CN115099146A - Circuit generation method, circuit generation device, electronic equipment and storage medium - Google Patents
Circuit generation method, circuit generation device, electronic equipment and storage medium Download PDFInfo
- Publication number
- CN115099146A CN115099146A CN202210737292.1A CN202210737292A CN115099146A CN 115099146 A CN115099146 A CN 115099146A CN 202210737292 A CN202210737292 A CN 202210737292A CN 115099146 A CN115099146 A CN 115099146A
- Authority
- CN
- China
- Prior art keywords
- circuit
- candidate
- analysis
- design parameters
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请提供一种电路生成方法、装置、电子设备及存储介质,包括:获取电路设计参数,电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;基于神经网络模型构建多个候选电路;针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得候选电路的器件端口参数;根据数据集和候选电路的实际输出,对候选电路进行增减性分析,直至候选电路的实际输出匹配数据集;根据数据集和候选电路的仿真输出,通过定量分析训练获得候选电路的器件设计参数;获得最终电路。以上方案,通过神经网络模型构建电路,通过分析筛选获取最终电路,从而自动生成电路,减少人工操作,提高效率。
The present application provides a method, device, electronic device and storage medium for generating a circuit, including: acquiring circuit design parameters, where the circuit design parameters include expected circuit characteristics, an upper limit of the number of devices, and the number of device ports; according to the expected circuit characteristics, establishing Data set; build multiple candidate circuits based on the neural network model; for each candidate circuit, based on fixed device design parameters and data set, obtain the device port parameters of the candidate circuit through feasible analysis and training; according to the data set and the actual output of the candidate circuit , perform an increase or decrease analysis on the candidate circuit until the actual output of the candidate circuit matches the data set; according to the data set and the simulation output of the candidate circuit, the device design parameters of the candidate circuit are obtained through quantitative analysis and training; the final circuit is obtained. In the above scheme, a circuit is constructed through a neural network model, and the final circuit is obtained through analysis and screening, thereby automatically generating a circuit, reducing manual operations and improving efficiency.
Description
技术领域technical field
本申请涉及集成电路领域,尤其涉及一种电路生成方法、装置、电子设备及存储介质。The present application relates to the field of integrated circuits, and in particular, to a circuit generation method, apparatus, electronic device, and storage medium.
背景技术Background technique
目前,对于复杂的电路功能和多种类的电路器件,主要依靠研发人员的经验进行电路的设计,并通过仿真验证电路的可行性。At present, for complex circuit functions and various types of circuit devices, the circuit design mainly relies on the experience of R&D personnel, and the feasibility of the circuit is verified by simulation.
然而,随着模拟电路进入纳米级后,集成电路的复杂度和集成度越来越高。依靠研发人员的经验进行电路的设计的方法面临着效率低下的问题。因此,如何高效率生成电路是当前面临的问题。However, as analog circuits enter the nanoscale, the complexity and integration of integrated circuits are getting higher and higher. The method of designing the circuit that relies on the experience of the developer faces the problem of inefficiency. Therefore, how to generate circuits efficiently is a current problem.
发明内容SUMMARY OF THE INVENTION
本申请提供一种电路生成方法、装置、电子设备及存储介质,用于高效率生成电路。The present application provides a circuit generation method, device, electronic device, and storage medium for generating circuits with high efficiency.
第一方面,本申请提供一种电路生成方法包括:获取电路设计参数,所述电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;根据所述器件端口数量、所述器件数量上限值以及候选器件种类,基于神经网络模型构建多个候选电路;针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得所述候选电路的器件端口参数;若可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集;若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数;其中,所述器件端口参数包括器件各端口的电信号参数,所述数据集包括多组标准输入及对应的标准输出;根据通过定量分析的候选电路,获得最终电路。In a first aspect, the present application provides a circuit generation method comprising: acquiring circuit design parameters, the circuit design parameters including desired circuit characteristics, an upper limit of the number of devices, and the number of device ports; establishing a data set according to the desired circuit characteristics; According to the number of device ports, the upper limit of the number of devices, and the types of candidate devices, multiple candidate circuits are constructed based on the neural network model; for each candidate circuit, based on fixed device design parameters and data sets, obtained through feasible analysis and training The device port parameters of the candidate circuit; if the feasibility analysis is passed, the increase or decrease analysis is performed on the candidate circuit according to the data set and the actual output of the candidate circuit, until the actual output of the candidate circuit matches the data set; if the increase or decrease analysis is passed, the device design parameters of the candidate circuit are obtained through quantitative analysis and training according to the data set and the simulation output of the candidate circuit; wherein, the device port parameters include a device The electrical signal parameters of each port, the data set includes multiple sets of standard inputs and corresponding standard outputs; the final circuit is obtained according to the candidate circuits through quantitative analysis.
在一种可能的实施方式中,所述针对每个候选电路,基于固定的器件设计参数,通过进行可行分析训练获得所述候选电路的器件端口参数,包括:基于第一目标函数作为优化器的优化目标,进行可行性分析的迭代训练,直至满足所述第一目标函数,其中,所述第一目标函数表征输入每个端口和输出该端口的电压相等且电流和等于0;若可行性分析的迭代次数超过预设的第一阈值,则筛除所述候选电路;若可行性分析的迭代次数未超过所述第一阈值,则判定所述候选电路通过所述可行性分析。In a possible implementation manner, for each candidate circuit, based on fixed device design parameters, the device port parameters of the candidate circuit are obtained by performing feasible analysis and training, including: using a first objective function as an optimizer's Optimize the objective, and perform iterative training of feasibility analysis until the first objective function is satisfied, wherein the first objective function represents that the voltages of the input ports and the output ports are equal and the current sum is equal to 0; if the feasibility analysis If the number of iterations of the feasibility analysis exceeds the preset first threshold, the candidate circuit is screened; if the number of iterations of the feasibility analysis does not exceed the first threshold, it is determined that the candidate circuit passes the feasibility analysis.
在一种可能的实施方式中,所述若可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集,包括:若可行性分析通过,则将所述数据集中的每个标准输入作为所述候选电路的实际输入,进行增减性分析的迭代训练,直至满足所述第二目标函数,其中,所述第二目标函数表征当前的实际输出与标准输出之间的误差不超过预设的第二阈值;其中,若本次增减性分析的迭代次数超过预设的第三阈值,则将记录本次训练为0;若本次增减性分析的迭代次数未超过预设的第三阈值,则记录所述候选电路当前的实际输出;将所有增减性分析训练的记录与所述数据集中的标准输出进行相关性分析,若相关性分析结果大于预设的第四阈值,则判定所述候选电路通过增减性分析。In a possible implementation manner, if the feasibility analysis is passed, according to the data set and the actual output of the candidate circuit, an increase or decrease analysis is performed on the candidate circuit until the actual output of the candidate circuit is reached. The output matches the data set, including: if the feasibility analysis is passed, using each standard input in the data set as the actual input of the candidate circuit, and performing iterative training of the increase or decrease analysis until the second Objective function, wherein the second objective function represents that the error between the current actual output and the standard output does not exceed a preset second threshold; Threshold, the current training will be recorded as 0; if the number of iterations of this incremental analysis does not exceed the preset third threshold, the current actual output of the candidate circuit will be recorded; all records of the incremental analysis training will be recorded Correlation analysis is performed with the standard output in the data set, and if the correlation analysis result is greater than a preset fourth threshold, it is determined that the candidate circuit passes the increase or decrease analysis.
在一种可能的实施方式中,所述若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数,包括:将所述数据集中的标准输入作为所述候选电路的仿真输入,基于电路仿真器,对所述候选电路进行仿真,获得所述候选电路的仿真输出;以及,根据所述器件设计参数的初始值和预定的标准差范围,随机产生当前的训练设计参数;根据当前的训练设计参数和对应的仿真输出,基于概率类算法,训练用于基于仿真输出预测器件设计参数的预测模型;将所述候选电路的仿真输出作为输入,获得所述预测模型输出的器件设计参数和输出的标准差范围;根据输出的器件设计参数和输出的标准差范围,随机产生当前的训练设计参数;以及,再次执行所述根据当前的训练设计参数和对应的仿真输出,基于概率类算法训练用于基于仿真输出预测器件设计参数的预测模型的步骤,直至模型训练次数超过预设的第五阈值,则将所述预测模型当前输出的器件设计参数作为所述候选电路的器件设计参数,并判定所述候选电路通过定量分析。In a possible implementation manner, if the increase/decrease analysis is passed, the device design parameters of the candidate circuit are obtained through quantitative analysis and training according to the data set and the simulation output of the candidate circuit, including: The standard input in the data set is used as the simulation input of the candidate circuit, and based on the circuit simulator, the candidate circuit is simulated to obtain the simulation output of the candidate circuit; and, according to the initial value of the device design parameter and With a predetermined standard deviation range, the current training design parameters are randomly generated; according to the current training design parameters and the corresponding simulation output, based on a probability class algorithm, a prediction model for predicting the device design parameters based on the simulation output is trained; The simulation output is used as input, and the device design parameters output by the prediction model and the standard deviation range of the output are obtained; according to the output device design parameters and the standard deviation range of the output, the current training design parameters are randomly generated; According to the current training design parameters and the corresponding simulation output, the step of training the prediction model for predicting the device design parameters based on the simulation output based on the probability class algorithm, until the number of model training times exceeds the preset fifth threshold, then the prediction model is used. The currently output device design parameters are used as the device design parameters of the candidate circuit, and it is determined that the candidate circuit has passed the quantitative analysis.
在一种可能的实施方式中,所述根据通过定量分析的候选电路,获得最终电路,包括:对通过定量分析的候选电路进行筛选处理,并将筛选后的候选电路推送给用户;将用户选择的候选电路,作为最终电路。In a possible implementation manner, obtaining the final circuit according to the candidate circuits that have passed the quantitative analysis includes: screening the candidate circuits that have passed the quantitative analysis, and pushing the screened candidate circuits to the user; candidate circuit as the final circuit.
第二方面,本申请提供一种电路生成装置,包括:获取模块,用于获取电路设计参数,所述电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;构建模块,用于根据所述器件端口数量、所述器件数量上限值以及候选器件种类,基于神经网络模型构建多个候选电路;训练模块,用于针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得所述候选电路的器件端口参数;若可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集;若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数;其中,所述器件端口参数包括器件各端口的电信号参数,所述数据集包括多组标准输入及对应的标准输出;筛选模块,用于根据通过定量分析的候选电路,获得最终电路。In a second aspect, the present application provides a circuit generation device, comprising: an acquisition module for acquiring circuit design parameters, where the circuit design parameters include expected circuit characteristics, an upper limit value of the number of devices, and the number of device ports; characteristics, to establish a data set; a building module, for constructing multiple candidate circuits based on the neural network model according to the number of device ports, the upper limit of the number of devices, and the type of candidate devices; a training module for each candidate circuit , based on the fixed device design parameters and data set, obtain the device port parameters of the candidate circuit through feasible analysis training; if the feasibility analysis is passed, according to the data set and the actual output of the candidate circuit, the candidate circuit The circuit performs an increase/decrease analysis until the actual output of the candidate circuit matches the data set; if the increase/decrease analysis is passed, then according to the data set and the simulation output of the candidate circuit, the quantitative analysis training is performed to obtain the Device design parameters of candidate circuits; wherein, the device port parameters include electrical signal parameters of each port of the device, and the data set includes multiple sets of standard inputs and corresponding standard outputs; a screening module is used to analyze the candidate circuits according to the quantitative analysis. , to obtain the final circuit.
在一种可能的实施方式中,所述训练模块,具体用于基于第一目标函数作为优化器的优化目标,进行可行性分析的迭代训练,直至满足所述第一目标函数,其中,所述第一目标函数表征输入每个端口和输出该端口的电压相等且电流和等于0;所述训练模块,具体还用于若可行性分析的迭代次数超过预设的第一阈值,则筛除所述候选电路;若可行性分析的迭代次数未超过所述第一阈值,则判定所述候选电路通过所述可行性分析。In a possible implementation manner, the training module is specifically configured to perform iterative training of feasibility analysis based on the first objective function as the optimization objective of the optimizer until the first objective function is satisfied, wherein the The first objective function represents that the input voltage of each port and the output port are equal and the current sum is equal to 0; the training module is specifically also used to filter out all the data if the number of iterations of the feasibility analysis exceeds a preset first threshold. The candidate circuit is determined; if the number of iterations of the feasibility analysis does not exceed the first threshold, it is determined that the candidate circuit passes the feasibility analysis.
在一种可能的实施方式中,所述训练模块,具体用于若可行性分析通过,则将所述数据集中的每个标准输入作为所述候选电路的实际输入,进行增减性分析的迭代训练,直至满足所述第二目标函数,其中,所述第二目标函数表征当前的实际输出与标准输出之间的误差不超过预设的第二阈值;其中,若本次增减性分析的迭代次数超过预设的第三阈值,则将记录本次训练为0;若本次增减性分析的迭代次数未超过预设的第三阈值,则记录所述候选电路当前的实际输出;所述训练模块,具体还用于将所有增减性分析训练的记录与所述数据集中的标准输出进行相关性分析,若相关性分析结果大于预设的第四阈值,则判定所述候选电路通过增减性分析。In a possible implementation manner, the training module is specifically configured to, if the feasibility analysis passes, use each standard input in the data set as the actual input of the candidate circuit, and perform the iteration of the increase-decrease analysis Training until the second objective function is satisfied, wherein the second objective function represents that the error between the current actual output and the standard output does not exceed a preset second threshold; If the number of iterations exceeds the preset third threshold, the current training will be recorded as 0; if the number of iterations of this increase/decrease analysis does not exceed the preset third threshold, the current actual output of the candidate circuit will be recorded; The training module is specifically also used to perform correlation analysis on the records of all the increase/decrease analysis training and the standard output in the data set. If the correlation analysis result is greater than the preset fourth threshold, it is determined that the candidate circuit has passed the Incremental analysis.
在一种可能的实施方式中,所述若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数,包括:所述训练模块,具体用于将所述数据集中的标准输入作为所述候选电路的仿真输入,基于电路仿真器,对所述候选电路进行仿真,获得所述候选电路的仿真输出;以及,根据所述器件设计参数的初始值和预定的标准差范围,随机产生当前的训练设计参数;所述训练模块,具体还用于根据当前的训练设计参数和对应的仿真输出,基于概率类算法,训练用于基于仿真输出预测器件设计参数的预测模型;将所述候选电路的仿真输出作为输入,获得所述预测模型输出的器件设计参数和输出的标准差范围;所述训练模块,具体还用于根据输出的器件设计参数和输出的标准差范围,随机产生当前的训练设计参数;以及,再次执行所述根据当前的训练设计参数和对应的仿真输出,基于概率类算法训练用于基于仿真输出预测器件设计参数的预测模型的步骤,直至模型训练次数超过预设的第五阈值,则将所述预测模型当前输出的器件设计参数作为所述候选电路的器件设计参数,并判定所述候选电路通过定量分析。In a possible implementation manner, if the increase/decrease analysis is passed, the device design parameters of the candidate circuit are obtained through quantitative analysis and training according to the data set and the simulation output of the candidate circuit, including: The training module is specifically configured to use the standard input in the data set as the simulation input of the candidate circuit, simulate the candidate circuit based on the circuit simulator, and obtain the simulation output of the candidate circuit; According to the initial value of the device design parameters and the predetermined standard deviation range, the current training design parameters are randomly generated; the training module is specifically also used for, according to the current training design parameters and the corresponding simulation output, based on probabilistic algorithms, training with A prediction model for predicting device design parameters based on the simulation output; the simulation output of the candidate circuit is used as input to obtain the device design parameters output by the prediction model and the standard deviation range of the output; The outputted device design parameters and the output standard deviation range randomly generate the current training design parameters; and, re-executing the described according to the current training design parameters and the corresponding simulation output, based on the probability class algorithm training for predicting the device based on the simulation output The step of designing the prediction model of the parameters, until the number of model training times exceeds the preset fifth threshold, the device design parameters currently output by the prediction model are used as the device design parameters of the candidate circuit, and it is determined that the candidate circuit has passed the quantitative analyze.
在一种可能的实施方式中,所述筛选模块,具体用于对通过定量分析的候选电路进行筛选处理,并将筛选后的候选电路推送给用户;所述筛选模块,具体还用于将用户选择的候选电路,作为最终电路。In a possible implementation manner, the screening module is specifically configured to screen candidate circuits that have passed quantitative analysis, and push the screened candidate circuits to the user; the screening module is also specifically configured to screen the user The selected candidate circuit is used as the final circuit.
第三方面,本申请提供一种电子设备,包括:处理器,以及与所述处理器通信连接的存储器;所述存储器存储计算机执行指令;所述处理器执行所述存储器存储的计算机执行指令,以实现第一方面中任一项所述的方法。In a third aspect, the present application provides an electronic device, comprising: a processor, and a memory communicatively connected to the processor; the memory stores computer-executed instructions; the processor executes the computer-executed instructions stored in the memory, to implement the method of any one of the first aspects.
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行如第一方面中任一项所述的方法。In a fourth aspect, the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and the computer-executable instructions are executed by a processor to execute the method according to any one of the first aspects. .
本申请提供的电路生成方法、装置、电子设备及存储介质,获取电路设计参数,所述电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;根据所述器件端口数量、所述器件数量上限值以及候选器件种类,基于神经网络模型构建多个候选电路;针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得所述候选电路的器件端口参数;若可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集;若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数;其中,所述器件端口参数包括器件各端口的电信号参数,所述数据集包括多组标准输入及对应的标准输出;根据通过定量分析的候选电路,获得最终电路。以上方案,通过神经网络模型构建电路,通过分析筛选获取最终电路,从而自动生成电路,减少人工操作,提高效率。The circuit generation method, device, electronic device and storage medium provided by the present application obtain circuit design parameters, the circuit design parameters include expected circuit characteristics, upper limit of the number of devices, and number of device ports; according to the expected circuit characteristics, establish data According to the number of device ports, the upper limit of the number of devices, and the types of candidate devices, multiple candidate circuits are constructed based on the neural network model; for each candidate circuit, based on fixed device design parameters and data sets, through feasible analysis The device port parameters of the candidate circuit are obtained by training; if the feasibility analysis is passed, the increase or decrease analysis is performed on the candidate circuit according to the data set and the actual output of the candidate circuit until the actual output of the candidate circuit is reached. The output matches the data set; if the increase or decrease analysis is passed, the device design parameters of the candidate circuit are obtained through quantitative analysis and training according to the data set and the simulation output of the candidate circuit; wherein, the device port parameters Including the electrical signal parameters of each port of the device, the data set includes multiple sets of standard inputs and corresponding standard outputs; the final circuit is obtained according to the candidate circuit through quantitative analysis. In the above scheme, a circuit is constructed through a neural network model, and the final circuit is obtained through analysis and screening, thereby automatically generating a circuit, reducing manual operations and improving efficiency.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the application and together with the description serve to explain the principles of the application.
图1为本申请实施例提供的一种电路生成方法的应用场景示意图;FIG. 1 is a schematic diagram of an application scenario of a circuit generation method provided by an embodiment of the present application;
图2为本申请实施例一提供的一种电路生成方法的流程示意图;FIG. 2 is a schematic flowchart of a circuit generation method provided in Embodiment 1 of the present application;
图3为本申请实施例提供的电路可行性分析示例;FIG. 3 provides an example of circuit feasibility analysis provided by an embodiment of the present application;
图4为本申请实施例二提供的一种电路生成装置的结构示例图;FIG. 4 is a schematic structural diagram of a circuit generation apparatus provided in Embodiment 2 of the present application;
图5为本申请实施例三提供的一种电路生成装置的装置框图;FIG. 5 is an apparatus block diagram of a circuit generation apparatus provided in Embodiment 3 of the present application;
图6为本申请实施例四中提供的一种电子设备的结构示意图。FIG. 6 is a schematic structural diagram of an electronic device provided in Embodiment 4 of the present application.
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。Specific embodiments of the present application have been shown by the above-mentioned drawings, and will be described in more detail hereinafter. These drawings and written descriptions are not intended to limit the scope of the concepts of the present application in any way, but to illustrate the concepts of the present application to those skilled in the art by referring to specific embodiments.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with this application. Rather, they are merely examples of apparatus and methods consistent with some aspects of the present application as recited in the appended claims.
首先对涉及的名词进行解释:First, the terms involved are explained:
Spice模型(Simulation program with integrated circuit emphasis,简称Spice):一种用于集成电路的电路分析的模拟电路仿真器。Spice model (Simulation program with integrated circuit emphasis, referred to as Spice): an analog circuit simulator for circuit analysis of integrated circuits.
图1为本申请实施例提供的一种电路生成方法的应用场景示意图。结合图示的场景进行举例:神经网络模型获取用户的电路设计参数,构建出多个候选电路。候选电路依次进行定性分析和定量分析,筛除未通过分析的电路,得到最终电路。将最终电路推送给用户进行选择。FIG. 1 is a schematic diagram of an application scenario of a circuit generation method provided by an embodiment of the present application. Take the scenario shown as an example: the neural network model obtains the user's circuit design parameters and constructs multiple candidate circuits. The candidate circuits are subjected to qualitative analysis and quantitative analysis in turn, and the circuits that fail the analysis are screened out to obtain the final circuit. Push the final circuit to the user for selection.
下面结合以下各实施例对本申请实施例的方案进行示例介绍。The solutions of the embodiments of the present application will be exemplified and introduced below with reference to the following embodiments.
实施例一Example 1
图2为本申请实施例一提供的一种电路生成方法的流程示意图,该方法包括以下步骤:2 is a schematic flowchart of a circuit generation method provided in Embodiment 1 of the present application, and the method includes the following steps:
S101、获取电路设计参数,所述电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;S101. Acquire circuit design parameters, where the circuit design parameters include expected circuit characteristics, an upper limit of the number of devices, and the number of device ports; establish a data set according to the expected circuit characteristics;
S102、根据所述器件端口数量、所述器件数量上限值以及候选器件种类,基于神经网络模型构建多个候选电路;S102. According to the number of device ports, the upper limit of the number of devices, and the type of candidate devices, construct a plurality of candidate circuits based on a neural network model;
S103、针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得所述候选电路的器件端口参数;若可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集;若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数;其中,所述器件端口参数包括器件各端口的电信号参数,所述数据集包括多组标准输入及对应的标准输出;S103. For each candidate circuit, based on the fixed device design parameters and the data set, obtain the device port parameters of the candidate circuit through feasible analysis and training; if the feasibility analysis is passed, then according to the data set and the candidate circuit Actual output, perform an increase or decrease analysis on the candidate circuit until the actual output of the candidate circuit matches the data set; if the increase or decrease analysis passes, then according to the data set and the simulation output of the candidate circuit, The device design parameters of the candidate circuit are obtained through quantitative analysis and training; wherein, the device port parameters include electrical signal parameters of each port of the device, and the data set includes multiple sets of standard inputs and corresponding standard outputs;
S104、根据通过定量分析的候选电路,获得最终电路。S104: Obtain a final circuit according to the candidate circuit through quantitative analysis.
作为示例,该实施例的执行主体可以为电路生成装置,该电路生成装置的实现有多种。例如,可以为程序软件,也可以为存储有相关计算机程序的介质,例如,U盘等;或者,该装置还可以为集成或安装有相关计算机程序的实体设备,例如,芯片、智能终端、电脑、服务器等。As an example, the execution body of this embodiment may be a circuit generating apparatus, and the circuit generating apparatus may be implemented in multiple ways. For example, it can be program software, or a medium storing relevant computer programs, such as a USB flash drive; , server, etc.
在一个示例中,S101包括:获取器件库的器件数量上限;获取用户定义的器件端口数量;获取用户期望的电路特性;In one example, S101 includes: obtaining the upper limit of the number of devices in the device library; obtaining the user-defined number of device ports; obtaining the circuit characteristics expected by the user;
作为一种可实施方式,根据用户设计的电路特性,构造一系列输入和输出的电压或电流结果,建立数据集。举例来说,若用户设计的电路特性为电压放大,则构造一系列电压作为输入,一系列电压分别乘放大倍数作为输出的数据集。As an implementation manner, a data set is established by constructing a series of input and output voltage or current results according to the circuit characteristics designed by the user. For example, if the characteristic of the circuit designed by the user is voltage amplification, a series of voltages are constructed as input, and a series of voltages are respectively multiplied by the amplification factor as an output data set.
结合场景示例来说,器件数量上限直接从器件库获取。器件端口数量根据用户的需求进行设定。将所有器件标准化为用户设定的器件端口数量。举例来说,用户设定的器件端口数量为3,将所有的器件标准化为3端口器件。每个器件的每个端口均包含电流和电压两个变量。而对于电阻等小于3端口器件的多余端口可以等价为电流恒为0、电压恒为0的端口。同理,断路、短路以及电源也可以等价为3端口器件。同理,多个器件的组合也可等价为3端口器件。Combined with the scene example, the upper limit of the number of devices is obtained directly from the device library. The number of device ports can be set according to user needs. Normalizes all devices to a user-set number of device ports. For example, the user sets the number of device ports to 3, normalizing all devices to 3-port devices. Each port of each device contains two variables, current and voltage. For the extra ports with resistances smaller than 3-port devices, they can be equivalent to ports whose current is always 0 and voltage is always 0. Similarly, open circuit, short circuit, and power supply can also be equivalent to 3-port devices. Similarly, the combination of multiple devices can also be equivalent to a 3-port device.
可选的,基于神经网络模拟Spice模型进行端口设计。Optionally, port design is performed based on the neural network simulation Spice model.
基于以上实施方式,获取电路设计参数,从而在接下来根据电路设计参数,自动生成符合条件的电路。Based on the above embodiments, circuit design parameters are obtained, so that a circuit that meets the conditions is automatically generated according to the circuit design parameters next.
接下来根据获取的电路设计参数,自动生成电路并进行电路分析。Next, according to the obtained circuit design parameters, the circuit is automatically generated and analyzed.
在一个示例中,S102包括:计算得到生成的最大电路数量;按所述最大电路数量依次构建多个候选电路。In an example, S102 includes: calculating the generated maximum number of circuits; and sequentially constructing a plurality of candidate circuits according to the maximum number of circuits.
可选的,基于最大电路数量计算公式计算得到生成的最大电路数量:Optionally, the maximum number of generated circuits is calculated based on the calculation formula of the maximum number of circuits:
((M*N)^N)*C)^M((M*N)^N)*C)^M
其中,M为器件数量上限值,N为器件端口数量,C为候选器件种类。Among them, M is the upper limit of the number of devices, N is the number of device ports, and C is the type of candidate devices.
根据所述最大电路数量,基于神经网络模型构建多个候选电路。According to the maximum number of circuits, a plurality of candidate circuits are constructed based on the neural network model.
基于以上实施方式,通过枚举方式生成所有符合电路设计参数的电路,避免出现电路遗漏。Based on the above implementation manner, all circuits that conform to the circuit design parameters are generated through enumeration to avoid circuit omission.
以上方案,生成多个符合电路设计参数的电路,需要通过电路分析验证确定电路的可靠性。所述电路分析包括定性分析和定量分析,定性分析包括可行性分析和增减性分析,定量分析用于获得电路的器件设计参数。接下来对电路分析流程进行示例说明。In the above scheme, to generate multiple circuits that meet the circuit design parameters, it is necessary to verify the reliability of the circuit through circuit analysis and verification. The circuit analysis includes qualitative analysis and quantitative analysis, the qualitative analysis includes feasibility analysis and increase or decrease analysis, and the quantitative analysis is used to obtain device design parameters of the circuit. The following is an example of the circuit analysis flow.
在一个示例中,S103包括:基于第一目标函数作为优化器的优化目标,进行可行性分析的迭代训练,直至满足所述第一目标函数,其中,所述第一目标函数表征输入每个端口和输出该端口的电压相等且电流和等于0;若可行性分析的迭代次数超过预设的第一阈值,则筛除所述候选电路;若可行性分析的迭代次数未超过所述第一阈值,则判定所述候选电路通过所述可行性分析。In an example, S103 includes: based on the first objective function as the optimization objective of the optimizer, performing iterative training of feasibility analysis until the first objective function is satisfied, wherein the first objective function represents the input of each port and output the voltage of the port is equal and the current sum is equal to 0; if the number of iterations of the feasibility analysis exceeds the preset first threshold, the candidate circuit is screened; if the number of iterations of the feasibility analysis does not exceed the first threshold , it is determined that the candidate circuit passes the feasibility analysis.
结合场景示例来说,定性分析包括可行性分析和增减性分析。可行性分析通过第一目标函数表示。若满足第一目标函数,即电路的每个端口输入的电压和输出该端口的电压相等且电流和等于0,说明电路的每个端口能够正常流通。若存在端口断路的情况,电流不能通过端口,则不满足输入该端口和输出该端口的电压相等且电流和等于0。以第一目标函数作为优化器的优化目标进行迭代优化,若迭代次数超过预设的第一阈值,且没有达到第一目标函数,则认定该电路不通过可行性分析。通过第一阈值限制迭代次数,防止出现无限循环迭代的情况。Combined with scenario examples, qualitative analysis includes feasibility analysis and increase or decrease analysis. Feasibility analysis is represented by a first objective function. If the first objective function is satisfied, that is, the input voltage of each port of the circuit and the output voltage of the port are equal and the current sum is equal to 0, it means that each port of the circuit can flow normally. If there is an open circuit of the port and the current cannot pass through the port, it is not satisfied that the voltage input to the port and the output port are equal and the sum of the current is equal to 0. Iterative optimization is performed with the first objective function as the optimization target of the optimizer. If the number of iterations exceeds the preset first threshold and the first objective function is not reached, it is determined that the circuit fails the feasibility analysis. The number of iterations is limited by the first threshold to prevent infinite loop iterations.
为便于理解,图3为电路可行性分析示例,如图3所示:电路中多个器件的端口建立连接,若电路能正常流通,则流经端口的电压相等且电流和等于0。其中,输入端口的电流计为正,输出端口的电流计为负,输入端口的电流之和与输出端口的电流之和的绝对值相等。For ease of understanding, Figure 3 is an example of a circuit feasibility analysis. As shown in Figure 3, the ports of multiple devices in the circuit are connected. If the circuit can flow normally, the voltages flowing through the ports are equal and the sum of the currents is equal to 0. Among them, the current meter of the input port is positive, the current meter of the output port is negative, and the sum of the current of the input port is equal to the absolute value of the sum of the current of the output port.
基于以上实施方式,通过第一目标函数对候选电路迭代优化,获得电路的器件端口参数,保证电路能正常流通。通过第一阈值约束迭代次数,防止出现无限循环迭代的情况。Based on the above embodiments, the candidate circuit is iteratively optimized through the first objective function to obtain the device port parameters of the circuit, so as to ensure the normal circulation of the circuit. The number of iterations is constrained by the first threshold to prevent infinite loop iterations.
在一个示例中,S103还包括:若可行性分析通过,则将所述数据集中的每个标准输入作为所述候选电路的实际输入,进行增减性分析的迭代训练,直至满足所述第二目标函数,其中,所述第二目标函数表征当前的实际输出与标准输出之间的误差不超过预设的第二阈值;其中,若本次增减性分析的迭代次数超过预设的第三阈值,则将记录本次训练为0;若本次增减性分析的迭代次数未超过预设的第三阈值,则记录所述候选电路当前的实际输出;将所有增减性分析训练的记录与所述数据集中的标准输出进行相关性分析,若相关性分析结果大于预设的第四阈值,则判定所述候选电路通过增减性分析。In an example, S103 further includes: if the feasibility analysis is passed, using each standard input in the data set as the actual input of the candidate circuit, and performing iterative training of the increase/decrease analysis until the second Objective function, wherein the second objective function represents that the error between the current actual output and the standard output does not exceed a preset second threshold; Threshold, the current training will be recorded as 0; if the number of iterations of this incremental analysis does not exceed the preset third threshold, the current actual output of the candidate circuit will be recorded; all records of the incremental analysis training will be recorded Correlation analysis is performed with the standard output in the data set, and if the correlation analysis result is greater than a preset fourth threshold, it is determined that the candidate circuit passes the increase or decrease analysis.
结合场景示例来说,增减性分析用于分析电路的功能能否达到用户的需求。数据集的数据是根据用户需求构造的。依次获取数据集的输入利用第二目标函数对候选电路进行训练,若候选电路的输出和数据集的输出在误差范围内,则说明候选电路的功能达到用户的需求。Combined with the scenario example, the increase or decrease analysis is used to analyze whether the function of the circuit can meet the user's needs. The data of the dataset is constructed according to user requirements. The input of the data set is sequentially obtained and the second objective function is used to train the candidate circuit. If the output of the candidate circuit and the output of the data set are within the error range, it means that the function of the candidate circuit meets the needs of the user.
基于以上实施方式,通过第二目标函数验证候选电路的能否达到用户设计的电路特性。Based on the above embodiments, whether the candidate circuit can achieve the circuit characteristics designed by the user is verified through the second objective function.
以上方案,对候选电路进行定性分析,筛选出能正常流通并且符合用户设计的电路特性的候选电路。接下来对定量分析流程进行示例性说明。In the above scheme, the candidate circuits are qualitatively analyzed, and the candidate circuits that can circulate normally and meet the circuit characteristics designed by the user are screened out. Next, the quantitative analysis process is exemplified.
在一个示例中,S103还包括:将所述数据集中的标准输入作为所述候选电路的仿真输入,基于电路仿真器,对所述候选电路进行仿真,获得所述候选电路的仿真输出;以及,根据所述器件设计参数的初始值和预定的标准差范围,随机产生当前的训练设计参数;根据当前的训练设计参数和对应的仿真输出,基于概率类算法,训练用于基于仿真输出预测器件设计参数的预测模型;将所述候选电路的仿真输出作为输入,获得所述预测模型输出的器件设计参数和输出的标准差范围;根据输出的器件设计参数和输出的标准差范围,随机产生当前的训练设计参数;以及,再次执行所述根据当前的训练设计参数和对应的仿真输出,基于概率类算法训练用于基于仿真输出预测器件设计参数的预测模型的步骤,直至模型训练次数超过预设的第五阈值,则将所述预测模型当前输出的器件设计参数作为所述候选电路的器件设计参数,并判定所述候选电路通过定量分析。In an example, S103 further includes: using the standard input in the data set as a simulation input of the candidate circuit, simulating the candidate circuit based on a circuit simulator, and obtaining a simulation output of the candidate circuit; and, According to the initial value of the device design parameters and the predetermined standard deviation range, the current training design parameters are randomly generated; according to the current training design parameters and the corresponding simulation output, based on the probability class algorithm, the training is used to predict the device design based on the simulation output. parameter prediction model; take the simulation output of the candidate circuit as input, obtain the device design parameters output by the prediction model and the standard deviation range of the output; according to the output device design parameters and the output standard deviation range, randomly generate the current training the design parameters; and, performing the step of training the prediction model for predicting the device design parameters based on the simulation output based on the probabilistic algorithm based on the current training design parameters and the corresponding simulation output again, until the number of times of model training exceeds a preset number of times. For the fifth threshold, the device design parameters currently output by the prediction model are used as the device design parameters of the candidate circuit, and it is determined that the candidate circuit has passed the quantitative analysis.
结合场景示例来说,定量分析用于得到电路的器件设计参数,器件设计参数为器件本身的性质参数,如电阻的器件设计参数即该电阻的阻值等。根据用户设定的器件设计参数初始值,在预定的标准差范围内产生一系列器件设计参数。通过对候选电路输入数据集中的输入数据进行仿真得到仿真输出。迭代训练通过仿真输出预测一系列器件设计参数的模型,来优化器件设计参数。Combining the scene example, quantitative analysis is used to obtain the device design parameters of the circuit. The device design parameters are the property parameters of the device itself, such as the device design parameters of the resistor, that is, the resistance value of the resistor. According to the initial values of device design parameters set by the user, a series of device design parameters are generated within a predetermined standard deviation range. The simulation output is obtained by simulating the input data in the candidate circuit input data set. Iterative training optimizes device design parameters by simulating a model that outputs a model that predicts a range of device design parameters.
可选的,将仿真输出作为键,对应的电路作为值构建哈希表。Optionally, a hash table is constructed using the simulation output as the key and the corresponding circuit as the value.
基于以上实施方式,通过训练仿真输出预测器件设计参数模型的方式,优化得到最终的器件设计参数。Based on the above embodiments, the final device design parameters are obtained by optimization by training the simulation output prediction device design parameter model.
以上方案,对候选电路进行分析得到优化后的电路,接下来进行优化后电路的挑选阶段,从而得到最终电路。In the above scheme, the candidate circuit is analyzed to obtain the optimized circuit, and then the selection stage of the optimized circuit is performed to obtain the final circuit.
在一个示例中,S104包括:对通过定量分析的候选电路进行筛选处理,并将筛选后的候选电路推送给用户;将用户选择的候选电路,作为最终电路。In one example, S104 includes: screening candidate circuits that have passed the quantitative analysis, and pushing the screened candidate circuits to the user; and taking the candidate circuits selected by the user as the final circuit.
可选的,将哈希表的每个键绘制成雷达图,若存在雷达图a包含于雷达图b时,筛除雷达图a。Optionally, draw each key of the hash table into a radar chart, and if there is a radar chart a included in the radar chart b, screen out the radar chart a.
结合场景示例来说,通过定量分析的候选电路经过筛选处理推送给用户,用户可以根据需求选择符合的电路。Combined with the scene example, the candidate circuits through quantitative analysis are filtered and pushed to the user, and the user can select a suitable circuit according to their needs.
基于以上实施方式,通过用户选择确定最终电路,从而使最终电路符合用户需求。Based on the above embodiments, the final circuit is determined through user selection, so that the final circuit meets user requirements.
本实施例提供的电路生成方法中,获取电路设计参数,所述电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;根据所述器件端口数量、所述器件数量上限值以及候选器件种类,基于神经网络模型构建多个候选电路;针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得所述候选电路的器件端口参数;若可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集;若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数;其中,所述器件端口参数包括器件各端口的电信号参数,所述数据集包括多组标准输入及对应的标准输出;根据通过定量分析的候选电路,获得最终电路。以上方案,通过神经网络模型构建电路,通过分析筛选获取最终电路,从而自动生成电路,减少人工操作,提高效率。In the circuit generation method provided in this embodiment, circuit design parameters are obtained, where the circuit design parameters include expected circuit characteristics, an upper limit of the number of devices, and the number of device ports; a data set is established according to the expected circuit characteristics; The number of ports, the upper limit of the number of devices, and the types of candidate devices, and multiple candidate circuits are constructed based on the neural network model; for each candidate circuit, the candidate circuit is obtained through feasible analysis and training based on fixed device design parameters and data sets If the feasibility analysis is passed, then according to the data set and the actual output of the candidate circuit, the candidate circuit is analyzed for increase or decrease, until the actual output of the candidate circuit matches the data set ; If the increase/decrease analysis is passed, then according to the data set and the simulation output of the candidate circuit, the device design parameters of the candidate circuit are obtained through quantitative analysis and training; wherein, the device port parameters include the electrical power of each port of the device. Signal parameters, the data set includes multiple sets of standard inputs and corresponding standard outputs; according to the candidate circuits through quantitative analysis, the final circuit is obtained. In the above scheme, a circuit is constructed through a neural network model, and the final circuit is obtained through analysis and screening, thereby automatically generating a circuit, reducing manual operations and improving efficiency.
实施例二Embodiment 2
图4为本申请实施例二提供的一种电路生成装置的结构示意图,如图4所示,该装置包括:FIG. 4 is a schematic structural diagram of a circuit generation device according to Embodiment 2 of the present application. As shown in FIG. 4 , the device includes:
获取模块61,用于获取电路设计参数,所述电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;an
构建模块62,用于根据所述器件端口数量、所述器件数量上限值以及候选器件种类,基于神经网络模型构建多个候选电路;A building module 62, configured to build a plurality of candidate circuits based on the neural network model according to the number of device ports, the upper limit value of the number of devices, and the type of candidate devices;
训练模块63,用于针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得所述候选电路的器件端口参数;若可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集;若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数;其中,所述器件端口参数包括器件各端口的电信号参数,所述数据集包括多组标准输入及对应的标准输出;The
筛选模块64,用于根据通过定量分析的候选电路,获得最终电路。The
在一个示例中,获取模块61,具体用于获取器件库的器件数量上限;获取模块61,具体还用于获取用户定义的器件端口数量;获取模块61,具体还用于获取用户期望的电路特性。In one example, the
作为一种可实施方式,获取模块61根据用户设计的电路特性,构造一系列输入和输出的电压或电流结果,建立数据集。举例来说,若用户设计的电路特性为电压放大,则构造一系列电压作为输入,一系列电压分别乘放大倍数作为输出的数据集。As an embodiment, the
结合场景示例来说,器件数量上限直接从器件库获取。器件端口数量根据用户的需求进行设定。将所有器件标准化为用户设定的器件端口数量。举例来说,用户设定的器件端口数量为3,将所有的器件标准化为3端口器件。每个器件的每个端口均包含电流和电压两个变量。而对于电阻等小于3端口器件的多余端口可以等价为电流恒为0、电压恒为0的端口。同理,断路、短路以及电源也可以等价为3端口器件。同理,多个器件的组合也可等价为3端口器件。Combined with the scene example, the upper limit of the number of devices is obtained directly from the device library. The number of device ports can be set according to user needs. Normalizes all devices to a user-set number of device ports. For example, the user sets the number of device ports to 3, normalizing all devices to 3-port devices. Each port of each device contains two variables, current and voltage. For the extra ports with resistances smaller than 3-port devices, they can be equivalent to ports whose current is always 0 and voltage is always 0. Similarly, open circuit, short circuit, and power supply can also be equivalent to 3-port devices. Similarly, the combination of multiple devices can also be equivalent to a 3-port device.
可选的,基于神经网络模拟Spice模型进行端口设计。Optionally, port design is performed based on the neural network simulation Spice model.
基于以上实施方式,获取电路设计参数,从而在接下来根据电路设计参数,自动生成符合条件的电路。Based on the above embodiments, circuit design parameters are obtained, so that a circuit that meets the conditions is automatically generated according to the circuit design parameters next.
接下来根据获取的电路设计参数,自动生成电路并进行电路分析。Next, according to the obtained circuit design parameters, the circuit is automatically generated and analyzed.
在一个示例中,构建模块62,具体用于计算得到生成的最大电路数量;构建模块62,具体还用于按所述最大电路数量依次构建多个候选电路。In one example, the building module 62 is specifically configured to calculate and obtain the maximum number of circuits generated; the building module 62 is further configured to sequentially build a plurality of candidate circuits according to the maximum number of circuits.
可选的,基于最大电路数量计算公式计算得到生成的最大电路数量:Optionally, the maximum number of generated circuits is calculated based on the calculation formula of the maximum number of circuits:
((M*N)^N)*C)^M((M*N)^N)*C)^M
其中,M为器件数量上限值,N为器件端口数量,C为候选器件种类。Among them, M is the upper limit of the number of devices, N is the number of device ports, and C is the type of candidate devices.
根据所述最大电路数量,基于神经网络模型构建多个候选电路。According to the maximum number of circuits, a plurality of candidate circuits are constructed based on the neural network model.
基于以上实施方式,通过枚举方式生成所有符合电路设计参数的电路,避免出现电路遗漏。Based on the above implementation manner, all circuits that conform to the circuit design parameters are generated through enumeration to avoid circuit omission.
以上方案,生成多个符合电路设计参数的电路,需要通过电路分析验证确定电路的可靠性。所述电路分析包括定性分析和定量分析,定量分析包括可行性分析和增减性分许,定量分析用户获得电路的器件设计参数。接下来对电路分析流程进行示例说明。In the above scheme, to generate multiple circuits that meet the circuit design parameters, it is necessary to verify the reliability of the circuit through circuit analysis and verification. The circuit analysis includes qualitative analysis and quantitative analysis, the quantitative analysis includes feasibility analysis and increase/decrease analysis, and the quantitative analysis of the device design parameters of the circuit obtained by the user. The following is an example of the circuit analysis flow.
在一个示例中,训练模块63,具体用于基于第一目标函数作为优化器的优化目标,进行可行性分析的迭代训练,直至满足所述第一目标函数,其中,所述第一目标函数表征输入每个端口和输出该端口的电压相等且电流和等于0;训练模块63,具体还用于若可行性分析的迭代次数超过预设的第一阈值,则筛除所述候选电路;若可行性分析的迭代次数未超过所述第一阈值,则判定所述候选电路通过所述可行性分析。In one example, the
作为一种可实施方式,训练模块63根据用户设计的电路特性,构造一系列输入和输出的电压或电流结果,建立数据集。举例来说,若用户设计的电路特性为电压放大,则构造一系列电压作为输入,一系列电压分别乘放大倍数作为输出的数据集。As an embodiment, the
结合场景示例来说,定性分析包括可行性分析和增减性分析。可行性分析通过第一目标函数表示。若满足第一目标函数,即电路的每个端口和输出该端口的电压相等且电流和等于0,说明电路的每个端口能够正常流通。若存在端口断路的情况,电流不能通过端口,则不满足输入端口和输出端口的电压相等且电流和等于0。训练模块63以第一目标函数作为优化器的优化目标进行迭代优化,若迭代次数超过预设的第一阈值,且没有达到第一目标函数,则认定该电路不通过可行性分析。通过第一阈值限制迭代次数,防止出现无限循环迭代的情况。Combined with scenario examples, qualitative analysis includes feasibility analysis and increase or decrease analysis. Feasibility analysis is represented by a first objective function. If the first objective function is satisfied, that is, the voltage of each port of the circuit and the output port are equal and the sum of the current is equal to 0, it means that each port of the circuit can flow normally. If there is a port open circuit, and the current cannot pass through the port, it is not satisfied that the voltages of the input port and the output port are equal and the sum of the currents is equal to 0. The
基于以上实施方式,训练模块63通过第一目标函数对候选电路迭代优化,获得电路的器件端口参数,保证电路能正常流通。通过第一阈值约束迭代次数,防止出现无限循环迭代的情况。Based on the above embodiments, the
在一个示例中,训练模块63,具体用于若可行性分析通过,则将所述数据集中的每个标准输入作为所述候选电路的实际输入,进行增减性分析的迭代训练,直至满足所述第二目标函数,其中,所述第二目标函数表征当前的实际输出与标准输出之间的误差不超过预设的第二阈值;其中,若本次增减性分析的迭代次数超过预设的第三阈值,则将记录本次训练为0;若本次增减性分析的迭代次数未超过预设的第三阈值,则记录所述候选电路当前的实际输出;训练模块63,具体还用于将所有增减性分析训练的记录与所述数据集中的标准输出进行相关性分析,若相关性分析结果大于预设的第四阈值,则判定所述候选电路通过增减性分析。In one example, the
结合场景示例来说,增减性分析用于分析电路的功能能否达到用户的需求。数据集的数据是根据用户需求构造的。训练模块63,依次获取数据集的输入利用第二目标函数对候选电路进行训练,若候选电路的输出和数据集的输出在误差范围内,则说明候选电路的功能达到用户的需求。Combined with the scenario example, the increase or decrease analysis is used to analyze whether the function of the circuit can meet the user's needs. The data of the dataset is constructed according to user requirements. The
基于以上实施方式,通过第二目标函数验证候选电路的能否达到用户设计的电路特性。Based on the above embodiments, whether the candidate circuit can achieve the circuit characteristics designed by the user is verified through the second objective function.
以上方案,对候选电路进行定性分析,筛选出能正常流通并且符合用户设计的电路特性的候选电路。接下来对定量分析流程进行示例性说明。In the above scheme, the candidate circuits are qualitatively analyzed, and the candidate circuits that can circulate normally and meet the circuit characteristics designed by the user are screened out. Next, the quantitative analysis process is exemplified.
在一个示例中,训练模块63,具体用于将所述数据集中的标准输入作为所述候选电路的仿真输入,基于电路仿真器,对所述候选电路进行仿真,获得所述候选电路的仿真输出;以及,根据所述器件设计参数的初始值和预定的标准差范围,随机产生当前的训练设计参数;训练模块63,具体还用于根据当前的训练设计参数和对应的仿真输出,基于概率类算法,训练用于基于仿真输出预测器件设计参数的预测模型;将所述候选电路的仿真输出作为输入,获得所述预测模型输出的器件设计参数和输出的标准差范围;训练模块63,具体还用于根据输出的器件设计参数和输出的标准差范围,随机产生当前的训练设计参数;以及,再次执行所述根据当前的训练设计参数和对应的仿真输出,基于概率类算法训练用于基于仿真输出预测器件设计参数的预测模型的步骤,直至模型训练次数超过预设的第五阈值,则将所述预测模型当前输出的器件设计参数作为所述候选电路的器件设计参数,并判定所述候选电路通过定量分析。In an example, the
结合场景示例来说,定量分析用于得到电路的器件设计参数,器件设计参数为器件本身的性质参数,如电阻的器件设计参数即该电阻的阻值等。训练模块63根据用户设定的器件设计参数初始值,在预定的标准差范围内产生一系列器件设计参数。通过对候选电路输入数据集中的输入数据进行仿真得到仿真输出。迭代训练通过仿真输出预测一系列器件设计参数的模型,来优化器件设计参数。Combining the scene example, quantitative analysis is used to obtain the device design parameters of the circuit. The device design parameters are the property parameters of the device itself, such as the device design parameters of the resistor, that is, the resistance value of the resistor. The
可选的,将仿真输出作为键,对应的电路作为值构建哈希表。Optionally, a hash table is constructed using the simulation output as the key and the corresponding circuit as the value.
基于以上实施方式,训练模块63通过训练仿真输出预测器件设计参数模型的方式,优化得到最终的器件设计参数。Based on the above embodiments, the
以上方案,对候选电路进行分析得到优化后的电路,接下来进行优化后电路的挑选阶段,从而得到最终电路。In the above scheme, the candidate circuit is analyzed to obtain the optimized circuit, and then the selection stage of the optimized circuit is performed to obtain the final circuit.
在一个示例中,筛选模块64,具体用于对通过定量分析的候选电路进行筛选处理,并将筛选后的候选电路推送给用户;筛选模块64,具体还用于将用户选择的候选电路,作为最终电路。In one example, the
可选的,将哈希表的每个键绘制成雷达图,若存在雷达图a包含于雷达图b时,筛除雷达图a。Optionally, draw each key of the hash table into a radar chart, and if there is a radar chart a included in the radar chart b, screen out the radar chart a.
结合场景示例来说,筛选模块64通过定量分析的候选电路经过筛选处理推送给用户,用户可以根据需求选择符合的电路。Taking the example of the scene as an example, the
基于以上实施方式,通过用户选择确定最终电路,从而使最终电路符合用户需求。Based on the above embodiments, the final circuit is determined through user selection, so that the final circuit meets user requirements.
本实施例提供的电路生成装置中,获取模块,用于获取电路设计参数,所述电路设计参数包括期望的电路特性、器件数量上限值以及器件端口数量;根据期望的电路特性,建立数据集;构建模块,用于根据所述器件端口数量、所述器件数量上限值以及候选器件种类,基于神经网络模型构建多个候选电路;训练模块,用于针对每个候选电路,基于固定的器件设计参数和数据集,通过可行分析训练获得所述候选电路的器件端口参数;若定可行性分析通过,则根据所述数据集和所述候选电路的实际输出,对所述候选电路进行增减性分析,直至所述候选电路的实际输出匹配所述数据集;若增减性分析通过,则根据所述数据集和所述候选电路的仿真输出,通过定量分析训练获得所述候选电路的器件设计参数;其中,所述器件端口参数包括器件各端口的电信号参数,所述数据集包括多组标准输入及对应的标准输出;筛选模块,用于根据通过定量分析的候选电路,获得最终电路。以上方案,通过神经网络模型构建电路,通过分析筛选获取最终电路,从而生成电路,减少人工操作,提高效率。In the circuit generation apparatus provided in this embodiment, an acquisition module is configured to acquire circuit design parameters, where the circuit design parameters include expected circuit characteristics, an upper limit of the number of devices, and the number of device ports; a data set is established according to the expected circuit characteristics ; a building module for constructing multiple candidate circuits based on the neural network model according to the number of device ports, the upper limit value of the number of devices and the type of candidate devices; a training module for each candidate circuit, based on a fixed device Design parameters and data sets, and obtain the device port parameters of the candidate circuit through feasible analysis training; if the feasibility analysis is passed, increase or decrease the candidate circuit according to the data set and the actual output of the candidate circuit until the actual output of the candidate circuit matches the data set; if the increase/decrease analysis is passed, then according to the data set and the simulation output of the candidate circuit, the device of the candidate circuit is obtained through quantitative analysis and training Design parameters; wherein, the device port parameters include electrical signal parameters of each port of the device, and the data set includes multiple sets of standard inputs and corresponding standard outputs; a screening module is used to obtain the final circuit according to the candidate circuits that have passed quantitative analysis. . In the above scheme, a circuit is constructed through a neural network model, and the final circuit is obtained through analysis and screening, thereby generating a circuit, reducing manual operations and improving efficiency.
实施例三Embodiment 3
图5是根据一示例性实施例示出的一种电路生成装置的装置框图,该装置可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。Fig. 5 is an apparatus block diagram of a circuit generating apparatus according to an exemplary embodiment, the apparatus may be a mobile phone, a computer, a digital broadcasting terminal, a message sending and receiving device, a game console, a tablet device, a medical device, a fitness device, Personal digital assistants, etc.
装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。The
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。The I/
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。In an exemplary embodiment,
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。In an exemplary embodiment, there is also provided a non-transitory computer-readable storage medium including instructions, such as a
实施例四Embodiment 4
图6为本申请实施例中提供的一种电子设备的结构示意图,如图6所示,该电子设备包括:FIG. 6 is a schematic structural diagram of an electronic device provided in an embodiment of the application. As shown in FIG. 6 , the electronic device includes:
处理器(processor)291,电子设备还包括了存储器(memory)292;还可以包括通信接口(Communication Interface)293和总线294。其中,处理器291、存储器292、通信接口293、可以通过总线294完成相互间的通信。通信接口293可以用于信息传输。处理器291可以调用存储器292中的逻辑指令,以执行上述实施例的方法。A processor (processor) 291, and the electronic device further includes a memory (memory) 292; and may also include a communication interface (Communication Interface) 293 and a
此外,上述的存储器292中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。In addition, the above-mentioned logic instructions in the
存储器292作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本申请实施例中的方法对应的程序指令/模块。处理器291通过运行存储在存储器292中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的方法。As a computer-readable storage medium, the
存储器292可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器292可以包括高速随机存取存储器,还可以包括非易失性存储器。The
本申请实施例提供一种非临时性计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如前述实施例所述的方法。Embodiments of the present application provide a non-transitory computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the methods described in the foregoing embodiments. method.
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。Other embodiments of the present application will readily occur to those skilled in the art upon consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any variations, uses or adaptations of this application that follow the general principles of this application and include common knowledge or conventional techniques in the technical field not disclosed in this application . The specification and examples are to be regarded as exemplary only, with the true scope and spirit of the application being indicated by the following claims.
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。It is to be understood that the present application is not limited to the precise structures described above and illustrated in the accompanying drawings and that various modifications and changes may be made without departing from the scope thereof. The scope of the application is limited only by the appended claims.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210737292.1A CN115099146B (en) | 2022-06-27 | 2022-06-27 | Circuit generation method, device, electronic device and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210737292.1A CN115099146B (en) | 2022-06-27 | 2022-06-27 | Circuit generation method, device, electronic device and storage medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115099146A true CN115099146A (en) | 2022-09-23 |
| CN115099146B CN115099146B (en) | 2025-08-29 |
Family
ID=83294497
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210737292.1A Active CN115099146B (en) | 2022-06-27 | 2022-06-27 | Circuit generation method, device, electronic device and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115099146B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115688664A (en) * | 2022-11-17 | 2023-02-03 | 上海集成电路研发中心有限公司 | Transformer circuit modeling method and device, electronic equipment and storage medium |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0213882D0 (en) * | 2002-06-17 | 2002-07-31 | Univ Strathclyde | A digital system & method for testing analogue & mixed-signal circuits or systems |
| US20060075365A1 (en) * | 2004-09-30 | 2006-04-06 | Sabio Labs, Inc. | Novel optimization for circuit design |
| CN110619393A (en) * | 2019-09-27 | 2019-12-27 | 上海交通大学 | Traffic simulation software parameter calibration method, system and medium based on learning algorithm |
| WO2021007812A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳大学 | Deep neural network hyperparameter optimization method, electronic device and storage medium |
| CN112883672A (en) * | 2021-03-05 | 2021-06-01 | 清华大学 | Digital modeling method and device for mixed signal circuit |
| CN114330193A (en) * | 2021-12-21 | 2022-04-12 | 东南大学 | Wide voltage circuit delay estimation method based on parameter selection |
| CN114492279A (en) * | 2022-01-27 | 2022-05-13 | 西安交通大学 | A method and system for parameter optimization of an analog integrated circuit |
-
2022
- 2022-06-27 CN CN202210737292.1A patent/CN115099146B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0213882D0 (en) * | 2002-06-17 | 2002-07-31 | Univ Strathclyde | A digital system & method for testing analogue & mixed-signal circuits or systems |
| US20060075365A1 (en) * | 2004-09-30 | 2006-04-06 | Sabio Labs, Inc. | Novel optimization for circuit design |
| WO2021007812A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳大学 | Deep neural network hyperparameter optimization method, electronic device and storage medium |
| CN110619393A (en) * | 2019-09-27 | 2019-12-27 | 上海交通大学 | Traffic simulation software parameter calibration method, system and medium based on learning algorithm |
| CN112883672A (en) * | 2021-03-05 | 2021-06-01 | 清华大学 | Digital modeling method and device for mixed signal circuit |
| CN114330193A (en) * | 2021-12-21 | 2022-04-12 | 东南大学 | Wide voltage circuit delay estimation method based on parameter selection |
| CN114492279A (en) * | 2022-01-27 | 2022-05-13 | 西安交通大学 | A method and system for parameter optimization of an analog integrated circuit |
Non-Patent Citations (3)
| Title |
|---|
| DU, HUILIAN ETC: "A SPICE analog behavioral model of two-port devices with arbitrary port impedances based on the S-parameters extracted from time-domain field responses", 《 INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS》, 31 December 2008 (2008-12-31) * |
| 季飞;王加庆;刘剑;吴南健;: "适用于硬件高速计算的CNN目标跟踪算法", 微电子学与计算机, no. 12, 5 December 2018 (2018-12-05) * |
| 张爱民;张杭;谢美娟;李宏;陈德桂;: "一种电子设备电磁敏感性的仿真建模与优化设计方法", 西安交通大学学报, no. 06, 10 June 2008 (2008-06-10) * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115688664A (en) * | 2022-11-17 | 2023-02-03 | 上海集成电路研发中心有限公司 | Transformer circuit modeling method and device, electronic equipment and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115099146B (en) | 2025-08-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109543537B (en) | Re-recognition model increment training method and device, electronic equipment and storage medium | |
| CN112241361B (en) | Test case generation method and device, problem scenario automatic reproduction method and device | |
| CN110647834A (en) | Human face and human hand correlation detection method and device, electronic equipment and storage medium | |
| CN111581488A (en) | Data processing method and device, electronic equipment and storage medium | |
| CN109359056B (en) | Application program testing method and device | |
| CN110941942A (en) | Method, device and system for checking circuit schematic diagram | |
| WO2017071078A1 (en) | Communication module firmware and plug-in generation method and apparatus | |
| CN109165738B (en) | Neural network model optimization method and device, electronic device and storage medium | |
| CN111461304B (en) | Classification neural network training methods, text classification methods, devices and equipment | |
| CN107194464B (en) | Convolutional Neural Network Model Training Method and Device | |
| CN107341509B (en) | Training method, device and readable storage medium for convolutional neural network | |
| CN111553464A (en) | Image processing method, device and intelligent device based on super network | |
| CN112070235A (en) | Abnormity positioning method and device of deep learning framework and storage medium | |
| CN115099146B (en) | Circuit generation method, device, electronic device and storage medium | |
| CN114563688B (en) | PFC hardware circuit testing method, device and medium | |
| CN109447258B (en) | Neural network model optimization method and device, electronic device and storage medium | |
| CN109376674B (en) | Face detection method, device and storage medium | |
| CN112070221B (en) | Operation method, device and related product | |
| CN105988602B (en) | Mouse simulation method and device | |
| CN110633105B (en) | Instruction sequence processing method and device, electronic equipment and storage medium | |
| CN112346968B (en) | Automatic detection method and device for definition of multimedia file | |
| CN114022248A (en) | Product recommendation calculation method, device and equipment | |
| CN112331278A (en) | Data processing method and device, electronic equipment and storage medium | |
| CN114444576B (en) | Data sampling method, device, electronic device and storage medium | |
| CN115204488B (en) | Data processing method, device, electronic device and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant |