CN115569483A - Self-holding one-step purification equipment and purification process - Google Patents
Self-holding one-step purification equipment and purification process Download PDFInfo
- Publication number
- CN115569483A CN115569483A CN202211119740.8A CN202211119740A CN115569483A CN 115569483 A CN115569483 A CN 115569483A CN 202211119740 A CN202211119740 A CN 202211119740A CN 115569483 A CN115569483 A CN 115569483A
- Authority
- CN
- China
- Prior art keywords
- cooling water
- flue gas
- self
- water
- water pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/04—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
- B01D45/08—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0003—Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/0072—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D50/00—Combinations of methods or devices for separating particles from gases or vapours
- B01D50/20—Combinations of devices covered by groups B01D45/00 and B01D46/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/265—Drying gases or vapours by refrigeration (condensation)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/18—Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
技术领域technical field
本申请涉及环保设备技术领域,具体而言,涉及一种自持式一步法净化设备及净化工艺。This application relates to the technical field of environmental protection equipment, in particular, to a self-sustaining one-step purification equipment and purification process.
背景技术Background technique
目前,水泥窑尾气NOx治理技术绝大多数仍是釆用氨源(氨水,尿素等)还原剂,由于脱硝率的限制,均或多或少存在还原剂超量使用而造成超过、甚至严重超过国家标准规定指标(小于8mg/m3)的氨逃逸现象而引发的大气二次污染。At present, the vast majority of cement kiln tail gas NOx treatment technologies still use ammonia source (ammonia water, urea, etc.) reducing agents. Air secondary pollution caused by ammonia escape phenomenon specified in national standard (less than 8mg/m3).
已知的现有技术公开一种水泥窑氨法脱硝尾气中逃逸氨的回收和循环系统及其控制方法,其系统包括喷淋塔、换热器、储存罐、接收罐。通过将烟道中的脱硝尾气由风机输送至换热器降温,再经喷淋塔底部进入塔内;然后将储存罐中吸收剂由泵抽至喷淋塔与自下而上的脱硝尾气接触反应,得含氨吸收剂和脱氨尾气;之后含氨吸收剂流入接收罐,经沉淀后上清液经泵再循环进入喷淋塔与脱硝尾气重复接触,直至形成饱和氨吸收剂;而接收罐罐底沉降的泥浆而定期通过泵送至水泥窑;所述饱和氨吸收剂经泵送至氨水储罐,与氨水混合用于脱硝反应,铵盐在SNCR过程中分解出氨作为部分氨源与氮氧化物反应,从而实现逃逸氨的循环利用。The known prior art discloses a recovery and circulation system and control method for escaped ammonia in the tail gas of cement kiln ammonia denitrification, and the system includes a spray tower, a heat exchanger, a storage tank, and a receiving tank. The denitrification tail gas in the flue is transported by the fan to the heat exchanger to cool down, and then enters the tower through the bottom of the spray tower; then the absorbent in the storage tank is pumped to the spray tower to contact and react with the bottom-up denitrification tail gas , to obtain ammonia-containing absorbent and de-ammonia tail gas; after that, the ammonia-containing absorbent flows into the receiving tank, and the supernatant after precipitation is recirculated into the spray tower and repeatedly contacted with the de-nitration tail gas until the saturated ammonia absorbent is formed; and the receiving tank The mud settled at the bottom of the tank is regularly pumped to the cement kiln; the saturated ammonia absorbent is pumped to the ammonia water storage tank, mixed with ammonia water for denitrification reaction, and the ammonium salt is decomposed into ammonia in the SNCR process as part of the ammonia source and Nitrogen oxide reaction, so as to realize the recycling of escaped ammonia.
该现有技术虽然能够解决氨逃逸的问题,但是脱氨效率低、设备体积大、成本高,具体分析如下:Although this prior art can solve the problem of ammonia escape, the ammonia removal efficiency is low, the equipment volume is large, and the cost is high. The specific analysis is as follows:
1、该现有技术对尾气处理需要先换热再喷淋后收集再循环利用,处理步骤多导致脱氨工艺复杂,脱氨效率低。1. The exhaust gas treatment in this prior art needs to be heat-exchanged and then sprayed before being collected and recycled. Many processing steps lead to complicated deamination process and low deamination efficiency.
2、该现有技术尾气进入喷淋塔之前通过换热器只能实现有限降温,目的一方面是由于高温氨容易挥发,不利于在喷淋塔中被吸收,通过前置换热器对高温尾气进行降温可以提高喷淋塔对氨的吸收效率,另一方面通过换热器前置的降温处理可以减轻喷淋塔工作压力,即减少喷淋塔的喷淋水量,但是采用喷淋塔进行吸氨,喷淋水量依然巨大,这也造成了该现有技术后续接收罐的接收量大、设备体积大,以及对于含氨吸收剂循环进入喷淋塔的处理量巨大。2. The exhaust gas in the prior art can only achieve limited cooling through the heat exchanger before it enters the spray tower. Cooling the tail gas can improve the absorption efficiency of the spray tower for ammonia. On the other hand, the cooling treatment in front of the heat exchanger can reduce the working pressure of the spray tower, that is, reduce the spray water volume of the spray tower, but the spray tower is used to carry out Absorption of ammonia, the amount of spraying water is still huge, which also causes the receiving capacity of the follow-up receiving tank of the prior art to be large, the equipment volume is large, and the processing capacity for the ammonia-containing absorbent to circulate into the spray tower is huge.
3、该现有技术含氨吸收剂流入接收罐需要长时间的沉淀,进一步导致了该现有技术的脱氨效率降低。3. The ammonia-containing absorbent in the prior art needs to settle for a long time when it flows into the receiving tank, which further reduces the ammonia removal efficiency in the prior art.
因此,综合来看,该现有技术的逃逸氨的回收和循环系统存在工艺复杂、脱氨效率低、设备体积大、成本高以及废水处理量大的问题。Therefore, on the whole, the recovery and circulation system of escaped ammonia in the prior art has the problems of complex process, low ammonia removal efficiency, large equipment volume, high cost and large amount of wastewater treatment.
发明内容Contents of the invention
本申请的主要目的在于提供一种自持式一步法净化设备及净化工艺,以解决相关技术中的逃逸氨的净化设备所存在的工艺复杂、脱氨效率低、设备体积大、成本高的问题。The main purpose of this application is to provide a self-sustaining one-step purification equipment and purification process to solve the problems of complex process, low ammonia removal efficiency, large equipment volume and high cost in the purification equipment for escaped ammonia in the related art.
为了实现上述目的,本申请第一方面提供了一种自持式一步法净化设备,用于对含水蒸气、氨气和呈酸性污染物的烟气进行净化处理;所述净化设备包括:In order to achieve the above object, the first aspect of the present application provides a self-supporting one-step purification equipment for purifying flue gas containing water vapor, ammonia and acidic pollutants; the purification equipment includes:
烟气进风口和烟气出风口,以及自所述烟气进风口至所述烟气出风口的烟气净化通道;a flue gas inlet and a flue gas outlet, and a flue gas purification channel from the flue gas inlet to the flue gas outlet;
低温冷凝模块,设置在所述烟气净化通道内,对从所述烟气进风口进入到所述烟气净化通道内的所述烟气进行降温冷凝,将所述水蒸气冷凝为冷凝水,所述氨气和所述呈酸性污染物溶于所述冷凝水中且在所述冷凝水中发生酸碱中和反应生成易溶于所述冷凝水的非挥发性质的盐。A low-temperature condensation module, which is arranged in the flue gas purification channel, cools and condenses the flue gas entering the flue gas purification channel from the flue gas air inlet, and condenses the water vapor into condensed water, The ammonia gas and the acidic pollutants are dissolved in the condensed water, and an acid-base neutralization reaction occurs in the condensed water to form a non-volatile salt easily soluble in the condensed water.
可选地,所述低温冷凝模块连通冷却水进水口和冷却水回水口;所述低温冷凝模块包括在所述烟气净化通道内竖直设置且呈阵列布置的冷却水管束和连通在所述冷却水管束上下端部的端部接头组件,所述端部接头组件同所述冷却水管束一起构成供冷却水自所述冷却水进水口向所述冷却水回水口流动的冷却水流通管路。Optionally, the low temperature condensation module is connected to the cooling water inlet and the cooling water return port; The end joint assembly at the upper and lower ends of the cooling water tube bundle, the end joint assembly together with the cooling water tube bundle constitutes a cooling water circulation pipeline for cooling water to flow from the cooling water inlet to the cooling water return port .
可选地,所述冷却水管束呈叉排管束阵列布置。Optionally, the cooling water tube bundles are arranged in a forked tube bundle array.
可选地,所述冷却水管束沿烟气流通方向分为若干个冷却水管区,每一个所述冷却水管区包括沿所述烟气流通方向排列的多排冷却水管,所述多排冷却水管中相邻两排所述冷却水管在所述烟气流通方向上交错布置且正投影面之间无空隙。Optionally, the cooling water tube bundle is divided into several cooling water tube areas along the flue gas flow direction, each of the cooling water tube areas includes multiple rows of cooling water tubes arranged along the flue gas flow direction, and the multiple rows of cooling water tubes Two adjacent rows of the cooling water pipes are arranged in a staggered manner in the flue gas flow direction and there is no gap between the orthographic projection planes.
可选地,相邻两排所述冷却水管中距离邻近的三根所述冷却水管构成一个三角排布的冷却水管单元,所述冷却水管单元的布置尺寸范围为:Optionally, the three adjacent cooling water pipes in two adjacent rows of cooling water pipes form a triangular arrangement of cooling water pipe units, and the arrangement size range of the cooling water pipe units is:
C=1.8A~2A;C=1.8A~2A;
D=0.8B~1.5B;D=0.8B~1.5B;
其中,A为管截面的最大宽度尺寸;B为管截面的最大长度尺寸;C为同排相邻两根冷却水管的管截面的中心距尺寸;D为相邻排冷却水管的管截面的中心距尺寸。Among them, A is the maximum width dimension of the pipe section; B is the maximum length dimension of the pipe section; C is the center distance dimension of the pipe section of two adjacent cooling water pipes in the same row; D is the center of the pipe section of the adjacent row of cooling water pipes pitch size.
可选地,所述冷却水管为圆弧菱形冷却水管,所述圆弧菱形冷却水管包括:冷却水管本体,所述冷却水管本体的横截面呈圆弧菱形形状,其短对角线两端分别为大圆弧端,长对角线的两端分别为小圆弧端;短对角线两端的所述大圆弧端与长对角线两端的所述小圆弧端分别通过直边相连,所述直边与所述大圆弧端、所述小圆弧端的圆弧线相切。Optionally, the cooling water pipe is an arc-shaped diamond cooling water pipe, and the arc-shaped rhombic cooling water pipe includes: a cooling water pipe body, the cross section of the cooling water pipe body is in the shape of an arc-arc rhombus, and the two ends of the short diagonal line are respectively It is a large arc end, and the two ends of the long diagonal are respectively small arc ends; the large arc ends at the two ends of the short diagonal are connected to the small arc ends at the two ends of the long diagonal respectively through straight edges , the straight side is tangent to the arc lines of the large arc end and the small arc end.
可选地,短对角线两端的所述大圆弧端同心设置。Optionally, the large arc ends at the two ends of the short diagonal are arranged concentrically.
可选地,短对角线两端的所述大圆弧端的中点连线垂直于长对角线两端的所述小圆弧端的连线。Optionally, a line connecting the midpoints of the large arc ends at both ends of the short diagonal is perpendicular to a line connecting the small arc ends at both ends of the long diagonal.
可选地,所述大圆弧端和所述小圆弧端均包括内圆角和外圆角。Optionally, both the large arc end and the small arc end include an inner fillet and an outer fillet.
可选地,所述冷却水管本体的横截面的各尺寸适用范围如下:Optionally, the applicable ranges of the dimensions of the cross-section of the cooling water pipe body are as follows:
A=20~100mm;A=20~100mm;
B=A~2A;B=A~2A;
R1=1/2×A;R 1 =1/2×A;
R2=R1-t;R 2 =R 1 -t;
r1=6~1/2×R1;r 1 =6~1/2×R 1 ;
r2=r1-t;r 2 =r 1 -t;
其中,A为冷却水管本体1020的短对角线长度;B为冷却水管本体1020的长对角线长度;R1为大圆弧端的外径尺寸;R2为大圆弧端的内径尺寸;t为冷却水管本体1020的壁厚;r1为小圆弧端的外径尺寸;r2为小圆弧端的内径尺寸。Wherein, A is the short diagonal length of the cooling
可选地,所述圆弧菱形冷却水管还包括分别设于所述冷却水管本体竖向两端的上接头和下接头;其中,所述上接头和下接头结构相同,均包括堵头和接头,所述堵头密封固定在所述冷却水管本体的竖向两端,所述接头的第一端密封固定在所述堵头上并与所述冷却水管本体的内部连通,第二端延伸出所述堵头。Optionally, the arc-shaped rhombic cooling water pipe also includes an upper joint and a lower joint respectively provided at both vertical ends of the cooling water pipe body; wherein, the upper joint and the lower joint have the same structure, and both include plugs and joints, The plug is sealed and fixed at both vertical ends of the cooling water pipe body, the first end of the joint is sealed and fixed on the plug and communicates with the interior of the cooling water pipe body, and the second end extends out of the cooling water pipe body. Said plug.
可选地,所述堵头的横截面设置为与所述冷却水管本体的横截面相同的圆弧菱形形状,所述堵头上沿其轴向开设有接头安装孔;所述接头的第一端密封固定在所述接头安装孔内。Optionally, the cross-section of the plug is set in the same arc rhombus shape as the cross-section of the cooling water pipe body, and a joint installation hole is opened on the plug along its axial direction; the first of the joint An end seal is secured within the fitting mounting hole.
可选地,所述接头安装孔内设置有环形槽,所述环形槽内嵌设有密封圈,所述接头与所述接头安装孔螺纹连接并将所述密封圈抵紧在所述环形槽内。Optionally, an annular groove is provided in the joint installation hole, and a sealing ring is embedded in the annular groove, and the joint is screwed into the joint installation hole and the sealing ring is pressed against the annular groove Inside.
可选地,所述端部接头组件包括上端部接头组件和下端部接头组件,所述上端部接头组件和所述下端部接头组件在所述冷却水管束的上方和下方沿所述烟气流通方向依次交替设置且每一个端部接头贯通多排冷却水管的端部以在所述冷却水管束内形成供至少两排并联水流同向流动的并联管路。Optionally, the end joint assembly includes an upper end joint assembly and a lower end joint assembly, and the upper end joint assembly and the lower end joint assembly pass along the flue gas above and below the cooling water tube bundle The directions are arranged alternately in sequence, and each end joint passes through the ends of multiple rows of cooling water pipes to form a parallel pipeline for at least two rows of parallel water flows to flow in the same direction in the cooling water tube bundle.
可选地,所述上端部组件为上水箱,所述下端部组件为下水箱,所述上水箱包括在所述冷却水管束上方沿所述烟气流通方向排列布置的多个作为所述端部接头的上水箱分部,所述下水箱包括在所述冷却水管束下方沿所述烟气流通方向排列布置的多个作为所述端部接头的下水箱分部,每个水箱分部贯通的所述多排冷却水管包括沿所述烟气流通方向并排布置的入水管路和出水管路,所述入水管路和所述出水管路的排数相同。Optionally, the upper end assembly is an upper water tank, the lower end assembly is a lower water tank, and the upper end assembly includes a plurality of end pipes arranged above the cooling water tube bundle along the flue gas flow direction. The upper water tank sub-section of the end joint, the lower water tank includes a plurality of lower water tank sub-sections as the end joints arranged below the cooling water tube bundle along the flue gas flow direction, each water tank sub-section penetrates The multiple rows of cooling water pipes include water inlet pipes and water outlet pipes arranged side by side along the flue gas flow direction, and the number of rows of the water inlet pipes and the water outlet pipes is the same.
可选地,所述上水箱和所述下水箱之一还包括与所述冷却水进口连通的冷却水进水箱,另一还包括与所述冷却水回水口连通的冷却水回水箱,所述冷却水进水箱和所述冷却水回水箱均对应贯通至少两排冷却水管。Optionally, one of the upper water tank and the lower water tank further includes a cooling water inlet tank communicated with the cooling water inlet, and the other further includes a cooling water return tank communicated with the cooling water return port, so The cooling water inlet tank and the cooling water return tank are respectively connected with at least two rows of cooling water pipes.
可选地,所述冷却水管束沿烟气流通方向分为多个冷却水管区,每个所述冷却水管区包括沿所述烟气流通方向排列的多排冷却水管,且每个所述冷却水管区对应连通一组所述冷却水进水口和所述冷却水回水口,多个所述冷却水管区之间的冷却水流在所述冷却水管束内不连通。Optionally, the cooling water tube bundle is divided into multiple cooling water tube areas along the flue gas flow direction, each of the cooling water tube areas includes multiple rows of cooling water tubes arranged along the flue gas flow direction, and each of the cooling The water pipe sections communicate with a group of the cooling water inlets and the cooling water return ports correspondingly, and the cooling water flows between the multiple cooling water pipe sections are not connected in the cooling water tube bundle.
可选地,靠近所述烟气出风口的所述冷却水管区的冷却水流量小于靠近所述烟气进风口的所述冷却水管区的冷却水流量。Optionally, the cooling water flow rate of the cooling water pipe area near the flue gas outlet is smaller than the cooling water flow rate of the cooling water pipe area near the flue gas air inlet.
可选地,所述冷却水管区设置为三个,沿所述烟气流通方向所述冷却水管区内的冷却水流量依次减小。Optionally, there are three cooling water pipe areas, and the cooling water flow in the cooling water pipe areas decreases sequentially along the flue gas flow direction.
可选地,还包括一冷却水进水总管,所述冷却水进水总管通过流量调节阀与每个所述冷却水进水口连通。Optionally, a cooling water inlet main pipe is also included, and the cooling water inlet main pipe communicates with each of the cooling water inlets through a flow regulating valve.
可选地,所述上端部组件为贯通全部冷却水管上端部的上水箱,所述下端部组件为贯通全部冷却水管下端部的下水箱,所述上水箱和所述下水箱之一连通所述冷却水进水口,另一连通所述冷却水回水口。Optionally, the upper end assembly is an upper water tank that penetrates the upper ends of all cooling water pipes, the lower end assembly is a lower water tank that penetrates the lower ends of all cooling water pipes, and one of the upper water tank and the lower water tank communicates with the The cooling water inlet is connected to the cooling water return port.
可选地,自所述烟气进风口至所述烟气出风口的所述冷却水管区的冷却水流量依次减小。Optionally, the cooling water flow in the cooling water pipe area from the flue gas inlet to the flue gas outlet decreases sequentially.
可选地,所述上端部组件为贯通全部冷却水管上端部的上水箱,所述下端部组件为下水箱,所述下水箱包括沿所述烟气流通方向排列布置的多个下水箱分部,每个所述下水箱分部贯通多排所述冷却水管;所述上水箱连通一冷却水回水口,每一个所述下水箱分部连通一个冷却水进水口。Optionally, the upper end component is an upper water tank that runs through the upper ends of all cooling water pipes, and the lower end component is a lower water tank, and the lower water tank includes a plurality of lower water tank subsections arranged along the flue gas circulation direction Each of the lower water tank subsections is connected with multiple rows of cooling water pipes; the upper water tank is connected with a cooling water return port, and each of the lower water tank subsections is connected with a cooling water inlet.
可选地,还包括一冷却水进水总管,所述冷却水进水总管通过流量调节阀与每个所述冷却水进水口连通。Optionally, a cooling water inlet main pipe is also included, and the cooling water inlet main pipe communicates with each of the cooling water inlets through a flow regulating valve.
可选地,所述端部接头组件为将相邻的两根所述冷却水管的端部依次连通的圆管弯头组件。Optionally, the end joint assembly is a round pipe elbow assembly that sequentially connects ends of two adjacent cooling water pipes.
可选地,所述冷却水管束沿烟气流通方向分为若干个冷却水管区,每一个所述冷却水管区包括沿所述烟气流通方向排列的多排冷却水管;每一个所述冷却水管区连通一个集水管和一个回水管。Optionally, the cooling water tube bundle is divided into several cooling water tube areas along the flow direction of the flue gas, each of the cooling water tube areas includes multiple rows of cooling water pipes arranged along the flow direction of the flue gas; each of the cooling water tubes The zone is connected to a collection pipe and a return pipe.
可选地,还包括箱体,所述箱体的两侧设有所述烟气进风口和所述烟气出风口;所述箱体的上箱板和下箱板上开设有用于安装所述冷却水管束的上端部和下端部的水管安装孔,所述水管安装孔的孔壁沿其周向开设有环形凹槽;所述冷却水管的端部设于所述水管安装孔内,所述冷却水管本体与所述环形凹槽对应的部分设置有环形凸起,所述环形凸起密封嵌设在所述环形凹槽内以使所述冷却水管本体的端部与所述水管安装孔形成曲面密封。Optionally, it also includes a box, the two sides of the box are provided with the flue gas inlet and the flue gas outlet; the upper box plate and the lower box plate of the box are provided with The water pipe installation holes at the upper end and the lower end of the cooling water pipe bundle, the hole wall of the water pipe installation hole is provided with an annular groove along its circumference; the end of the cooling water pipe is arranged in the water pipe installation hole, and the cooling The part of the water pipe body corresponding to the annular groove is provided with an annular protrusion, and the annular protrusion is sealed and embedded in the annular groove so that the end of the cooling water pipe body and the water pipe installation hole form a curved surface seal.
可选地,所述环形凹槽内设置有密封胶。Optionally, a sealant is provided in the annular groove.
可选地,所述环形凹槽与所述水管安装孔同轴线设置。Optionally, the annular groove is arranged coaxially with the water pipe installation hole.
可选地,所述环形凹槽内还设置有橡胶密封垫,所述环形凸起将所述橡胶密封垫抵紧在所述环形凹槽内。Optionally, a rubber gasket is also provided in the annular groove, and the annular protrusion presses the rubber gasket into the annular groove.
可选地,所述环形凹槽包括多个沿所述水管安装孔的孔壁周向间隔布置的凹槽,多个所述凹槽在所述孔壁上的延伸深度一致或不同。Optionally, the annular groove includes a plurality of grooves arranged at intervals along the circumference of the hole wall of the water pipe installation hole, and the extension depths of the plurality of grooves on the hole wall are the same or different.
可选地,所述环形凹槽设置为多个并沿所述水管安装孔的轴向分布。Optionally, multiple annular grooves are provided and distributed along the axial direction of the water pipe installation hole.
可选地,所述环形凹槽设置为两个,包括第一环形凹槽和第二环形凹槽,所述第一环形凹槽的凹槽开口方向与所述第二环形凹槽的凹槽开口方向在所述水管安装孔的轴线方向上朝相反方向倾斜;相应地,所述环形凸起包括第一环形凸起和第二环形凸起,所述第一环形凸起和所述第二环形凸起的凸起指向在所述所述水管安装孔的轴线方向上朝相反方向倾斜。Optionally, two annular grooves are provided, including a first annular groove and a second annular groove, and the groove opening direction of the first annular groove is different from that of the groove of the second annular groove. The opening direction is inclined in the opposite direction on the axial direction of the water pipe installation hole; correspondingly, the annular protrusion includes a first annular protrusion and a second annular protrusion, and the first annular protrusion and the second annular protrusion The protrusions of the annular protrusions are inclined in opposite directions in the axial direction of the water pipe installation hole.
可选地,所述冷却水管本体上还设置有两个环形卡接凸起,两个所述环形卡接凸起位于所述安装基础的内侧和外侧,两个所述环形卡接凸起的相对面分别抵紧在所述安装基础的内侧面和外侧面。Optionally, the cooling water pipe body is further provided with two ring-shaped snap-in protrusions, the two ring-shaped snap-in protrusions are located on the inner side and the outer side of the installation base, and the two ring-shaped snap-in protrusions The opposite surfaces respectively abut against the inner surface and the outer surface of the installation foundation.
可选地,还包括在烟气出风口处竖向设置的若干除雾集水挡水板,所述除雾集水挡水板的板面为曲折面。Optionally, it also includes several defogging and water-collecting baffles arranged vertically at the flue gas outlet, and the surface of the defogging and water-collecting baffles is a curved surface.
可选地,至少部分除雾集水挡水板沿着除雾集水挡水板表面成型有沿竖向延伸的长圆孔。Optionally, at least part of the demisting and water-collecting baffle is formed with vertically extending oblong holes along the surface of the demisting and water-collecting baffle.
可选地,还包括设置在所述除雾集水挡水板的外侧的钢丝网。Optionally, it also includes a steel wire mesh arranged on the outside of the defogging and water-collecting baffle.
可选地,所述烟气进风口的烟气风温为70℃-170℃,烟气含水率为5%-10%,逃逸氨为9mg/m3-200mg/m3,冷却水进口水温为26℃-32℃,SO2含量5mg/m3-100mg/m3、NOx含量30mg/m3-60mg/m3、CO2浓度含量为18%-22%、含尘量5mg/m3-15mg/m3;Optionally, the air temperature of the flue gas at the flue gas inlet is 70°C-170°C, the moisture content of the flue gas is 5%-10%, the escape ammonia is 9mg/m 3 -200mg/m 3 , the cooling
所述烟气出风口的烟气风温为30℃-50℃,烟气含水量为3%-6%,逃逸氨为0mg/m3-7mg/m3。The air temperature of the flue gas at the flue gas outlet is 30°C-50°C, the water content of the flue gas is 3%-6%, and the escape ammonia is 0mg/m 3 -7mg/m 3 .
可选地,还包括雾化装置,设置在所述烟气进风口处,通过朝向此处喷雾化水以增加烟气中水含量。Optionally, an atomizing device is also included, which is arranged at the air inlet of the flue gas, and sprays water toward this position to increase the water content in the flue gas.
可选地,所述雾化装置的雾化水中添加用于脱氨和/或脱硫和/或脱硝的药剂。Optionally, chemicals for deammonization and/or desulfurization and/or denitrification are added to the atomized water of the atomization device.
可选地,还包括喷淋清洗装置,设置在所述烟气进风口处,用于向烟气中喷清洗水,所述清洗水随烟气冲刷所述低温冷凝模块的所述冷却水管的表面以将水管表面粘结的颗粒物冲刷掉。Optionally, it also includes a spray cleaning device, which is arranged at the air inlet of the flue gas, and is used for spraying cleaning water into the flue gas, and the cleaning water scours the cooling water pipe of the low-temperature condensation module along with the flue gas. Surface to wash away the particles bonded to the surface of the water pipe.
可选地,箱体包括上箱板、下箱板、前箱板和后箱板,所述上箱板与前箱板、后箱板密封连接,所述下箱板与前箱板、后箱板密封连接,共同构成所述低温冷凝模块的上下前后密封,所述净化设备的左右方向为所述烟气进风口和所述烟气出风口。Optionally, the box body includes an upper box plate, a lower box plate, a front box plate and a rear box plate, the upper box plate is sealed with the front box plate and the rear box plate, and the lower box plate is connected with the front box plate and the rear box plate. The box plates are sealed and connected together to form the upper, lower, front and rear seals of the low-temperature condensation module, and the left and right directions of the purification equipment are the flue gas inlet and the flue gas outlet.
可选地,还包括设置在所述低温冷凝模块底部、用于收集所述冷凝水的冷凝水收集装置,所述冷凝水收集装置连接冷凝水排放口。Optionally, it also includes a condensed water collecting device arranged at the bottom of the low-temperature condensing module for collecting the condensed water, and the condensed water collecting device is connected to a condensed water discharge port.
可选地,所述呈酸性污染物包括二氧化硫、二氧化碳、NOx中至少之一。Optionally, the acidic pollutants include at least one of sulfur dioxide, carbon dioxide and NOx.
本申请第二方面还提供一种上述的自持式一步法净化设备的净化工艺,包括以下步骤:The second aspect of the present application also provides a purification process of the above-mentioned self-sustaining one-step purification equipment, including the following steps:
将所述自持式一步法净化设备安装至待净化烟气排放设备的烟气出口处,使所述自持式一步法净化设备的所述烟气进风口与所述待净化设备烟气排放设备的烟气出口密封连接;Install the self-supporting one-step purification equipment to the flue gas outlet of the flue gas discharge equipment to be purified, so that the flue gas air inlet of the self-supporting one-step purification equipment is connected to the flue gas discharge equipment of the equipment to be purified. Flue gas outlet sealed connection;
启动所述自持式一步法净化设备工作,通过对所述烟气进行降温,使所述烟气中的水蒸气冷凝为冷凝水,烟气中自含的氨气和呈酸性污染物溶于所述冷凝水中发生酸碱中和反应生成易溶于所述冷凝水的非挥发性质的盐。Start the self-sustaining one-step purification equipment to work, by cooling the flue gas, the water vapor in the flue gas is condensed into condensed water, and the ammonia gas and acidic pollutants contained in the flue gas are dissolved in the An acid-base neutralization reaction occurs in the condensed water to generate a non-volatile salt that is easily soluble in the condensed water.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The accompanying drawings, which constitute a part of this application, are included to provide a further understanding of the application and make other features, objects and advantages of the application apparent. The drawings and descriptions of the schematic embodiments of the application are used to explain the application, and do not constitute an improper limitation to the application. In the attached picture:
图1A是本申请实施例的自持式一步法净化工艺流程示意图;Fig. 1A is a schematic flow chart of the self-sustaining one-step purification process of the embodiment of the present application;
图1B是本申请实施例的自持式一步法净化设备的结构示意图(主视图);Fig. 1B is a schematic structural view (front view) of the self-supporting one-step purification equipment of the embodiment of the present application;
图1C是图1B的俯视图;Figure 1C is a top view of Figure 1B;
图1D是本申请实施例的自持式一步法净化设备的结构图(主视图);Fig. 1 D is the structural diagram (front view) of the self-supporting one-step purification equipment of the embodiment of the present application;
图1E是图1D的侧视图;Figure 1E is a side view of Figure 1D;
图2A是本申请实施例的自持式一步法净化设备(圆管)的结构示意图(主视图);Fig. 2A is the structural representation (front view) of the self-supporting one-step purification equipment (circular tube) of the embodiment of the present application;
图2B是图2A的俯视图;Figure 2B is a top view of Figure 2A;
图2C是本申请实施例的自持式一步法净化设备(圆管分组)的结构图(主视图);Fig. 2C is a structural diagram (front view) of the self-supporting one-step purification equipment (circular tube grouping) of the embodiment of the present application;
图2D是图2C的俯视图;Figure 2D is a top view of Figure 2C;
图2E是本申请实施例的自持式一步法净化设备(圆管分组)的立体图;2E is a perspective view of the self-sustaining one-step purification equipment (circular tube grouping) of the embodiment of the present application;
图3A是本申请实施例的低温冷凝模块(冷却水沿分组水管循环)主视图;Fig. 3A is the front view of the low-temperature condensation module (cooling water circulates along the grouping water pipe) of the embodiment of the present application;
图3B是图3A的俯视图;Figure 3B is a top view of Figure 3A;
图3C是图3A的左视图;Figure 3C is a left side view of Figure 3A;
图3D是本申请实施例的低温冷凝模块(冷却水沿分组水管循环)立体剖视图;Fig. 3D is a three-dimensional cross-sectional view of the low-temperature condensation module (cooling water circulates along the grouped water pipes) of the embodiment of the present application;
图4A是本申请实施例的低温冷凝模块(直通式各区冷却水沿分组水管循环且冷却水量可调)主视图;Fig. 4A is the front view of the low-temperature condensation module of the embodiment of the present application (straight-through cooling water in each zone circulates along the grouping water pipes and the amount of cooling water is adjustable);
图4B是图4A的俯视图;Figure 4B is a top view of Figure 4A;
图4C是本申请实施例的低温冷凝模块(直通式各区冷却水沿分组水管循环且冷却水量可调)左视图;Fig. 4C is a left view of the low-temperature condensation module of the embodiment of the present application (straight-through cooling water in each zone circulates along the grouping water pipes and the amount of cooling water is adjustable);
图5A是本申请实施例的低温冷凝模块(直通式各区冷却水可调)主视图;Fig. 5A is the front view of the low-temperature condensation module (straight-through type with adjustable cooling water in each zone) of the embodiment of the present application;
图5B是图5A的俯视图;Figure 5B is a top view of Figure 5A;
图5C是图5A的左视图;Figure 5C is a left side view of Figure 5A;
图6A是本申请实施例的低温冷凝模块(直通式各区冷却水沿分组水管循环且冷却水量可调)主视图;Fig. 6A is the front view of the low-temperature condensation module of the embodiment of the present application (straight-through cooling water in each zone circulates along the grouping water pipes and the cooling water volume is adjustable);
图6B是图6A的俯视图;Figure 6B is a top view of Figure 6A;
图6C是图6A的左视图;Figure 6C is a left side view of Figure 6A;
图6D是本申请实施例的低温冷凝模块(直通式各区冷却水沿分组水管循环且冷却水量可调)立体剖视图;Fig. 6D is a three-dimensional cross-sectional view of the low-temperature condensation module of the embodiment of the present application (straight-through cooling water in each zone circulates along the grouping water pipes and the cooling water volume is adjustable);
图7A是本申请实施例的圆弧菱形管俯视图;Fig. 7A is a top view of the arc rhomboid tube of the embodiment of the present application;
图7B是本申请实施例的圆弧菱形管主视图;Fig. 7B is a front view of the arc rhomboid tube of the embodiment of the present application;
图7C是本申请实施例的圆弧菱形管截面图;Fig. 7C is a cross-sectional view of a circular rhomboid tube according to an embodiment of the present application;
图8是本申请实施例的圆弧菱形管排列方式图;Fig. 8 is a diagram of the arrangement of arc rhomboid tubes according to the embodiment of the present application;
图9A是本申请实施例的圆弧菱形管胀管前主视图;Fig. 9A is the front view of the arc rhomboid tube expander of the embodiment of the present application;
图9B是图9A的局部放大图;Fig. 9B is a partially enlarged view of Fig. 9A;
图10A是本申请实施例的圆弧菱形管胀管后主视图;Fig. 10A is the rear front view of the arc rhomboid tube expanded in the embodiment of the present application;
图10B是图10A的局部放大图;Figure 10B is a partially enlarged view of Figure 10A;
图10C是图10A的俯视图;Figure 10C is a top view of Figure 10A;
图11A是本申请实施例的模块化自持式一步法净化设备主视图;Fig. 11A is a front view of the modular self-supporting one-step purification equipment of the embodiment of the present application;
图11B是本申请实施例的模块化自持式一步法净化设备俯视图;Figure 11B is a top view of the modular self-supporting one-step purification equipment of the embodiment of the present application;
图11C是本申请实施例的模块化自持式一步法净化设备左视图;Fig. 11C is a left view of the modularized self-sustaining one-step purification equipment of the embodiment of the present application;
图12是本申请实施例的除雾集水挡水板结构示意图;Fig. 12 is a schematic structural diagram of a defogging and water-collecting baffle according to an embodiment of the present application;
图13为本申请实施例的低温冷凝模块的对流换热简化示意图。FIG. 13 is a simplified schematic diagram of the convective heat transfer of the low temperature condensation module of the embodiment of the present application.
其中,1低温冷凝模块,101箱体,1011上箱板,1012下箱板,1013前箱板,1014后箱板,102冷却水管束,102a冷却水管,1020冷却水管本体,1020b大圆弧端,1020a小圆弧端,1020c直边,1022堵头,103冷却水进水管,1031流量调节阀,1032冷却水进水总管,1033分水管,104冷却水回水管,105圆管弯头,2喷淋装置,3雾化装置,4烟气进风口,5烟气出风口,9水泵,10冷凝水排放口,11上水箱,111上水箱分部,12下水箱,121下水箱分部,13除雾集水挡水板,14钢丝网,15橡胶密封垫,16密封胶,17环形凹槽,18环形凸起,19环形卡接凸起,20安装基础,21下接头,211堵头,212密封圈,213接头,22上接头,23冷凝水收集装置,24冷却水管区,103a冷却水进水口,104a冷却水回水口,102b水管安装孔。Among them, 1 low-temperature condensing module, 101 box body, 1011 upper box plate, 1012 lower box plate, 1013 front box plate, 1014 rear box plate, 102 cooling water tube bundle, 102a cooling water pipe, 1020 cooling water pipe body, 1020b large arc end , 1020a small arc end, 1020c straight edge, 1022 plug, 103 cooling water inlet pipe, 1031 flow regulating valve, 1032 cooling water inlet main pipe, 1033 water distribution pipe, 104 cooling water return pipe, 105 round pipe elbow, 2 Spray device, 3 atomization device, 4 flue gas inlet, 5 flue gas outlet, 9 water pump, 10 condensed water discharge port, 11 upper water tank, 111 upper water tank division, 12 lower water tank, 121 lower water tank division, 13 defogging water collection water retaining plate, 14 steel wire mesh, 15 rubber gasket, 16 sealant, 17 annular groove, 18 annular protrusion, 19 annular clamping protrusion, 20 installation base, 21 lower joint, 211 plug , 212 sealing ring, 213 joint, 22 upper joint, 23 condensate collection device, 24 cooling water pipe area, 103a cooling water inlet, 104a cooling water return port, 102b water pipe installation hole.
具体实施方式detailed description
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the solution of the present application, the technical solution in the embodiment of the application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiment of the application. Obviously, the described embodiment is only It is an embodiment of a part of the application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。It should be noted that the terms "first" and "second" in the description and claims of the present application and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It should be understood that the data so used may be interchanged under appropriate circumstances for the embodiments of the application described herein.
在本申请中,术语“上”、“下”、“内”、等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。In the present application, the orientation or positional relationship indicated by the terms "upper", "lower", "inner", etc. is based on the orientation or positional relationship shown in the drawings. These terms are mainly used to better describe the present application and its embodiments, and are not used to limit that the indicated devices, elements or components must have a specific orientation, or be constructed and operated in a specific orientation.
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。Moreover, some of the above terms may be used to indicate other meanings besides orientation or positional relationship, for example, the term "upper" may also be used to indicate a certain attachment relationship or connection relationship in some cases. Those skilled in the art can understand the specific meanings of these terms in this application according to specific situations.
此外,术语“设置”、“设有”、“连接”、“固定”等应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。Furthermore, the terms "disposed", "provided", "connected", "fixed", etc. are to be interpreted broadly. For example, "connection" can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connectivity between components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
另外,术语“多个”的含义应为两个以及两个以上。In addition, the term "plurality" shall mean two or more than two.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present application will be described in detail below with reference to the accompanying drawings and embodiments.
目前,高温烟气治理例如水泥窑烟气NOx治理技术绝大多数仍是釆用氨源(氨水,尿素等)还原剂,由于脱硝率的限制,均或多或少存在还原剂超量使用而造成超过、甚至严重超过国家标准规定指标(小于8mg/m3)的氨逃逸现象而引发的大气二次污染。At present, the vast majority of high-temperature flue gas treatment, such as cement kiln flue gas NOx treatment technology, still uses ammonia source (ammonia water, urea, etc.) reducing agent. Due to the limitation of denitration rate, there are more or less excessive use of reducing agent. The air secondary pollution caused by ammonia escape phenomenon exceeding or even seriously exceeding the national standard (less than 8mg/m 3 ).
已知现有技术公开一种水泥窑氨法脱硝烟气中逃逸氨的回收和循环系统及其控制方法,其回收和循环系统包括喷淋塔、换热器、储存罐、接收罐。脱硝烟气先由风机输送至换热器降温,再经喷淋塔底部进入塔内,然后将储存罐中吸收剂由泵抽至喷淋塔与自下而上的脱硝烟气接触反应,得含氨吸收剂和脱氨烟气,之后含氨吸收剂流入接收罐,经沉淀后上清液经泵再循环进入喷淋塔与脱硝烟气重复接触,直至形成饱和氨吸收剂,而接收罐罐底沉降的泥浆而定期通过泵送至水泥窑,所述饱和氨吸收剂经泵送至氨水储罐,与氨水混合用于脱硝反应,氨盐在SNCR(选择性非催化还原)脱硝过程中分解出氨作为部分氨源与氮氧化物反应,从而实现逃逸氨的循环利用。The known prior art discloses a recovery and circulation system and a control method for escaped ammonia in the flue gas of cement kiln ammonia denitrification, and the recovery and circulation system includes a spray tower, a heat exchanger, a storage tank, and a receiving tank. The denitrification flue gas is first transported by the fan to the heat exchanger to cool down, and then enters the tower through the bottom of the spray tower, and then the absorbent in the storage tank is pumped to the spray tower to contact and react with the denitrification flue gas from bottom to top. The ammonia-containing absorbent and the denitrification flue gas, after which the ammonia-containing absorbent flows into the receiving tank, and the supernatant after precipitation is recirculated into the spray tower and repeatedly contacted with the denitrification flue gas until the saturated ammonia absorbent is formed, and the receiving tank The mud settled at the bottom of the tank is regularly pumped to the cement kiln. The saturated ammonia absorbent is pumped to the ammonia water storage tank and mixed with ammonia water for denitration reaction. The ammonia salt is denitrated in the SNCR (selective non-catalytic reduction) process. Ammonia is decomposed as part of the ammonia source to react with nitrogen oxides, thereby realizing the recycling of escaped ammonia.
该现有技术虽然能够解决氨逃逸的问题,但是存在脱氨效率低、设备体积大、成本高的缺陷,具体分析如下:Although this prior art can solve the problem of ammonia escape, it has the defects of low ammonia removal efficiency, large equipment volume, and high cost. The specific analysis is as follows:
1、该现有技术对烟气处理需要先换热再喷淋后收集再循环利用,处理步骤多导致脱氨工艺复杂,脱氨效率低,且由于工艺复杂,需要用到换热器、喷淋塔、储存罐、接收罐等导致整体脱氨设备体积大,成本高。1. The flue gas treatment in this prior art needs heat exchange first, then spraying, and then collecting and recycling. Many processing steps lead to complex deamination process and low deamination efficiency. Due to the complex process, heat exchangers, spraying The leaching tower, storage tank, receiving tank, etc. lead to large volume and high cost of the overall deammonization equipment.
2、该现有技术公开了烟气先输送至换热器降温,但是从该现有技术所公开的整个技术方案理解可以得出,该现有技术采用前置换热器对烟气进行降温的目的一方面是为了避免易挥发的高温氨不容易在后续的喷淋塔工艺中被吸收剂吸收,而通过前置换热器对高温烟气进行有限降温即可提高喷淋塔对氨的吸收效率,另一方面通过换热器对高温氨的前置降温可以减轻喷淋塔工作压力,但是该现有技术依然采用喷淋塔说明该现有技术解决氨逃逸问题的手段依然是传统的喷淋塔吸氨思路,而采用喷淋塔则存在喷淋水量大,后续污水净化处理量大的问题。2. This prior art discloses that the flue gas is first transported to the heat exchanger to cool down, but from the understanding of the entire technical solution disclosed in the prior art, it can be concluded that the prior art uses a pre-heat exchanger to cool the flue gas On the one hand, the purpose is to avoid that the volatile high-temperature ammonia is not easily absorbed by the absorbent in the subsequent spray tower process, and the limited cooling of the high-temperature flue gas through the pre-heat exchanger can improve the ammonia resistance of the spray tower. Absorption efficiency, on the other hand, the pre-cooling of high-temperature ammonia through the heat exchanger can reduce the working pressure of the spray tower, but the existing technology still uses the spray tower, which shows that the means of solving the problem of ammonia escape in the prior art is still traditional The idea of ammonia absorption in the spray tower, but the use of the spray tower has the problem of a large amount of spray water and a large amount of subsequent sewage purification and treatment.
3、该现有技术含氨吸收剂流入接收罐需要长时间的沉淀,进一步导致了该现有技术的脱氨效率低下。3. In the prior art, it takes a long time for the ammonia-containing absorbent to flow into the receiving tank, which further leads to the low efficiency of ammonia removal in the prior art.
因此,综合来看,该现有技术的逃逸氨的回收和循环系统存在工艺复杂、脱氨效率低、设备体积大、成本高以及废水处理量大的问题。Therefore, on the whole, the recovery and circulation system of escaped ammonia in the prior art has the problems of complex process, low ammonia removal efficiency, large equipment volume, high cost and large amount of wastewater treatment.
为了解决氨逃逸以及上述已知现有技术中脱氨系统工艺复杂、脱氨效率低、设备体积大、成本高以及废水处理量大的问题,本申请提出一种待处理烟气中的成分可以自行完成物理及化学反应实现氨吸收(自持式)且设备体积小(紧凑式)、工艺简单(一步法)、成本低、废水处理量小的自持式一步法净化设备及净化方法。本申请提供的净化设备不仅可以应用在水泥窑烟气净化场景,还可以应用于例如电厂或煤场烟气净化等场景。但是需要说明的是,本申请提供的净化设备仅能适用于含水蒸气、氨气、和呈酸性污染物的烟气的净化处理。In order to solve the problems of ammonia escape and the deamination system in the known prior art with complex process, low deamination efficiency, large equipment volume, high cost and large amount of wastewater treatment, the application proposes a kind of composition in the flue gas to be treated that can Self-contained physical and chemical reactions to realize ammonia absorption (self-sustaining), small equipment size (compact), simple process (one-step method), low cost, and self-sustaining one-step purification equipment and purification methods with small wastewater treatment volume. The purification equipment provided in this application can not only be applied to the scene of cement kiln flue gas purification, but also can be applied to scenes such as power plant or coal yard flue gas purification. However, it should be noted that the purification equipment provided in this application can only be applied to the purification treatment of flue gas containing water vapor, ammonia gas, and acid pollutants.
作为本申请的优选实施例,净化设备应用于水泥窑氨法脱硝烟气的净化。目前水泥窑烟气普遍存在氨逃逸的情况,水泥窑所排放的烟气为高温的、含水蒸气、氨气和呈酸性污染物的烟气。As a preferred embodiment of this application, the purification equipment is applied to the purification of cement kiln ammonia denitrification flue gas. At present, ammonia escape is common in cement kiln flue gas. The flue gas emitted by cement kiln is high temperature, containing water vapor, ammonia gas and acid pollutants.
本实施例的净化设备具有烟气进风口4、烟气出风口5以及自所述烟气进风口4至所述烟气出风口5的烟气净化通道,净化设备还包括低温冷凝模块1,低温冷凝模块1设置在所述烟气净化通道内。The purification device in this embodiment has a
上述净化设备的主要结构即可实现对水泥窑烟气的净化处理,其净化原理为:The main structure of the above-mentioned purification equipment can realize the purification treatment of cement kiln flue gas. The purification principle is as follows:
水泥窑烟气从净化设备的烟气进风口4进入到烟气净化通道内,烟气通道内的低温冷凝模块1对进入的所述烟气进行降温冷凝,将烟气中的水蒸气降温冷凝为冷凝水(理想状态是希望将全部水蒸气冷凝为冷凝水),烟气中自含的氨气和呈酸性污染物(例如SO2与CO2)溶于所述冷凝水中(物理净化),这是本申请净化设备实现的第一层净化,但是由于烟气温度较高,溶于冷凝水的氨气或呈酸性污染物容易从冷凝水中挥发出来,但是本申请净化设备创新之处是同时将氨气和呈酸性污染物溶于冷凝水中发生酸碱中和反应(化学净化)生成易溶于冷凝水的非挥发性质的盐。The cement kiln flue gas enters the flue gas purification channel from the
本申请净化设备中低温冷凝模块1可以是多种,例如油浸自冷式低温冷凝、冷冻式低温冷凝等。作为本申请的优选实施例,低温冷凝模块1采用水冷式低温冷凝。净化设备设置冷却水进水口103a和冷却水回水口104a,所述低温冷凝模块1连通冷却水进水口103a和冷却水回水口104a。所述低温冷凝模块1包括在所述烟气净化通道内竖直设置且呈阵列布置的冷却水管束102和连通在所述冷却水管束102上下端部的端部接头组件,所述端部接头组件同所述冷却水管束102一起构成供冷却水自所述冷却水进水口向所述冷却水回水口流动的冷却水流通管路。The low-temperature condensation module 1 in the purification equipment of the present application can be of various types, such as oil-immersed self-cooling low-temperature condensation, refrigerated low-temperature condensation, and the like. As a preferred embodiment of the present application, the low-temperature condensation module 1 adopts water-cooled low-temperature condensation. The purification equipment is provided with a cooling
烟气从所述烟气进风口4进入烟气净化通道后,与流着冷却水的冷却水管束102的表面充分接触,烟气中的水蒸气在冷却水管束102的水管表面冷凝为冷凝水,顺着冷却水管的表面流到净化设备的底部。由于本申请的冷却水并非与烟气直接接触,因此冷却水管束102内的冷却水没有受到污染,经降温后一直循环使用。而且经计算,冷却水管束102的冷却水用量及其消耗量要远远小于现有技术中喷淋塔内的用水量及其消耗量,且本净化设备的冷凝水净化回收后完全可以弥补冷却水降温过程的挥发水量。After the flue gas enters the flue gas purification channel from the flue
图1B示出了本申请净化设备的工作原理。本申请净化设备可以配合水泵9、冷却水循环管路和冷却塔使用。水泵9通过冷却水循环管路的冷却水进水管路103给从冷却水进水口103a进入的冷却水提供驱动力,冷却水在冷却水流通管路中流动,之后从冷却水出水口104a流出进入到冷却塔中,冷却塔的水再流回到水泵9,实现冷却水循环。水泥窑烟气通过低温冷凝模块1的烟气进风口4进入低温冷凝模块1内部与冷却水管束102进行充分换热,冷却水管束102对烟气快速冷却,重要的是冷却水管束102将高温烟气的水蒸气在降温冷凝成冷凝水,冷凝水吸附烟气中的呈碱性的氨分子(氨气)、水泥生料灰尘(含钙)以及烟气中自含的呈酸性的SO2与CO2等气体。呈碱性的氨分子和水泥生料灰尘,与呈酸性的SO2与CO2在冷凝水中发生酸碱中和反应形成硫酸氢氨、碳酸氢氨、硫酸钙和碳酸钙等非挥发性质的盐。Fig. 1B shows the working principle of the purification equipment of the present application. The purification equipment of the present application can be used in conjunction with the water pump 9, the cooling water circulation pipeline and the cooling tower. The water pump 9 provides driving force to the cooling water that enters from the cooling
本申请净化设备还包括冷凝水收集装置23,设置在低温冷凝模块1底部,冷凝水收集装置23连接冷凝水排放口10。冷却水管束102表面产生的冷凝水顺着水管表面流到净化设备的底部,然后通过冷凝水收集装置23进行收集,最后冷凝水排放口10将冷凝水外排。The purification equipment of the present application also includes a condensed
进一步地,外排冷凝水可以通过膜分离法处理为可回用或外排的净化水(90%左右)和10%左右的含盐高浓度水(盐尘含量小于3%),含盐高浓度水经泵送喷入水泥窑窑头熟料篦冷机上去,一方面可以快速冷却熟料,另一方面水中硫酸钙、碳酸钙类物质附着熟料表面带出成为水泥的组成部分,水中氨盐经熟料快速加热分解为氨和SO2后随三次风又进入水泥窑的分解炉,其中氨分子在分解炉内发挥脱硝功能而利用,SO2则与CaO反应成硫酸钙进入熟料,全过程无二次污染,所有物质均回收利用。Further, the drained condensed water can be treated by membrane separation method into recycled or drained purified water (about 90%) and about 10% salty high-concentration water (salt dust content is less than 3%), high salt content Concentrated water is pumped and sprayed into the clinker grate cooler at the kiln head of the cement kiln. On the one hand, the clinker can be cooled rapidly; The ammonia salt is decomposed into ammonia and SO 2 by the clinker rapid heating, and then enters the decomposition furnace of the cement kiln with the tertiary air, in which the ammonia molecule is used for denitrification in the decomposition furnace, and the SO 2 reacts with CaO to form calcium sulfate and enters the clinker , There is no secondary pollution in the whole process, and all substances are recycled.
