CN115076620A - Buried oil pipeline leakage detection method based on improved UPEMD and DTWSVM - Google Patents
Buried oil pipeline leakage detection method based on improved UPEMD and DTWSVM Download PDFInfo
- Publication number
- CN115076620A CN115076620A CN202210561526.1A CN202210561526A CN115076620A CN 115076620 A CN115076620 A CN 115076620A CN 202210561526 A CN202210561526 A CN 202210561526A CN 115076620 A CN115076620 A CN 115076620A
- Authority
- CN
- China
- Prior art keywords
- dtwsvm
- twsvm
- signal
- model
- upemd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D5/00—Protection or supervision of installations
- F17D5/02—Preventing, monitoring, or locating loss
- F17D5/06—Preventing, monitoring, or locating loss using electric or acoustic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
- G01M3/243—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
技术领域technical field
本发明涉及管道泄漏检测和声波信号处理技术领域,尤其涉及基于 改进UPEMD和DTWSVM的埋地输油管道泄漏检测方法。The present invention relates to the technical field of pipeline leak detection and acoustic signal processing, in particular to a buried oil pipeline leak detection method based on improved UPEMD and DTWSVM.
背景技术Background technique
管道作为一种兼顾便捷性、经济性的运输方式,在各个领域得到了 众多的应用。由于埋地管道所处的环境较为复杂,且管道在地下容易受 雨水等腐蚀,管道很容易出现泄漏。输油管道出现泄漏,不仅造成资源 的浪费,还会对土壤、植被产生巨大影响,因此对埋地管道进行泄漏检 测具有重要的意义。As a convenient and economical transportation method, pipelines have been widely used in various fields. Because the environment in which the buried pipeline is located is relatively complex, and the pipeline is easily corroded by rainwater, etc., the pipeline is prone to leakage. Leakage of oil pipelines not only causes waste of resources, but also has a huge impact on soil and vegetation. Therefore, leak detection of buried pipelines is of great significance.
声波法具有误报率低、漏报率低、传播距离远、良好的灵敏度等诸 多优点,所以采用声波法对管道进行泄漏检测得到了广泛的应用。由于 声波在传播的过程中,易受噪声的影响,所以对声波信号进行去噪处理 十分重要。UPEMD(uniform phase empirical modedecomposition,均匀相 位经验模态分解)是在EMD(empirical mode decomposition,经验模态分 解)的基础上进行优化和改进的一种信号处理方法,它采用相位均匀分 布的正弦信号作为辅助信号,并且通过增加正弦波的相位数以达到更好 的抑制模态混叠现象。但是UPEMD将信号分解为若干个IMF(intrinsic modal function,本征模态函数)后,没有给出一个合适的筛选方法。在 重构信号时,若选择重构的IMF包含的有用信息少,则会导致误差增 大,信号的分析效果达不到预期。The acoustic wave method has many advantages such as low false alarm rate, low false alarm rate, long propagation distance, good sensitivity, etc. Therefore, the use of acoustic wave method for pipeline leak detection has been widely used. Since the sound wave is easily affected by noise in the process of propagation, it is very important to de-noise the sound wave signal. UPEMD (uniform phase empirical mode decomposition, uniform phase empirical mode decomposition) is a signal processing method optimized and improved on the basis of EMD (empirical mode decomposition, empirical mode decomposition). It uses sinusoidal signals with uniform phase distribution as the Auxiliary signal, and by increasing the phase number of the sine wave to achieve better suppression of modal aliasing. However, after UPEMD decomposes the signal into several IMFs (intrinsic modal function, intrinsic modal function), there is no suitable screening method. When reconstructing the signal, if the selected reconstructed IMF contains less useful information, the error will increase, and the analysis effect of the signal will not reach the expectation.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术的上述缺点、不足,本发明提供一种基于改进 UPEMD和DTWSVM的埋地输油管道泄漏检测方法,其解决了现有埋地 输油管道泄漏检测技术所存在的误差大、信号分析效果差的技术问题。 本发明能够提高对管道的泄漏检测能力,并准确判断管道的工况。In view of the above-mentioned shortcomings and deficiencies of the prior art, the present invention provides a buried oil pipeline leak detection method based on improved UPEMD and DTWSVM, which solves the large error and signal analysis effect of the existing buried oil pipeline leak detection technology. Bad technical issues. The invention can improve the leak detection capability of the pipeline and accurately judge the working condition of the pipeline.
为了达到上述目的,本发明采用的主要技术方案包括:In order to achieve the above-mentioned purpose, the main technical scheme adopted in the present invention includes:
本发明实施例提供基于改进UPEMD和DTWSVM的埋地输油管道泄 漏检测方法。该方法包括以下步骤:The embodiments of the present invention provide a leak detection method for buried oil pipelines based on improved UPEMD and DTWSVM. The method includes the following steps:
步骤1,采用声压传感器获取输油管道在正常工况和泄漏时的声波 信号数据;
步骤2,采用UPEMD算法对步骤1采集的声波信号数据进行分解, 直到残余不能在分解,得到若干个IMF;
步骤3,计算步骤2中所得到的各IMF与管道泄漏时和正常工作时 的声波信号的互信息值,根据得到的互信息值计算各个IMF的相似系 数,通过相似系数选取包含泄漏信息多的IMF进行信号重构;Step 3: Calculate the mutual information value of each IMF obtained in
步骤4,根据深度学习DL和孪生双子支持向量机TWSVM,建立网 络模型DTWSVM;
步骤5,根据步骤3得到的重构信号,建立DTWSVM模型的训练样 本和测试样本;将训练样本输入到DTWSVM模型中,通过监督学习和 无监督学习调整DTWSVM模型中的参数,得到训练好的DTWSVM模 型;然后将测试样本输入到训练好的DTWSVM模型中,对埋地输油管道的工况进行判断。Step 5: According to the reconstructed signal obtained in
进一步地,所述步骤2中采用UPEMD算法对声波信号分解的具体 步骤如下:Further, adopt UPEMD algorithm in described
步骤2.1、计算UPEMD算法的循环周期Tc和循环次数nc;Step 2.1, calculate the cycle period T c and the cycle number n c of the UPEMD algorithm;
nc=log2(n) (1)n c = log 2 (n) (1)
Tc=2m,m=1:nc (2)T c =2 m , m = 1:n c (2)
式中n表示信号数据的总长度,掩膜频率的数值等于循环周期的倒 数,即fc=1/Tc,m为循环次数的倒数。In the formula, n represents the total length of the signal data, and the value of the mask frequency is equal to the reciprocal of the cycle period, that is, f c =1/T c , and m is the reciprocal of the number of cycles.
步骤2.2、对相位的个数np和幅值ε进行设置,其中,np∈N,np>1,且 np的个数必须为2的整数次方,当np的取值为2时,UPEMD就是掩膜EMD;Step 2.2. Set the number of phases n p and the amplitude ε, where n p ∈ N, n p > 1, and the number of n p must be an integer power of 2, when the value of n p is 2, UPEMD is the mask EMD;
步骤2.3、令原始信号x(t)=r0(t),同时,构造掩蔽信号,即:Step 2.3. Let the original signal x(t)=r 0 (t), and at the same time, construct the masking signal, namely:
w(t;εm;fc;θk)=εm·cos(2π·fc·t+θk) (3)w(t; ε m ; f c ; θ k )=ε m ·cos(2π·f c ·t+θ k ) (3)
其中,εm=ε×rm-1(t),rm-1(t)是标准偏差,相位θk在[0,2π]范围内被均匀 的分成np份,故Among them, ε m =ε×r m-1 (t), r m-1 (t) is the standard deviation, and the phase θ k is evenly divided into n p parts in the range of [0,2π], so
θk=2π(k-1)/np,k=1:np (4)θ k = 2π(k-1)/n p , k=1:n p (4)
步骤2.4、扰乱信号yk(t)的表达式为:Step 2.4, the expression of disturbance signal y k (t) is:
yk(t)=x(t)+εm·cos(2π·fc·t+θk) (5)y k (t)=x(t)+ε m ·cos(2π·f c ·t+θ k ) (5)
步骤2.5、用EMD对扰乱信号yk(t)进行分解,将分解得到的第i个IMF 分量定义为Ei(·);因此,EMD分解得到的第一个分量为:Step 2.5, decompose the disturbance signal y k (t) with EMD, and define the i-th IMF component obtained by the decomposition as E i ( ); therefore, the first component obtained by EMD decomposition is:
cm,k(t)=E1(x(t)+w(t;εm;fc;θk)),k=1,2...np,m=1:nc (6)c m,k (t)=E 1 (x(t)+w(t; ε m ; f c ; θ k )), k=1,2...n p ,m=1:n c (6 )
步骤2.6、从得到的cm,k(t)中减去掩蔽信号w(t;εm;fc;θk)后,再进行集成 平均就可以得到IMF1,即:Step 2.6, after subtracting the masking signal w(t; ε m ; f c ; θ k ) from the obtained cm, k (t), and then performing integrated averaging to obtain IMF1, namely:
步骤2.7、将步骤2.6中计算得到的余项作为新的待分解的扰乱信号, 循环步骤2.1-步骤2.6,直到分解出所有的IMF后,停止循环。Step 2.7: Use the remainder calculated in step 2.6 as a new disturbance signal to be decomposed, and repeat steps 2.1 to 2.6 until all IMFs are decomposed, and then stop the cycle.
进一步地,所述步骤3的具体方法为:Further, the concrete method of described
计算各个IMF与管道泄漏时和正常工作时的声波信号的互信息值:Calculate the mutual information value of each IMF and the acoustic signal when the pipeline leaks and when it is working normally:
式中X和Y是两个随机信号,p(x,y)表示X和Y的联合分布,且X和Y的 边缘概率密度函数分别为p(x)和p(y);where X and Y are two random signals, p(x, y) represents the joint distribution of X and Y, and the marginal probability density functions of X and Y are p(x) and p(y) respectively;
将IMF与泄漏信号的互信息定义为li,将IMF与正常工况时信号的 互信息定义为hi,根据得到的互信息值计算相似系数βi,βi=li-hi; i=1,2…,k;Define the mutual information between the IMF and the leaked signal as l i , define the mutual information between the IMF and the signal under normal working conditions as h i , calculate the similarity coefficient β i according to the obtained mutual information value, β i = li -hi ; i=1,2...,k;
根据相似系数选择包含泄漏信息多的IMF重构信号,相似系数越大 的IMF包含的泄漏信息越多。According to the similarity coefficient, the IMF reconstruction signal with more leakage information is selected, and the IMF with the larger similarity coefficient contains more leakage information.
进一步地,所述步骤4的具体方法为:Further, the concrete method of described
在深度学习和TWSVM的基础上,通过分析各种网络结构和网络层 数对检测精度的影响,建立一种新的网络模型DTWSVM,通过对模型训 练确定模型中各个参数的最优值;On the basis of deep learning and TWSVM, a new network model DTWSVM is established by analyzing the influence of various network structures and network layers on the detection accuracy, and the optimal value of each parameter in the model is determined through model training;
所述DTWSVM模型是一个包含输入层、隐含层和输出层的三层网络 模型,隐含层中设置三个TWSVM来提取输入数据的特征,输出层设置 一个主TWSVM来对管道的工况进行判别;The DTWSVM model is a three-layer network model including an input layer, a hidden layer and an output layer. Three TWSVMs are set in the hidden layer to extract the features of the input data, and a main TWSVM is set in the output layer to perform the pipeline conditions. to judge;
所述隐含层中的TWSVM分为两类,输入数据为线性数据时, TWSVM为线性,生成三对超平面,将原始数据映射到6维空间中,记录 原始数据的6维位置信息;输入的是非线性数据时,TWSVM为非线性, 引入核函数数据将原始数据映射到6维空间;The TWSVM in the hidden layer is divided into two categories. When the input data is linear data, the TWSVM is linear, generates three pairs of hyperplanes, maps the original data to a 6-dimensional space, and records the 6-dimensional position information of the original data; input When the data is nonlinear, TWSVM is nonlinear, and the kernel function data is introduced to map the original data to the 6-dimensional space;
原始数据T=[(x1,y1),…,(xm+k,ym+k)]输入到模型的输入层,隐含层中三个 TWSVM进行数据的特征提取,生成一个特征数据集:The original data T=[(x 1 , y 1 ),...,(x m+k ,y m+k )] is input to the input layer of the model, and the three TWSVMs in the hidden layer perform feature extraction of the data to generate a feature data set:
X=f(x)=(f(x)1,+,f(x)1,-,f(x)2,+,f(x)2,-,f(x)3,+,f(x)3,-)T (27)X=f(x)=(f(x) 1,+ ,f(x) 1,- ,f(x) 2,+ ,f(x) 2,- ,f(x) 3,+ ,f( x) 3,- ) T (27)
f(x)i,j=(wi,j·x)+bi,j,i=1,2,3,j=+,- (28)f(x) i,j =(wi ,j ·x)+b i,j , i=1,2,3,j=+,- (28)
式中,bi,j和wi,j均为DTWSVM模型中的参数,训练后得到具体数值;In the formula, b i,j and w i,j are parameters in the DTWSVM model, and specific values are obtained after training;
非线性情况下,隐含层中的TWSVM通过核函数进行映射:In the case of nonlinearity, the TWSVM in the hidden layer is mapped by the kernel function:
f(x)i,j=K(xT,CT)zi,j+bi,j,i=1,2,3,j=+,- (29)f(x) i,j =K(x T ,C T )z i,j +b i,j , i=1,2,3,j=+,- (29)
式中,K(xT,CT)表示核函数,zi,j是DTWSVM模型中的参数;In the formula, K(x T , C T ) represents the kernel function, and zi , j are the parameters in the DTWSVM model;
所述TWSVM中的参数是通过交叉验证和网格搜索的方法来确定参 数的最优值;The parameters in the TWSVM are determined by the methods of cross-validation and grid search;
所述输出层的主TWSVM分为两类,线性TWSVM和非线性 TWSVM;类别与隐含层中的TESVM保持一致,主TWSVM是用来对管 道的工况进行判断;The main TWSVM of the output layer is divided into two categories, linear TWSVM and nonlinear TWSVM; the category is consistent with the TESVM in the hidden layer, and the main TWSVM is used to judge the working condition of the pipeline;
主TWSVM在线性和非线性状态下的判别公式分别为:The discriminant formulas of the main TWSVM in the linear and nonlinear states are:
式中,K(xT,CT)表示核函数。In the formula, K(x T , C T ) represents the kernel function.
进一步地,所述步骤5中,模型的训练通过自下而上的非监督学习 和自上而下的监督学习来调整网络模型中的各项参数;其中,非监督学 习是逐个对模型的每一层进行训练,调整各层的每项参数,训练时,前 一层的输出作为后一层的输入,直到所有的层训练完成;监督学习是在 非监督学习的基础上,对模型各个层的参数进行调整,使得各层参数到达最优值,进而将误差最小化。Further, in the
本发明的有益效果是:本发明的基于改进UPEMD和DTWSVM的埋 地输油管道泄漏检测方法,采用基于互信息优化的UPEMD算法对采集 的声波信号进行去噪处理,UPEMD将信号分解为若干个IMF,根据互 信息得到各IMF的相似系数,根据相似系数选择包含泄漏信息多的IMF 进行信号重构,重构后的信号能够准确反映管道的泄漏信息,且含噪声 极少。The beneficial effects of the present invention are as follows: in the buried oil pipeline leak detection method based on the improved UPEMD and DTWSVM of the present invention, the UPEMD algorithm based on mutual information optimization is used to denoise the collected acoustic signal, and the UPEMD decomposes the signal into several IMFs. , the similarity coefficient of each IMF is obtained according to the mutual information, and the IMF with more leakage information is selected according to the similarity coefficient to reconstruct the signal. The reconstructed signal can accurately reflect the leakage information of the pipeline and contains very little noise.
本发明根据DL(deep learning,深度学习)和TWSVM(twin support vectormachine,孪生双子支持向量机),建立了一种DTWSVM(deep twin support vectormachine,深度孪生双子支持向量机)模型,DTWSVM 模型结合了深度学习和TWSVM的优点,能够准确判断管道的工况。According to DL (deep learning, deep learning) and TWSVM (twin support vector machine, twin support vector machine), the present invention establishes a DTWSVM (deep twin support vector machine, deep twin support vector machine) model, the DTWSVM model combines the depth The advantages of learning and TWSVM can accurately judge the working conditions of the pipeline.
附图说明Description of drawings
图1为本发明基于改进UPEMD和DTWSVM的埋地输油管道泄漏检 测方法的流程图;Fig. 1 is the flow chart of the buried oil pipeline leak detection method based on improved UPEMD and DTWSVM of the present invention;
图2为本发明所提供的改进UPEMD对信号进行去噪的流程图;Fig. 2 is the flow chart that the improved UPEMD provided by the present invention denoises the signal;
图3为本发明提供的DTWSVM模型的结构图;Fig. 3 is the structural diagram of the DTWSVM model provided by the present invention;
图4为本发明所提供的检测原理图;Fig. 4 is the detection principle diagram provided by the present invention;
图5为本发明所提供的现场图;Fig. 5 is a site map provided by the present invention;
图6为本发明所提供的传感器1在管道首站采集的原始信号(即去 噪前的管道泄漏声波信号)图;Fig. 6 is the original signal (that is, the pipeline leakage acoustic wave signal before denoising) that the
图7为本发明所提供的分解得到的部分IMF及其对应的频谱图;Fig. 7 is the partial IMF obtained by decomposition provided by the present invention and its corresponding spectrogram;
图8为本发明所提供的各IMF的相似系数数值示意图;8 is a schematic diagram of similar coefficient numerical values of each IMF provided by the present invention;
图9为本发明的重构后的信号与采用EMD、UPEMD去噪后的信号 进行对比的泄漏声波信号曲线图;其中,图9(a)为采用EMD去噪后的 泄漏声波信号曲线图;图9(b)为采用UPEMD去噪后的泄漏声波信号 曲线图;图9(c)为采用本发明方法去噪后的泄漏声波信号曲线图。9 is a graph of the leaked acoustic wave signal comparing the reconstructed signal of the present invention with the signal denoised by EMD and UPEMD; wherein, FIG. 9(a) is a graph of the leaked acoustic wave signal denoised by EMD; Fig. 9(b) is a graph of the leaked acoustic wave signal after denoising by UPEMD; Fig. 9(c) is a graph of the leaked acoustic wave signal after denoising by the method of the present invention.
具体实施方式Detailed ways
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实 施方式,对本发明作详细描述。In order to better explain the present invention and facilitate understanding, the present invention will be described in detail below with reference to the accompanying drawings and through specific embodiments.
如图1所示,本实施例提供了一种基于改进UPEMD和DTWSVM的 埋地输油管道泄漏检测方法,包括以下步骤:As shown in Figure 1, the present embodiment provides a buried oil pipeline leak detection method based on improved UPEMD and DTWSVM, comprising the following steps:
步骤1,使用声压传感器对输油管道在正常工作时和泄漏时的声波 信号进行采集。
步骤2,采用UPEMD算法对采集的声波信号进行分解,直到残余不 能再分解时停止分解。In
EMD是一种常用的信号处理方法,但是其存在模态混叠现象会导致 重构后的信号掺有较多噪声和其它间断信号,导致出现误差。UPEMD是 在EMD的基础上进行优化和改进的一种信号处理方法,它采用相位均匀 分布的正弦信号作为辅助信号,并且通过增加正弦波的相位数以达到更 好的抑制模态混叠现象。UPEMD的具体步骤如下:EMD is a commonly used signal processing method, but its existence of modal aliasing will cause the reconstructed signal to be mixed with more noise and other discontinuous signals, resulting in errors. UPEMD is a signal processing method optimized and improved on the basis of EMD. It uses sinusoidal signals with uniform phase distribution as auxiliary signals, and increases the phase number of sinusoidal waves to better suppress modal aliasing. The specific steps of UPEMD are as follows:
(1)首先,计算UPEMD算法的循环周期Tc和循环次数nc。(1) First, calculate the cycle period T c and the cycle number n c of the UPEMD algorithm.
nc=log2(n) (1)n c = log 2 (n) (1)
Tc=2m,m=1:nc (2)T c =2 m , m = 1:n c (2)
式中n表示信号数据的总长度,掩膜频率的数值等于循环周期的倒数, 即fc=1/Tc,m为循环次数的倒数。In the formula, n represents the total length of the signal data, the value of the mask frequency is equal to the reciprocal of the cycle period, that is, f c =1/T c , and m is the reciprocal of the number of cycles.
(2)对相位的个数np和幅值ε进行设置。其中,np∈N,np>1,且np的个 数必须为2的整数次方,当np的取值为2时,UPEMD就是掩膜EMD。(2) Set the number of phases n p and the amplitude ε. Among them, n p ∈ N, n p >1, and the number of n p must be an integer power of 2. When the value of n p is 2, UPEMD is the mask EMD.
(3)令原始信号x(t)=r0(t),同时,构造掩蔽信号,即(3) Let the original signal x(t)=r 0 (t), and at the same time, construct the masking signal, that is
w(t;εm;fc;θk)=εm·cos(2π·fc·t+θk) (3)w(t; ε m ; f c ; θ k )=ε m ·cos(2π·f c ·t+θ k ) (3)
其中,εm=ε×rm-1(t),rm-1(t)是标准偏差,相位θk在[0,2π]范围内被均匀 的分成np份,故Among them, ε m =ε×r m-1 (t), r m-1 (t) is the standard deviation, and the phase θ k is evenly divided into n p parts in the range of [0,2π], so
θk=2π(k-1)/np,k=1:np (4)θ k = 2π(k-1)/n p , k=1:n p (4)
(4)由以上可以得到扰乱信号yk(t)的表达式:(4) The expression of the disturbance signal y k (t) can be obtained from the above:
yk(t)=x(t)+εm·cos(2π·fc·t+θk) (5)y k (t)=x(t)+ε m ·cos(2π·f c ·t+θ k ) (5)
(5)采用EMD对扰乱信号进行分解,将分解得到的第i个IMF分量 定义为Ei(·)。因此,EMD分解得到的第一个分量为:(5) The disturbance signal is decomposed by EMD, and the i-th IMF component obtained by decomposing is defined as E i (·). Therefore, the first component obtained from the EMD decomposition is:
cm,k(t)=E1(x(t)+w(t;εm;fc;θk)),k=1,2...np,m=1:nc (6)c m,k (t)=E 1 (x(t)+w(t; ε m ; f c ; θ k )), k=1,2...n p ,m=1:n c (6 )
此时,从式(5)得到的cm,k(t)中减去w(t;εm;fc;θk)后,再对其进行集成 平均就可以得到IMF1,即At this time, after subtracting w(t; ε m ; f c ; θ k ) from the c m,k (t) obtained by formula (5), and then performing an integrated average on it, IMF1 can be obtained, that is,
(6)将计算得到的余项作为新的待分解的扰乱信号,循环步骤 (1)-(5),直到分解出所有的IMF后停止循环。(6) Take the calculated remainder as a new disturbance signal to be decomposed, and repeat steps (1)-(5) until all IMFs are decomposed and stop the cycle.
步骤3,采用互信息优化UPEMD算法,根据各IMF的互信息值计 算相似系数,并根据相似系数来选择合适的IMF进行信号重构,改进 UPEMD算法的流程图如图2所示。In
互信息可以度量两个变量或者系统之间的相关程度。互信息值越大, 则表明两个变量或系统之间的依赖程度越大,且两者之间互相包含的共 同信息也越多。定义X和Y是两个随机信号,它们的联合分布用p(x,y)来 表示,且X和Y的边缘概率密度函数分别为p(x)和p(y)。互信息可由下式求 得:Mutual information can measure the degree of correlation between two variables or systems. The greater the mutual information value, the greater the degree of dependence between two variables or systems, and the more common information they contain. Definition X and Y are two random signals, their joint distribution is represented by p(x,y), and the marginal probability density functions of X and Y are p(x) and p(y) respectively. The mutual information can be obtained by the following formula:
对管道首末站传感器采集的信号进行去噪时,首先采用UPEMD算 法对信号进行分解,得到的每个IMF中含有的泄漏信息多少不同。 UPEMD算法仅仅是对信号进行分解,没有给出IMF的筛选方法。一般 情况下,是将所有IMF重构或者通过频域分析选择位于某特定频段内的 IMF进行重构。但是这种选择方法得到的信号中,仍然含有一定的噪 声,不能有效减小误差。所以,在重构信号时,需要确定一个能够筛选 出包含泄漏信息多的IMF的方法,减小噪声引起的误差。互信息可以反 映两个变量之间相关程度。因此,本发明采用互信息对UPEMD算法进 行优化,具体步骤如下:When denoising the signal collected by the sensors at the first and last stations of the pipeline, the UPEMD algorithm is used to decompose the signal first, and the leakage information contained in each IMF obtained is somewhat different. The UPEMD algorithm only decomposes the signal, and does not provide a screening method for IMF. In general, all IMFs are reconstructed or the IMFs located in a specific frequency band are selected for reconstruction through frequency domain analysis. However, the signal obtained by this selection method still contains a certain amount of noise, which cannot effectively reduce the error. Therefore, when reconstructing the signal, it is necessary to determine a method that can filter out IMFs that contain a lot of leakage information, and reduce the error caused by noise. Mutual information can reflect the degree of correlation between two variables. Therefore, the present invention adopts mutual information to optimize the UPEMD algorithm, and the concrete steps are as follows:
1)将首末站传感器采集的信号采用UPEMD算法进行分解,得到k 个IMF;1) Decompose the signals collected by the sensors of the first and last stations using the UPEMD algorithm to obtain k IMFs;
2)计算每个IMF与正常工况信号之间的互信息值,并将其定义为 hi。IMF中包含泄漏信息越多时hi的数值就越小,相反则越大;2) Calculate the mutual information value between each IMF and the normal operating condition signal, and define it as h i . The more leaked information contained in the IMF, the smaller the value of hi , and vice versa;
3)计算每个IMF与泄漏信号之间的互信息值,并将其定义为li。 IMF包含的泄漏信息越多时,li的数值就越大,相反则越小;3) Calculate the mutual information value between each IMF and the leaked signal, and define it as l i . When the IMF contains more leaked information, the value of li is larger, and vice versa;
4)定义相似系数βi=li-hi,i=1,2…,k。然后,根据步骤2)和3)得 到的互信息值来计算各个IMF对应的相似系数。IMF包含泄漏信息越 多,li越大,hi越小,相似系数也就越大。4) Define the similarity coefficient β i =li -hi , i =1,2...,k. Then, the similarity coefficient corresponding to each IMF is calculated according to the mutual information values obtained in steps 2) and 3). The more leaked information is contained in the IMF, the larger the li and the smaller the hi , and the larger the similarity coefficient.
5)根据步骤4)得到的相似系数对IMF进行筛选。相似系数βi的数 值越大,表明IMF包含的泄漏信息越多。因此,选取相似系数大的IMF 进行重构,得到含噪声更少的信号。5) Screen the IMF according to the similarity coefficient obtained in step 4). The larger the value of the similarity coefficient β i , the more leaked information the IMF contains. Therefore, IMFs with large similarity coefficients are selected for reconstruction to obtain signals with less noise.
步骤4,根据深度学习DL和孪生双子支持向量机TWSVM,建立 DTWSVM模型,模型结构如图3所示。
孪生双子支持向量机TWSVM借鉴了支持向量机SVM的分类思想, 通过建立两个超平面对样本进行分类。在SVM中,正负样本是采用同一 个超平面进行分类,而TWSVM分别为正负样本各建立了一个超平面来 进行分类。一个超平面对应一个二次规划问题,所以TWSVM需要求解 两个二次规划问题,这就使得其在准确率上得到了极大的提升。此外, SVM是一次性求解一个二次规划问题,而TWSVM是将一个问题分成两 个小的二次规划问题,提高了模型的训练速度和检测能力。The twin support vector machine TWSVM draws on the classification idea of support vector machine SVM, and classifies the samples by establishing two hyperplanes. In SVM, positive and negative samples are classified using the same hyperplane, while TWSVM establishes a hyperplane for positive and negative samples respectively for classification. A hyperplane corresponds to a quadratic programming problem, so TWSVM needs to solve two quadratic programming problems, which greatly improves its accuracy. In addition, SVM solves a quadratic programming problem at one time, while TWSVM divides a problem into two small quadratic programming problems, which improves the training speed and detection ability of the model.
TWSVM是通过生成两个超平面来实现对数据的分类,定义数据集 为:TWSVM realizes the classification of data by generating two hyperplanes, and defines the data set as:
T=[(x1,y1),…,(xm+k,ym+k)] (9)T=[(x 1 ,y 1 ),...,(x m+k ,y m+k )] (9)
式中,xl∈Rn,l=1,2,…,m+k,ys=+1,s=1,2,…,m,yq=-1,q=m+1,m+2,…,m+k,定义 A=(x1,x2,…,xm)T,B=(xm+1,xm+2,…,xm+k)T。In the formula, x l ∈R n , l=1,2,…,m+k, ys=+1, s =1,2,…,m, yq=-1, q =m+1,m +2,...,m+k, define A=(x 1 ,x 2 ,...,x m ) T , B=(x m+1 ,x m+2 ,...,x m+k ) T .
由以上分析可得,对于TWSVM要求解的两个二次规划问题。可以 根据式(10)-(11)得到一对超平面(w+·x)+b+=0和(w-·x)+b-=0。It can be obtained from the above analysis that there are two quadratic programming problems that TWSVM needs to solve. A pair of hyperplanes (w + ·x)+b + =0 and (w − ·x)+b − =0 can be obtained according to equations (10)-(11).
式中,c1和c2是控制ξ大小的惩罚参数,e+和e-是两个组成元素均为1 的列向量,ξ+和ξ-是控制对噪点容忍程度的松弛变量,e+,ξ+∈Rm,e-,ξ-∈Rk。 由以上两式可得,一个目标函数的约束由另一个目标函数的模式确定, 两个超平面互相限制。线性状态下,TWSVM的拉格朗日对偶问题为:In the formula, c 1 and c 2 are the penalty parameters that control the size of ξ, e + and e - are two column vectors whose constituent elements are both 1, ξ + and ξ - are slack variables that control the tolerance to noise, and e + ,ξ + ∈R m , e - ,ξ - ∈R k . From the above two equations, the constraints of one objective function are determined by the mode of the other objective function, and the two hyperplanes constrain each other. In the linear state, the Lagrangian dual problem of TWSVM is:
其中,H=[A e+],G=[B e-]。Wherein, H=[A e + ], G=[B e − ].
综合以上,可以得到线性条件下,为了线性规划问题能有最优解, 由KKT条件可得:Based on the above, it can be obtained that under linear conditions, in order to have an optimal solution to the linear programming problem, it can be obtained from the KKT condition:
此时,当有待判定新样本输入时,线性TWSVM可以根据下式判断 样本所属标签。At this time, when there is a new sample input to be determined, the linear TWSVM can determine the label to which the sample belongs according to the following formula.
式中,|·|表示进行绝对值运算。In the formula, |·| indicates that the absolute value operation is performed.
当数据在低维空间线性不可分时,SVM利用核函数将其映射到高维 空间,再对数据进行分类。和SVM的处理方法相同,TWSVM也是采用 核函数对数据进行映射,再利用在线性条件下的方法对数据进行分类。 引入核函数后,TWSVM的两个超平面可以表示为:When the data is linearly inseparable in the low-dimensional space, SVM uses the kernel function to map it to the high-dimensional space, and then classify the data. Similar to the processing method of SVM, TWSVM also uses the kernel function to map the data, and then uses the method under linear conditions to classify the data. After introducing the kernel function, the two hyperplanes of TWSVM can be expressed as:
非线性TWSVM的两个二次规划问题如下所示:The two quadratic programming problems of nonlinear TWSVM are as follows:
非线性情况下,定义:In the nonlinear case, define:
此时,TWSVM对应的朗格朗日对偶问题为:At this time, the Langrangian dual problem corresponding to TWSVM is:
通过上述分析,为了非线性规划问题能有最优解,由KKT条件可得Through the above analysis, in order to have an optimal solution to the nonlinear programming problem, it can be obtained from the KKT condition
此时,当有待判定新样本输入时,TWSVM可以根据下式判断样本 所属标签。At this time, when there is a new sample input to be determined, TWSVM can determine the label to which the sample belongs according to the following formula.
式中,|·|是样本点到超平面的垂直距离。where |·| is the vertical distance from the sample point to the hyperplane.
TWSVM和SVM(support vector machine,支持向量机)相比,其训 练速度更快、分类精度更高,且具有良好的泛化能力。深度学习DL不 需要人为去提取特征,而是自动对数据进行筛选、提取特征。此外,与 传统神经网络相比,深度学习具有更好的学习能力、适应性和可移植 性。在深度学习和TWSVM的基础上,本发明结合两者的优点,组建了 一种新的网络模型DTWSVM。Compared with SVM (support vector machine, support vector machine), TWSVM has faster training speed, higher classification accuracy, and good generalization ability. Deep learning DL does not need to manually extract features, but automatically filters and extracts features from data. In addition, compared with traditional neural networks, deep learning has better learning ability, adaptability and portability. On the basis of deep learning and TWSVM, the present invention combines the advantages of both to form a new network model DTWSVM.
步骤5,采用训练样本对DTWSVM进行训练,确定各项参数最优 值,再使用测试样本得到分类结果,确定埋地输油管道的工况。
DTWSVM是一个包含输入层、隐含层和输出层的网络模型。输入 层输入管道两端传感器测得的数据。在模型的隐含层中,设置了三个 TWSVM,这三个TWSVM之间的唯一的区别是参数的不同,它们主要 是用来进行特征提取。三个TWSVM生成6个超平面,可以把原始数据 映射到6维空间中。输出层中设置一个TWSVM,用于进行分类。本模 型不仅充分发挥了DL和TWSVM的优点,还克服了浅层模型的不足, 具有良好的准确性。DTWSVM的模型如图3所示。DTWSVM is a network model with input layer, hidden layer and output layer. The input layer inputs the data measured by the sensors at both ends of the pipeline. In the hidden layer of the model, three TWSVMs are set. The only difference between these three TWSVMs is the difference in parameters, which are mainly used for feature extraction. Three TWSVMs generate 6 hyperplanes, which can map the original data into a 6-dimensional space. A TWSVM is set in the output layer for classification. This model not only gives full play to the advantages of DL and TWSVM, but also overcomes the shortcomings of shallow models and has good accuracy. The model of DTWSVM is shown in Figure 3.
ci1,ci2,i=1,2,3分别为隐含层中三个TWSVM的参数,本发明采用交叉验 证和网格搜索的方法来确定其最优值。管道泄漏时,传感器采集的数据 基本上为非线性数据,而RBF核函数(radial basis function,径向基函数) 具有良好的非线性映射能力、泛化能力,所以,在非线性情况下,本发 明采用RBF核函数K(xi,xj)=exp(-λ||xi-xj||2)。c i1 , c i2 , i=1, 2, and 3 are the parameters of the three TWSVMs in the hidden layer, respectively, and the present invention adopts the methods of cross-validation and grid search to determine their optimal values. When the pipeline leaks, the data collected by the sensor is basically nonlinear data, and the RBF kernel function (radial basis function, radial basis function) has good nonlinear mapping ability and generalization ability. The invention adopts the RBF kernel function K(x i , x j )=exp(-λ||x i -x j || 2 ).
在线性情况下,根据式(10)-(11)可得,隐含层中的每一个TWSVM 都会生成一对超平面。In the linear case, according to equations (10)-(11), each TWSVM in the hidden layer generates a pair of hyperplanes.
隐含层中TWSVM生成的6个超平面可以将传感器采集的原始数据 x投射到6维空间中,得到原始数据的6维位置信息,生成一个新的数据 集X。The 6 hyperplanes generated by TWSVM in the hidden layer can project the original data x collected by the sensor into the 6-dimensional space, obtain the 6-dimensional position information of the original data, and generate a new data set X.
X=f(x)=(f(x)1,+,f(x)1,-,f(x)2,+,f(x)2,-,f(x)3,+,f(x)3,-)T (27)X=f(x)=(f(x) 1,+ ,f(x) 1,- ,f(x) 2,+ ,f(x) 2,- ,f(x) 3,+ ,f( x) 3,- ) T (27)
f(x)i,j=(wi,j·x)+bi,j,i=1,2,3,j=+,- (28)f(x) i,j =(wi ,j ·x)+b i,j , i=1,2,3,j=+,- (28)
式中,bi,j和wi,j均为DTWSVM模型中的参数,训练后得到具体数值。In the formula, b i,j and w i,j are parameters in the DTWSVM model, and specific values are obtained after training.
非线性情况下,隐含层中的每个TWSVM通过式(18)-(19)生成两 个曲面,将传感器采集得到的原始数据x投射到生成的6维空间中,生成一 个新的数据集X。In the case of nonlinearity, each TWSVM in the hidden layer generates two surfaces by formulas (18)-(19), and projects the original data x collected by the sensor into the generated 6-dimensional space to generate a new data set X.
f(x)i,j=K(xT,CT)zi,j+bi,j,i=1,2,3,j=+,- (29)f(x) i,j =K(x T ,C T )z i,j +b i,j , i=1,2,3,j=+,- (29)
式中,K(xT,CT)表示核函数,zi,j是DTWSVM模型中的参数。In the formula, K(x T , C T ) represents the kernel function, and zi , j are the parameters in the DTWSVM model.
根据以上分析可得,数据集X是隐含层中三个TWSVM从原始数据x 中提取的数据特征,X将作为输出层的输入,用来判断管道的工况。According to the above analysis, the data set X is the data features extracted from the original data x by the three TWSVMs in the hidden layer, and X will be used as the input of the output layer to judge the working conditions of the pipeline.
模型的训练可以分为两部分:自下而上的非监督学习和自上而下的 监督学习。非监督学习是逐个对模型的每一层进行训练,调整各层的每 项参数。训练时,前一层的输出作为后一层的输入,直到所有的层训练 完成。监督学习是在非监督学习的基础上,对模型各个层的参数进行调 整,使得各层参数到达最优值,进而将误差最小化。DTWSVM的基本步骤如下:The training of the model can be divided into two parts: bottom-up unsupervised learning and top-down supervised learning. Unsupervised learning is to train each layer of the model one by one, and adjust each parameter of each layer. During training, the output of the previous layer is used as the input of the next layer until all layers are trained. Supervised learning is to adjust the parameters of each layer of the model on the basis of unsupervised learning, so that the parameters of each layer reach the optimal value, thereby minimizing the error. The basic steps of DTWSVM are as follows:
<1>在线性情况下,将隐含层中三个TWSVM的参数ci1,ci2,i=1,2,3代入到 式(12)-(13)中进行运算,再通过式(14)-(15)就可以得到参数wi,+,bi,+,wi,-,bi,-。 在非线性情况下,将参数ci1,ci2代入式(21)-(22)中,并通过式(23)-(24) 得到参数zi,+,bi,+,zi,-,bi,-。<1> In the linear case, the parameters c i1 , c i2 , i=1, 2, and 3 of the three TWSVMs in the hidden layer are substituted into equations (12)-(13) for operation, and then through equation (14) )-(15) to get the parameters w i,+ ,b i,+ ,wi ,- ,b i,- . In the case of nonlinearity, the parameters c i1 , c i2 are substituted into equations (21)-(22), and the parameters zi ,+ ,b i,+ ,z i,- are obtained through equations (23)-(24) ,b i,- .
<2>线性情况下,根据步骤<1>得到的各项参数和式(28),将传感器采 集到的原始数据xl转换成f(xl)。非线性情况下,采用式(29)对原始数据进 行转换。将转换得到的数据样本(f(xl),yl)作为输出层主TWSVM的输入。<2> In the case of linearity, according to the parameters obtained in step <1> and formula (28), convert the raw data x l collected by the sensor into f(x l ). In the case of non-linearity, formula (29) is used to transform the original data. The transformed data samples (f(x l ), y l ) are used as the input of the main TWSVM at the output layer.
<3>在线性情况下,通过交叉验证和网格搜索方法得到主TWSVM的 参数c1,c2的最优值。根据式(12)-(15),可以得到参数w+,b+,w-,b-的数 值。非线性情况下,根据式(20)-(23),得到参数z+,b+,z-,b-的数值。<3> In the linear case, the optimal values of the parameters c 1 , c 2 of the main TWSVM are obtained by cross-validation and grid search methods. According to formulas (12)-(15), the values of parameters w + , b + , w - , b - can be obtained. In the case of nonlinearity, according to equations (20)-(23), the values of parameters z + , b + , z - , b - are obtained.
<4>线性情况下,将步骤<3>中得到的w+,b+,w-,b-代入式(16),对管 道工况进行判断。非线性情况下将z+,b+,z-,b-代入式(25),对管道工况 进行判断。<4> In the case of linearity, substitute w + , b + , w - , b - obtained in step <3> into formula (16) to judge the pipeline condition. In the case of nonlinearity, z + , b + , z - , b - are substituted into equation (25) to judge the pipeline condition.
实施例Example
本发明采用某航油管道公司的航油管道进行了泄漏实验。航油管道 长度10km,管径为200mm,管道内为3号航空煤油,管道首末端的压力 分别为2.3kPa和0.53kPa。在管道的1km、4km和7km处各有一个口径 为8mm和5mm的球阀,用于模拟泄漏的产生。管道首末端各安装一个 PCB106B型声压传感器,用来采集泄漏信号,其量程为0-57kPa,灵敏度 为43.5Mv/kPa,工作的温度范围为-54-+121℃,采样频率设为1000Hz。 数据采集装置采用的是NI-DAQ9181数据采集器,其与LABVIEW软件 配合使用,对数据进行采集。其原理图和现场图如图4和图5所示。The present invention adopts the aviation oil pipeline of a certain aviation oil pipeline company to carry out the leakage experiment. The aviation oil pipeline is 10km in length and 200mm in diameter. The pipeline contains No. 3 aviation kerosene, and the pressures at the beginning and end of the pipeline are 2.3kPa and 0.53kPa respectively. There is a ball valve with a diameter of 8mm and 5mm at 1km, 4km and 7km of the pipeline to simulate the generation of leakage. A PCB106B sound pressure sensor is installed at the head and end of the pipeline to collect leakage signals. The data acquisition device adopts the NI-DAQ9181 data acquisition device, which is used in conjunction with the LABVIEW software to collect data. Its schematic diagram and field diagram are shown in Figure 4 and Figure 5.
在所有阀门关闭时,采集管道内的声波信号,即正常工况下的声波 信号。在管道的1km、3km和7km处分别打开不同的泄漏阀门模拟泄 漏,即泄漏时的声波信号。When all valves are closed, the acoustic signal in the pipeline is collected, that is, the acoustic signal under normal working conditions. Open different leakage valves at 1km, 3km and 7km of the pipeline to simulate leakage, that is, the sound wave signal when leakage occurs.
以传感器1采集到的信号为例,进行去噪实验。打开管道3km处的 8mm阀门,模拟管道出现泄漏,传感器1在管道首站采集的原始信号如 图6所示。Taking the signal collected by
从图6中可以看出,原始信号含有较多的噪声,信号波动较大,无 法判断管道是否泄漏。现采用基于互信息优化的UPEMD算法对原始信 号进行去噪处理。首先,采用UPEMD算法对原始信号进行分解,将原 始信号分解为12个不同尺度的IMF和一个残余项。图7为分解得到的部 分IMF及其频谱图。It can be seen from Figure 6 that the original signal contains more noise, and the signal fluctuates greatly, so it is impossible to judge whether the pipeline is leaking. Now the UPEMD algorithm based on mutual information optimization is used to denoise the original signal. First, the UPEMD algorithm is used to decompose the original signal, and the original signal is decomposed into 12 IMFs with different scales and a residual term. Figure 7 shows some of the IMFs and their spectrograms obtained by decomposition.
相似系数可以反映每个IMF包含泄漏信息的多少,所以可以根据相 似系数来选择包含泄漏信息多的IMF。首先,计算每个IMF与正常信号 互信息值。再计算与泄漏信号的互信息。最后,计算相似系数的数值。 根据相似系数的定义可得,相似系数的数值越大,则表明IMF中含有的 泄漏信息越多。经过计算,得到的各个IMF的相似系数值如图8所示。The similarity coefficient can reflect the amount of leaked information contained in each IMF, so the IMF with more leaked information can be selected according to the similarity coefficient. First, the mutual information value of each IMF and normal signal is calculated. Then calculate the mutual information with the leaked signal. Finally, the numerical value of the similarity coefficient is calculated. According to the definition of similarity coefficient, it can be obtained that the larger the value of similarity coefficient is, the more leakage information is contained in the IMF. After calculation, the obtained similarity coefficient values of each IMF are shown in Figure 8.
从图8可以看出IMF7-IMF12的相似系数明显大于IMF1-IMF6的相 似系数。因此,选择IMF7-IMF12进行信号重构。将重构后的信号与采用 EMD、UPEMD去噪后的信号进行对比,对比结果如图9所示。It can be seen from Figure 8 that the similarity coefficient of IMF7-IMF12 is significantly larger than that of IMF1-IMF6. Therefore, IMF7-IMF12 are selected for signal reconstruction. The reconstructed signal is compared with the signal denoised by EMD and UPEMD, and the comparison result is shown in Figure 9.
从图9(a)、图9(b)、图9(c)中可以明显看出,采用本发明的 方法得到的曲线更加平滑,含噪声更少,可以明显的看出信号的变化趋 势以及拐点。It can be clearly seen from Fig. 9(a), Fig. 9(b) and Fig. 9(c) that the curve obtained by the method of the present invention is smoother and contains less noise, and the change trend of the signal and inflection point.
在管道1km、3km和7km处分别打开8mm和5mm阀门模拟泄漏, 各采集1500组泄漏声波信号。在管道正常工况下,同样采集1500组数 据。采用基于互信息优化的UPEMD算法对信号进行去噪。8mm and 5mm valves were opened at 1km, 3km and 7km of the pipeline to simulate leakage, and 1500 sets of leakage acoustic signals were collected. In the normal working condition of the pipeline, 1500 sets of data are also collected. The UPEMD algorithm based on mutual information optimization is used to denoise the signal.
线性情况下,隐含层中三个TWSVM的参数取值为:c11=0.3,c12=0.1, c21=c22=0.2,c31=0.3,c32=0.25。输出层TWSVM的参数c1=c2=1。非线性情况 下,c11=0.1,c12=0.3,c21=c31=0.35,c22=c32=0.1。输出层TWSVM的参数 c1=1,c2=10。隐含层中三个TWSVM均采用RBF核函数,且参数λ的取值 分别为1、0.1、0.1。In the linear case, the parameters of the three TWSVMs in the hidden layer are: c 11 =0.3, c 12 =0.1, c 21 =c 22 =0.2, c 31 =0.3, and c 32 =0.25. The parameter c 1 =c 2 =1 of the output layer TWSVM. In the nonlinear case, c 11 =0.1, c 12 =0.3, c 21 =c 31 =0.35, and c 22 =c 32 =0.1. The parameters c 1 =1, c 2 =10 of the output layer TWSVM. The three TWSVMs in the hidden layer all use the RBF kernel function, and the values of the parameter λ are 1, 0.1, and 0.1, respectively.
将前800组去噪后的数据用于DTWSVM模型的训练,通过监督学习 和无监督学习来调整模型中的各个参数,直至误差最小化。训练完成 后,将剩余700组去噪后的数据作为测试样本输入到训练好的DTWSVM 中进行管道工况识别,将DTWSVM的识别精度和TWSVM、DSVM的识 别精度进行对比,对比结果如表1所示。The first 800 groups of denoised data are used for the training of the DTWSVM model, and each parameter in the model is adjusted through supervised learning and unsupervised learning until the error is minimized. After the training is completed, the remaining 700 groups of denoised data are input as test samples into the trained DTWSVM for pipeline condition recognition, and the recognition accuracy of DTWSVM is compared with that of TWSVM and DSVM. The comparison results are shown in Table 1. Show.
表1识别精度对比结果Table 1 Comparison results of recognition accuracy
根据表1可得,不论是不同位置的泄漏,还是同一位置不同大小的 泄漏,DTWSVM对管道泄漏的识别准确性明显要高于TWSVM和DSVM 的准确性,最高可达99.6%。According to Table 1, whether it is leaks at different locations or leaks of different sizes at the same location, the accuracy of DTWSVM for identifying pipeline leaks is significantly higher than that of TWSVM and DSVM, up to 99.6%.
本发明采用互信息对UPEMD方法进行了优化,得到了基于互信息 优化的UPEMD滤波方法,此方法可以有效去除信号中的噪声,极大的 保留了泄漏信息。此外,本发明将深度学习与TWSVM相结合,得到了 一种新的网络模型DTWSVM。经实验验证,将去噪后的信号输入到 DTWSVM中,可以准确判断管道工况,识别准确率高,为智慧管网的建 设和管理提供了便捷。The present invention optimizes the UPEMD method by using mutual information, and obtains a UPEMD filtering method based on mutual information optimization, which can effectively remove noise in the signal and greatly preserve the leakage information. In addition, the present invention combines deep learning with TWSVM to obtain a new network model DTWSVM. It has been verified by experiments that inputting the denoised signal into DTWSVM can accurately judge the pipeline working conditions, and the recognition accuracy is high, which provides convenience for the construction and management of the intelligent pipeline network.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210561526.1A CN115076620A (en) | 2022-05-23 | 2022-05-23 | Buried oil pipeline leakage detection method based on improved UPEMD and DTWSVM |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210561526.1A CN115076620A (en) | 2022-05-23 | 2022-05-23 | Buried oil pipeline leakage detection method based on improved UPEMD and DTWSVM |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115076620A true CN115076620A (en) | 2022-09-20 |
Family
ID=83249719
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210561526.1A Pending CN115076620A (en) | 2022-05-23 | 2022-05-23 | Buried oil pipeline leakage detection method based on improved UPEMD and DTWSVM |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115076620A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115828073A (en) * | 2023-02-24 | 2023-03-21 | 北京理工大学 | Generation method of complexity and power bispectrum based on uniform phase modal decomposition |
| CN115978466A (en) * | 2022-12-27 | 2023-04-18 | 重庆市荣冠科技有限公司 | Fluid pipeline leakage detection method based on class imbalance improved twin support vector machine |
| CN116576405A (en) * | 2023-07-12 | 2023-08-11 | 上海电机学院 | Method and system for detecting air duct leakage signal |
| CN117093899A (en) * | 2023-08-22 | 2023-11-21 | 山东大学 | Gas pipe network leakage detection method and system based on different difference and double-flow dimension expansion diagram |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108870090A (en) * | 2018-06-22 | 2018-11-23 | 大连理工大学 | Pipeline Leakage Detection Method Based on Least Squares Support Vector Machine Information Fusion |
| CN109654384A (en) * | 2019-01-29 | 2019-04-19 | 南京工业大学 | Pipeline leakage detection device and detection method based on PSO-VMD algorithm |
| CN110454687A (en) * | 2019-07-22 | 2019-11-15 | 常州大学 | A pipeline multi-point leak location method based on improved VMD |
| CN111503527A (en) * | 2020-04-22 | 2020-08-07 | 重庆邮电大学 | Fluid pipeline leakage positioning method based on self-adaptive multivariate variational modal decomposition |
| CN111664365A (en) * | 2020-06-07 | 2020-09-15 | 东北石油大学 | Oil and gas pipeline leakage detection method based on improved VMD and 1DCNN |
| CN111734961A (en) * | 2020-06-24 | 2020-10-02 | 东北石油大学 | A kind of natural gas pipeline leak detection method |
| CN112013286A (en) * | 2020-08-26 | 2020-12-01 | 辽宁石油化工大学 | Method and device for locating leak point of pipeline, storage medium and terminal |
| CN112113719A (en) * | 2020-09-21 | 2020-12-22 | 中国人民解放军海军工程大学 | Hydraulic slide valve internal leakage detection method based on acoustic emission technology |
| CN112539887A (en) * | 2020-12-23 | 2021-03-23 | 东北石油大学 | WT-LCD-WD-based pipeline leakage signal denoising method |
| CN113864665A (en) * | 2021-10-09 | 2021-12-31 | 重庆邮电大学 | Fluid pipeline leak location method based on adaptive ICA and improved RLS filter |
-
2022
- 2022-05-23 CN CN202210561526.1A patent/CN115076620A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108870090A (en) * | 2018-06-22 | 2018-11-23 | 大连理工大学 | Pipeline Leakage Detection Method Based on Least Squares Support Vector Machine Information Fusion |
| CN109654384A (en) * | 2019-01-29 | 2019-04-19 | 南京工业大学 | Pipeline leakage detection device and detection method based on PSO-VMD algorithm |
| CN110454687A (en) * | 2019-07-22 | 2019-11-15 | 常州大学 | A pipeline multi-point leak location method based on improved VMD |
| CN111503527A (en) * | 2020-04-22 | 2020-08-07 | 重庆邮电大学 | Fluid pipeline leakage positioning method based on self-adaptive multivariate variational modal decomposition |
| CN111664365A (en) * | 2020-06-07 | 2020-09-15 | 东北石油大学 | Oil and gas pipeline leakage detection method based on improved VMD and 1DCNN |
| CN111734961A (en) * | 2020-06-24 | 2020-10-02 | 东北石油大学 | A kind of natural gas pipeline leak detection method |
| CN112013286A (en) * | 2020-08-26 | 2020-12-01 | 辽宁石油化工大学 | Method and device for locating leak point of pipeline, storage medium and terminal |
| CN112113719A (en) * | 2020-09-21 | 2020-12-22 | 中国人民解放军海军工程大学 | Hydraulic slide valve internal leakage detection method based on acoustic emission technology |
| CN112539887A (en) * | 2020-12-23 | 2021-03-23 | 东北石油大学 | WT-LCD-WD-based pipeline leakage signal denoising method |
| CN113864665A (en) * | 2021-10-09 | 2021-12-31 | 重庆邮电大学 | Fluid pipeline leak location method based on adaptive ICA and improved RLS filter |
Non-Patent Citations (11)
| Title |
|---|
| GEDDES JUSTEN: "Characterization of Blood Pressure and Heart Rate Oscillations in POTS Patients via Uniform Phase Empirical Mode Decomposition", IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING, vol. 67, 11 November 2020 (2020-11-11), pages 3016 - 3025, XP011815703, DOI: 10.1109/TBME.2020.2974095 * |
| GONG JIANCHENG: "An Integrated Fault Diagnosis Method for Rotating Machinery Based on Improved Multivariate Multiscale Amplitude-Aware Permutation Entropy and Uniform Phase Empirical Mode Decomposition", SHOCK ANDVIBRATION, vol. 2021, 6 August 2021 (2021-08-06), pages 1 - 22 * |
| JINDE ZHENG: "Improved uniform phase empirical mode decomposition and its application in machinery fault diagnosis", MEASUREMENT, vol. 179, 30 April 2021 (2021-04-30), pages 1 - 10, XP086617470, DOI: 10.1016/j.measurement.2021.109425 * |
| LI GUOHUI: "Noise Reduction Method of Underwater Acoustic Signals Based on Uniform Phase Empirical Mode Decomposition, Amplitude-Aware Permutation Entropy, and Pearson Correlation Coefficient", ENTROPY, 30 November 2018 (2018-11-30), pages 1 - 18 * |
| LI, DEWEI: "Deep Twin Support Vector Machine", 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP, 31 December 2014 (2014-12-31), pages 65 - 73, XP032729818, DOI: 10.1109/ICDMW.2014.18 * |
| WANG YUNG-HUNG: "Uniform Phase Empirical Mode Decomposition: An Optimal Hybridization of Masking Signal and Ensemble Approaches.", IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS, 30 June 2018 (2018-06-30), pages 1 - 47 * |
| 于蕊: "基于EMD与SVM的泄漏声发射信号识别方法", 计算机与应用化学, vol. 28, no. 10, 28 October 2015 (2015-10-28), pages 1259 - 1264 * |
| 沈毅: "基于互信息波段选择和经验模态分解的高精度高光谱数据分类", 激光与光电子学进展, vol. 48, no. 9, 30 September 2011 (2011-09-30), pages 1 - 8 * |
| 王秀芳: "基于互信息的VMD算法在管道泄漏检测中的应用", 压力容器, vol. 34, no. 8, 30 August 2017 (2017-08-30), pages 75 - 80 * |
| 郎宪明: "基于改进VMD和TWSVM的多点泄漏检测方法", 振动与冲击, vol. 40, no. 17, 31 December 2021 (2021-12-31), pages 271 - 278 * |
| 郑近德: "匀相窄波局部特征尺度分解方法及其在机械故障诊断中的应用", 电子测量与仪器学报, vol. 35, no. 2, 28 February 2021 (2021-02-28), pages 50 - 58 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115978466A (en) * | 2022-12-27 | 2023-04-18 | 重庆市荣冠科技有限公司 | Fluid pipeline leakage detection method based on class imbalance improved twin support vector machine |
| CN115828073A (en) * | 2023-02-24 | 2023-03-21 | 北京理工大学 | Generation method of complexity and power bispectrum based on uniform phase modal decomposition |
| CN116576405A (en) * | 2023-07-12 | 2023-08-11 | 上海电机学院 | Method and system for detecting air duct leakage signal |
| CN116576405B (en) * | 2023-07-12 | 2023-10-31 | 上海电机学院 | Air duct leakage signal detection method and system |
| CN117093899A (en) * | 2023-08-22 | 2023-11-21 | 山东大学 | Gas pipe network leakage detection method and system based on different difference and double-flow dimension expansion diagram |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115076620A (en) | Buried oil pipeline leakage detection method based on improved UPEMD and DTWSVM | |
| Hu et al. | Novel leakage detection and water loss management of urban water supply network using multiscale neural networks | |
| CN109827777B (en) | Rolling bearing fault prediction method based on partial least squares extreme learning machine | |
| Bai et al. | Application of time‐frequency analysis in rotating machinery fault diagnosis | |
| CN110543860B (en) | Mechanical fault diagnosis method and system based on TJM transfer learning | |
| CN106090621B (en) | It is a kind of based on pressure signal analysis water supply network leakage, plugging fault diagnosis and localization method | |
| CN103488906B (en) | The method of valves leakage Classifcation of flaws and internal hemorrhage due to trauma rate calculations | |
| CN108488638A (en) | Line leakage system and method based on sound wave suction wave hybrid monitoring | |
| CN116467879B (en) | Fluid pipeline leakage detection method based on improved fuzzy twin support vector machine | |
| CN111915449A (en) | Dimensionality reduction and reconstruction processing method of power load data based on VMD and OMP | |
| Sun et al. | Partial discharge pattern recognition of transformers based on the gray-level co-occurrence matrix of optimal parameters | |
| CN103942325A (en) | Method for association rule mining of ocean-land climate events with combination of climate subdivision thought | |
| CN102542126A (en) | Soft measurement method based on half supervision learning | |
| CN117633588A (en) | Pipeline leakage localization method based on spectral weighting and residual convolutional neural network | |
| Frison et al. | Chaos and predictability in ocean water levels | |
| Yu et al. | Study on the regional prediction model of PM2. 5 concentrations based on multi-source observations | |
| CN117493936A (en) | A method to build a spectral diagnostic model that integrates amplitude, frequency and domain features | |
| CN103196356B (en) | Based on the oil tube defect quantitative recognition method of support vector machine | |
| Liu et al. | Application of VMD in pipeline leak detection based on negative pressure wave | |
| CN119984359A (en) | Fiber Bragg grating sensing system and noise reduction method based on deep learning | |
| CN119290221A (en) | A temperature compensation method and system for silicon piezoresistive pressure sensor based on IRIME-CNN-DD | |
| CN109469112B (en) | Automatic pile body defect severity identification method based on support vector machine | |
| Wang et al. | Noise reduction method for mine wind speed sensor data based on CEEMDAN-wavelet threshold | |
| CN106997060A (en) | A kind of seismic multi-attribute fusion method based on Shearlet fastICA | |
| Yu et al. | Rolling bearing degradation state identification based on LCD relative spectral entropy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |