coordinate system, and a b is the acceleration in the inertial measurement unit coordinate system.

步骤202、基于车辆姿态参数确定惯性测量单元坐标系与全球卫星导航系统坐标系之间的第二旋转参数。Step 202: Determine a second rotation parameter between the inertial measurement unit coordinate system and the global satellite navigation system coordinate system based on the vehicle attitude parameter.

其中,全球卫星导航系统坐标系为东北天坐标系,也称站心坐标系,以用户所在位置作为坐标原点,X轴指向东边,Y轴指向北边,Z轴指向天顶。Among them, the coordinate system of the global satellite navigation system is the northeast sky coordinate system, also known as the station center coordinate system, with the user's location as the coordinate origin, the X axis points to the east, the Y axis points to the north, and the Z axis points to the zenith.

具体的,第二旋转参数为惯性测量单元坐标系与全球卫星导航系统坐标系之间的旋转角度;车辆姿态信息是惯性测量单元坐标系与全球卫星导航系统坐标系之间的旋转关系。因此,根据车辆姿态参数可以确定第二旋转参数。Specifically, the second rotation parameter is the rotation angle between the IMU coordinate system and the GNSS coordinate system; the vehicle attitude information is the rotation relationship between the IMU coordinate system and the GNSS coordinate system. Therefore, the second rotation parameter can be determined according to the vehicle attitude parameter.

步骤203、基于相邻时刻的速度参数、第二旋转参数、时间间隔参数和车辆在惯性测量单元坐标系下的加速度参数,确定车辆的速度递推关系。Step 203 , based on the velocity parameter, the second rotation parameter, the time interval parameter and the acceleration parameter of the vehicle in the inertial measurement unit coordinate system at adjacent moments, determine the velocity recursive relationship of the vehicle.

其中,速度递推关系为:Among them, the velocity recurrence relation is:

车辆在当前时刻的速度参数等于车辆在当前时刻的上一时刻的速度参数与速度变化量的总和;The speed parameter of the vehicle at the current moment is equal to the sum of the speed parameter and the speed change of the vehicle at the previous moment at the current moment;

速度变化量为车辆在上一时刻的第二旋转参数、上一时刻车辆在车辆坐标系下的加速度参数以及当前时刻与上一时刻之间的时间间隔参数的乘积。The speed variation is the product of the second rotation parameter of the vehicle at the previous moment, the acceleration parameter of the vehicle in the vehicle coordinate system at the previous moment, and the time interval parameter between the current moment and the previous moment.

具体的,速度递推关系为:Specifically, the velocity recurrence relationship is:

Figure BDA0003913063500000083
Figure BDA0003913063500000083

其中,Vn为全球卫星导航系统坐标系下的速度,

Figure BDA0003913063500000084
为车辆载体坐标系与全球卫星导航系统坐标系的第二旋转参数,av为车辆载体坐标系下的加速度,k为当前时刻,k-1为当前时刻的上一时刻,dt为当前时刻与上一时刻的时间间隔,其中dt=t(k+1)-t(k)。Among them, V n is the speed in the global satellite navigation system coordinate system,
Figure BDA0003913063500000084
is the second rotation parameter of the vehicle carrier coordinate system and the global satellite navigation system coordinate system, a v is the acceleration in the vehicle carrier coordinate system, k is the current moment, k-1 is the previous moment of the current moment, dt is the current moment and The time interval of the previous moment, where dt=t(k+1)-t(k).

步骤204、获取预设时间段内全球卫星导航系统测量的车辆在各个时刻的车辆姿态信息。Step 204, acquiring the vehicle attitude information of the vehicle at each moment measured by the global satellite navigation system within a preset period of time.

例如,预设时间段为10分钟,在空旷平坦的道路上,控制车辆沿直线行走,获取预设时间段内全球卫星导航系统测量的车辆在各个时刻的车辆姿态信息。For example, the preset time period is 10 minutes. On an open and flat road, the vehicle is controlled to walk in a straight line, and the vehicle attitude information of the vehicle at each moment measured by the global satellite navigation system is obtained within the preset time period.

步骤205、筛选出预设时间段内车辆姿态信息满足预设条件的时间段子集,并记为待标定时间段。预设条件为车辆行驶路程在预设长度内航向角角度的变化范围小于第一预设角度、俯仰角角度的变化范围小于第二预设角度、以及横滚角角度的变化范围小于第三预设角度。Step 205 , filter out a subset of time periods in which the vehicle attitude information satisfies the preset conditions within the preset time period, and record it as a time period to be calibrated. The preset condition is that the change range of the yaw angle angle is smaller than the first preset angle, the change range of the pitch angle angle is smaller than the second preset angle, and the change range of the roll angle angle is smaller than the third preset angle within the preset length of the vehicle travel distance. set angle.

具体的,第一预设角度可为0.5度,第二预设角度可为0.2度,第三预设角度可为0.2度。Specifically, the first preset angle may be 0.5 degrees, the second preset angle may be 0.2 degrees, and the third preset angle may be 0.2 degrees.

例如,筛选出在300米路程内,航向角角度的变化范围小于0.5度、俯仰角角度的变化范围小于0.2度、以及横滚角角度的变化范围小于0.2度的速度信息对应的时间段,并将该时间段记为待标定时间段。For example, within a distance of 300 meters, select the time period corresponding to the speed information whose variation range of the heading angle is less than 0.5 degrees, the variation range of the pitch angle is less than 0.2 degrees, and the variation range of the roll angle is less than 0.2 degrees, and Record this time period as the time period to be calibrated.

步骤206、获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的各个时刻的加速度信息。Step 206: Obtain the velocity information and vehicle attitude information of the vehicle at each moment in the time period to be calibrated measured by the global satellite navigation system, and acquire the acceleration information at each moment measured by the inertial measurement unit.

在本发明实施例中,步骤206可以参考步骤101,此处不再赘述。In the embodiment of the present invention, step 206 may refer to step 101, which will not be repeated here.

步骤207、获取预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系,转换关系中包含车辆坐标系和惯性测量单元坐标系之间的第一旋转参数。Step 207: Obtain the conversion relationship between the acceleration in the predetermined vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system, the conversion relationship includes the first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system.

在本发明实施例中,步骤207可以参考步骤102,此处不再赘述。In this embodiment of the present invention, reference may be made to step 102 for step 207, which will not be repeated here.

步骤208、获取预先确定的车辆的速度递推关系,速度递推关系中包含相邻时刻的速度参数、车辆姿态参数、时间间隔参数和车辆在惯性测量单元坐标系下的加速度参数。Step 208 , obtaining a predetermined velocity recursive relationship of the vehicle, which includes velocity parameters, vehicle attitude parameters, time interval parameters and acceleration parameters of the vehicle in the inertial measurement unit coordinate system at adjacent moments.

在本发明实施例中,步骤208可以参考步骤103,此处不再赘述。In the embodiment of the present invention, step 208 may refer to step 103, which will not be repeated here.

步骤209、将转换关系中的加速度参数代入速度递推关系中,得到包含相邻时刻的速度参数、第一旋转参数、第二旋转参数、车辆在惯性测量单元坐标系下的加速度参数以及时间间隔参数的目标速度递推关系。Step 209: Substituting the acceleration parameters in the conversion relationship into the velocity recurrence relationship to obtain the velocity parameters, the first rotation parameters, the second rotation parameters, the acceleration parameters of the vehicle in the inertial measurement unit coordinate system, and the time interval at adjacent moments The target speed recurrence relation of the parameter.

具体的,将(1)代入(2)中,得到的目标速度递推关系为:Specifically, substituting (1) into (2), the obtained target speed recurrence relationship is:

Figure BDA0003913063500000091
Figure BDA0003913063500000091

对(3)进行变换处理,得到惯性测量单元坐标系与车辆坐标系之间的第一旋转参数的表示公式,具体为:(3) is transformed to obtain the expression formula of the first rotation parameter between the inertial measurement unit coordinate system and the vehicle coordinate system, specifically:

Figure BDA0003913063500000092
Figure BDA0003913063500000092

步骤210、对待标定时间段内的各个时刻,分别将各个时刻的加速度信息、时刻的速度信息、各个时刻的上一时刻的速度信息、各个时刻的车辆姿态信息以及各个时刻与其上一时刻的时间间隔信息代入目标速度递推关系中,分别得到各个时刻的第一旋转参数的值。Step 210: For each moment within the time period to be calibrated, the acceleration information at each moment, the speed information at each moment, the speed information at the previous moment at each moment, the vehicle attitude information at each moment, and the time at each moment and the previous moment The interval information is substituted into the target speed recursive relationship to obtain the values of the first rotation parameter at each moment.

具体的,由于当前时刻的速度信息以及当前时刻的上一时刻的速度信息都可以通过全球卫星导航系统测量得到;当前时刻的车辆载体坐标系与全球卫星导航系统坐标系的第二旋转参数可以通过全球卫星导航系统测量的姿态信息计算得到;当前时刻与上一时刻的时间间隔信息可以直接计算得到;当前时刻的加速度信息可以通过惯性测量单元测量得到。因此,将当前时刻的速度信息、当前时刻的上一时刻的速度信息、当前时刻的第二旋转参数、当前时刻与上一时刻的时间间隔信息以及当前时刻的加速度信息直接代入(4)中,计算得到当前时刻的第一旋转参数

Figure BDA0003913063500000101
Specifically, since the speed information at the current moment and the speed information at the previous moment at the current moment can be measured by the global satellite navigation system; the vehicle carrier coordinate system at the current moment and the second rotation parameter of the global satellite navigation system coordinate system can be obtained through The attitude information measured by the global satellite navigation system is calculated; the time interval information between the current moment and the previous moment can be directly calculated; the acceleration information at the current moment can be measured by the inertial measurement unit. Therefore, the speed information at the current time, the speed information at the previous time at the current time, the second rotation parameter at the current time, the time interval information between the current time and the previous time, and the acceleration information at the current time are directly substituted into (4), Calculate the first rotation parameter at the current moment
Figure BDA0003913063500000101

步骤211、获取各个时刻的俯仰角角度、横滚角角度和航向角角度。Step 211 , acquiring the pitch angle, roll angle and heading angle at each moment.

具体的,以车辆的右、前、上三个方向构成右手系,其中三个方向的交点为原点,向右的方向为X轴,向前的方向为Y轴,向上的方向为Z轴,绕X轴旋转的角为俯仰角,绕Y轴旋转的角为横滚角,绕Z轴旋转的角为航向角。Specifically, the right-handed system is composed of the right, front and upper directions of the vehicle, where the intersection point of the three directions is the origin, the right direction is the X axis, the forward direction is the Y axis, and the upward direction is the Z axis. The angle of rotation around the X axis is the pitch angle, the angle of rotation around the Y axis is the roll angle, and the angle of rotation around the Z axis is the heading angle.

根据步骤210中计算得到的第一旋转参数

Figure BDA0003913063500000102
计算k-1时刻到k时刻的俯仰角角度的变化量Δpitch、横滚角角度的变化量Δroll以及航向角角度的变化量Δyaw。According to the first rotation parameter calculated in step 210
Figure BDA0003913063500000102
Calculate the variation Δpitch of the pitch angle, the variation Δroll of the roll angle, and the variation Δyaw of the yaw angle from time k-1 to time k.

步骤212、分别确定各个时刻的俯仰角角度的第一平均值、横滚角角度的第二平均值以及航向角角度的第三平均值。Step 212: Determine the first average value of the pitch angle, the second average value of the roll angle, and the third average value of the yaw angle at each moment.

具体的,对各个时刻的俯仰角角度的变化量Δpitch、横滚角角度的变化量Δroll以及航向角角度的变化量Δyaw进行平均处理,得到俯仰角角度的变化量的平均值、横滚角角度的变化量的平均值以及航向角角度的变化量的平均值。Specifically, average the change amount Δpitch of the pitch angle, the change amount Δroll of the roll angle, and the change amount Δyaw of the yaw angle at each moment to obtain the average value of the change amount of the pitch angle, the roll angle The average value of the change amount and the average value of the change amount of the heading angle.

步骤213、根据第一平均值、第二平均值以及第三平均值确定待标定时间段内车辆坐标系与惯性测量单元坐标系之间的角度偏差。Step 213: Determine the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated according to the first average value, the second average value and the third average value.

具体的,根据俯仰角角度的变化量的平均值、横滚角角度的变化量的平均值以及航向角角度的变化量的平均值得到待标定时间段的第一旋转参数,该第一旋转参数即为车辆坐标系与惯性测量单元坐标系之间的角度偏差。Specifically, according to the average value of the change amount of the pitch angle, the average value of the change amount of the roll angle and the average value of the change amount of the yaw angle angle, the first rotation parameter of the time period to be calibrated is obtained, and the first rotation parameter That is, the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system.

步骤214、根据角度偏差确定车辆在待标定时间段内的行驶轨迹。Step 214, determine the vehicle's driving trajectory within the time period to be calibrated according to the angular deviation.

在本发明实施例中,步骤214可以参考步骤106,此处不再赘述。In this embodiment of the present invention, reference may be made to step 106 for step 214, which will not be repeated here.

综上,图2中的车辆行驶轨迹确定方法除了具有图1中的车辆车辆轨迹确定方法的有益效果外,还具有如下有益效果:To sum up, in addition to the beneficial effects of the vehicle trajectory determination method in Figure 1, the vehicle trajectory determination method in Figure 2 also has the following beneficial effects:

首先,通过车辆坐标系和惯性测量单元坐标系之间的第一旋转参数,确定车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系;通过车辆姿态参数确定惯性测量单元坐标系与全球卫星导航系统坐标系之间的第二旋转参数;之后通过相邻时刻的速度参数、第二旋转参数、时间间隔参数和车辆在惯性测量单元坐标系下的加速度参数,确定车辆的速度递推关系;之后将转换关系中的加速度参数代入速度递推关系中,得到包含相邻时刻的速度参数、第一旋转参数、第二旋转参数、车辆在惯性测量单元坐标系下的加速度参数以及时间间隔参数的目标速度递推关系;之后对待标定时间段内的各个时刻,分别将各个时刻的加速度信息、各个时刻的速度信息、各个时刻的上一时刻的速度信息、各个时刻的车辆姿态信息以及各个时刻与上一时刻的时间间隔信息代入该目标速度递推关系中,得到第一旋转参数的值;整个过程中没有引入除速度信息、车辆姿态信息和加速度信息以外的其他影响因素,操作简单,无需过多的计算过程。First, through the first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system, determine the conversion relationship between the acceleration in the vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system; determine the inertial measurement unit coordinate system through the vehicle attitude parameters and the second rotation parameter between the coordinate system of the global satellite navigation system; then determine the speed transfer of the vehicle through the speed parameter at adjacent moments, the second rotation parameter, the time interval parameter and the acceleration parameter of the vehicle in the inertial measurement unit coordinate system Then, the acceleration parameters in the conversion relationship are substituted into the velocity recurrence relationship to obtain the velocity parameters, the first rotation parameters, the second rotation parameters, the acceleration parameters of the vehicle in the inertial measurement unit coordinate system and the time at adjacent moments The target speed recursive relationship of the interval parameter; after that, for each moment in the calibration period, the acceleration information at each moment, the speed information at each moment, the speed information at the previous moment at each moment, the vehicle attitude information at each moment, and The time interval information between each moment and the previous moment is substituted into the target speed recursive relationship to obtain the value of the first rotation parameter; no other influencing factors other than speed information, vehicle attitude information and acceleration information are introduced in the whole process, and the operation is simple , without excessive calculation process.

其次,在上述方法中,待标定的时间段内车辆行驶路程在预设长度内航向角角度的变化范围小于第一预设角度、俯仰角角度的变化范围小于第二预设角度、以及横滚角角度的变化范围小于第三预设角度,能够有效地减小车辆抖动、转弯等其他因素对标定车辆坐标系与惯性测量单元坐标系之间的角度偏差的影响,有效地提高了对车辆坐标系与惯性测量单元坐标系之间角度偏差标定的精确性,从而减小了惯性测量单元预测方向与车辆实际轨迹方向的误差,进而有效地提高了惯性测量单元对车辆的定位精度。Secondly, in the above method, within the time period to be calibrated, the variation range of the vehicle travel distance within the preset length is less than the first preset angle, the variation range of the pitch angle is smaller than the second preset angle, and the roll angle is smaller than the first preset angle. The change range of the angular angle is smaller than the third preset angle, which can effectively reduce the influence of other factors such as vehicle shaking and turning on the angular deviation between the calibration vehicle coordinate system and the inertial measurement unit coordinate system, and effectively improve the accuracy of the vehicle coordinate system. The accuracy of the angular deviation calibration between the inertial measurement unit coordinate system and the inertial measurement unit coordinate system reduces the error between the inertial measurement unit predicted direction and the vehicle’s actual track direction, and effectively improves the positioning accuracy of the inertial measurement unit for the vehicle.

第二方面,本发明实施例提供了一种车辆行驶轨迹确定装置。In a second aspect, an embodiment of the present invention provides a device for determining a vehicle trajectory.

如图3所示,本发明提供的车辆行驶轨迹确定装置包括第一获取模块301、第二获取模块302、第三获取模块303、第一确定模块304、第二确定模块305以及第三确定模块306。As shown in FIG. 3 , the device for determining vehicle travel trajectory provided by the present invention includes a first acquisition module 301, a second acquisition module 302, a third acquisition module 303, a first determination module 304, a second determination module 305 and a third determination module 306.

其中,第一获取模块301用于获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的各个时刻的加速度信息。Wherein, the first obtaining module 301 is used to obtain the speed information and vehicle attitude information of the vehicle at each moment measured by the global satellite navigation system within the time period to be calibrated, and obtain the acceleration information measured by the inertial measurement unit at each moment.

第二获取模块302用于获取预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系;转换关系中包含车辆坐标系和惯性测量单元坐标系之间的第一旋转参数。The second acquiring module 302 is used to acquire the conversion relationship between the acceleration in the predetermined vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system; the conversion relationship includes the first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system .

第三获取模块303用于获取预先确定的车辆的速度递推关系;速度递推关系中包含相邻时刻的速度参数、车辆姿态参数、时间间隔参数和车辆在惯性测量单元坐标系下的加速度参数。The third acquisition module 303 is used to obtain the predetermined velocity recursive relationship of the vehicle; the velocity recursive relationship includes the velocity parameters at adjacent moments, the vehicle attitude parameters, the time interval parameters and the acceleration parameters of the vehicle in the inertial measurement unit coordinate system .

第一确定模块304用于根据各个时刻的速度信息、各个时刻的车辆姿态信息、各个时刻的加速度信息、各个时刻的时间间隔信息、速度递推关系和转换关系确定各个时刻的第一旋转参数的值。The first determining module 304 is used to determine the first rotation parameter at each moment according to the speed information at each moment, the vehicle attitude information at each moment, the acceleration information at each moment, the time interval information at each moment, the speed recurrence relationship and the conversion relationship value.

第二确定模块305用于根据各个时刻的第一旋转参数的值确定待标定时间段内车辆坐标系与惯性测量单元坐标系之间的角度偏差。The second determination module 305 is used to determine the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated according to the value of the first rotation parameter at each moment.

第三确定模块306用于根据角度偏差确定车辆在待标定时间段内的行驶轨迹。The third determination module 306 is used to determine the driving trajectory of the vehicle within the time period to be calibrated according to the angular deviation.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described system, device and unit can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here.

第三方面,本发明实施例提供了一种电子设备,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现本发明实施例中所述的车辆行驶轨迹确定方法。In a third aspect, an embodiment of the present invention provides an electronic device, the electronic device includes a processor and a memory, at least one instruction, at least one section of program, code set or instruction set are stored in the memory, and the at least one instruction , the at least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining the vehicle driving trajectory described in the embodiment of the present invention.

第四方面,本发明实施例还提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现本发明实施例中所述的车辆行驶轨迹确定方法。In the fourth aspect, the embodiment of the present invention also provides a computer-readable storage medium, in which at least one instruction, at least one section of program, code set or instruction set is stored, and the at least one instruction, the at least one section The program, the code set or the instruction set is loaded and executed by the processor to realize the method for determining the vehicle driving trajectory described in the embodiment of the present invention.

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘So l id State D i sk(SSD))等。In the above embodiments, all or part of them may be implemented by software, hardware, firmware or any combination thereof. When implemented using software, it may be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention will be generated in whole or in part. The computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.). The computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media. The available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)).

以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何在本发明揭露的技术范围内的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific implementations of the present invention, but the protection scope of the present invention is not limited thereto. Any changes or replacements within the technical scope disclosed in the present invention shall be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (10)

1.一种车辆行驶轨迹确定方法,其特征在于,所述方法包括:1. A method for determining vehicle travel trajectory, characterized in that the method comprises: 获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的所述各个时刻的加速度信息;Acquiring the speed information and vehicle attitude information of the vehicle measured by the global satellite navigation system at each moment in the time period to be calibrated, and obtaining the acceleration information at each moment measured by the inertial measurement unit; 获取预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系,所述转换关系中包含所述车辆坐标系和所述惯性测量单元坐标系之间的第一旋转参数;Acquiring a conversion relationship between the acceleration in the predetermined vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system, the conversion relationship includes a first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system; 获取预先确定的所述车辆的速度递推关系,所述速度递推关系中包含相邻时刻的速度参数、车辆姿态参数、时间间隔参数和所述车辆在所述惯性测量单元坐标系下的加速度参数;Obtaining a predetermined velocity recursion relationship of the vehicle, the velocity recursion relationship including velocity parameters at adjacent moments, vehicle attitude parameters, time interval parameters and acceleration of the vehicle in the inertial measurement unit coordinate system parameter; 根据所述各个时刻的速度信息、所述各个时刻的车辆姿态信息、所述各个时刻的加速度信息、所述各个时刻的时间间隔信息、所述速度递推关系和所述转换关系确定各个时刻的所述第一旋转参数的值;According to the speed information at each time, the vehicle attitude information at each time, the acceleration information at each time, the time interval information at each time, the speed recursive relationship and the conversion relationship to determine the the value of said first rotation parameter; 根据各个时刻的所述第一旋转参数的值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差;determining the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated according to the value of the first rotation parameter at each moment; 根据所述角度偏差确定所述车辆在所述待标定时间段内的行驶轨迹。The driving trajectory of the vehicle within the time period to be calibrated is determined according to the angular deviation. 2.根据权利要求1所述的方法,其特征在于,在获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息之前,所述方法还包括:2. The method according to claim 1, characterized in that, before obtaining the vehicle measured by the global satellite navigation system at each moment's speed information and vehicle attitude information in the time period to be calibrated, the method also includes: 基于车辆坐标系和惯性测量单元坐标系之间的所述第一旋转参数,确定所述车辆坐标系下的加速度与所述惯性测量单元坐标系下的加速度的转换关系;determining a conversion relationship between acceleration in the vehicle coordinate system and acceleration in the inertial measurement unit coordinate system based on the first rotation parameter between the vehicle coordinate system and the inertial measurement unit coordinate system; 所述转换关系为:所述车辆坐标系下的加速度为所述惯性测量单元坐标系下的加速度和所述第一旋转参数的乘积。The conversion relationship is: the acceleration in the vehicle coordinate system is the product of the acceleration in the inertial measurement unit coordinate system and the first rotation parameter. 3.根据权利要求2所述的方法,其特征在于,在获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息之前,所述方法还包括:3. The method according to claim 2, characterized in that, before obtaining the vehicle measured by the global satellite navigation system at each moment's speed information and vehicle attitude information in the time period to be calibrated, the method also includes: 基于车辆姿态参数确定惯性测量单元坐标系与全球卫星导航系统坐标系之间的第二旋转参数;determining a second rotation parameter between the inertial measurement unit coordinate system and the global satellite navigation system coordinate system based on the vehicle attitude parameter; 基于相邻时刻的速度参数、所述第二旋转参数、时间间隔参数和所述车辆在所述惯性测量单元坐标系下的加速度参数,确定所述车辆的速度递推关系;determining the velocity recursion relationship of the vehicle based on the velocity parameter at adjacent moments, the second rotation parameter, the time interval parameter and the acceleration parameter of the vehicle in the inertial measurement unit coordinate system; 所述速度递推关系为:The speed recursion relationship is: 所述车辆在当前时刻的速度参数等于所述车辆在当前时刻的上一时刻的速度参数与速度变化量的总和;The speed parameter of the vehicle at the current moment is equal to the sum of the speed parameter and the speed variation of the vehicle at the previous moment at the current moment; 所述速度变化量为所述车辆在所述上一时刻的第二旋转参数、所述上一时刻所述车辆在所述车辆坐标系下的加速度参数以及所述当前时刻与所述上一时刻之间的时间间隔参数的乘积。The speed variation is the second rotation parameter of the vehicle at the last moment, the acceleration parameter of the vehicle at the vehicle coordinate system at the last moment, and the current and last moment The product of the time interval parameter. 4.根据权利要求3所述的方法,其特征在于,在确定各个时刻的所述第一旋转参数的值之前,所述方法还包括:4. The method according to claim 3, wherein, before determining the value of the first rotation parameter at each moment, the method further comprises: 将所述转换关系中的所述加速度参数代入所述速度递推关系中,得到包含相邻时刻的速度参数、所述第一旋转参数、所述第二旋转参数、所述车辆在所述惯性测量单元坐标系下的加速度参数以及时间间隔参数的目标速度递推关系。Substituting the acceleration parameter in the conversion relationship into the velocity recursive relationship to obtain the velocity parameter, the first rotation parameter, the second rotation parameter, and the inertia of the vehicle at adjacent moments The acceleration parameter in the coordinate system of the measurement unit and the target velocity recursive relationship of the time interval parameter. 5.根据权利要求4所述的方法,其特征在于,所述根据所述各个时刻的速度信息、所述各个时刻的车辆姿态信息、所述各个时刻的加速度信息、所述各个时刻的时间间隔信息、所述速度递推关系和所述转换关系确定各个时刻的所述第一旋转参数的值,具体包括:5. The method according to claim 4, characterized in that, according to the speed information at each moment, the vehicle attitude information at each moment, the acceleration information at each moment, and the time interval at each moment Information, the speed recursion relationship and the conversion relationship determine the value of the first rotation parameter at each moment, specifically including: 对所述待标定时间段内的各个时刻,分别将所述时刻的加速度信息、所述时刻的速度信息、所述时刻的上一时刻的速度信息、所述时刻的车辆姿态信息以及所述时刻与所述上一时刻的时间间隔信息代入所述目标速度递推关系中,分别得到所述各个时刻的所述第一旋转参数的值。For each moment in the time period to be calibrated, the acceleration information at the moment, the speed information at the moment, the speed information at the previous moment at the moment, the vehicle attitude information at the moment, and the The time interval information from the previous moment is substituted into the target speed recursive relationship to obtain the values of the first rotation parameter at each moment respectively. 6.根据权利要求1所述的方法,其特征在于,所述第一旋转参数的值包括俯仰角角度、横滚角角度及航向角角度,所述根据各个时刻的所述第一旋转参数的值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差,具体包括:6. The method according to claim 1, wherein the value of the first rotation parameter comprises a pitch angle, a roll angle, and a heading angle, and the value of the first rotation parameter according to each moment is The value determines the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated, specifically including: 获取所述各个时刻的所述俯仰角角度、横滚角角度和航向角角度;Obtain the pitch angle, roll angle and heading angle at each moment; 分别确定所述各个时刻的所述俯仰角角度的第一平均值、所述横滚角角度的第二平均值以及所述航向角角度的第三平均值;Respectively determine the first average value of the pitch angle angle, the second average value of the roll angle angle and the third average value of the yaw angle angle at the respective time points; 根据所述第一平均值、所述第二平均值以及所述第三平均值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差。The angle deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated is determined according to the first average value, the second average value and the third average value. 7.根据权利要求6所述的方法,其特征在于,在获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息之前,所述方法还包括:7. The method according to claim 6, wherein, before acquiring the vehicle measured by the global satellite navigation system at each moment's speed information and vehicle attitude information in the time period to be calibrated, the method also includes: 获取预设时间段内全球卫星导航系统测量的车辆在各个时刻的车辆姿态信息;Obtain the vehicle attitude information of the vehicle at each moment measured by the global satellite navigation system within the preset time period; 筛选出所述预设时间段内所述车辆姿态信息满足预设条件的时间段子集,并记为待标定时间段;所述预设条件为所述车辆的所述航向角角度的变化范围小于第一预设角度、所述俯仰角角度的变化范围小于第二预设角度、以及所述横滚角角度的变化范围小于第三预设角度。Screening out a subset of the time period in which the vehicle attitude information meets a preset condition within the preset time period, and recording it as a time period to be calibrated; the preset condition is that the variation range of the heading angle of the vehicle is less than The first preset angle, the variation range of the pitch angle is smaller than the second preset angle, and the variation range of the roll angle is smaller than the third preset angle. 8.一种车辆行驶轨迹确定装置,其特征在于,所述装置包括:8. A vehicle travel trajectory determination device, characterized in that the device comprises: 第一获取模块,用于获取全球卫星导航系统测量的车辆在待标定时间段内各个时刻的速度信息和车辆姿态信息,并获取惯性测量单元测量的所述各个时刻的加速度信息;The first obtaining module is used to obtain the speed information and vehicle attitude information of the vehicle measured by the global satellite navigation system at various moments within the time period to be calibrated, and obtain the acceleration information at each moment measured by the inertial measurement unit; 第二获取模块,用于获取预先确定的车辆坐标系下的加速度与惯性测量单元坐标系下的加速度的转换关系;所述转换关系中包含所述车辆坐标系和所述惯性测量单元坐标系之间的第一旋转参数;The second acquisition module is used to acquire the conversion relationship between the acceleration in the predetermined vehicle coordinate system and the acceleration in the inertial measurement unit coordinate system; the conversion relationship includes the vehicle coordinate system and the inertial measurement unit coordinate system The first rotation parameter between; 第三获取模块,用于获取预先确定的所述车辆的速度递推关系;所述速度递推关系中包含相邻时刻的速度参数、车辆姿态参数、时间间隔参数和所述车辆在所述惯性测量单元坐标系下的加速度参数;The third acquisition module is used to acquire the predetermined speed recursive relationship of the vehicle; the speed recursive relationship includes the speed parameters at adjacent moments, the vehicle attitude parameters, the time interval parameters and the inertia of the vehicle Acceleration parameters in the coordinate system of the measurement unit; 第一确定模块,用于根据所述各个时刻的速度信息、所述各个时刻的车辆姿态信息、所述各个时刻的加速度信息、所述各个时刻的时间间隔信息、所述速度递推关系和所述转换关系确定各个时刻的所述第一旋转参数的值;The first determination module is configured to use the speed information at each moment, the vehicle attitude information at each moment, the acceleration information at each moment, the time interval information at each moment, the speed recurrence relationship and the The conversion relationship determines the value of the first rotation parameter at each moment; 第二确定模块,用于根据各个时刻的所述第一旋转参数的值确定所述待标定时间段内所述车辆坐标系与所述惯性测量单元坐标系之间的角度偏差;A second determining module, configured to determine the angular deviation between the vehicle coordinate system and the inertial measurement unit coordinate system within the time period to be calibrated according to the value of the first rotation parameter at each moment; 第三确定模块,用于根据所述角度偏差确定所述车辆在所述待标定时间段内的行驶轨迹。A third determining module, configured to determine the driving trajectory of the vehicle within the time period to be calibrated according to the angular deviation. 9.一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1-7任一项所述的车辆行驶轨迹确定方法。9. An electronic device, characterized in that the electronic device includes a processor and a memory, at least one instruction, at least one section of program, code set or instruction set are stored in the memory, the at least one instruction, the at least A section of program, said code set or instruction set is loaded and executed by said processor to realize the method for determining vehicle driving trajectory according to any one of claims 1-7. 10.一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1-7任一项所述的车辆行驶轨迹确定方法。10. A computer-readable storage medium, characterized in that at least one instruction, at least one section of program, code set or instruction set is stored in said storage medium, said at least one instruction, said at least one section of program, said code The set or instruction set is loaded and executed by the processor to realize the method for determining the vehicle trajectory according to any one of claims 1-7.
CN202211329514.2A 2022-10-27 2022-10-27 Method and device for determining vehicle driving trajectory Active CN115574829B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211329514.2A CN115574829B (en) 2022-10-27 2022-10-27 Method and device for determining vehicle driving trajectory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211329514.2A CN115574829B (en) 2022-10-27 2022-10-27 Method and device for determining vehicle driving trajectory

Publications (2)

Publication Number Publication Date
CN115574829A true CN115574829A (en) 2023-01-06
CN115574829B CN115574829B (en) 2025-10-03

Family

ID=84586193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211329514.2A Active CN115574829B (en) 2022-10-27 2022-10-27 Method and device for determining vehicle driving trajectory

Country Status (1)

Country Link
CN (1) CN115574829B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361002A (en) * 2019-07-15 2019-10-22 哈尔滨工程大学 Simplification inertial navigation system attitude measurement method suitable for roadbed vehicle
WO2021147391A1 (en) * 2020-01-21 2021-07-29 魔门塔(苏州)科技有限公司 Map generation method and device based on fusion of vio and satellite navigation system
CN113375699A (en) * 2021-08-12 2021-09-10 智道网联科技(北京)有限公司 Inertial measurement unit installation error angle calibration method and related equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361002A (en) * 2019-07-15 2019-10-22 哈尔滨工程大学 Simplification inertial navigation system attitude measurement method suitable for roadbed vehicle
WO2021147391A1 (en) * 2020-01-21 2021-07-29 魔门塔(苏州)科技有限公司 Map generation method and device based on fusion of vio and satellite navigation system
CN113375699A (en) * 2021-08-12 2021-09-10 智道网联科技(北京)有限公司 Inertial measurement unit installation error angle calibration method and related equipment

Also Published As

Publication number Publication date
CN115574829B (en) 2025-10-03

Similar Documents

Publication Publication Date Title
CN111721289B (en) Vehicle positioning method, device, equipment, storage medium and vehicle in automatic driving
CN113566850B (en) Method and device for calibrating installation angle of inertial measurement unit and computer equipment
CN111157984B (en) A Pedestrian Autonomous Navigation Method Based on Millimeter Wave Radar and Inertial Measurement Unit
WO2018176092A1 (en) "low cost ins"
CN113917512B (en) Positioning method and device for automatic driving vehicle, electronic equipment and storage medium
CN115752395B (en) A measuring prism with inertial autonomous positioning capability and a prism tracking method
Liu et al. Interacting multiple model UAV navigation algorithm based on a robust cubature Kalman filter
CN113566849A (en) Method and device for calibrating installation angle of inertial measurement unit and computer equipment
CN113092822B (en) Online calibration method and device of laser Doppler velocimeter based on inertial measurement unit
CN115343738A (en) Integrated navigation method and device based on GNSS-RTK and IMU
CN117053802A (en) Method for reducing positioning error of vehicle navigation system based on rotary MEMS IMU
CN112146683B (en) Inertial measurement unit calibration parameter adjusting method and device and electronic equipment
CN115290082B (en) Error estimation method based on motion-assisted inertial navigation
CN110987023B (en) Inertial navigation dynamic alignment method
CN112129321A (en) Method, device and computer storage medium for determining gyro bias calibration value
CN110361002A (en) Simplification inertial navigation system attitude measurement method suitable for roadbed vehicle
CN113985466A (en) Combined navigation method and system based on pattern recognition
CN114279439B (en) A method, device and system for correcting inertial navigation data
CN109827572B (en) Method and device for detecting vehicle position prediction
CN115574829A (en) Method and device for determining vehicle trajectory
CN111027137A (en) High-precision dynamic construction method of spacecraft dynamics model based on telemetering data
CN114001730B (en) Fusion positioning method, fusion positioning device, computer equipment and storage medium
CN113758502B (en) Combined navigation processing method and device
CN115597594A (en) Satellite-habitual integrated navigation method and system based on mileage correction factor
CN114754765A (en) A three-dimensional positioning method and system for a vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载