在上文已知现有技术中,虽然其也公开了利用换热器对脱硝烟气进行降温,但是其换热器在上述现有技术中的作用与本申请中低温冷凝模块1在本申请中的作用完全不同。具体区别在于:In the prior art known above, although it also discloses the use of heat exchangers to cool down the denitration flue gas, the role of the heat exchangers in the above prior art is the same as that of the low-temperature condensation module 1 in this application. The function in is completely different. The specific difference is:
1、发明构思不同1. Different invention concepts
上述现有技术主要通过喷淋塔喷淋吸收剂进行脱氨,而换热器的设置目的在于降低喷淋塔负荷;本申请是利用了水泥窑烟气中含有水蒸气这一特点,通过低温冷凝模块1将高温烟气中的水蒸气降温冷凝为冷凝水,氨气和SO2、CO2等呈酸性气体在低温冷凝模块1的低温环境下易溶解于冷凝水中(物理过程),同时呈碱性的氨分子与呈酸性的SO2与CO2中酸碱性物质发生中和反应形成硫酸氢氨、碳酸氢氨、硫酸钙和碳酸钙等非挥发性物质(化学过程)随冷凝水外排,使得水泥窑氨逃逸问题得到有效解决;本申请直接在换热器内发生脱氨反应,无需添加任何吸收剂。The above-mentioned prior art mainly uses the spray tower to spray the absorbent for deamination, and the purpose of setting the heat exchanger is to reduce the load of the spray tower; this application utilizes the characteristic of water vapor contained in the flue gas of the cement kiln, through low temperature The condensation module 1 cools and condenses the water vapor in the high-temperature flue gas into condensed water. Acidic gases such as ammonia, SO 2 and CO 2 are easily dissolved in the condensed water in the low-temperature environment of the low-temperature condensation module 1 (physical process), and present The basic ammonia molecule neutralizes the acidic and alkaline substances in the acidic SO 2 and CO 2 to form non-volatile substances such as ammonium bisulfate, ammonium bicarbonate, calcium sulfate and calcium carbonate (chemical process). exhaust, so that the problem of ammonia escape in cement kilns is effectively solved; in this application, the deamination reaction occurs directly in the heat exchanger without adding any absorbent.
2、上述现有技术的换热器所起的作用在客观上与本申请的低温冷凝模块1不同2. The function of the above-mentioned prior art heat exchanger is objectively different from that of the low-temperature condensation module 1 of the present application
1)、虽然现有技术记载其换热器可以将烟气降温至50度,但其并没有公开在换热器中进行了脱氨,从该现有技术全文来看,该换热器没有脱氨作用,这是因为,从其发明构思出发,经换热器降温后的脱硝烟气进入喷淋塔中,喷淋塔通过喷淋吸收剂来实现吸氨,对于设计人员来说,不会将吸氨故意分成两步,即在换热器部分进行吸氨,在后续的喷淋塔中也进行吸氨,这只会增加氨回收的难度;1) Although the prior art records that the heat exchanger can cool the flue gas to 50 degrees, it does not disclose that the deammonization is carried out in the heat exchanger. From the full text of the prior art, the heat exchanger does not have Deamination, this is because, starting from the concept of the invention, the denitrification flue gas after being cooled by the heat exchanger enters the spray tower, and the spray tower realizes ammonia absorption by spraying the absorbent. For the designer, it is not necessary Ammonia absorption will be deliberately divided into two steps, that is, ammonia absorption in the heat exchanger part, and ammonia absorption in the subsequent spray tower, which will only increase the difficulty of ammonia recovery;
2)、从现有技术的发明构思出发其换热器也不需要起脱氨作用,因为还需要通过喷淋吸收剂脱氨,如果换热器能够实现脱氨则无需再经喷淋塔处理。2), starting from the inventive concept of the prior art, the heat exchanger does not need to play a role in deamination, because it needs to be deaminized by spraying the absorbent. If the heat exchanger can achieve deamination, it does not need to be treated by a spray tower .
3)、很重要的一点,对于传统的换热器来说,其普遍追求是在换热过程中尽量不产生冷凝水,因为冷凝水长时间会对换热器的管路产生腐蚀,导致换热器的使用寿命降低,因此可以得出该现有技术的换热器也不是以产生冷凝水为目的。3) It is very important that for traditional heat exchangers, the general pursuit is to minimize the generation of condensed water during the heat exchange process, because the condensed water will corrode the pipeline of the heat exchanger for a long time, resulting in The service life of the heat exchanger is reduced, so it can be concluded that this prior art heat exchanger is also not aimed at generating condensed water.
3、上述已知现有技术存在诸多缺陷3. There are many defects in the above-mentioned known prior art
1)、存在吸收剂逃逸风险,其采用的氨吸收剂为甲酸,吸收剂的挥发和逃逸同样需要进一步处理,且甲酸还是一种易燃的物质;1) There is a risk of absorbent escape. The ammonia absorbent used is formic acid. The volatilization and escape of the absorbent also need further treatment, and formic acid is also a flammable substance;
2)、吸收剂吸收氨后的废水处理量大,处理成本高昂;2) The amount of waste water after the absorbent absorbs ammonia is large, and the treatment cost is high;
3)、由于喷淋吸收剂的方式无法充分利用吸收剂,为了提高吸收剂利用率不得不循环使用吸收剂,不仅需要经过漫长的沉淀期,期循环用的回流管路还会遭受严重腐蚀,方案难以落地实施;3) Since the way of spraying the absorbent cannot make full use of the absorbent, in order to improve the utilization rate of the absorbent, the absorbent has to be recycled, which not only requires a long precipitation period, but also the return pipeline for the long-term circulation will suffer severe corrosion, The plan is difficult to implement;
4)、检测吸收剂是否饱和较为困难,容易发生无效吸收造成氨逃逸。4) It is difficult to detect whether the absorbent is saturated, and it is easy to cause ammonia escape due to invalid absorption.
本申请的净化设备不同于现有技术的换热器,由于本申请净化设备的适用场景限定于对含有水蒸气、氨气和呈酸性污染物的烟气的净化,且追求在降温过程中产生更多的冷凝水来实现物理及化学过程的净化,这与现有的换热器的构思完全不同。此外,本申请净化设备实现了自持式、一步法脱氨,具有脱氨工艺简单、设备体积小、成本低的优点。The purification equipment of the present application is different from the heat exchanger of the prior art, because the applicable scene of the purification equipment of the present application is limited to the purification of flue gas containing water vapor, ammonia and acidic pollutants, and the pursuit of More condensed water is used to realize the purification of physical and chemical processes, which is completely different from the existing heat exchanger concept. In addition, the purification equipment of the present application realizes self-sustaining, one-step deamination, and has the advantages of simple deamination process, small equipment volume and low cost.
此外,本申请净化设备不仅适用于脱氨,由于在低温冷凝模块1产生的冷凝水中,呈碱性的氨气、水泥生料灰尘与烟气中呈酸性的SO2、CO2、NOx等酸碱性物质发生中和反应,因此本申请净化设备也可以用于脱SO2、脱CO2和脱NOx。In addition, the purification equipment of this application is not only suitable for deamination, because in the condensed water produced by the low-temperature condensation module 1, alkaline ammonia, cement raw meal dust and acidic SO 2 , CO 2 , NOx and other acids in the flue gas Alkaline substances undergo a neutralization reaction, so the purification equipment of this application can also be used for removing SO 2 , removing CO 2 and removing NOx.
本申请低温冷凝模块1的冷却水管束102采用叉排管束阵列布置。具体为,如图2B所示,冷却水管束102包括沿烟气流通方向排列的多排冷却水管102a,相邻两排冷却水管102a在烟气流通方向上交错布置且在烟气流通方向上的正投影面之间无间隔。The cooling
作为本申请的优选实施例,多排冷却水管102a中相邻两排冷却水管102a在所述烟气流通方向上的正投影面有交集。该种设置方式使得进入烟气净化通道的烟气在冷却水管束102的间隙中曲折前进,尽可能地增大了烟气与冷却水管束102的换热接触面积,且能够保证烟气的正常流通不至于影响源源不断的新进入的烟气的净化处理。As a preferred embodiment of the present application, the orthographic projection planes of two adjacent rows of cooling
作为冷却水管束102排列方式的一种变形,在其他实施例中,多排冷却水管102a中相邻两排冷却水管102a在烟气流通方向上的正投影面的边界重合。即,前一排的一根冷却水管102a的最大宽度尺寸恰好等于后一排相邻两根冷却水管102a之间的间隙宽度。这种设置方式也能够避免部分烟气直接从相邻两排冷却水管102a在前后方向上存在的缝隙中穿过而未与冷却水管102a表面接触换热的情况出现。As a modification of the arrangement of the cooling water tube bundles 102, in other embodiments, the boundaries of the orthographic projection planes of two adjacent rows of cooling
在本申请中,冷却水管102a可以为圆管、椭圆管、矩形管、菱形管等形状。但是考虑到如何实现烟气在冷却水管束102中遇到的阻力尽可能小,烟气与冷却水管束102的换热接触面积尽可能大,冷却水管102与烟气的换热效率尽可能高,需要对冷却水管102的形状进行精细化设计。In this application, the cooling
为此,作为本申请优选实施例,提出一种圆弧菱形冷却水管,如图7A-7C所示,该圆弧菱形冷却水管包括:冷却水管本体1020,冷却水管本体1020的横截面呈圆弧菱形形状,冷却水管本体1020的横截面的短对角线两端分别为大圆弧端1020b,长对角线的两端分别为小圆弧端1020a;For this reason, as a preferred embodiment of the present application, a circular-arc diamond-shaped cooling water pipe is proposed, as shown in Figures 7A-7C, the circular-arc diamond-shaped cooling water pipe includes: a cooling
短对角线两端的大圆弧端1020b与长对角线两端的小圆弧端1020a分别通过直边1020c相连,直边1020c与大圆弧端1020b的圆弧线相切。The large arc ends 1020b at both ends of the short diagonal are connected to the small arc ends 1020a at both ends of the long diagonal through
如图7A-7C所示,大圆弧端1020b的曲率半径远大于小圆弧端1020a的曲率半径,即大圆弧端1020b的曲率远小于小圆弧端1020a的曲率,由于小圆弧端1020a的曲率大,与两个直边1020c一起形成锐角。As shown in Figures 7A-7C, the radius of curvature of the
冷却水管本体1020呈长条形结构,其内部为中空结构,可用于冷却水流动。当该冷却水管102a应用于低温冷凝装置中时,冷却水管本体1020的小圆弧端1020a沿烟气进风口4至烟气出口5方向水平设置,即沿着低温冷凝装置的左右方向水平设置,两个大圆弧端1020b的中点连线垂直于两个小圆弧端1020a的连线,即两个大圆弧端1020b沿着低温冷凝装置的前后方向水平设置。The cooling
本申请实施例中将横截面为圆弧菱形形状的冷却水管本体1020定义为圆弧菱形管,相比冷却水管横截面为圆形、椭圆形、菱形等形状,能够实现烟气与冷却水管更大的换热接触面积、更小的烟气阻力。具体分析如下:In the embodiment of the present application, the cooling
与圆管比较:Compared to a round tube:
圆弧菱形管短对角线的长度与原本圆形冷却水管的直径相同,而长对角线的长度则大于原本圆形冷却水管的直径,使得改进后的圆弧菱形管在两端的表面积相对于原本的圆形冷却水管的表面积更大,从而增加了冷却水管与水泥窑烟气的接触面积,即增加了换热面积。The length of the short diagonal of the arc rhomboid tube is the same as the diameter of the original circular cooling water pipe, while the length of the long diagonal is greater than the diameter of the original circular cooling water pipe, so that the surface area of the improved arc rhomboid tube at both ends is relatively Because the surface area of the original circular cooling water pipe is larger, the contact area between the cooling water pipe and the flue gas of the cement kiln is increased, that is, the heat exchange area is increased.
此外,由于该冷却水管本体1020的小圆弧端1020a的曲率半径远小于大圆弧端的曲率半径,即冷却水管本体1020两端为夹角较小的锐角,相对于圆形冷却水管两端的形状而言,圆弧菱形形状的冷却水管本体1020在两端的风阻会更小,因此圆弧菱形相比圆形实现了降阻。In addition, since the radius of curvature of the
与椭圆管比较:Compared with oval tube:
圆弧菱形管相比椭圆管而言具有两个区别点,第一个区别在于本申请的冷却水管本体1020中大圆弧端1020b和小圆弧端1020a通过直边1020c连接,而椭圆管为通过弧边连接。当两个冷却水管102a错列布置时,两个椭圆形管之间形成的流动空间为两端大中间小的结构,而两个圆弧菱形管之间形成的流动空间则尺寸更为平整,因此更利于尾气的流动,可避免因流动空间尺寸变化而对尾气流动带来的影响。Compared with the elliptical tube, the arc rhomboid tube has two differences. The first difference is that the
第二个区别在于,本申请中为了形成圆弧菱形结构,在曲率半径大的大圆弧端1020b尺寸统一的情况下,另一个小圆弧端1020a的曲率半径必然是椭圆形管大于圆弧菱形管,因此使得圆弧菱形管相对于椭圆形管而言,在两端的风阻也会更小,同样可实现降阻的技术效果。The second difference is that in this application, in order to form a circular rhombus structure, in the case that the large
与常规菱形管比较:Compared with conventional diamond tubes:
圆弧菱形管相比菱形管,其横截面形状相当于在菱形管横截面基础上将菱形管横截面的上下两个尖角端替换为小曲率的大圆弧端1020b,左右两个尖角替换为大曲率的小圆弧端。圆弧菱形管的上下两端为大圆弧端1020b相对于菱形管上下两端为钝角端而言,采用圆弧过渡可使得烟气的流动更为稳定,此外将左右两个尖角替换为大曲率的小圆弧端可以避免在烟气在后端脱流。Compared with the rhomboid tube, the cross-sectional shape of the circular rhomboid tube is equivalent to replacing the upper and lower sharp corners of the rhomboid tube cross section with a
此外,左右两端为尖角的菱形管会导致其左右两端形变过大,容易发生断裂,并且受到结构限制,在菱形管两端的厚度一般会大于其他部分厚度,导致在菱形管内的冷却水在两端的导热路径增加,会减小换热效率。而设置成小圆弧结构则可使得圆弧菱形管两端的厚度与其他部分的厚度接近,不会使得冷却水在两端的导热路径增加,进而不会影响换热效率。In addition, the rhombic tube with sharp corners at the left and right ends will cause excessive deformation at the left and right ends, which is prone to breakage, and due to structural limitations, the thickness at both ends of the rhomboid tube is generally greater than the thickness of other parts, resulting in cooling water in the rhomboid tube. The heat conduction path increases at both ends, which reduces the heat transfer efficiency. However, if the structure is set as a small arc, the thickness of the two ends of the arc rhomboid tube is close to the thickness of other parts, so that the heat conduction path of the cooling water at both ends will not be increased, and the heat exchange efficiency will not be affected.
本实施例达到了增加冷却水管本体1020两端的换热面积,并利用大圆弧端1020b和小圆弧端1020a降低水泥窑尾气流动时受到的阻力,使得水泥窑尾气平稳流动的目的,从而实现了提升水泥窑尾气与冷却水管本体1020的接触面积,并使得水泥窑尾气可平稳流动,提升水泥窑尾气的降温效率的技术效果,进而解决了相关技术中的冷却水管存在换热面积较小,且对水泥窑尾气流动的阻力较大,不能很好的提升水泥窑尾气的降温效率的问题。This embodiment achieves the purpose of increasing the heat exchange area at both ends of the cooling
短对角线两端的大圆弧端1020b的中点连线垂直于长对角线两端的小圆弧端1020a的连线。The line connecting the midpoints of the large arc ends 1020b at both ends of the short diagonal is perpendicular to the line connecting the small arc ends 1020a at both ends of the long diagonal.
大圆弧端1020b和小圆弧端1020a均包括内圆角和外圆角。为避免冷却水管本体1020在上下两端和左右两端因圆角的设置导致厚度变化的问题,本实施例中使大圆弧端1020b的内圆角和外圆角同心设置,小圆弧端1020a的内圆角和外圆角同心设置。Both the
由于冷却水管本体1020的横截面的尺寸设计上对换热效率依然具有较大的影响,因此为合理利用空间以及提高换热效率,在本实施例中冷却水管本体1020的横截面的各尺寸适用范围如下:Since the size design of the cross-section of the cooling
A=20~100mm;A=20~100mm;
B=A~2A;B=A~2A;
R1=1/2×A;R 1 =1/2×A;
R2=R1-t;R 2 =R 1 -t;
r1=6~1/2×R1;r 1 =6~1/2×R 1 ;
r2=r1-t;r 2 =r 1 -t;
其中,A为冷却水管本体1020的短对角线长度;B为冷却水管本体1020的长对角线长度;R1为大圆弧端1020b的外径尺寸;R2为小圆弧端1020a的内径尺寸;t为冷却水管本体1020的壁厚;r1为小圆弧端1020a的外径尺寸;r2为大圆弧端1020b的内径尺寸。Wherein, A is the short diagonal length of the cooling
由于本申请中的冷却水管102a为圆弧菱形管,相对于圆形管而言,在安装上难度更高,难以保证其连接处的密封性,并且也不便于与进水和回水管路的连接。因此本实施例中提供的冷却水管102a还包括分别设于冷却水管本体1020两端的上接头22和下接头21;其中,上接头22和下接头21结构相同,均包括堵头211和接头213,堵头211密封固定在冷却水管本体1020的两端,接头213的第一端密封固定在堵头211上并与冷却水管本体1020的内部连通,第二端延伸出堵头211。Since the cooling
具体的,需要说明的是,采用堵头211对冷却水管本体1020的两端进行封堵,堵头211的横截面可等于或大于冷却水管本体1020的横截面,通过堵头211实现对冷却水管本体1020两端的密封。通过堵头211可提供接头213的安装位置,从而可将接头213安装在堵头211上,再由接头213与进水和回水管路连接。接头213可设置为便于连接的结构,例如圆形。通过堵头211和接头213的设置,实现了提高冷却水管本体1020的密封性,同时也便于与进水和回水管路进行连接的技术效果,进而解决了相关技术中非圆形冷却水管安装时难以保证其连接处的密封性,并且也不便于与进水和回水管路的连接,导致安装较为麻烦的问题。Specifically, it should be noted that the two ends of the cooling
进一步的,堵头211的横截面设置位于冷却水管本体1020的横截面相同的圆弧菱形形状,堵头211上沿其轴向开设有接头安装孔,接头安装孔与冷却水管内部连通;接头213的第一端密封固定在接头安装孔内。Further, the cross-section of the
为提高接头213和接头安装孔的密封性,接头213的第一端于接头安装孔螺纹连接,并且可注入螺纹胶来提高密封性。为便于接头213和外部设备的连接,接头213远离堵头211的一端还设置有内螺纹或外螺纹。In order to improve the sealing performance of the joint 213 and the joint installation hole, the first end of the joint 213 is screwed into the joint installation hole, and thread glue can be injected to improve the sealing performance. In order to facilitate the connection between the joint 213 and external equipment, the end of the joint 213 away from the
接头安装孔内设置有环形槽,环形槽内嵌设有密封圈212,接头213与接头安装孔螺纹连接并将密封圈212抵紧在环形槽内,从而可提高接头213和接头安装孔的密封性。An annular groove is arranged in the joint installation hole, and a
本申请中,如图8所示,相邻两排所述冷却水管本体1020距离邻近的三根所述冷却水管本体1020构成一个三角排布的冷却水管单元,所述冷却水管单元的布置尺寸范围为:In this application, as shown in FIG. 8 , two adjacent rows of cooling
C=1.8A~2A;C=1.8A~2A;
D=0.8B~1.5B;D=0.8B~1.5B;
其中,A为管截面的最大宽度尺寸;B为管截面的最大长度尺寸;C为同排相邻两根冷却水管本体1020的管截面的中心距尺寸;D为相邻排冷却水管本体1020的管截面的中心距尺寸。Among them, A is the maximum width dimension of the pipe section; B is the maximum length dimension of the pipe section; C is the center distance dimension of the pipe section of two adjacent cooling
当冷却水管102a为圆弧菱形管时,A为圆弧菱形管短对角线的最大宽度;B为圆弧菱形管长对角线的最大长度;C为同一排相邻两根圆弧菱形管的中心距;D为相邻排两根圆弧菱形管的水平中心距。When the cooling
图13示出了本申请低温冷凝模块对流换热的简化图,图中s1为叉排管束行间距,s2为叉排管束列间距。Fig. 13 shows a simplified diagram of the convective heat transfer of the low-temperature condensing module of the present application, in which s 1 is the row spacing of the forked tube bundles, and s 2 is the column spacing of the forked tube bundles.
本申请低温冷凝模块烟气侧的换热为流体横掠叉排管束,其表面平均传热系数h与无量纲换热系数Nu的关系式为:The heat exchange on the flue gas side of the low-temperature condensation module of this application is a fluid sweeping fork tube bundle, and the relationship between the surface average heat transfer coefficient h and the dimensionless heat transfer coefficient Nu is:
其中l为特征长度,λ为流体的导热系数。Where l is the characteristic length and λ is the thermal conductivity of the fluid.
对于所研究的烟气换热工况,其流动的雷诺数范围约为Re=103~2×105,Nu的可表达为:For the studied flue gas heat transfer conditions, the Reynolds number of the flow ranges from about Re=10 3 to 2×10 5 , and the value of Nu can be expressed as:
其中s1为叉排管束行间距,s2为叉排管束列间距。Ref为烟气流动的雷诺数,Prf为烟气的普朗特数,Prw为以壁温为特征温度的烟气普朗特数。Among them, s 1 is the row spacing of the fork tube bundle, and s 2 is the column spacing of the fork tube bundle. Re f is the Reynolds number of the flue gas flow, Pr f is the Prandtl number of the flue gas, and Pr w is the Prandtl number of the flue gas with the wall temperature as the characteristic temperature.
在工程计算中,若设计给定了对流换热的对数平均温差为Δtm,则依据传热方程,整体换热量Φ有:In engineering calculations, if the logarithmic mean temperature difference of convective heat transfer is given in the design as Δt m , then according to the heat transfer equation, the overall heat transfer Φ is:
Φ=kAΔtm Φ=kAΔt m
其中,k为综合换热系数,A为换热面积。Among them, k is the comprehensive heat transfer coefficient, and A is the heat transfer area.
由上文分析可知,圆弧菱形管的换热面积大于圆管的换热面积,因此本申请采用圆弧菱形管作为冷却水管102a可以增加设备整体换热量。From the above analysis, it can be seen that the heat exchange area of the arc-shaped diamond tube is larger than that of the round tube, so the application uses the arc-shaped rhombic tube as the cooling
采用圆弧菱形管对烟气的流动阻力也会产生影响。下文将圆管和本申请优选的圆弧菱形管进行对比分析。The use of circular rhombus tubes will also have an impact on the flow resistance of flue gas. The circular pipe and the preferred circular rhomboid pipe of the present application will be compared and analyzed below.
圆管叉排的流动阻力关系式为:The flow resistance relational expression of the circular tube fork row is:
气体绕流管束时,流动阻力是流体速度,管束排布、流体物性和排数的函数,其关联式为When the gas flows around the tube bundle, the flow resistance is a function of fluid velocity, tube bundle arrangement, fluid physical properties and row number, and its correlation is
其中,χ为叉排管束的修正系数,为管路参数s1、s2的关系式,NL为管路排数,f为阻力系数,f为依赖于流动雷诺数Re变化的数值。Among them, χ is the correction coefficient of the fork tube bundle, which is the relational expression of pipeline parameters s 1 and s 2 , N L is the number of pipeline rows, f is the resistance coefficient, and f is a value dependent on the change of flow Reynolds number Re.
圆弧菱形管叉排的流阻阻力关系式为:The relational expression of the flow resistance resistance of the circular rhombic tube fork row is:
圆弧菱形管的长边为l1,短边为l2,设计修正系数ε,则有圆弧菱形管叉排的流动阻力关系式为:The long side of the arc-shaped diamond tube is l 1 , the short side is l 2 , and the design correction coefficient ε, then the flow resistance relation of the arc-shaped rhombic tube fork row is:
其中,ε(l1,l2)为相比于圆管叉排管束的、与圆弧菱形管边长有关的修正系数,ε(l1,l2)大于1。其余参数意义和上式相同。Among them, ε(l 1 , l 2 ) is a correction coefficient related to the side length of the circular rhombus tube compared with the round tube fork tube bundle, and ε(l 1 , l 2 ) is greater than 1. The rest of the parameters have the same meaning as the above formula.
圆弧菱形的边类似于翼型的流线性质,相比于圆管,其尾部的流动边界层脱离区域减少,逆压梯度减小,故整体阻力会有下降。The edge of the arc rhombus is similar to the streamline nature of the airfoil. Compared with the circular tube, the flow boundary layer separation area at the tail is reduced, and the reverse pressure gradient is reduced, so the overall resistance will decrease.
如图3A-3B所示,本申请净化设备的箱体结构优选地采用矩形箱体结构,具体为:箱体101包括上箱板1011、下箱板1012、前箱板1013和后箱板1014,所述上箱板1011、前箱板1013、下箱板1012和后箱板1014依次密封连接;所述箱体101的左右两侧开口形成用于烟气流通的烟气进风口4和烟气出风口5,以及自所述烟气进风口4至所述烟气出风口5的烟气通道;所述烟气通道用于容置竖直设置且呈阵列布置的冷却水管束102;所述上箱板1011和下箱板1012上开设有多个用于密封装配冷却水管102a的端部的水管安装孔102b;所述上箱板1011的上方和所述下箱板1012的下方留有用于装配连通所述冷却水管束102上下端部的端部接头组件的空间。但是并本申请并不限制箱体结构必须为矩形结构,本领域技术人员应当理解的是,在一些特殊的应用场景中,箱体结构可以进行适当变形,例如具有一定弧度的弧形箱体结构,例如烟气进风口和烟气出风口大小不同的梯形箱体结构等。As shown in Figures 3A-3B, the box structure of the purification equipment of the present application is preferably a rectangular box structure, specifically: the
本申请中,冷却水管束102的上下端部安装在上箱板1011和下箱板1012上。考虑到净化设备需要长期运转,低温冷凝模块1工作时受到烟气冲击冷却水管102a会产生频繁的震动从而容易导致冷却水管102a的上下端部与上下箱板连接处发生烟气泄漏的问题。为了解决该问题,如图9A至10B所示,本申请提出一种冷却水管与箱板的密封安装结构,该密封安装结构包括安装基础20和冷却水管本体1020;其中,In this application, the upper and lower ends of the cooling
安装基础20上开设有水管安装孔102b,水管安装孔102b的孔壁沿其周向开设有环形凹槽17;在本实施例中,安装基础20为箱体101的上箱板1011和下箱板1012。The
冷却水管本体1020的端部设于水管安装孔102b内,冷却水管本体1020与环形凹槽17对应的部分设置有环形凸起18,环形凸起18密封嵌设在环形凹槽17内以使冷却水管本体1020的端部与水管安装孔102b形成曲面密封。The end of the cooling
本实施例中,冷却水管本体1020呈长条形结构,其内部呈中空,可用于冷却水流动。安装基础20为本申请的上箱板1011或下箱板1012。在现有技术中为提高冷却水管本体1020与安装基础20的密封性,一般情况下会在安装基础20上固定密封圈,冷却水管本体1020固定在密封圈内,通过密封圈来提高冷却水管本体1020和安装基础20连接处的密封性。In this embodiment, the cooling
但是,由于冷却水管本体1020的外侧依然为顺直的曲面结构,而密封圈和安装基础20对应的位置也为顺直的曲面结构,因此当冷却水管本体1020安装在密封圈和安装基础20上时,顺直的曲面结构依然难以长期的保持密封性,导致密封效果依然不够理想。However, since the outer side of the cooling
因此,为解决该问题,如图9B和10B所示,本实施例通过在安装基础20上开设水管安装孔102b,并在水管安装孔102b内开设环形凹槽17。而冷却水管本体1020的端部则套装在该水管安装孔102b内,为使冷却水管本体1020和环形凹槽17适配,可在冷却水管本体1020的外侧设置环形凸起18,并使环形凸起18密封嵌设在环形凹槽17内,使得环形凸起18和环形凹槽17之间形成曲面密封。Therefore, in order to solve this problem, as shown in Figures 9B and 10B, in this embodiment, a water
由于环形凹槽17的设置,使得安装基础20上的水管安装孔102b的内表面由顺直的曲面结构转变为曲折的曲面结构,而冷却水管本体1020的端部的外表面由顺直的曲面结构转变为曲折的曲面结构。可以理解的是,当冷却水管本体1020安装在水管安装孔102b内时,冷却水管本体1020与水管安装孔102b的连接处也由顺直的曲面结构转变为曲折的曲面结构,从而提高了冷却水管本体1020与水管安装孔102b的连接处的密封性。而环形凸起18和环形凹槽17之间可采用过盈配合的方式使得密封性得到进一步提高。Due to the setting of the
本实施例实现了提高冷却水管本体1020与安装基础20之间的密封性,防止尾气从二者的连接处泄漏的技术效果,进而解决了相关技术中冷却水管与安装基础20之间一般仅采用密封胶16或密封圈进行密封,密封性依然难以满足使用要求的问题。This embodiment achieves the technical effect of improving the sealing between the cooling
如图9B和10B所示,水管安装孔102b内的环形凹槽17可通过专用工装进行开槽实现,环形凹槽17截面的宽度可从内至外逐渐减小,从而在其最外端形成一个直径较小的小圆弧端结构。该环形凹槽17的结构相对于矩形槽或其他形状的槽结构而言,当环形凸起18与其配合时,密封性会更好。而冷却水管本体1020上的环形凸起18可通过胀管的方式实现,具体的,可将冷却水管本体1020套装在已经开设有环形凹槽17的水管安装孔内,通过专用的胀管工装,向冷却水管本体1020与环形凹槽17对应的部分施加向外扩的压力,使得冷却水管本体1020在对应部分产生形变,形成第一环形凸起18并挤压固定在环形凹槽17内。As shown in Figures 9B and 10B, the
为进一步提高冷却水管本体1020和安装基础20连接处的密封性,环形凹槽17内设置有密封胶16,密封胶16可在安装冷却水管本体1020之前涂设在环形凹槽17内,当冷却水管本体1020胀管形成环形凸起18嵌设在环形凹槽17内后,在密封胶16的作用下提高密封性。In order to further improve the sealing of the joint between the cooling
为提高环形凹槽17开设深度的均匀性,环形凹槽17与水管安装孔同轴线设置。In order to improve the uniformity of the depth of the
如图9B和10B所示,环形凹槽17内还设置有橡胶密封垫15,环形凸起18将橡胶密封垫15抵紧在环形凹槽17内。橡胶密封垫15的形成与环形凹槽17的形状匹配,可将橡胶密封垫15先嵌设在环形凹槽17内,然后将密封胶16注入环形凹槽17中,最后再将冷却水管本体1020套装在水管安装孔102b中。As shown in FIGS. 9B and 10B , a
环形凹槽17包括多个沿水管安装孔102b的孔壁周向间隔布置的凹槽,多个凹槽在孔壁上的延伸深度一致或不同。通过多个凹槽可增加冷却水管本体1020和水管安装孔102b内壁的接触点。当多个凹槽的延伸深度不一致时,可使得不同接触点之间的密封性不同,可根据实际尾气流动情况进行凹槽深度的调整,以提高使用范围。The
为再进一步提高冷却水管本体1020和安装基础20连接处的密封性,环形凹槽17设置为多个并沿水管安装孔102b的轴向分布,从而形成多级密封,每一级的密封方式均相同。In order to further improve the sealing of the connection between the cooling
为进一步提高密封性,如图10B所示,本实施例中的环形凹槽17设置为两个,包括第一环形凹槽171和第二环形凹槽172,第一环形凹槽171的凹槽开口方向与第二环形凹槽172的凹槽开口方向在水管安装孔的轴线方向上朝相反方向倾斜;相应地,环形凸起18包括第一环形凸起18和第二环形凸起18,第一环形凸起18和第二环形凸起18的凸起指向在水管安装孔的轴线方向上朝相反方向倾斜。In order to further improve the sealing performance, as shown in FIG. 10B, there are two
具体的,需要说明的是,第一环形凹槽171和第二环形凹槽172从内至外依次布置,第一环形凹槽171的凹槽开口方向可朝向安装基础20的内部倾斜,而第二环形凹槽172的凹槽开口方向则可朝向安装基础20的外部倾斜,使得冷却水管本体1020和水管安装孔102b的连接处在不同方向上均得到密封。Specifically, it should be noted that the first
并且,在本实施例中,第二环形凹槽172的深度大于第一环形凹槽171的深度。通过该设置方式,使得第二环形凹槽172形成密封性更好的二级密封,进一步提高整体连接处的密封性。Moreover, in this embodiment, the depth of the second
通过环形凹槽17和位于水管安装孔102b内的环形凹槽17配合后,使得水管安装孔102b内的部分密封性得到有效提升,但是对于水管安装孔102b两端的部分依然还是顺直的曲面结构,其密封性依然有待提高。因此,如图10B所示,本实施例在冷却水管本体1020上还设置有两个环形卡接凸起19,两个环形卡接凸起19位于安装基础20的内侧和外侧,即位于水管安装孔102b的两端,两个环形卡接凸起19的相对面分别抵紧在安装基础20的内侧面和外侧面。利用两个环形卡接凸起19分别形成冷却水管本体1020和安装基础20连接处的第一道密封和最后一道密封,可进一步加强密封性,同时也可提高冷却水管本体1020和安装基础20的连接强度。After the
作为本申请优选实施例,水管安装孔102b为与圆弧菱形管的端部横截面轮廓及尺寸一致的圆弧菱形孔,环形凹槽17包括多个凹槽,依次布置在圆弧菱形孔的四个直边1020c和两个大圆弧端1020b上,相应的,环形凸起18包括多个凸起,布置在圆弧菱形管端部的四个直边1020c和两个大圆弧端1020b上,多个凹槽与多个凸起的嵌合密封配合,并且结合不同的凹槽和凸起的嵌合深度,再配合上圆弧菱形这一异形形状,使得冷却水管102a与安装基础20(上箱板1011和下箱板1012)连接处的密封性能够满足净化设备长时间工作而不出现烟气泄漏的要求。As a preferred embodiment of the present application, the water
在本申请中,端部接头组件的结构形式会影响冷却水自冷却水进水口103a向冷却水回水口104a的流动形式。本申请提出了五种具有不同端部接头组件的低温冷凝模块1的实施例。In this application, the structural form of the end joint assembly will affect the flow form of the cooling water from the cooling
图2C-2E示出了圆管弯头作为端部接头的低温冷凝模块的实施例。从图上可以看出,所述端部接头组件为将相邻的两根所述冷却水管102a的端部依次连通的圆管弯头组件。沿烟气进风口4至烟气出风口5方向,相邻两排的冷却水管102的端部通过位于箱板外侧的圆管弯头105连接。2C-2E illustrate an embodiment of a cryogenic condensation module with round pipe elbows as end fittings. It can be seen from the figure that the end joint assembly is a round pipe elbow assembly that sequentially communicates the ends of two adjacent
在本实施例中,冷却水循环管路设置于低温冷凝模块1箱体101的上方,在其他实施例中还可以设置在下方,具体位置根据实际需要进行设置。冷却水循环管路设置为两组,冷却水管束102在箱体101内沿烟气进风口4至出口方向分为前后两个冷却水管区24,两组冷却水循环管路的冷却水进水管路103和冷却水回水管路104分别与前后两个冷却水管区24的进水冷却水管路和出水冷却水管路相连通。由于靠近烟气进风口4处的烟气温度高,需要靠近烟气进风口4处的冷却水管102a的冷却温度降幅大,而靠近烟气出风口5侧的烟气温度在前侧的冷却水管102a降温的基础上,对靠近烟气出风口5处的冷却水管102a的冷却温度降幅要求小,因此在本实施例中,可以减小靠近出口侧的冷却水管区24内的冷却水流量,这样可以节约冷却水用量。具体地,减小靠近出口侧冷却水管区24的冷却水流量的方式可以是减小冷却水管102a的管径(即横截面积尺寸)或者减小冷却水进水管路103的进水流量。在其他实施例中,也可以不减小出口侧冷却水管区24的冷却水流量,即进口侧冷却水管区24冷却水用量和出口侧冷却水管区24流量一致。此外,需要说明的是,本申请也不限制冷却水管区24的数量,在其他实施例中,根据实际需要还可以设置为三个、四个、五个等。In this embodiment, the cooling water circulation pipeline is arranged above the
在上述实施例中,由于冷却水管102的数量较多,需要采用相同数量的圆管弯头105,而数量较多的圆管弯头105会造成冷却水在转弯处的动能阻力损失,降低了低温冷凝模块1的换热效率。同时,为了缩小低温冷凝模块1的整体体积,冷却水管102的设置间距较小,圆管弯头105要实现两根冷却水管102的端部连接,其圆管弯头105的弧度较小,加工难度较大。In the above embodiment, due to the large number of
为了解决圆管弯头105处冷却水动能阻力损失较大以及圆管弯头105加工难度大的问题,如图3A-6D示出了利用水箱替代圆管弯头105作为端部接头组件的实施例。In order to solve the problem of large loss of cooling water kinetic energy resistance at the
具体地,所述端部接头组件包括上端部接头组件25和下端部接头组件26,所述上端部接头组件25和所述下端部接头组件25在所述冷却水管束102的上方和下方沿所述烟气流通方向依次交替设置且每一个端部接头贯通多排冷却水管102a的端部以在所述冷却水管束102内形成供至少两排并联水流同向流动的并联管路。具体地,所述上端部组件25为上水箱11,所述下端部组件26为下水箱12,所述上水箱11包括在所述冷却水管束102上方沿所述烟气流通方向排列布置的多个作为所述端部接头的上水箱分部111,所述下水箱12包括在所述冷却水管束102下方沿所述烟气流通方向排列布置的多个作为所述端部接头的下水箱分部121,每个水箱分部贯通的所述多排冷却水管102a包括沿所述烟气流通方向并排布置的入水管路和出水管路,所述入水管路和所述出水管路的排数相同。Specifically, the end joint assembly includes an upper end
图3A-3D示出了冷却水沿分组水管循环的实施例。在本实施例中,在箱体101的上下箱板的外侧设置水箱来替代实施例1中的圆管弯头105来实现冷却水管102端部的连通。在上箱板1011的上方设置一上水箱11,在下箱板1012的下方设置一下水箱12,在上水箱11中设置若干隔板将上水箱11分割为第1至第N个上水箱分部111,在下水箱12中设置若干隔板将下水箱12分割为第1至第N个下水箱分部121,每一个上水箱分部111或下水箱分部121对应连通至少两排冷却水管102的端部。冷却水进水管路103连通靠近烟气进风口4的第1个下水箱分部121,而冷却水回水管路104连通距离烟气进风口4最远的第N个上水箱分部111,下水箱121的第2至N个下水箱分部121分别与上水箱111的第1至N-1个上水箱分部111交错布置。具体地,如图3A所示,冷却水从冷却水进水口进入到下水箱的第1个下水箱分部121中,第1个下水箱分部121对应4排冷却水管102a,在水泵9的压力驱动下,冷却水沿着该4排冷却水管102a向上流动并从第1个上水箱分部111的前4排冷却水管102a中流出,从图上可以看到,第1个上水箱分部111对应连通8排冷却水管102a,从前4排流入的冷却水经过第1个上水箱分部111转向后向下流入到后4排的冷却水管102a,第2个下水箱分部121对应连通8排冷却水管102a,经第1个上水箱分部111流下的4排冷却水管102a的冷却水经第2个下水箱分部121转向后从后4排冷却水管102a向上流出,第2至N-1上水箱分部111和第3至N个下水箱分部121依次按照上述规律设置,冷却水在下水箱分部121、冷却水管102a以及上水箱分部111中依次循环流动,最后从设置在上水箱11的第N个上水箱分部11上的冷却水回水口流出。Figures 3A-3D illustrate an embodiment in which cooling water circulates along grouped water pipes. In this embodiment, a water tank is provided on the outside of the upper and lower box panels of the
本实施例通过水箱分部替代了上述实施例中的圆管弯头,使得冷却水路由上述实施例中的1路转向变成了多路转向,减少了转向次数,也减小了冷却水转弯的阻力损失,提升了冷却水管束的换热效率;其次,水箱相比圆管弯头也降低了加工难度和加工成本。In this embodiment, the round pipe elbow in the above-mentioned embodiment is replaced by water tank divisions, so that the cooling water route turns from the one-way steering in the above-mentioned embodiment to multi-way steering, which reduces the number of turns and turns of the cooling water. The resistance loss of the water tank improves the heat exchange efficiency of the cooling water tube bundle; secondly, the water tank also reduces the processing difficulty and cost compared with the round pipe elbow.
对于水流阻力,由于是在管内流动,其流动阻力由直管段的沿程阻力和流经弯头、接头及突变等局部阻力组成。As for the water flow resistance, because it flows in the pipe, its flow resistance is composed of the along-path resistance of the straight pipe section and the local resistance of flowing through elbows, joints and sudden changes.
沿程阻力表示为: The resistance along the way is expressed as:
其中λ为沿程阻力系数,l为管长,d为管内径,Vi为管内流速,g为重力加速度;Where λ is the resistance coefficient along the way, l is the length of the pipe, d is the inner diameter of the pipe, V i is the flow velocity in the pipe, and g is the acceleration of gravity;
局部阻力表示为: The local resistance is expressed as:
其中ξ为局部阻力系数,N为局部阻力部件的数量。where ξ is the local resistance coefficient, and N is the number of local resistance components.
从上面两式来看,管长l越长,hf越大,N越大,hξ越大。从弯头形式改变为整体水箱时,水流从一侧到另一侧的距离极大的缩小,流动阻力仅由一小段沿程阻力和2个局部阻力组成。因为管束阵列从串联布置变成了并联布置,此时,各个通道的流动阻力相同,且大大减小。From the above two formulas, the longer the tube length l, the larger h f is, the larger N is, and the larger hξ is. When changing from an elbow form to an integral water tank, the distance of water flow from one side to the other is greatly reduced, and the flow resistance is only composed of a small section of resistance along the way and two local resistances. Because the tube bundle array is changed from series arrangement to parallel arrangement, at this time, the flow resistance of each channel is the same and greatly reduced.
需要说明的是,本申请中水箱分部也可以是独立设置的,即水箱分部是独立成型的,水箱分部与水箱分部之间通过固定结构进行固定即可。另外,水箱分部的形状也并不限于本申请实施例中的矩形形状,在其他实施例中,为了进一步降低冷却水转向的阻力损失,还可以将矩形水箱分部的外侧直角加工为圆角。It should be noted that in the present application, the water tank subsections can also be set independently, that is, the water tank subsections are independently formed, and the water tank subsections can be fixed by a fixing structure. In addition, the shape of the water tank subsection is not limited to the rectangular shape in the embodiment of the present application. In other embodiments, in order to further reduce the resistance loss of cooling water turning, the outer right angles of the rectangular water tank subsection can also be processed into rounded corners. .
考虑到靠近烟气进风口4处的烟气温度高,冷却水用量大,远离烟气进风口4处的烟气温度低,冷却水用量小,为了进一步降低冷却水用量,作为本申请低温冷凝模块1的最佳实施例,图4A-4C示出了直通式各区冷却水沿分组水管循环且冷却水量可调的实施例,在上述冷却水沿分组水管循环的实施例基础上,将冷却水管102分为第1至第N区,每一区的冷却水管102对应设置一组冷却水进水口103a和冷却水回水口104a,若干个冷却水管区之间相互隔离,独立进行冷却水循环。本申请通过减小远离烟气进风口4侧的冷却水管区的进水量来达到节约低温冷凝模块1整体用水量的目的。具体地,在本实施例中,将冷却水管102分为三个区,设置为第1区至第3区的冷却水用量依次减小。本申请对于冷却水管102分区的数量不做限制,在其他实施例中,根据实际需要,可以将冷却水管102设置为两个区、四个区、五个区等,相应的,冷却水进水口103a和冷却水回水口104a也设置为两组、四组、五组等。Considering that the flue gas temperature near the
进一步地,在本申请实施例中,依次减小远离烟气进风口4侧冷却水用量的方式为:通过在每一个冷却水管区的第1个下水箱分部121的冷却水进口103a处设置流量调节阀1031,通过调节流量阀1031的进口面积即可实现对每一个冷却水管区冷却水用量的调节。具体地,在每一个冷却水管区的第1个下水箱分部121上设置一个与该下水箱分部121连通的分水管1033,在分水管1033上设置流量调节阀1031。Further, in the embodiment of the present application, the way to sequentially reduce the amount of cooling water on the side away from the
再进一步地,在各个冷却水管区的下水箱12的下方设置一个冷却水进水总管1032,分别与每一个分水管1033连通,冷却水从该冷却水进水总管1032进入,冷却水进水总管1032根据各流量调节阀1031的开口大小将冷却水分流到各分水管1033中,在本申请实施例中,为了节约冷却水整体用水量,将远离烟气进风口4处的流量调节阀1031的开口依次调小,这样冷却水进水总管分流到远离烟气进风口4处的分水管1033的冷却水量依次减少,在满足低温冷凝模块1冷凝效率的基础上减少了冷却水的整体用量。Still further, a cooling water inlet
作为本申请低温冷凝模块1的可替换实施例,所述上端部组件为贯通全部冷却水管上端部的上水箱,所述下端部组件为下水箱,所述下水箱包括沿所述烟气流通方向排列布置的多个下水箱分部,每个所述下水箱分部贯通多排所述冷却水管;所述上水箱连通一冷却水回水口,每一个所述下水箱分部连通一个冷却水进水口。还包括一冷却水进水总管,所述冷却水进水总管通过流量调节阀与每个所述冷却水进水口连通。具体如图5A-5C示出的直通式各区冷却水可调实施例,下水箱12中设置若干隔板将下水箱12分隔为若干下水箱分部121,各组下水箱分部121所对应连通的冷却水管102a的数量可以相同,也可以不同,具体根据实际需要进行设置。上水箱11中无隔板设置,上水箱为一个覆盖连通第1至第N排冷却水管102的回水箱。As an alternative embodiment of the low-temperature condensation module 1 of the present application, the upper end component is an upper water tank that runs through the upper ends of all cooling water pipes, and the lower end component is a lower water tank, and the lower water tank includes A plurality of sub-sections of the lower water tank arranged in a row, each of the sub-sections of the lower water tank is connected with multiple rows of the cooling water pipes; the upper water tank is connected to a cooling water return port, and each sub-section of the lower water tank is connected to a cooling water inlet Shuikou. It also includes a cooling water inlet main pipe, and the cooling water inlet main pipe communicates with each of the cooling water inlets through a flow regulating valve. Specifically, as shown in Fig. 5A-5C, in the straight-through type adjustable cooling water embodiment in each zone, several partitions are arranged in the
冷却水自冷却水进水总管1032进入,通过各分水管1033的流量调节阀1031分流到对应的下水箱分部121,在本实施例中,各个下水箱分部121均为进水箱,冷却水从各分部自下而上沿着冷却水管102a流入到上水箱11中,最后从设置在第N排冷却水管102a处的冷却水回水口104a流出。The cooling water enters from the cooling water inlet
进一步地,考虑到靠近烟气进风口4处的烟气温度高,冷却水用量大,远离烟气进风口4处的烟气温度低,冷却水用量小,为了进一步降低本申请实施例低温低温冷凝模块1的冷却水用量,将远离烟气进风口4侧的分部的冷却水量设置为小于靠近烟气进风口4侧的分部的冷却水量,具体地,沿着烟气进风口4至出口方向,各分部的分水管1033的流量调节阀1031的开口依次减小。Further, considering that the flue gas temperature near the
作为本申请的低温冷凝模块1的可替换实施例,所述上端部组件25为贯通全部冷却水管102a上端部的上水箱11,所述下端部组件26为贯通全部冷却水管102a下端部的下水箱12,所述上水箱11和所述下水箱12之一连通所述冷却水进水口103a,另一连通所述冷却水回水口104a。具体如图6A-6D示出的直通式各区冷却水沿分组水管循环且冷却水量可调实施例,上水箱11内无隔板设置,上水箱11为连通冷却水回水口104a的回水箱;下水箱12内无隔板设置,下水箱12为连通冷却水进水口103a的进水箱。上水箱11和下水箱12均覆盖连通第1至N排冷却水管102a。冷却水从冷却水进水口103a进入下水箱12,然后从各排冷却水自下而上流动至上水箱11,最后从设置在第N排冷却水管102a处的冷却水回水口104a流出。As an alternative embodiment of the low-temperature condensation module 1 of the present application, the
进一步地,考虑到靠近烟气进风口4处的烟气温度高,冷却水用量大,远离烟气进风口4处的烟气温度低,冷却水用量小,为了进一步降低低温低温冷凝模块1的冷却水用量,在本申请实施例中,沿着烟气进风口4至出口方向,将下水箱12与各排冷却水管102a连通的开口尺寸依次减小,以使得烟气进风口4至出口方向的各排冷却水管102a的冷却水量依次减小,从而实现低温低温冷凝模块1的整体用水量。Further, considering that the flue gas temperature near the
此外,如图3C、4C、5C、6C所示,冷却水进水口103a和冷却水回水口104a均采用对边设置,使各并联流动的分水管1033道内冷却水的走行路程与阻力相同,以保证各并联分水管1033内水的流量相同及其对相应烟气的冷却效率相同。In addition, as shown in Figures 3C, 4C, 5C, and 6C, the cooling
另外,本申请为了保证净化设备的整体外观美观度,在下箱板1012的外侧加装了封闭格栅罩,用于遮蔽箱体101底部裸露的水箱或弯头105。In addition, in order to ensure the overall appearance of the purification equipment, this application installs a closed grille cover on the outside of the
本申请实施例还提供一种具有除雾集水挡水板结构的低温冷凝模块1。The embodiment of the present application also provides a low-temperature condensation module 1 with a defogging and water-collecting baffle structure.
水泥窑烟气排放的烟气风速高,通过低温冷凝模块1进行换热冷凝的时间较短,若烟气中含氨的冷凝水没有完全沿着冷却水管102a流动至装置底部进行外排,则含氨的冷凝水会从烟气出风口5排放外界造成污染。因此,本实施例通过在烟气出风口处设置除雾集水挡水板13,以进一步收集经冷却到露点的烟气中的水分。The wind speed of the flue gas discharged from the cement kiln is high, and the time for heat exchange and condensation through the low-temperature condensation module 1 is relatively short. Condensed water containing ammonia will be discharged from the
为了进一步保证含氨冷凝水不会从烟气出风口5排放外界,在本申请实施例中,如图3A所示,在烟气出风口5处设置若干竖向设置的除雾集水挡水板13,除雾集水挡水板13的板面为具有多个折角的折面板,烟气从最后一排冷却水管102a排出后会经过除雾集水挡水板13,在折面板的曲折面的作用下,烟气的速度会下降,烟气中的冷凝水会粘结到除雾集水挡水板13的表面并顺着除雾集水挡水板13表面留到装置的底部。通过除雾集水挡水板13的设置可以阻挡烟气中冷凝水从烟气口排放至外界。In order to further ensure that ammonia-containing condensed water will not be discharged from the
进一步地,所述折面板至少包括一对向相反方向折弯的折角。通过这种方式,可以增大烟气在折面板上行走的行程,利于烟气中夹杂的水分的收集。Further, the folded panel includes at least a pair of folded corners bent in opposite directions. In this way, the stroke of the flue gas traveling on the folded plate can be increased, which is beneficial to the collection of moisture contained in the flue gas.
作为优选实施例,折面板靠近烟气出风口一段为直板段,作用是引导烟气沿着除雾集水挡水板13流动。进一步地,至少部分除雾集水挡水板13沿着除雾集水挡水板13表面成型有沿竖向延伸的作为引流孔的长圆孔,粘结到除雾集水挡水板13表面的冷凝水会顺着长圆孔流至装置底部进行外排。优选地,长圆孔从折面板的上端延伸至底端。As a preferred embodiment, the section of the folded panel close to the air outlet of the flue gas is a straight section, which serves to guide the flue gas to flow along the defogging and water-collecting
为了进一步提升烟气排放安全性,在除雾集水挡水板13的外侧设置一钢丝网14,对烟气中冷凝水做最后一道阻拦。In order to further improve the safety of flue gas emission, a
综上,本申请提供的自持式一步法净化设备应用于水泥窑、电厂或煤场等烟气净化处理场景,可以有效降低排放烟气中逃逸氨、SO2、NOx、CO2的含量以及含尘量。In summary, the self-sustaining one-step purification equipment provided by this application is applied to flue gas purification treatment scenarios such as cement kilns, power plants or coal yards, which can effectively reduce the content of fugitive ammonia, SO 2 , NOx, CO 2 and amount of dust.
在本申请净化设备的一个实施例中,当烟气进风口的烟气风温105℃、烟气含水率9.5%、逃逸氨20mg/m3、SO2含量15mg/m3、NOx含量38mg/m3、CO2浓度20.5%、含尘量6mg/m3,冷却水进口水温28℃时,In an embodiment of the purification equipment of the present application, when the flue gas temperature at the flue gas inlet is 105°C, the moisture content of the flue gas is 9.5%, the escape ammonia is 20 mg/m 3 , the SO 2 content is 15 mg/m 3 , and the NOx content is 38 mg/
(1)烟气出风口的风温为60摄氏度,烟气含水率6.5%、逃逸氨6mg/m3、SO2含量5mg/m3、NOx含量34mg/m3、CO2浓度18.5%、含尘量3mg/m3,冷却水出口水温46℃。(1) The air temperature at the flue gas outlet is 60 degrees Celsius, the moisture content of the flue gas is 6.5%, the escape ammonia is 6mg/m 3 , the SO 2 content is 5 mg/m 3 , the NOx content is 34 mg/m 3 , the CO 2 concentration is 18.5%, and the The dust content is 3mg/m 3 , and the cooling water outlet temperature is 46°C.
(2)当增大低温冷凝模块中冷却水量使净化设备的烟气出风口风温为50摄氏度时,烟气含水率5.0%、逃逸氨3mg/m3、SO2含量2mg/m3、NOx含量32mg/m3、CO2浓度含量17.5%、含尘量2mg/m3,冷却水出口水温41℃。(2) When increasing the amount of cooling water in the low-temperature condensation module so that the air temperature of the flue gas outlet of the purification equipment is 50 degrees Celsius, the moisture content of the flue gas is 5.0%, the escape ammonia is 3 mg/m 3 , the SO 2 content is 2 mg/m 3 , and the NOx The content is 32mg/m 3 , the CO 2 concentration is 17.5%, the dust content is 2mg/m 3 , and the cooling water outlet temperature is 41°C.
在本申请净化设备的另一个实施例中,当烟气进风口的烟气风温150℃、烟气含水率7.5%、逃逸氨80mg/m3、SO2含量150mg/m3、NOx含量40mg/m3、CO2浓度21.0%、含尘量5mg/m3,冷却水进口水温28℃时,In another embodiment of the purification equipment of the present application, when the flue gas temperature at the flue gas inlet is 150°C, the moisture content of the flue gas is 7.5%, the escape ammonia is 80 mg/m 3 , the SO 2 content is 150 mg/m 3 , and the NOx content is 40 mg /m 3 , CO 2 concentration 21.0%, dust content 5mg/m 3 , cooling water inlet water temperature 28°C,
烟气出风口风温为65摄氏度,烟气含水率6.0%、逃逸氨15mg/m3、SO2含量42mg/m3、NOx含量36mg/m3、CO2浓度19.0%、含尘量3mg/m3,此时冷却水出口水温65℃。The air temperature at the flue gas outlet is 65 degrees Celsius, the moisture content of the flue gas is 6.0%, the escape ammonia is 15 mg/m 3 , the SO 2 content is 42 mg/m 3 , the NOx content is 36 mg/m 3 , the CO 2 concentration is 19.0%, and the dust content is 3 mg/
对于烟气进风口风温较高或者烟气含水率较低或者烟气进风口逃逸氨含量较高的情况,为了进一步提高逃逸氨净化效率,如图1B和图2A所示,本申请实施例提供一种具有雾化装置的自持式一步法净化设备,雾化装置3用于朝向烟气进风口4处喷雾化水,雾化装置3的设置位置为烟气进风口4处,更具体地,雾化装置4设置在水泥窑的烟气排放口与净化设备的烟气进风口4连接位置的梯形接头处,但是需要说明的是,雾化装置3的设置位置并不限于烟气进风口4处,例如在一些其他实施例中,雾化装置3还可以设置在水泥窑烟气排放口处或者更靠前的位置。通过向烟气进风口处喷雾化水可以增加烟气中水含量。具体原理为:由于烟气温度高,雾化水进入烟气后会被烟气的高温蒸发为水蒸气,从而增加了烟气中水蒸气含量,当烟气中水蒸气含量较低时,通过雾化装置3喷雾化水可以提高烟气中水蒸气的含量,从而提高脱氨效率。此外,还可以在喷雾化水中添加药剂(对脱氨、脱硝、脱硫有帮助的药剂),通过雾化水的方式添加药剂,可以让药剂与烟气充分接触,进一步提高排出烟气的洁净度。最后,雾化水还可以给烟气降温,减轻后续低温冷凝模块1的工作压力。For the situation where the air temperature at the flue gas inlet is high or the moisture content of the flue gas is low or the content of escaped ammonia at the flue gas inlet is high, in order to further improve the purification efficiency of escaped ammonia, as shown in Figure 1B and Figure 2A, the embodiment of the present application Provide a self-sustaining one-step purification equipment with an atomization device, the
所述雾化装置包括依次连接的雾化水箱、喷雾系统和喷雾水管,所述雾化水箱连接水源,所述喷雾水管设于所述烟气进风口处,用于朝所述烟气进风口处喷雾化水。The atomization device includes an atomized water tank, a spray system and a spray water pipe connected in sequence, the atomized water tank is connected to a water source, and the spray water pipe is arranged at the air inlet of the flue gas for Spray water.
进一步地,所述雾化装置还包括雾化水流量控制机构,用于控制所述喷雾水管向所述烟气进风口处喷雾化水的水量。Further, the atomization device further includes an atomized water flow control mechanism, which is used to control the amount of atomized water sprayed by the spray water pipe to the flue gas air inlet.
对于烟气进风口烟气风温大于120℃或者所述烟气进风口处的烟气含水率小于8%或者所述烟气进风口处逃逸氨100mg/m3时,启动所述雾化装置。When the temperature of the flue gas at the flue gas inlet is greater than 120°C or the moisture content of the flue gas at the flue gas inlet is less than 8% or the escaping ammonia at the flue gas inlet is 100mg/ m3 , start the atomization device .
当所述烟气进风口处SO2含量大于100mg/m3,启动所述雾化装置,并在所述雾化水中加入脱硫药剂;和/或,当所述烟气进风口处Nox含量大于50mg/m3时,启动所述雾化装置,并在所述雾化水中加入脱硝药剂。When the SO 2 content at the air inlet of the flue gas is greater than 100 mg/m 3 , start the atomization device, and add desulfurization agents to the atomized water; and/or, when the NOx content at the air inlet of the flue gas is greater than When the concentration is 50 mg/m 3 , start the atomization device, and add denitrification agent into the atomized water.
在本申请净化设备的一个实施例中,当烟气进风口的烟气风温150℃、烟气含水率7.5%、逃逸氨80mg/m3、SO2含量150mg/m3、NOx含量40mg/m3、CO2浓度21.0%、含尘量5mg/m3,冷却水进口水温28℃时,In one embodiment of the purification equipment of this application, when the flue gas temperature at the flue gas inlet is 150°C, the moisture content of the flue gas is 7.5%, the escape ammonia is 80 mg/m 3 , the SO 2 content is 150 mg/m 3 , and the NOx content is 40 mg/
启用雾化装置3,调整进口烟气含水率9.0%,使进口风温降至128℃,并增大冷却水量使净化设备烟气出风口风温为55摄氏度时,烟气含水率5.0%、逃逸氨4mg/m3、SO218mg/m3、NOx含量34mg/m3、CO2浓度17.8%、含尘量1.5mg/m3,此时冷却水出口水温48℃。Enable the
作为本申请的优选实施例,净化设备还包括喷淋清洗装置2。由于烟气中含有颗粒物,低温冷凝模块1的冷却水管102与烟气长时间接触导致颗粒物会粘结在冷却水管件的表面难以去除,降低了低温冷凝模块1的换热效率(即对烟气的冷却效率),为此,如图1B所示,通过喷淋装置2向水泥窑烟气出风口5与脱氨装置的连接处喷淋水,喷淋水呈柱状喷到烟气口处,随水泥窑烟气出风口5吹出的快速流通的烟气冲到冷却水管件表面上,将管件表面粘结的颗粒物冲刷掉。As a preferred embodiment of the present application, the purification equipment further includes a spray cleaning device 2 . Because the flue gas contains particulate matter, the cooling
本申请实施例还提供一种使用上述自持式一步法净化设备的净化工艺,用于对待净化烟气排放设备的烟气进行净化,净化工艺主要包括以下步骤:The embodiment of the present application also provides a purification process using the above-mentioned self-supporting one-step purification equipment, which is used to purify the flue gas of the flue gas discharge equipment to be purified. The purification process mainly includes the following steps:
将所述自持式一步法高效净化设备安装至待净化烟气排放设备的烟气出口处,使所述自持式一步法高效净化设备的所述烟气进风口与所述待净化设备烟气排放设备的烟气出口密封连接;Install the self-sustaining one-step high-efficiency purification equipment to the flue gas outlet of the flue gas discharge equipment to be purified, so that the flue gas inlet of the self-sustaining one-step high-efficiency purification equipment and the flue gas discharge of the equipment to be purified The flue gas outlet of the equipment is sealed and connected;
启动所述自持式一步法高效净化设备工作,通过对所述烟气进行降温,使所述烟气中的水蒸气冷凝为冷凝水,烟气中自含的氨气和呈酸性污染物溶于所述冷凝水中发生酸碱中和反应生成易溶于所述冷凝水的非挥发性质的盐。Start the self-sustaining one-step high-efficiency purification equipment to work. By cooling the flue gas, the water vapor in the flue gas is condensed into condensed water, and the ammonia gas and acidic pollutants contained in the flue gas are dissolved in the An acid-base neutralization reaction occurs in the condensed water to generate a non-volatile salt that is easily soluble in the condensed water.
为了提高脱氨率,进一步地,该净化工艺还包括:通过在烟气进风口处设置雾化装置,向所述烟气进风口处喷雾化水增加烟气中的水蒸气含量,实验证明,通过提高烟气中水蒸气含量可以大大提高脱氨率。In order to improve the deamination rate, further, the purification process also includes: by setting an atomization device at the air inlet of the flue gas, spraying water to the air inlet of the flue gas to increase the water vapor content in the flue gas, experiments have proved that, The deamination rate can be greatly improved by increasing the water vapor content in the flue gas.
由于烟气中含有颗粒物,低温冷凝模块1的冷却水管102与烟气长时间接触导致颗粒物会粘结在冷却水管件的表面难以去除,降低了低温冷凝模块1的换热效率(即对烟气的冷却效率),为此,该净化工艺还包括:通过喷淋装置2向水泥窑烟气出风口5与自持式一步法净化设备的烟气进风口的连接处喷淋水,喷淋水呈柱状喷到烟气口处,随水泥窑烟气出风口5吹出的快速流通的烟气冲到冷却水管件表面上,将管件表面粘结的颗粒物冲刷掉。Because the flue gas contains particulate matter, the cooling
此外,该净化工艺还包括:将所述自持式一步法高效净化设备底部收集的含盐冷凝水通过膜分离法处理为可回用或外排的净化水以及含盐高浓度水,所述含盐高浓度水喷入所述待净化烟气排放设备的篦冷机上。该步骤的优点在上文已经说明,在此不再赘述。In addition, the purification process also includes: treating the salt-containing condensed water collected at the bottom of the self-sustaining one-step high-efficiency purification equipment through membrane separation into purified water that can be reused or discharged outside, and high-concentration salt-containing water. The salt high-concentration water is sprayed into the grate cooler of the flue gas discharge equipment to be purified. The advantages of this step have been described above and will not be repeated here.
本申请实施例还提供一种模块化净化设备,将上述实施例中的净化设备模块化,模块化净化设备包括若干个净化设备子模块,若干个净化设备子模块沿着可以并联和/或串联设置。将子模块标准化,根据需求和现场布置来定子模块数量和子模块之间的连接方式。The embodiment of the present application also provides a modularized purification equipment. The purification equipment in the above-mentioned embodiments is modularized. The modularized purification equipment includes several purification equipment sub-modules, and several purification equipment sub-modules can be connected in parallel and/or in series along the set up. Standardize the sub-modules, and adjust the number of stator modules and the connection mode between sub-modules according to the requirements and site layout.
具体地,在本申请一个实施例中,可以将一台净化设备制成两个净化设备子模块,在现场安装时,将两个净化设备子模块并排放置在一起。进一步地,为了保证两个子模块之间的连接可靠性,可以将两个净化设备子模块通过螺栓连接、焊接进行连接。Specifically, in one embodiment of the present application, one purification equipment can be made into two purification equipment sub-modules, and the two purification equipment sub-modules are placed side by side during on-site installation. Further, in order to ensure the reliability of the connection between the two sub-modules, the two purification equipment sub-modules can be connected by bolts or welding.
此外,子模块之间也可以间隔放置,水泥窑烟气出风口5分流到各分管道分别进入各个子模块,最后对所有子模块的烟气烟气进行集合排放。In addition, the sub-modules can also be placed at intervals, and the cement kiln
由于子模块为标准化设计,当实际应用场景超出了子模块的净化能力,可以将若干个子模块沿着烟气流动方向串联在一起使用。Since the sub-modules are standardized designs, when the actual application scenario exceeds the purification capacity of the sub-modules, several sub-modules can be used in series along the flue gas flow direction.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Within the spirit and principles of this application, any modifications, equivalent replacements, improvements, etc., shall be included within the protection scope of this application.
Claims (45)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111076949 | 2021-09-14 | ||
| CN2021110769496 | 2021-09-14 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115569483A true CN115569483A (en) | 2023-01-06 |
| CN115569483B CN115569483B (en) | 2025-06-10 |
Family
ID=84423874
Family Applications (24)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211113508.3A Active CN115671940B (en) | 2021-09-14 | 2022-09-14 | Grouped self-sustaining one-step purification equipment |
| CN202222424680.2U Active CN218687848U (en) | 2021-09-14 | 2022-09-14 | Straight-through grouping type self-holding one-step purification equipment |
| CN202222424664.3U Active CN218687846U (en) | 2021-09-14 | 2022-09-14 | Grouping self-holding one-step purification equipment |
| CN202222424654.XU Active CN219209449U (en) | 2021-09-14 | 2022-09-14 | Modularized self-holding one-step purification equipment |
| CN202222446131.5U Active CN218687850U (en) | 2021-09-14 | 2022-09-14 | Straight-through self-holding one-step purification equipment |
| CN202222424682.1U Active CN219223350U (en) | 2021-09-14 | 2022-09-14 | Circular arc diamond cooling water pipe and self-holding one-step purifying equipment |
| CN202211119385.4A Active CN115569480B (en) | 2021-09-14 | 2022-09-14 | Self-sustaining one-step high-efficiency purification equipment and purification process |
| CN202222437966.4U Active CN218901320U (en) | 2021-09-14 | 2022-09-14 | Box structure of self-holding one-step purification equipment |
| CN202222424663.9U Active CN218901319U (en) | 2021-09-14 | 2022-09-14 | Self-supporting one-step high-efficiency purification equipment |
| CN202211113502.6A Active CN115671939B (en) | 2021-09-14 | 2022-09-14 | Cooling water pipe sealing installation structure and self-sustaining one-step purification equipment |
| CN202211113501.1A Active CN115475474B (en) | 2021-09-14 | 2022-09-14 | Self-cleaning self-holding one-step purification equipment and purification process |
| CN202211113506.4A Active CN115475475B (en) | 2021-09-14 | 2022-09-14 | Direct-through grouping self-sustaining one-step purification equipment |
| CN202211119399.6A Pending CN115574615A (en) | 2021-09-14 | 2022-09-14 | Arc diamond-shaped cooling water pipe and self-holding one-step purification equipment |
| CN202222424655.4U Active CN218687845U (en) | 2021-09-14 | 2022-09-14 | Self-cleaning self-holding one-step purification equipment |
| CN202211119393.9A Active CN115569482B (en) | 2021-09-14 | 2022-09-14 | Modular self-contained one-step purification equipment |
| CN202211113507.9A Pending CN115540621A (en) | 2021-09-14 | 2022-09-14 | Cooling water tube bundle and self-sustaining one-step purification equipment |
| CN202222424676.6U Active CN218687847U (en) | 2021-09-14 | 2022-09-14 | Cooling water pipe seal installation structure and self-holding one-step purification equipment |
| CN202211119740.8A Active CN115569483B (en) | 2021-09-14 | 2022-09-14 | Self-sustaining one-step purification equipment and purification process |
| CN202222437958.XU Active CN218687849U (en) | 2021-09-14 | 2022-09-14 | Self-sustaining formula one-step method clarification plant and defogging catchment manger plate structure thereof |
| CN202211125115.4A Active CN115591359B (en) | 2021-09-14 | 2022-09-14 | Straight-through self-sustaining one-step purification equipment |
| CN202211119391.XA Active CN115569481B (en) | 2021-09-14 | 2022-09-14 | Partitioned self-sustaining one-step purification equipment |
| CN202222424659.2U Active CN219209450U (en) | 2021-09-14 | 2022-09-14 | Self-holding one-step purifying equipment |
| CN202222446163.5U Active CN219223351U (en) | 2021-09-14 | 2022-09-14 | Cooling water tube bundle and self-sustaining one-step purification equipment |
| CN202222446133.4U Active CN218687851U (en) | 2021-09-14 | 2022-09-14 | Partitioned self-supporting one-step purification equipment |
Family Applications Before (17)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211113508.3A Active CN115671940B (en) | 2021-09-14 | 2022-09-14 | Grouped self-sustaining one-step purification equipment |
| CN202222424680.2U Active CN218687848U (en) | 2021-09-14 | 2022-09-14 | Straight-through grouping type self-holding one-step purification equipment |
| CN202222424664.3U Active CN218687846U (en) | 2021-09-14 | 2022-09-14 | Grouping self-holding one-step purification equipment |
| CN202222424654.XU Active CN219209449U (en) | 2021-09-14 | 2022-09-14 | Modularized self-holding one-step purification equipment |
| CN202222446131.5U Active CN218687850U (en) | 2021-09-14 | 2022-09-14 | Straight-through self-holding one-step purification equipment |
| CN202222424682.1U Active CN219223350U (en) | 2021-09-14 | 2022-09-14 | Circular arc diamond cooling water pipe and self-holding one-step purifying equipment |
| CN202211119385.4A Active CN115569480B (en) | 2021-09-14 | 2022-09-14 | Self-sustaining one-step high-efficiency purification equipment and purification process |
| CN202222437966.4U Active CN218901320U (en) | 2021-09-14 | 2022-09-14 | Box structure of self-holding one-step purification equipment |
| CN202222424663.9U Active CN218901319U (en) | 2021-09-14 | 2022-09-14 | Self-supporting one-step high-efficiency purification equipment |
| CN202211113502.6A Active CN115671939B (en) | 2021-09-14 | 2022-09-14 | Cooling water pipe sealing installation structure and self-sustaining one-step purification equipment |
| CN202211113501.1A Active CN115475474B (en) | 2021-09-14 | 2022-09-14 | Self-cleaning self-holding one-step purification equipment and purification process |
| CN202211113506.4A Active CN115475475B (en) | 2021-09-14 | 2022-09-14 | Direct-through grouping self-sustaining one-step purification equipment |
| CN202211119399.6A Pending CN115574615A (en) | 2021-09-14 | 2022-09-14 | Arc diamond-shaped cooling water pipe and self-holding one-step purification equipment |
| CN202222424655.4U Active CN218687845U (en) | 2021-09-14 | 2022-09-14 | Self-cleaning self-holding one-step purification equipment |
| CN202211119393.9A Active CN115569482B (en) | 2021-09-14 | 2022-09-14 | Modular self-contained one-step purification equipment |
| CN202211113507.9A Pending CN115540621A (en) | 2021-09-14 | 2022-09-14 | Cooling water tube bundle and self-sustaining one-step purification equipment |
| CN202222424676.6U Active CN218687847U (en) | 2021-09-14 | 2022-09-14 | Cooling water pipe seal installation structure and self-holding one-step purification equipment |
Family Applications After (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202222437958.XU Active CN218687849U (en) | 2021-09-14 | 2022-09-14 | Self-sustaining formula one-step method clarification plant and defogging catchment manger plate structure thereof |
| CN202211125115.4A Active CN115591359B (en) | 2021-09-14 | 2022-09-14 | Straight-through self-sustaining one-step purification equipment |
| CN202211119391.XA Active CN115569481B (en) | 2021-09-14 | 2022-09-14 | Partitioned self-sustaining one-step purification equipment |
| CN202222424659.2U Active CN219209450U (en) | 2021-09-14 | 2022-09-14 | Self-holding one-step purifying equipment |
| CN202222446163.5U Active CN219223351U (en) | 2021-09-14 | 2022-09-14 | Cooling water tube bundle and self-sustaining one-step purification equipment |
| CN202222446133.4U Active CN218687851U (en) | 2021-09-14 | 2022-09-14 | Partitioned self-supporting one-step purification equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (24) | CN115671940B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119565273A (en) * | 2024-12-25 | 2025-03-07 | 攀钢集团攀枝花钢铁研究院有限公司 | Temperature-control gravity dust remover and dust-containing flue gas treatment method |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115671940B (en) * | 2021-09-14 | 2025-07-04 | 天津朝阳环保科技集团有限公司 | Grouped self-sustaining one-step purification equipment |
| CN119197149B (en) * | 2024-11-27 | 2025-01-28 | 辽宁微木环境工程有限公司 | A new type of heat exchange device based on boiler waste heat utilization |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008296216A (en) * | 2007-06-04 | 2008-12-11 | Posco | Carbon dioxide recovery apparatus and method using ammonia water |
| KR20140007558A (en) * | 2012-07-09 | 2014-01-20 | (주)대일아쿠아 | Evaporated water recovery and plume abatement apparatus from the evaporated water vapor using combined heat exchanger-condensor and method using the same |
| KR20150093455A (en) * | 2014-02-07 | 2015-08-18 | 권오익 | Air cooled heat exchanger and closed circuit cooling tower using a low air pressure drop haet exchange tube |
| CN110772915A (en) * | 2019-10-25 | 2020-02-11 | 江苏朗润环保科技有限公司 | Sintering flue gas SCR denitration and whitening system and process |
| CN113101778A (en) * | 2021-04-14 | 2021-07-13 | 浙江理工大学 | A system and method for synergistic purification of electrolytic aluminum tail gas pollutants |
| CN219209450U (en) * | 2021-09-14 | 2023-06-20 | 天津朝阳环保科技集团有限公司 | Self-holding one-step purifying equipment |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2028538C2 (en) * | 1970-06-10 | 1984-10-18 | Dynamit Nobel Ag, 5210 Troisdorf | Method and device for the production of multi-chamber profiles from thermoplastics |
| US7022296B1 (en) * | 1997-07-10 | 2006-04-04 | University Of Cincinnati | Method for treating flue gas |
| WO2002088607A1 (en) * | 2001-04-27 | 2002-11-07 | Nippon Koei Power Systems Co., Ltd. | Ammonia absorption type water chilling/heating device |
| JP2006090687A (en) * | 2004-09-27 | 2006-04-06 | 優 ▲高▼橋 | Shell and tube heat exchanger |
| KR101204758B1 (en) * | 2010-10-29 | 2012-11-26 | (주)대일아쿠아 | Multi continual circular shape heat exchange panel for condenser and condenser for reducing white plume or recovering water using the same |
| HUE039257T2 (en) * | 2013-04-24 | 2018-12-28 | Jiangnan Environmental Prot Group Inc | Method and apparatus for treating acidic tail gas by using ammonia process |
| CN204693831U (en) * | 2015-02-10 | 2015-10-07 | 南京师范大学 | A kind of condensing heat pipe residual-heat recovery for gas heater |
| CN105289179A (en) * | 2015-11-11 | 2016-02-03 | 华南理工大学 | Low-resistance forced water cooling drip pipe type demister and demisting method |
| CN207334022U (en) * | 2017-09-20 | 2018-05-08 | 青岛青竹农产有限公司 | A kind of easy assembling type ventilation duct |
| CN207610593U (en) * | 2017-12-21 | 2018-07-13 | 张家港市宏基精密铝材科技有限公司 | A kind of condensation multichannel aluminium flat conduit |
| KR102030664B1 (en) * | 2018-12-03 | 2019-10-10 | 구태준 | Cooling tower of module type |
| CN109432970A (en) * | 2018-12-04 | 2019-03-08 | 浙江干氏制冷设备有限公司 | A kind of flue gas condensing eliminating white smoke system |
| CN109908619A (en) * | 2019-02-28 | 2019-06-21 | 南京圣创科技有限公司 | A kind of method and apparatus of tubular type condensation dehydrating demisting |
| CN110631261B (en) * | 2019-10-14 | 2024-05-31 | 西安交通大学 | Tubular gas condensing boiler and system |
| CN211328769U (en) * | 2019-11-20 | 2020-08-25 | 烟台龙源电力技术股份有限公司 | Flue gas treatment system of thermal power factory |
| CN213929849U (en) * | 2020-09-30 | 2021-08-10 | 上海凯科管业科技股份有限公司 | Pipeline assembly and pipeline system |
| CN213335693U (en) * | 2020-10-21 | 2021-06-01 | 哈尔滨理工大学 | Rhombic tube bundle heat exchanger |
| CN113101779A (en) * | 2021-04-14 | 2021-07-13 | 浙江理工大学 | A system and method for purifying industrial flue gas containing sulfur and dust |
| CN216790852U (en) * | 2021-10-21 | 2022-06-21 | 河北坤天新能源股份有限公司 | Furnace end water-cooling heat sink |
-
2022
- 2022-09-14 CN CN202211113508.3A patent/CN115671940B/en active Active
- 2022-09-14 CN CN202222424680.2U patent/CN218687848U/en active Active
- 2022-09-14 CN CN202222424664.3U patent/CN218687846U/en active Active
- 2022-09-14 CN CN202222424654.XU patent/CN219209449U/en active Active
- 2022-09-14 CN CN202222446131.5U patent/CN218687850U/en active Active
- 2022-09-14 CN CN202222424682.1U patent/CN219223350U/en active Active
- 2022-09-14 CN CN202211119385.4A patent/CN115569480B/en active Active
- 2022-09-14 CN CN202222437966.4U patent/CN218901320U/en active Active
- 2022-09-14 CN CN202222424663.9U patent/CN218901319U/en active Active
- 2022-09-14 CN CN202211113502.6A patent/CN115671939B/en active Active
- 2022-09-14 CN CN202211113501.1A patent/CN115475474B/en active Active
- 2022-09-14 CN CN202211113506.4A patent/CN115475475B/en active Active
- 2022-09-14 CN CN202211119399.6A patent/CN115574615A/en active Pending
- 2022-09-14 CN CN202222424655.4U patent/CN218687845U/en active Active
- 2022-09-14 CN CN202211119393.9A patent/CN115569482B/en active Active
- 2022-09-14 CN CN202211113507.9A patent/CN115540621A/en active Pending
- 2022-09-14 CN CN202222424676.6U patent/CN218687847U/en active Active
- 2022-09-14 CN CN202211119740.8A patent/CN115569483B/en active Active
- 2022-09-14 CN CN202222437958.XU patent/CN218687849U/en active Active
- 2022-09-14 CN CN202211125115.4A patent/CN115591359B/en active Active
- 2022-09-14 CN CN202211119391.XA patent/CN115569481B/en active Active
- 2022-09-14 CN CN202222424659.2U patent/CN219209450U/en active Active
- 2022-09-14 CN CN202222446163.5U patent/CN219223351U/en active Active
- 2022-09-14 CN CN202222446133.4U patent/CN218687851U/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008296216A (en) * | 2007-06-04 | 2008-12-11 | Posco | Carbon dioxide recovery apparatus and method using ammonia water |
| KR20140007558A (en) * | 2012-07-09 | 2014-01-20 | (주)대일아쿠아 | Evaporated water recovery and plume abatement apparatus from the evaporated water vapor using combined heat exchanger-condensor and method using the same |
| KR20150093455A (en) * | 2014-02-07 | 2015-08-18 | 권오익 | Air cooled heat exchanger and closed circuit cooling tower using a low air pressure drop haet exchange tube |
| CN110772915A (en) * | 2019-10-25 | 2020-02-11 | 江苏朗润环保科技有限公司 | Sintering flue gas SCR denitration and whitening system and process |
| CN113101778A (en) * | 2021-04-14 | 2021-07-13 | 浙江理工大学 | A system and method for synergistic purification of electrolytic aluminum tail gas pollutants |
| CN219209450U (en) * | 2021-09-14 | 2023-06-20 | 天津朝阳环保科技集团有限公司 | Self-holding one-step purifying equipment |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119565273A (en) * | 2024-12-25 | 2025-03-07 | 攀钢集团攀枝花钢铁研究院有限公司 | Temperature-control gravity dust remover and dust-containing flue gas treatment method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115569480A (en) | 2023-01-06 |
| CN219223350U (en) | 2023-06-20 |
| CN115671939B (en) | 2025-07-04 |
| CN218687850U (en) | 2023-03-24 |
| CN218687851U (en) | 2023-03-24 |
| CN115569481A (en) | 2023-01-06 |
| CN115591359A (en) | 2023-01-13 |
| CN218901320U (en) | 2023-04-25 |
| CN219223351U (en) | 2023-06-20 |
| CN219209450U (en) | 2023-06-20 |
| CN115475475A (en) | 2022-12-16 |
| CN115475474B (en) | 2025-06-10 |
| CN115475475B (en) | 2025-07-04 |
| CN218687845U (en) | 2023-03-24 |
| CN218901319U (en) | 2023-04-25 |
| CN218687849U (en) | 2023-03-24 |
| CN115671940A (en) | 2023-02-03 |
| CN218687847U (en) | 2023-03-24 |
| CN115475474A (en) | 2022-12-16 |
| CN218687848U (en) | 2023-03-24 |
| CN218687846U (en) | 2023-03-24 |
| CN115569482B (en) | 2025-07-04 |
| CN115569480B (en) | 2025-06-10 |
| CN115671940B (en) | 2025-07-04 |
| CN115569481B (en) | 2025-07-04 |
| CN115569482A (en) | 2023-01-06 |
| CN115569483B (en) | 2025-06-10 |
| CN115540621A (en) | 2022-12-30 |
| CN115574615A (en) | 2023-01-06 |
| CN219209449U (en) | 2023-06-20 |
| CN115591359B (en) | 2025-07-04 |
| CN115671939A (en) | 2023-02-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115569483A (en) | Self-holding one-step purification equipment and purification process | |
| CN109351117B (en) | Wet flue gas defogging and water collecting integrated device | |
| CN105498500B (en) | A kind of device and method of double loop gas cleaning | |
| CN104941410A (en) | Active molecular O3 low-temperature two-step oxidation flue gas sulfur and nitrate integrated removal method and device | |
| CN204582953U (en) | A kind of energy-saving desulfuration device that simultaneously can remove multiple pollutant | |
| CN105688581A (en) | Liquid film dedusting device and desulfurizer dedusting rectification system with same | |
| CN103657367B (en) | The desulfurization of a kind of list tower calcium method turns device and the technique of the double-tower type ammonia process of desulfurization | |
| CN212215103U (en) | An industrial kiln flue gas desulfurization, denitrification and dust removal device | |
| CN109012126A (en) | A kind of flue gas based on pillow plate heat exchanger disappears white spray column | |
| CN209406043U (en) | The system of Multi-stage cooling cooperation-removal multiple pollutant in a kind of tower | |
| CN104069723A (en) | Combined method for desulfurization, denitration and decarburization of exhaust gas | |
| WO2020001258A1 (en) | Flue gas desulfurization, denitration, dedusting and white smoke removal device | |
| CN102580530A (en) | Selective catalytic reduction (SCR) denitrification device with heat pipe type air pre-heater | |
| CN209917624U (en) | Chemical waste gas treatment purifies environment-friendly device | |
| CN119425316A (en) | Absorption tower and carbon dioxide capture system having the same | |
| CN117531330A (en) | Yellow phosphorus tail gas recycling device and application method thereof | |
| CN111637752A (en) | An integrated system for dry desulfurization, denitrification and purification of coke oven flue gas | |
| CN111001288A (en) | Efficient direct contact type condensation system for eliminating white smoke plume by wet desulphurization of flue gas and application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |