+

CN115033179A - A data storage method, device, device and medium - Google Patents

A data storage method, device, device and medium Download PDF

Info

Publication number
CN115033179A
CN115033179A CN202210707372.2A CN202210707372A CN115033179A CN 115033179 A CN115033179 A CN 115033179A CN 202210707372 A CN202210707372 A CN 202210707372A CN 115033179 A CN115033179 A CN 115033179A
Authority
CN
China
Prior art keywords
identification information
buried point
point data
target identification
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210707372.2A
Other languages
Chinese (zh)
Other versions
CN115033179B (en
Inventor
杨林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Bank Corp
CCB Finetech Co Ltd
Original Assignee
China Construction Bank Corp
CCB Finetech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Bank Corp, CCB Finetech Co Ltd filed Critical China Construction Bank Corp
Priority to CN202210707372.2A priority Critical patent/CN115033179B/en
Publication of CN115033179A publication Critical patent/CN115033179A/en
Application granted granted Critical
Publication of CN115033179B publication Critical patent/CN115033179B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3034Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a storage system, e.g. DASD based or network based
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3051Monitoring arrangements for monitoring the configuration of the computing system or of the computing system component, e.g. monitoring the presence of processing resources, peripherals, I/O links, software programs
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2282Tablespace storage structures; Management thereof
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0643Management of files
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Human Computer Interaction (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

The application relates to the technical field of data storage, in particular to a data storage method, a device, equipment and a medium, and the data storage method, the device, the equipment and the medium can store each embedded point data into a distributed database of corresponding first target identification information according to the first target identification information of the distributed database correspondingly stored by each embedded point data in the implementation of the application, on one hand, the distributed database is more suitable for storing a large amount of data compared with a relational database, the problem that the operating speed of a service system is influenced after the embedded point data reaches a certain scale can be avoided, and the embedded point data is stored in a database, so that the storage pressure of each distributed database can be effectively reduced; on the other hand, the method does not need a developer to develop programs, reduces the workload of the developer, and also reduces the requirements on the disk performance and capacity of the business system.

Description

一种数据存储方法、装置、设备及介质A data storage method, device, device and medium

技术领域technical field

本申请涉及数据存储技术领域,尤其涉及一种数据存储方法、装置、设备及介质。The present application relates to the technical field of data storage, and in particular, to a data storage method, apparatus, device, and medium.

背景技术Background technique

随着各项业务的蓬勃发展,业务数据也随之积累,各业务系统管理员、上级监管部门等针对不同业务系统,提出了对各系统活跃度、交易量、用户行为分析等各种指标的收集与分析需求,比如,统计张三在业务系统中近三年进行过几次交易A等,具体的,可以通过埋点数据对各种指标进行收集与分析。With the vigorous development of various businesses, business data has also been accumulated. The administrators of various business systems and higher-level supervision departments have proposed various indicators such as the activity, transaction volume, and user behavior analysis of each system for different business systems. Collection and analysis requirements, for example, statistics Zhang San has conducted several transactions A in the business system in the past three years, etc. Specifically, various indicators can be collected and analyzed through buried point data.

相关技术,可以将需要分析的埋点数据存储到业务系统中的关系型数据库中,然后由业务系统基于存储的埋点数据进行数据分析,获得分析完成的各项指标。由于关系型数据库不适合存储大量的数据,因此当关系型数据库中存储的埋点数据量达到一定规模后,将影响业务系统的运行速度,甚至导致业务系统的其它功能不能正常使用。In the related art, the buried point data to be analyzed can be stored in a relational database in the business system, and then the business system can perform data analysis based on the stored buried point data to obtain various indicators of the analysis completion. Since the relational database is not suitable for storing a large amount of data, when the amount of buried point data stored in the relational database reaches a certain scale, it will affect the running speed of the business system, and even cause other functions of the business system to be unable to be used normally.

相关技术中还可以将需要分析的埋点数据写入到日志中,然后将日志中的埋点数据加载到大数据计算环境中,并在大数据计算环境中进行数据分析,获得分析完成的各项指标,由于将埋点数据写入日志的过程,需要开发人员进行程序开发操作,加大了开发人员的工作负担,且该方式对业务系统的磁盘性能、容量均要求很高。In the related art, the buried point data to be analyzed can also be written into the log, and then the buried point data in the log can be loaded into the big data computing environment, and data analysis can be performed in the big data computing environment to obtain the analysis results. Because of the process of writing buried point data into the log, developers are required to perform program development operations, which increases the workload of developers, and this method has high requirements on the disk performance and capacity of the business system.

发明内容SUMMARY OF THE INVENTION

本申请提供了一种数据存储方法、装置、设备及介质,用以解决现有技术中基于关系型数据库存储大规模的埋点数据会影响业务系统的运行速度,且将埋点数据写入日志加大开发人员的工作负担的问题。The present application provides a data storage method, device, device and medium, which are used to solve the problem that storing large-scale buried point data based on relational databases in the prior art will affect the operation speed of a business system, and writing buried point data into logs The problem of increasing the workload of developers.

本申请提供了一种数据存储方法,所述方法包括:The application provides a data storage method, the method includes:

读取配置文件,获取所述配置文件中携带的待埋点的埋点数据及所述埋点数据对应存储到的分布式数据库的第一目标标识信息;Read the configuration file, and obtain the buried point data of the to-be-buried point carried in the configuration file and the first target identification information of the distributed database correspondingly stored in the buried point data;

将所述埋点数据存储到所述第一目标标识信息的分布式数据库中。The buried point data is stored in the distributed database of the first target identification information.

进一步地,所述配置文件还携带待埋点的业务系统的第二目标标识信息;所述将所述埋点数据存储到所述第一目标标识信息的分布式数据库中包括:Further, the configuration file also carries the second target identification information of the business system to be buried; the storing the buried point data in the distributed database of the first target identification information includes:

根据所述待埋点的业务系统的第二目标标识信息、预先保存的业务系统的标识信息与Kafka中主题的标识信息的对应关系,确定所述第二标识信息对应的Kafka中主题的第三目标标识信息,并将所述埋点数据写入到所述Kafka中所述第三目标标识信息的主题中;According to the corresponding relationship between the second target identification information of the business system to be buried, the identification information of the pre-stored business system and the identification information of the topic in Kafka, the third identification information of the topic in Kafka corresponding to the second identification information is determined. target identification information, and write the buried point data into the topic of the third target identification information in the Kafka;

识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。Identifying the buried point data written in the subject of the third target identification information, and storing the identified buried point data in the distributed database of the first target identification information.

进一步地,所述方法还包括:Further, the method also includes:

若第一目标标识信息的分布式数据库中所述埋点数据丢失,则在满足识别条件后,识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。If the buried point data in the distributed database of the first target identification information is lost, after the identification conditions are met, the buried point data written in the subject of the third target identification information is identified, and the identified The buried point data is stored in the distributed database of the first target identification information.

进一步地,所述识别所述第三目标标识信息的主题中写入的所述埋点数据包括:Further, the buried point data written in the subject of identifying the third target identification information includes:

基于Flink识别所述第三目标标识信息的主题中写入的所述埋点数据;或The buried point data written in the subject based on Flink identifying the third target identification information; or

基于Flink SQL识别所述第三目标标识信息的主题中写入的所述埋点数据。The buried point data written in the subject of the third target identification information is identified based on Flink SQL.

进一步地,所述配置文件还携带有数据表的第四目标标识信息;Further, the configuration file also carries the fourth target identification information of the data table;

所述将所述埋点数据存储到所述第一目标标识信息的分布式数据库中包括:The storing of the buried point data in the distributed database of the first target identification information includes:

根据所述第四目标标识信息,将所述埋点数据存储到所述第一目标标识信息的分布式数据库中的所述第四目标标识信息的目标数据表中。According to the fourth target identification information, the buried point data is stored in the target data table of the fourth target identification information in the distributed database of the first target identification information.

进一步地,所述方法还包括:Further, the method also includes:

读取所述配置文件,确定所述配置文件中是否携带对所述埋点数据进行处理的信息;reading the configuration file, and determining whether the configuration file carries the information for processing the buried point data;

若是,则对所述埋点数据进行数据分析。If so, perform data analysis on the buried point data.

进一步地,所述对所述埋点数据进行数据分析包括:Further, performing data analysis on the buried point data includes:

基于Flink filter算子,对所述埋点数据进行数据分析;或Perform data analysis on the buried point data based on the Flink filter operator; or

基于Flink SQL,对所述埋点数据进行数据分析。Based on Flink SQL, data analysis is performed on the buried point data.

本申请还提供了一种数据存储装置,所述装置包括:The present application also provides a data storage device, the device comprising:

获取模块,用于读取配置文件,获取所述配置文件中携带的待埋点的埋点数据及所述埋点数据对应存储到的分布式数据库的第一目标标识信息;an acquisition module, configured to read a configuration file, and acquire the buried point data of the to-be-buried point carried in the configuration file and the first target identification information of the distributed database correspondingly stored in the buried point data;

存储模块,用于将所述埋点数据存储到所述第一目标标识信息的分布式数据库中。A storage module, configured to store the buried point data in the distributed database of the first target identification information.

进一步地,所述存储模块,具体用于若所述配置文件还携带待埋点的业务系统的第二目标标识信息,根据所述待埋点的业务系统的第二目标标识信息、预先保存的业务系统的标识信息与Kafka中主题的标识信息的对应关系,确定所述第二标识信息对应的Kafka中主题的第三目标标识信息,并将所述埋点数据写入到所述Kafka中所述第三目标标识信息的主题中;识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。Further, the storage module is specifically configured to, if the configuration file also carries the second target identification information of the business system of the point to be buried, according to the second target identification information of the business system of the point to be buried, the pre-saved information The corresponding relationship between the identification information of the business system and the identification information of the topic in Kafka, determine the third target identification information of the topic in Kafka corresponding to the second identification information, and write the buried point data into all the data in the Kafka. In the subject of the third target identification information; identify the buried point data written in the subject of the third target identification information, and store the identified buried point data in the first target identification information. in a distributed database.

进一步地,所述存储模块,还用于若第一目标标识信息的分布式数据库中所述埋点数据丢失,则在满足识别条件后,识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。Further, the storage module is also used for if the buried point data in the distributed database of the first target identification information is lost, then after satisfying the identification conditions, identify the data written in the subject of the third target identification information. The buried point data is stored, and the identified buried point data is stored in the distributed database of the first target identification information.

进一步地,所述存储模块,具体用于基于Flink识别所述第三目标标识信息的主题中写入的所述埋点数据;或基于Flink SQL识别所述第三目标标识信息的主题中写入的所述埋点数据。Further, the storage module is specifically used to identify the buried point data written in the subject of the third target identification information based on Flink; or write in the subject of the third target identification information based on Flink SQL identification of the buried point data.

进一步地,所述存储模块,具体用于若所述配置文件还携带有数据表的第四目标标识信息,根据所述第四目标标识信息,将所述埋点数据存储到所述第一目标标识信息的分布式数据库中的所述第四目标标识信息的目标数据表中。Further, the storage module is specifically configured to store the buried point data in the first target according to the fourth target identification information if the configuration file also carries the fourth target identification information of the data table. in the target data table of the fourth target identification information in the distributed database of identification information.

进一步地,所述装置还包括:Further, the device also includes:

确定模块,用于读取所述配置文件,确定所述配置文件中是否携带对所述埋点数据进行处理的信息;a determination module, configured to read the configuration file, and determine whether the configuration file carries information for processing the buried point data;

分析模块,用于若携带对所述埋点数据进行处理的信息,则对所述埋点数据进行数据分析。The analysis module is configured to perform data analysis on the buried point data if the information for processing the buried point data is carried.

进一步地,所述分析模块,具体用于基于Flink filter算子,对所述埋点数据进行数据分析;或基于Flink SQL,对所述埋点数据进行数据分析。Further, the analysis module is specifically configured to perform data analysis on the buried point data based on the Flink filter operator; or perform data analysis on the buried point data based on Flink SQL.

本申请还提供了一种电子设备,所述电子设备至少包括处理器和存储器,所述处理器用于执行存储器中存储的计算机程序时实现如上述任一所述数据存储方法的步骤。The present application also provides an electronic device, the electronic device includes at least a processor and a memory, and the processor is configured to implement the steps of any of the above data storage methods when executing a computer program stored in the memory.

本申请还提供了一种计算机可读存储介质,其存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一所述数据存储方法的步骤。The present application also provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, implements the steps of any of the above data storage methods.

本申请还提供了一种计算机程序产品,其计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述任一所述数据存储方法的步骤。The present application also provides a computer program product, wherein the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the steps of any of the above data storage methods.

在本申请实施例中,读取配置文件,获取配置文件中携带的待埋点的埋点数据及埋点数据对应存储到的分布式数据库的第一目标标识信息,将埋点数据存储到第一目标标识信息的分布式数据库中。由于在本申请实施中,可以根据各个埋点数据对应存储到的分布式数据库的第一目标标识信息,将各个埋点数据存储到对应的第一目标标识信息的分布式数据库中,一方面,分布式数据库相比于关系型数据库来说,更适合存储大数量的数据,不会出现埋点数据达到一定规模后,影响业务系统的运行速度的问题,且各个埋点数据是进行分库存储的,可以有效的减少每个分布式数据库的存储压力;另一方面,该方法无需开发人员进行程序开发,降低了开发人员的工作负担,也降低了对业务系统的磁盘性能、容量的要求。In the embodiment of the present application, the configuration file is read, the buried point data of the to-be-buried point carried in the configuration file and the first target identification information of the distributed database corresponding to the buried point data are obtained, and the buried point data is stored in the first target identification information of the distributed database. A distributed database of target identification information. Because in the implementation of the present application, each buried point data can be stored in the distributed database of the corresponding first target identification information according to the first target identification information of the distributed database correspondingly stored in each buried point data, on the one hand, Compared with relational databases, distributed databases are more suitable for storing a large amount of data, and there will be no problem of affecting the operation speed of the business system after the embedded data reaches a certain scale, and each embedded data is stored in separate databases. It can effectively reduce the storage pressure of each distributed database; on the other hand, this method does not require developers to develop programs, reduces the workload of developers, and also reduces the requirements for disk performance and capacity of business systems.

附图说明Description of drawings

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.

图1为本申请一些实施例提供的一种数据存储过程示意图;1 is a schematic diagram of a data storage process provided by some embodiments of the present application;

图2为本申请一些实施例提供的一种埋点数据埋点的过程示意图;FIG. 2 is a schematic diagram of a process of burying point data burying points provided by some embodiments of the present application;

图3为本申请一些实施例提供的一种埋点数据埋点的详细过程示意图;3 is a schematic diagram of a detailed process of a buried point data buried point provided by some embodiments of the present application;

图4为本申请一些实施例提供的一种数据存储装置结构示意图;FIG. 4 is a schematic structural diagram of a data storage device according to some embodiments of the present application;

图5为本申请一些实施例提供的一种电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device according to some embodiments of the present application.

具体实施方式Detailed ways

为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In order to make the objectives, technical solutions and advantages of the present application clearer, the present application will be further described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.

在本申请实施例在进行埋点数据存储时,读取配置文件,获取配置文件中携带的待埋点的埋点数据及埋点数据对应存储到的分布式数据库的第一目标标识信息;将埋点数据存储到第一目标标识信息的分布式数据库中。When storing the buried point data in the embodiment of the present application, the configuration file is read, and the buried point data of the buried point carried in the configuration file and the first target identification information of the distributed database corresponding to the buried point data are obtained; The buried point data is stored in the distributed database of the first target identification information.

为了降低开发人员的工作负担,且避免出现基于关系型数据库存储大规模的埋点数据会影响业务系统的运行速度的问题,本申请实施例提供了一种数据存储方法、装置、设备及介质。In order to reduce the workload of developers and avoid the problem that storing large-scale buried point data based on a relational database will affect the running speed of a business system, embodiments of the present application provide a data storage method, apparatus, device, and medium.

实施例1:Example 1:

图1为本申请一些实施例提供的一种数据存储过程示意图,该过程包括以下步骤:1 is a schematic diagram of a data storage process provided by some embodiments of this application, and the process includes the following steps:

S101:读取配置文件,获取所述配置文件中携带的待埋点的埋点数据及所述埋点数据对应存储到的分布式数据库的第一目标标识信息。S101: Read a configuration file, and obtain the buried point data of the to-be-buryed point carried in the configuration file and the first target identification information of the distributed database corresponding to the buried point data.

本申请实施例提供的数据存储方法应用于电子设备,该电子设备可以为智能终端、PC或者服务器等。The data storage method provided by the embodiment of the present application is applied to an electronic device, and the electronic device may be an intelligent terminal, a PC, a server, or the like.

在本申请实施例中,电子设备预先获得了配置文件,其中,该配置文件中携带了待埋点的埋点数据以及埋点数据对应存储到的分布式数据库的第一目标标识信息,为了确定将哪个埋点数据,存储到哪里,电子设备读取该配置文件,获得该埋点数据以及对应存储到的分布式数据库的第一目标标识信息。其中,不同的埋点数据对应存储到的分布式数据库的第一目标标识信息可以相同,也可以不相同。其中,该分布式数据库可以为Hive、HBase、ES等等,具体的,不做限制。In the embodiment of the present application, the electronic device obtains a configuration file in advance, wherein the configuration file carries the buried point data of the buried point and the first target identification information of the distributed database corresponding to the buried point data. In order to determine Where to store the buried point data, the electronic device reads the configuration file to obtain the buried point data and the first target identification information corresponding to the stored distributed database. Wherein, the first target identification information of the distributed database stored corresponding to different buried point data may be the same or different. Wherein, the distributed database may be Hive, HBase, ES, etc., and there is no specific limitation.

其中,该配置文件可以包含用于配置埋点数据的第一子文件,还可以包含用于配置埋点数据存储到的分布式数据库的标识信息的第二子文件,为了确定将哪个埋点数据,存储到哪个分布式数据库,电子设备读取该第一子文件,确定待埋点的埋点数据,并读取该第二子文件,确定该埋点数据对应存储到的分布式数据库的第一目标标识信息。具体的,由于第一子文件中可能包含多个待埋点的埋点数据,为了确定将各个埋点数据存储到哪里,可以在第一子文件中保存埋点数据与其标识信息的对应关系,并在第二子文件中保存埋点数据的标识信息与分布式数据库的标识信息的对应关系。针对每个埋点数据,基于第一子文件中保存的埋点数据与其标识信息的对应关系,确定该埋点数据对应的目标标识信息,并在第二子文件中根据预先保存的埋点数据的标识信息与分布式数据库的标识信息的对应关系,确定该目标标识信息的埋点数据对应存储到的分布式数据库的第一目标标识信息。Wherein, the configuration file may include a first subfile for configuring the buried point data, and may also include a second subfile for configuring the identification information of the distributed database where the buried point data is stored, in order to determine which buried point data to use , which distributed database to store in, the electronic device reads the first sub-file, determines the buried point data of the point to be buried, reads the second sub-file, and determines that the buried point data corresponds to the first sub-file stored in the distributed database. a target identification information. Specifically, since the first subfile may contain buried point data of multiple points to be buried, in order to determine where to store the buried point data, the corresponding relationship between the buried point data and its identification information can be stored in the first subfile, The corresponding relationship between the identification information of the buried point data and the identification information of the distributed database is stored in the second sub-file. For each buried point data, based on the corresponding relationship between the buried point data stored in the first subfile and its identification information, determine the target identification information corresponding to the buried point data, and in the second subfile according to the pre-stored buried point data The corresponding relationship between the identification information of the target identification information and the identification information of the distributed database is determined, and the buried point data of the target identification information is determined to correspond to the first target identification information of the distributed database stored.

S102:将所述埋点数据存储到所述第一目标标识信息的分布式数据库中。S102: Store the buried point data in a distributed database of the first target identification information.

在确定埋点数据以及对应存储到的分布式数据库中的第一目标标识信息之后,将该埋点数据存储到该第一目标标识信息的分布式数据库中。After determining the buried point data and the correspondingly stored first target identification information in the distributed database, the buried point data is stored in the distributed database of the first target identification information.

由于在本申请实施中,可以根据各个埋点数据对应存储到的分布式数据库的第一目标标识信息,将各个埋点数据存储到对应的第一目标标识信息的分布式数据库中,一方面,分布式数据库相比于关系型数据库来说,更适合存储大数量的数据,不会出现埋点数据达到一定规模后,影响业务系统的运行速度的问题,且各个埋点数据是进行分库存储的,可以有效的减少每个分布式数据库的存储压力;另一方面,也不需要了将埋点数据写入到日志中,来将埋点数据同步在大数据计算环境中,降低了开发人员的工作负担,也降低了对业务系统的磁盘性能、容量的要求。Because in the implementation of the present application, each buried point data can be stored in the distributed database of the corresponding first target identification information according to the first target identification information of the distributed database correspondingly stored in each buried point data, on the one hand, Compared with relational databases, distributed databases are more suitable for storing a large amount of data, and there will be no problem of affecting the operation speed of the business system after the embedded data reaches a certain scale, and each embedded data is stored in separate databases. It can effectively reduce the storage pressure of each distributed database; on the other hand, there is no need to write the buried point data to the log to synchronize the buried point data in the big data computing environment, which reduces the development of developers. It also reduces the disk performance and capacity requirements of the business system.

实施例2:Example 2:

为了将识别出的埋点数据存储到第一目标标识信息的分布式数据库中,在上述实施例的基础上,在本申请实施例中,所述配置文件还携带待埋点的业务系统的第二目标标识信息;In order to store the identified buried point data in the distributed database of the first target identification information, on the basis of the above embodiment, in this embodiment of the present application, the configuration file also carries the first information of the business system of the to-be-buried point. 2. Target identification information;

所述将所述埋点数据存储到所述第一目标标识信息的分布式数据库中包括:The storing of the buried point data in the distributed database of the first target identification information includes:

根据所述待埋点的业务系统的第二目标标识信息、预先保存的业务系统的标识信息与Kafka中主题的标识信息的对应关系,确定所述第二标识信息对应的Kafka中主题的第三目标标识信息,并将所述埋点数据写入到所述Kafka中所述第三目标标识信息的主题中;According to the corresponding relationship between the second target identification information of the business system to be buried, the identification information of the pre-stored business system and the identification information of the topic in Kafka, the third identification information of the topic in Kafka corresponding to the second identification information is determined. target identification information, and write the buried point data into the topic of the third target identification information in the Kafka;

识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。Identifying the buried point data written in the subject of the third target identification information, and storing the identified buried point data in the distributed database of the first target identification information.

在本申请实施例中,为了实现电子设备与分布式数据库的解耦,电子设备还可以将埋点数据写入到Kafka,后续电子设备识别Kafka中的该埋点数据,并将识别到的埋点数据存储到第一目标标识信息的分布式数据库中,以保证后续第一目标标识信息的分布式数据库中该埋点数据丢失时,可以直接识别Kafka中写入的该埋点数据,并重新将该埋点数据存储到该第一目标标识信息的分布式数据库中,而不用重新识别配置文件中的该埋点数据以及该埋点数据存储到的分布式数据库的第一标识信息。In the embodiment of the present application, in order to realize the decoupling of the electronic device and the distributed database, the electronic device can also write the buried point data into Kafka, and the subsequent electronic device recognizes the buried point data in Kafka, and records the identified buried point data. The point data is stored in the distributed database of the first target identification information, so as to ensure that when the buried point data in the distributed database of the first target identification information is lost, the buried point data written in Kafka can be directly identified, and the data can be rewritten. The buried point data is stored in the distributed database of the first target identification information without re-identifying the buried point data in the configuration file and the first identification information of the distributed database in which the buried point data is stored.

其中,Kafka是一种高吞吐量的分布式发布订阅消息系统,是由Apache软件基金会开发的一个开源流处理平台,它提供快速的消息的持久化能力,即使数据以太字节(Terabyte,TB)的方式存储也能够保持长时间的稳定性能,同时具有高吞吐量特性,即使是非常普通的硬件,Kafka也可以支持每秒吞吐数百万的消息。Among them, Kafka is a high-throughput distributed publish-subscribe messaging system. It is an open source stream processing platform developed by the Apache Software Foundation. It provides fast message persistence capabilities, even if the data is Terabyte (TB). ) can also maintain stable performance for a long time, and at the same time has high throughput characteristics, even with very common hardware, Kafka can support millions of messages per second.

为了实现对各个业务系统的活跃度、交易量、用户行为分析等各种指标的收集与分析,埋点数据存储到的分布式数据库可以为业务系统所部署的设备中的数据库。In order to collect and analyze various indicators such as the activity, transaction volume, and user behavior analysis of each business system, the distributed database where the buried point data is stored can be the database in the device deployed by the business system.

为了便于后续识别,还可以针对不同的业务系统,将不同业务系统对应的埋点数据写入到Kafka的不同的主题中,具体的,配置文件还可以携带待埋点的业务系统的第二目标标识信息,并根据待埋点的业务系统的第二目标标识信息、以及预先保存的业务系统的标识信息与Kafka中主题(topic)的对应关系,确定该第二目标标识信息对应的Kafka中主题的第三目标标识信息,并将该埋点数据写入到Kafka中该第三目标标识信息的主题中,其中,对应不同标识信息的业务系统的埋点数据写入到Kafka中不同标识信息的主题中。In order to facilitate subsequent identification, the buried point data corresponding to different business systems can also be written into different topics in Kafka for different business systems. Specifically, the configuration file can also carry the second target of the business system to be buried. identification information, and according to the second target identification information of the business system to be buried, and the correspondence between the pre-saved identification information of the business system and the topic in Kafka, determine the topic in Kafka corresponding to the second target identification information The third target identification information, and the buried point data is written into the topic of the third target identification information in Kafka, wherein the buried point data of the business system corresponding to different identification information is written into the different identification information in Kafka. in the theme.

为了将埋点数据存储到第一目标标识信息的分布式数据库中,电子设备识别Kafka中的埋点数据,并将Kafka中存储到第一目标标识信息的分布式数据库中。In order to store the buried point data in the distributed database of the first target identification information, the electronic device identifies the buried point data in Kafka, and stores the buried point data in Kafka in the distributed database of the first target identification information.

相关技术中,为了对各系统活跃度、交易量、用户行为分析等各种指标进行收集与数据分析,可以借助变更数据捕获(Change Data Capture,CDC)工具,将存储在关系型数据库中埋点数据同步到大数据计算环境中,删除关系型数据库中的埋点数据,并在大数据计算环境中进行数据分析,获得分析完成的各项指标,但是该方式对业务系统侵入较大,可能引发数据库异常。而本申请中由于不需要将埋点数据同步在大数据计算环境中进行数据分析,在业务系统所部署的设备本地即可进行数据分析,避免了将埋点数据同步在大数据计算环境,导致的业务系统存在被侵入的危险。In related technologies, in order to collect and analyze various indicators such as system activity, transaction volume, user behavior analysis, etc., change data capture (CDC) tools can be used to store data in relational databases. The data is synchronized to the big data computing environment, the buried point data in the relational database is deleted, and the data is analyzed in the big data computing environment to obtain various indicators of the analysis. Database exception. In this application, since it is not necessary to synchronize the buried point data in the big data computing environment for data analysis, the data analysis can be performed locally on the device deployed in the business system, avoiding the synchronization of the buried point data in the big data computing environment, resulting in business systems are at risk of being hacked.

图2为本申请一些实施例提供的一种埋点数据埋点的过程示意图,现针对图2进行说明。FIG. 2 is a schematic diagram of a process of burying point data according to some embodiments of the present application, and FIG. 2 is now described.

电子设备预先读取配置文件的第一子文件,确定第一子文件中保存的埋点数据,并读取配置文件中的第二子文件,确定埋点数据对应存储到的分布式数据库的第一目标标识信息,然后将埋点数据存储到该第一目标标识信息对应的分布式数据库中,后续在业务系统所部署的设备,也就是在分布式数据库所在的设备中对该埋点数据进行数据清洗处理,将获得的无错误的埋点数据输出到业务系统的显示页面上。其中,对埋点数据进行数据清洗处理的过程为现有技术,在此不做赘述。The electronic device pre-reads the first sub-file of the configuration file, determines the buried point data saved in the first sub-file, reads the second sub-file in the configuration file, and determines that the buried point data corresponds to the first sub-file stored in the distributed database. A target identification information, and then the buried point data is stored in the distributed database corresponding to the first target identification information, and then the equipment deployed in the business system, that is, the device where the distributed database is located. Data cleaning and processing, and output the obtained error-free buried point data to the display page of the business system. The process of performing data cleaning processing on the buried point data is in the prior art, and details are not described here.

为了实现电子设备与分布式数据库的解耦,在上述各实施例的基础上,在本申请实施例中,所述方法还包括:In order to realize the decoupling of the electronic device and the distributed database, on the basis of the foregoing embodiments, in the embodiment of the present application, the method further includes:

若第一目标标识信息的分布式数据库中所述埋点数据丢失时,则在满足识别条件后,识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。If the buried point data in the distributed database of the first target identification information is lost, after satisfying the identification conditions, identify the buried point data written in the subject of the third target identification information, and identify the buried point data. The buried point data is stored in the distributed database of the first target identification information.

若直接将读取配置文件后获得的埋点数据存储到第一目标标识信息的分布式数据库中,后续分布式数据库可能会出现存储的埋点数据丢失的情况,当确定分布式数据库中存储的埋点数据丢失时,为了将埋点数据重新存储到分布式数据库,则需要重新读取配置文件的埋点数据以及埋点数据对应存储到分布式数据库的第一目标标识信息,再将该埋点数据存储到该第一目标标识信息的分布式数据库中,因此会导致电子设备与分布式数据库过耦合。If the buried point data obtained after reading the configuration file is directly stored in the distributed database of the first target identification information, the stored buried point data may be lost in subsequent distributed databases. When the buried point data is lost, in order to re-store the buried point data to the distributed database, it is necessary to re-read the buried point data of the configuration file and the first target identification information corresponding to the buried point data stored in the distributed database, and then store the buried point data in the distributed database. The point data is stored in the distributed database of the first target identification information, thus causing over-coupling of the electronic device and the distributed database.

为了对电子设备与分布式数据库进行解耦,由于预先已经将埋点数据写入到了Kafka中所述第三目标标识信息的主题中,且不同的业务系统对应的埋点数据写入的主题已知且不同,因此可以在满足识别条件后,识别第三目标标识信息的主题中写入的埋点数据,并将识别出的该埋点数据存储到该第一目标标识信息的分布式数据库中,以使得该埋点数据存储在该分布式数据库中,避免了电子设备再次识别配置文件中的埋点数据以及对应存储到的分布式数据库的第一目标标识信息的过程。In order to decouple the electronic device from the distributed database, since the buried point data has been written into the topic of the third target identification information in Kafka in advance, and the topic of the buried point data written in different business systems has been written Therefore, after the identification conditions are met, the buried point data written in the subject of the third target identification information can be identified, and the identified buried point data can be stored in the distributed database of the first target identification information. , so that the buried point data is stored in the distributed database, avoiding the process of the electronic device re-identifying the buried point data in the configuration file and the first target identification information corresponding to the stored distributed database.

其中,该识别条件可以为在该埋点数据丢失了预设的时间长度之后或者接收到识别指令。Wherein, the identification condition may be after the buried point data is lost for a preset length of time or an identification instruction is received.

实施例3:Example 3:

为了识别埋点数据,在上述各实施例的基础上,在本申请实施例中,所述识别所述第三目标标识信息的主题中写入的所述埋点数据包括:In order to identify the buried point data, on the basis of the above embodiments, in the embodiment of the present application, the buried point data written in the subject of identifying the third target identification information includes:

基于Flink识别所述第三目标标识信息的主题中写入的所述埋点数据;或The buried point data written in the subject based on Flink identifying the third target identification information; or

基于Flink SQL识别所述第三目标标识信息的主题中写入的所述埋点数据。The buried point data written in the subject of the third target identification information is identified based on Flink SQL.

在本申请实施例中,为了识别写入到Kafka中第三目标标识信息的主题中的埋点数据,在一种可能的实施方式中,可以基于Flink识别所述第三目标标识信息的主题中写入的埋点数据。In the embodiment of the present application, in order to identify the buried point data written into the topic of the third target identification information in Kafka, in a possible implementation, Flink can identify the topic of the third target identification information based on Flink. Buried point data written.

在另外一种可能的实施方式中,还可以基于Flink SQL识别第三目标标识信息的主题中写入的埋点数据。In another possible implementation manner, the embedded point data written in the subject of the third target identification information may also be identified based on Flink SQL.

实施例4:Example 4:

为了准确的将各个埋点数据保存在对应的存储位置,在上述各实施例的基础上,在本申请实施例中,所述配置文件还携带有数据表的第四目标标识信息;In order to accurately save the data of each buried point in the corresponding storage location, on the basis of the above embodiments, in the embodiment of the present application, the configuration file also carries the fourth target identification information of the data table;

所述将所述埋点数据存储到所述第一目标标识信息的分布式数据库中包括:The storing of the buried point data in the distributed database of the first target identification information includes:

根据所述第四目标标识信息,将所述埋点数据存储到所述第一目标标识信息的分布式数据库中的所述第四目标标识信息的目标数据表中。According to the fourth target identification information, the buried point data is stored in the target data table of the fourth target identification information in the distributed database of the first target identification information.

在本申请实施例中,各个分布式数据库中预先保存了多个数据表,该数据表用于存储埋点数据。为了确定将各个埋点数据存储到分布式数据库中的哪个数据表中,配置文件中还携带了数据表的第四目标标识信息,具体的,可以在配置文件中的第三子文件中携带数据表信息。由于可能存在多个埋点数据需要存储到同一分布式数据库中的情况,为了确定哪个埋点数据存储到哪个数据表中,该第三子文件中还可以针对每个分布式数据库,预先保存了埋点数据的标识信息与该分布式数据中的数据表的标识信息的对应关系,针对每个埋点数据,基于第一子文件中保存的埋点数据与其标识信息的对应关系,确定该埋点数据对应的目标标识信息,并基于第二子文件中预先保存的埋点数据的标识信息与分布式数据库的标识信息的对应关系,确定该目标标识信息的埋点数据对应存储到的分布式数据库的第一目标标识信息,最后基于第三子文件中针对每个分布式数据库,预先保存的埋点数据的标识信息与该分布式数据中的数据表的标识信息对应关系,确定该埋点数据对应的待存储到的数据表的第四标识信息。In the embodiment of the present application, each distributed database pre-stores multiple data tables, and the data tables are used to store buried point data. In order to determine which data table in the distributed database to store the buried point data in, the configuration file also carries the fourth target identification information of the data table. Specifically, the data can be carried in the third subfile in the configuration file. table information. Since there may be a situation where multiple buried point data needs to be stored in the same distributed database, in order to determine which buried point data is stored in which data table, the third sub-file can also be pre-saved for each distributed database. The corresponding relationship between the identification information of the buried point data and the identification information of the data table in the distributed data, for each buried point data, based on the corresponding relationship between the buried point data saved in the first subfile and its identification information, determine the buried point data. The target identification information corresponding to the point data, and based on the corresponding relationship between the identification information of the buried point data pre-saved in the second sub-file and the identification information of the distributed database, determine the distributed storage corresponding to the buried point data of the target identification information. The first target identification information of the database, and finally based on the corresponding relationship between the identification information of the pre-saved buried point data and the identification information of the data table in the distributed data for each distributed database in the third subfile, the buried point is determined. The fourth identification information of the data table to be stored corresponding to the data.

在确定第三子文件中携带的数据表的第四目标标识信息之后,根据该第四目标标识信息,将该埋点数据存储到该第一目标标识信息的分布式数据库中第四目标标识信息的目标数据表中。After determining the fourth target identification information of the data table carried in the third sub-file, according to the fourth target identification information, store the buried point data in the fourth target identification information in the distributed database of the first target identification information in the target data table.

实施例5:Example 5:

为了满足对埋点数据进行数据分析的需求,在上述各实施例的基础上,在本申请实施例中,所述方法还包括:In order to meet the needs of performing data analysis on the buried point data, on the basis of the foregoing embodiments, in this embodiment of the present application, the method further includes:

读取所述配置文件,确定所述配置文件中是否携带对所述埋点数据进行处理的信息;reading the configuration file, and determining whether the configuration file carries the information for processing the buried point data;

若是,则对所述埋点数据进行数据分析。If so, perform data analysis on the buried point data.

在本申请实施例中,有些埋点数据还可能存在进行数据分析的需求,为了确定各个埋点数据是否存在进行数据分析的需求,配置文件中还携带了对待进行数据分析的埋点数据进行数据分析的信息。具体的,可以在配置文件中的第四子文件中携带对待进行数据分析的埋点数据进行处理的信息。为了确定对哪个埋点数据进行数据分析,该第四子文件中还预先保存了待进行数据分析埋点数据的标识信息与其进行处理的信息的对应关系,针对每个埋点数据,基于第一子文件中保存的埋点数据与其标识信息的对应关系,确定该埋点数据对应的目标标识信息,并基于第四子文件中预先保存的待进行数据分析埋点数据的标识信息与其进行处理的信息的对应关系,确定是否存在该目标标识信息对应的对埋点数据进行处理的信息,若不存在,则确定不需要对该埋点数据进行数据分析,若存在,则确定需要对该埋点数据进行数据分析。In the embodiment of the present application, some buried point data may also have a data analysis requirement. In order to determine whether each buried point data has a data analysis requirement, the configuration file also carries the buried point data to be analyzed. Analyzed information. Specifically, the fourth sub-file in the configuration file may carry information for processing the buried point data to be analyzed. In order to determine which buried point data to perform data analysis on, the fourth sub-file also pre-stores the corresponding relationship between the identification information of the buried point data to be analyzed and the information to be processed. For each buried point data, based on the first The corresponding relationship between the buried point data saved in the sub-file and its identification information, determine the target identification information corresponding to the buried point data, and analyze the identification information of the buried point data and process it based on the data to be pre-saved in the fourth sub-file. The corresponding relationship of the information, to determine whether there is information for processing the buried point data corresponding to the target identification information. If it does not exist, it is determined that data analysis is not required for the buried point data. If it exists, it is determined that the buried point data needs to be processed. data for data analysis.

在对埋点数据进行数据分析时,针对每个埋点数据,若确定配置文件中携带对该埋点数据进行处理的信息,则对该埋点数据进行数据分析。When performing data analysis on the buried point data, for each buried point data, if it is determined that the configuration file carries information for processing the buried point data, data analysis is performed on the buried point data.

为了对埋点数据进行数据分析,在上述各实施例的基础上,在本申请实施例中,所述对所述埋点数据进行数据分析包括:In order to perform data analysis on the buried point data, on the basis of the above embodiments, in this embodiment of the present application, the data analysis on the buried point data includes:

基于Flink filter算子,对所述埋点数据进行数据分析;或Perform data analysis on the buried point data based on the Flink filter operator; or

基于Flink SQL,对所述埋点数据进行数据分析。Based on Flink SQL, data analysis is performed on the buried point data.

为了对埋点数据进行数据分析,在一种可能的实施方式中,可以基于Flinkfilter算子,对该埋点数据进行数据分析。In order to perform data analysis on the buried point data, in a possible implementation manner, data analysis may be performed on the buried point data based on the Flinkfilter operator.

在另外一种可能的实施方式中,还可以基于Flink SQL,对埋点数据进行数据分析。In another possible implementation, data analysis can also be performed on the buried point data based on Flink SQL.

其中,Flink SQL是一个基于Flink平台的开源的、分布式的数据分析引擎,提供基于Yarn/分布式计算框架(Mesos)等平台之上的高吞吐、低延迟、高性能的数据分析能力。它提供基于类SQL方式进行数据分析,并提供了批量和实时两种数据分析模式。Among them, Flink SQL is an open-source, distributed data analysis engine based on the Flink platform, providing high-throughput, low-latency, and high-performance data analysis capabilities based on platforms such as Yarn/distributed computing framework (Mesos). It provides data analysis based on SQL-like methods, and provides two data analysis modes of batch and real-time.

图3为本申请一些实施例提供的一种埋点数据埋点的详细过程示意图,现针对图3进行说明。FIG. 3 is a schematic diagram of a detailed process of burying point data according to some embodiments of the present application, and FIG. 3 is now described.

先获得预先配置完成的配置文件,电子设备读取该配置文件,确定是否存在配置文件中的第一子文件,若否,则输出未找到第一子文件的提示信息,若是,则将第一子文件中携带的待埋点的埋点数据写入到Kafka中,并基于Flink识别Kafka中写入的埋点数据。The pre-configured configuration file is obtained first, and the electronic device reads the configuration file to determine whether the first subfile in the configuration file exists. If not, it outputs a prompt message that the first subfile is not found. The buried point data to be buried carried in the subfile is written to Kafka, and the buried point data written in Kafka is identified based on Flink.

然后电子设备确定是否存在配置文件中的第二子文件,若否,则输出未找到第二子文件的提示信息,若是,则针对每个埋点数据,根据该第二子文件,确定该埋点数据对应存储到的分布式数据库的第一目标标识信息,并针对每个埋点数据,确定配置文件中的第三子文件中携带的该埋点数据对应的数据表的第四目标标识信息,并将该埋点数据存储到第一目标标识信息的分布式数据库中的第四目标标识信息的目标数据表中。再确定是否存在配置文件中的第四子文件,若存在,则针对每个埋点数据,确定该第四子文件中是否携带对该埋点数据进行处理的信息,若携带,基于Flink SQL对待进行数据分析的该埋点数据进行数据分析,并将进行数据分析后获得的结果进行存储。Then the electronic device determines whether there is a second sub-file in the configuration file, and if not, outputs a prompt message that the second sub-file is not found; The point data corresponds to the first target identification information stored in the distributed database, and for each buried point data, determine the fourth target identification information of the data table corresponding to the buried point data carried in the third subfile in the configuration file. , and store the buried point data in the target data table of the fourth target identification information in the distributed database of the first target identification information. Then determine whether there is a fourth subfile in the configuration file. If so, then for each buried point data, determine whether the fourth subfile carries the information for processing the buried point data. If so, treat it based on Flink SQL. The buried point data subjected to data analysis is subjected to data analysis, and the results obtained after the data analysis are stored.

后续业务系统在接收到查询指令后,根据查询指令中携带的待查询的信息,将对应的结果数据进行输出。After receiving the query instruction, the subsequent service system outputs the corresponding result data according to the information to be queried carried in the query instruction.

实施例6:Example 6:

图4为本申请一些实施例提供的一种数据存储装置结构示意图,该装置包括:FIG. 4 is a schematic structural diagram of a data storage device provided by some embodiments of the present application, and the device includes:

获取模块401,用于读取配置文件,获取所述配置文件中携带的待埋点的埋点数据及所述埋点数据对应存储到的分布式数据库的第一目标标识信息;The obtaining module 401 is configured to read a configuration file, and obtain the buried point data of the to-be-buried point carried in the configuration file and the first target identification information of the distributed database correspondingly stored in the buried point data;

存储模块402,用于将所述埋点数据存储到所述第一目标标识信息的分布式数据库中。The storage module 402 is configured to store the buried point data in the distributed database of the first target identification information.

在一种可能的实施方式中,所述存储模块402,具体用于若所述配置文件还携带待埋点的业务系统的第二目标标识信息,根据所述待埋点的业务系统的第二目标标识信息、预先保存的业务系统的标识信息与Kafka中主题的标识信息的对应关系,确定所述第二标识信息对应的Kafka中主题的第三目标标识信息,并将所述埋点数据写入到所述Kafka中所述第三目标标识信息的主题中;识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。In a possible implementation manner, the storage module 402 is specifically configured to, if the configuration file also carries the second target identification information of the business system of the point to be buried, according to the second target identification information of the business system of the point to be buried The corresponding relationship between the target identification information, the identification information of the pre-stored business system and the identification information of the topic in Kafka, determine the third target identification information of the topic in Kafka corresponding to the second identification information, and write the buried point data. Enter into the topic of the third target identification information in the Kafka; identify the buried point data written in the topic of the third target identification information, and store the identified buried point data in the in the distributed database of the first target identification information.

在一种可能的实施方式中,所述存储模块402,还用于若第一目标标识信息的分布式数据库中所述埋点数据丢失,则在满足识别条件后,识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。In a possible implementation manner, the storage module 402 is further configured to identify the third target identification after the identification condition is satisfied if the buried point data in the distributed database of the first target identification information is lost The buried point data written in the subject of the information is stored, and the identified buried point data is stored in the distributed database of the first target identification information.

在一种可能的实施方式中,所述存储模块402,具体用于基于Flink识别所述第三目标标识信息的主题中写入的所述埋点数据;或基于Flink SQL识别所述第三目标标识信息的主题中写入的所述埋点数据。In a possible implementation manner, the storage module 402 is specifically configured to identify the buried point data written in the subject of the identification information of the third target based on Flink; or identify the third target based on Flink SQL The buried point data written in the subject of the identification information.

在一种可能的实施方式中,所述存储模块402,具体用于若所述配置文件还携带有数据表的第四目标标识信息,根据所述第四目标标识信息,将所述埋点数据存储到所述第一目标标识信息的分布式数据库中的所述第四目标标识信息的目标数据表中。In a possible implementation manner, the storage module 402 is specifically configured to, if the configuration file also carries the fourth target identification information of the data table, store the buried point data according to the fourth target identification information Stored in the target data table of the fourth target identification information in the distributed database of the first target identification information.

在一种可能的实施方式中,所述装置还包括:In a possible implementation, the device further includes:

确定模块403,用于读取所述配置文件,确定所述配置文件中是否携带对所述埋点数据进行处理的信息;A determination module 403, configured to read the configuration file, and determine whether the configuration file carries information for processing the buried point data;

分析模块404,用于若携带对所述埋点数据进行处理的信息,则对所述埋点数据进行数据分析。The analysis module 404 is configured to perform data analysis on the buried point data if the information for processing the buried point data is carried.

在一种可能的实施方式中,所述分析模块404,具体用于基于Flink filter算子,对所述埋点数据进行数据分析;或基于Flink SQL,对所述埋点数据进行数据分析。In a possible implementation manner, the analysis module 404 is specifically configured to perform data analysis on the buried point data based on the Flink filter operator; or perform data analysis on the buried point data based on Flink SQL.

实施例7:Example 7:

在上述各实施例的基础上,本申请一些实施例还提供了一种电子设备,如图5所示,包括:处理器501、通信接口502、存储器503和通信总线504,其中,处理器501,通信接口502,存储器503通过通信总线504完成相互间的通信。On the basis of the foregoing embodiments, some embodiments of the present application further provide an electronic device, as shown in FIG. 5 , including: a processor 501 , a communication interface 502 , a memory 503 and a communication bus 504 , wherein the processor 501 , the communication interface 502 , and the memory 503 complete the communication with each other through the communication bus 504 .

所述存储器503中存储有计算机程序,当所述程序被所述处理器501执行时,使得所述处理器501执行如下步骤:A computer program is stored in the memory 503, and when the program is executed by the processor 501, the processor 501 is caused to perform the following steps:

读取配置文件,获取所述配置文件中携带的待埋点的埋点数据及所述埋点数据对应存储到的分布式数据库的第一目标标识信息;Read the configuration file, and obtain the buried point data of the to-be-buried point carried in the configuration file and the first target identification information of the distributed database correspondingly stored in the buried point data;

将所述埋点数据存储到所述第一目标标识信息的分布式数据库中。The buried point data is stored in the distributed database of the first target identification information.

进一步地,所述处理器501,具体用于若所述配置文件还携带待埋点的业务系统的第二目标标识信息,根据所述待埋点的业务系统的第二目标标识信息、预先保存的业务系统的标识信息与Kafka中主题的标识信息的对应关系,确定所述第二标识信息对应的Kafka中主题的第三目标标识信息,并将所述埋点数据写入到所述Kafka中所述第三目标标识信息的主题中;识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。Further, the processor 501 is specifically configured to, if the configuration file also carries the second target identification information of the business system of the point to be buried, save in advance according to the second target identification information of the business system of the point to be buried. The corresponding relationship between the identification information of the business system and the identification information of the topic in Kafka, determine the third target identification information of the topic in the Kafka corresponding to the second identification information, and write the buried point data into the Kafka In the subject of the third target identification information; identify the buried point data written in the subject of the third target identification information, and store the identified buried point data in the first target identification information in a distributed database.

进一步地,所述处理器501,还用于若第一目标标识信息的分布式数据库中所述埋点数据丢失,则在满足识别条件后,识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。Further, the processor 501 is further configured to, if the buried point data in the distributed database of the first target identification information is lost, after satisfying the identification conditions, write in the subject of identifying the third target identification information. and store the identified buried point data in the distributed database of the first target identification information.

进一步地,所述处理器501,具体用于基于Flink识别所述第三目标标识信息的主题中写入的所述埋点数据;或基于Flink SQL识别所述第三目标标识信息的主题中写入的所述埋点数据。Further, the processor 501 is specifically used to identify the buried point data written in the subject of the third target identification information based on Flink; or write in the subject of the third target identification information based on Flink SQL identification The buried point data entered.

进一步地,所述处理器501,具体用于若所述配置文件还携带有数据表的第四目标标识信息,根据所述第四目标标识信息,将所述埋点数据存储到所述第一目标标识信息的分布式数据库中的所述第四目标标识信息的目标数据表中。Further, the processor 501 is specifically configured to, if the configuration file also carries the fourth target identification information of the data table, store the buried point data in the first target identification information according to the fourth target identification information. in the target data table of the fourth target identification information in the distributed database of target identification information.

进一步地,所述处理器501,还用于读取所述配置文件,确定所述配置文件中是否携带对所述埋点数据进行处理的信息;若是,则对所述埋点数据进行数据分析。Further, the processor 501 is further configured to read the configuration file, and determine whether the configuration file carries information for processing the buried point data; if so, perform data analysis on the buried point data .

进一步地,所述处理器501,具体用于基于Flink filter算子,对所述埋点数据进行数据分析;或基于Flink SQL,对所述埋点数据进行数据分析。Further, the processor 501 is specifically configured to perform data analysis on the buried point data based on the Flink filter operator; or perform data analysis on the buried point data based on Flink SQL.

上述服务器提到的通信总线可以是外设部件互连标准(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准结构(Extended Industry StandardArchitecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The communication bus mentioned by the above server may be a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like. The communication bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.

通信接口502用于上述电子设备与其他设备之间的通信。The communication interface 502 is used for communication between the above-mentioned electronic device and other devices.

存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选地,存储器还可以是至少一个位于远离前述处理器的存储装置。The memory may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory. Optionally, the memory may also be at least one storage device located remotely from the aforementioned processor.

上述处理器可以是通用处理器,包括中央处理器、网络处理器(NetworkProcessor,NP)等;还可以是数字指令处理器(Digital Signal Processing,DSP)、专用集成电路、现场可编程门陈列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。The above-mentioned processor may be a general-purpose processor, including a central processing unit, a network processor (Network Processor, NP), etc.; it may also be a digital instruction processor (Digital Signal Processing, DSP), an application-specific integrated circuit, a field programmable gate array, or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.

实施例8:Example 8:

在上述各实施例的基础上,本申请一些实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有可由电子设备执行的计算机程序,当所述程序在所述电子设备上运行时,使得所述电子设备执行时实现如下步骤:On the basis of the foregoing embodiments, some embodiments of the present application further provide a computer-readable storage medium, where a computer program executable by an electronic device is stored in the computer-readable storage medium. When running on the electronic device, the following steps are implemented when the electronic device is executed:

所述存储器中存储有计算机程序,当所述程序被所述处理器执行时,使得所述处理器执行如下步骤:A computer program is stored in the memory, and when the program is executed by the processor, the processor is caused to perform the following steps:

读取配置文件,获取所述配置文件中携带的待埋点的埋点数据及所述埋点数据对应存储到的分布式数据库的第一目标标识信息;Read the configuration file, and obtain the buried point data of the to-be-buried point carried in the configuration file and the first target identification information of the distributed database correspondingly stored in the buried point data;

将所述埋点数据存储到所述第一目标标识信息的分布式数据库中。The buried point data is stored in the distributed database of the first target identification information.

进一步地,所述配置文件还携带待埋点的业务系统的第二目标标识信息;Further, the configuration file also carries the second target identification information of the business system to be buried;

所述将所述埋点数据存储到所述第一目标标识信息的分布式数据库中包括:The storing of the buried point data in the distributed database of the first target identification information includes:

根据所述待埋点的业务系统的第二目标标识信息、预先保存的业务系统的标识信息与Kafka中主题的标识信息的对应关系,确定所述第二标识信息对应的Kafka中主题的第三目标标识信息,并将所述埋点数据写入到所述Kafka中所述第三目标标识信息的主题中;According to the corresponding relationship between the second target identification information of the business system to be buried, the identification information of the pre-stored business system and the identification information of the topic in Kafka, the third identification information of the topic in Kafka corresponding to the second identification information is determined. target identification information, and write the buried point data into the topic of the third target identification information in the Kafka;

识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。Identifying the buried point data written in the subject of the third target identification information, and storing the identified buried point data in the distributed database of the first target identification information.

进一步地,所述方法还包括:Further, the method also includes:

若第一目标标识信息的分布式数据库中所述埋点数据丢失,则在满足识别条件后,识别所述第三目标标识信息的主题中写入的所述埋点数据,并将识别出的所述埋点数据存储到所述第一目标标识信息的分布式数据库中。If the buried point data in the distributed database of the first target identification information is lost, after the identification conditions are met, the buried point data written in the subject of the third target identification information is identified, and the identified The buried point data is stored in the distributed database of the first target identification information.

进一步地,所述识别所述第三目标标识信息的主题中写入的所述埋点数据包括:Further, the buried point data written in the subject of identifying the third target identification information includes:

基于Flink识别所述第三目标标识信息的主题中写入的所述埋点数据;或The buried point data written in the subject based on Flink identifying the third target identification information; or

基于Flink SQL识别所述第三目标标识信息的主题中写入的所述埋点数据。The buried point data written in the subject of the third target identification information is identified based on Flink SQL.

进一步地,所述配置文件还携带有数据表的第四目标标识信息;Further, the configuration file also carries the fourth target identification information of the data table;

所述将所述埋点数据存储到所述第一目标标识信息的分布式数据库中包括:The storing of the buried point data in the distributed database of the first target identification information includes:

根据所述第四目标标识信息,将所述埋点数据存储到所述第一目标标识信息的分布式数据库中的所述第四目标标识信息的目标数据表中。According to the fourth target identification information, the buried point data is stored in the target data table of the fourth target identification information in the distributed database of the first target identification information.

进一步地,所述方法还包括:Further, the method also includes:

读取所述配置文件,确定所述配置文件中是否携带对所述埋点数据进行处理的信息;reading the configuration file, and determining whether the configuration file carries the information for processing the buried point data;

若是,则对所述埋点数据进行数据分析。If so, perform data analysis on the buried point data.

进一步地,所述对所述埋点数据进行数据分析包括:Further, performing data analysis on the buried point data includes:

基于Flink filter算子,对所述埋点数据进行数据分析;或Perform data analysis on the buried point data based on the Flink filter operator; or

基于Flink SQL,对所述埋点数据进行数据分析。Based on Flink SQL, data analysis is performed on the buried point data.

实施例9:Example 9:

本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于电子设备的任一方法实施例所述的数据存储方法。An embodiment of the present application further provides a computer program product, which implements the data storage method described in any of the foregoing method embodiments applied to an electronic device when the computer program product is executed by a computer.

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。In the above embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof, and may be implemented in whole or in part in the form of computer program products. The computer program product includes one or more computer instructions, and when the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.

由于在本申请实施中,可以根据各个埋点数据对应存储到的分布式数据库的第一目标标识信息,将各个埋点数据存储到对应的第一目标标识信息的分布式数据库中,一方面,分布式数据库相比于关系型数据库来说,更适合存储大数量的数据,不会出现埋点数据达到一定规模后,影响业务系统的运行速度的问题,且各个埋点数据是进行分库存储的,可以有效的减少每个分布式数据库的存储压力;另一方面,也不需要了将埋点数据写入到日志中,来将埋点数据同步在大数据计算环境中,降低了开发人员的工作负担,也降低了对业务系统的磁盘性能、容量的要求。Because in the implementation of the present application, each buried point data can be stored in the distributed database of the corresponding first target identification information according to the first target identification information of the distributed database correspondingly stored in each buried point data, on the one hand, Compared with relational databases, distributed databases are more suitable for storing a large amount of data, and there will be no problem of affecting the operation speed of the business system after the embedded data reaches a certain scale, and each embedded data is stored in separate databases. It can effectively reduce the storage pressure of each distributed database; on the other hand, there is no need to write the buried point data to the log to synchronize the buried point data in the big data computing environment, which reduces the development of developers. It also reduces the disk performance and capacity requirements of the business system.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.

Claims (17)

1. A method of data storage, the method comprising:
reading a configuration file, and acquiring buried point data of a point to be buried carried in the configuration file and first target identification information of a distributed database correspondingly stored in the buried point data;
and storing the buried point data into a distributed database of the first target identification information.
2. The method of claim 1, wherein the configuration file further carries second target identification information of a service system of the to-be-buried point;
the storing the buried point data in the distributed database of the first target identification information comprises:
determining third target identification information of a subject in Kafka corresponding to second identification information according to the corresponding relation between the second target identification information of the service system of the point to be buried, the pre-stored identification information of the service system and the identification information of the subject in Kafka, and writing the buried point data into the subject of the third target identification information in Kafka;
and identifying the buried point data written in the theme of the third target identification information, and storing the identified buried point data into a distributed database of the first target identification information.
3. The method of claim 2, further comprising:
if the buried point data in the distributed database of the first target identification information is lost, identifying the buried point data written in the theme of the third target identification information after the identification condition is met, and storing the identified buried point data in the distributed database of the first target identification information.
4. The method according to claim 2, wherein said identifying said buried point data written in the subject of said third target identification information comprises:
identifying the buried point data written in the subject of the third target identification information based on the Flink; or
And identifying the buried point data written in the theme of the third target identification information based on Flink SQL.
5. The method of claim 2, wherein the configuration file further carries fourth target identification information of a data table;
the storing the buried point data in the distributed database of the first target identification information comprises:
and storing the buried point data into a target data table of the fourth target identification information in a distributed database of the first target identification information according to the fourth target identification information.
6. The method of claim 1, further comprising:
reading the configuration file, and determining whether the configuration file carries information for processing the buried point data;
and if so, performing data analysis on the buried point data.
7. The method of claim 6, wherein the performing data analysis on the buried point data comprises:
performing data analysis on the buried point data based on a Flink filter operator; or
And performing data analysis on the buried point data based on Flink SQL.
8. A data storage device, the device comprising:
the system comprises an acquisition module, a storage module and a processing module, wherein the acquisition module is used for reading a configuration file and acquiring buried point data of points to be buried carried in the configuration file and first target identification information of a distributed database, which is correspondingly stored in the buried point data;
and the storage module is used for storing the buried point data into a distributed database of the first target identification information.
9. The apparatus according to claim 8, wherein the storage module is specifically configured to, if the configuration file further carries second target identification information of a service system of a to-be-buried point, determine, according to a correspondence between the second target identification information of the service system of the to-be-buried point, pre-stored identification information of the service system, and identification information of a topic in Kafka, third target identification information of the topic in Kafka corresponding to the second identification information, and write the buried point data into the topic of the third target identification information in Kafka; and identifying the buried point data written in the theme of the third target identification information, and storing the identified buried point data into a distributed database of the first target identification information.
10. The apparatus of claim 9, wherein the storage module is further configured to, if the buried point data in the distributed database of the first target identification information is lost, identify the buried point data written in the subject of the third target identification information after the identification condition is satisfied, and store the identified buried point data in the distributed database of the first target identification information.
11. The apparatus according to claim 9, wherein the storage module is specifically configured to identify the buried point data written in the subject of the third target identification information based on Flink; or identifying the buried point data written in the subject of the third target identification information based on Flink SQL.
12. The apparatus according to claim 9, wherein the storage module is specifically configured to, if the configuration file further carries fourth target identification information of a data table, store the buried point data in a target data table of the fourth target identification information in a distributed database of the first target identification information according to the fourth target identification information.
13. The apparatus of claim 8, further comprising:
the determining module is used for reading the configuration file and determining whether the configuration file carries information for processing the buried point data;
and the analysis module is used for carrying out data analysis on the buried point data if the information for processing the buried point data is carried.
14. The apparatus according to claim 13, wherein the analysis module is specifically configured to perform data analysis on the buried point data based on a Flink filter operator; or performing data analysis on the buried point data based on Flink SQL.
15. An electronic device, characterized in that the electronic device comprises a processor and a memory, the memory being adapted to store program instructions, the processor being adapted to carry out the steps of the data storage method of any of the preceding claims 1-7 when executing a computer program stored in the memory.
16. A computer-readable storage medium, characterized in that it stores a computer program which, when being executed by a processor, carries out the steps of the data storage method according to any one of claims 1 to 7.
17. A computer program product, characterized in that the computer program product comprises: computer program code for causing a computer to perform the steps of the data storage method as claimed in any one of claims 1 to 7 when said computer program code is run on a computer.
CN202210707372.2A 2022-06-21 2022-06-21 Data storage method, device, equipment and medium Active CN115033179B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210707372.2A CN115033179B (en) 2022-06-21 2022-06-21 Data storage method, device, equipment and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210707372.2A CN115033179B (en) 2022-06-21 2022-06-21 Data storage method, device, equipment and medium

Publications (2)

Publication Number Publication Date
CN115033179A true CN115033179A (en) 2022-09-09
CN115033179B CN115033179B (en) 2025-08-26

Family

ID=83125179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210707372.2A Active CN115033179B (en) 2022-06-21 2022-06-21 Data storage method, device, equipment and medium

Country Status (1)

Country Link
CN (1) CN115033179B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116319979A (en) * 2023-02-21 2023-06-23 深圳市海邻科信息技术有限公司 Data collection method, device, equipment and storage medium

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108804644A (en) * 2018-06-05 2018-11-13 中国平安人寿保险股份有限公司 Interface log storing method, device, computer equipment and storage medium
CN109656981A (en) * 2018-11-19 2019-04-19 南京国通智能科技有限公司 A kind of data statistical approach and system
CN110502591A (en) * 2019-08-27 2019-11-26 北京思维造物信息科技股份有限公司 A kind of data extraction method, device and equipment
CN110570097A (en) * 2019-08-15 2019-12-13 中国平安人寿保险股份有限公司 business personnel risk identification method and device based on big data and storage medium
CN110647512A (en) * 2019-09-29 2020-01-03 北京思维造物信息科技股份有限公司 Data storage and analysis method, device, equipment and readable medium
CN112069384A (en) * 2020-09-04 2020-12-11 中国平安人寿保险股份有限公司 Buried point data processing method, server and readable storage medium
CN112506960A (en) * 2020-12-17 2021-03-16 青岛以萨数据技术有限公司 Multi-model data storage method and system based on ArangoDB engine
CN113204464A (en) * 2021-04-23 2021-08-03 商盟商务服务有限公司 Real-time service monitoring method, system, terminal and medium based on service scene
CN113918651A (en) * 2021-10-13 2022-01-11 广东利通科技投资有限公司 Business data and capital flow processing method, device, equipment and medium
CN114153620A (en) * 2022-02-08 2022-03-08 上海柯林布瑞信息技术有限公司 Optimal allocation method and device for Hudi operating environment resources
CN114186000A (en) * 2021-12-14 2022-03-15 上海识装信息科技有限公司 A Flink-based business data monitoring method, device and storage medium
CN114257521A (en) * 2021-12-17 2022-03-29 北京沃东天骏信息技术有限公司 Flow prediction method, device, electronic equipment and storage medium
CN114546780A (en) * 2022-02-25 2022-05-27 携程计算机技术(上海)有限公司 Data monitoring method, device, equipment, system and storage medium
CN114567650A (en) * 2021-12-29 2022-05-31 西安天和防务技术股份有限公司 Data processing method and Internet of things platform system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108804644A (en) * 2018-06-05 2018-11-13 中国平安人寿保险股份有限公司 Interface log storing method, device, computer equipment and storage medium
CN109656981A (en) * 2018-11-19 2019-04-19 南京国通智能科技有限公司 A kind of data statistical approach and system
CN110570097A (en) * 2019-08-15 2019-12-13 中国平安人寿保险股份有限公司 business personnel risk identification method and device based on big data and storage medium
CN110502591A (en) * 2019-08-27 2019-11-26 北京思维造物信息科技股份有限公司 A kind of data extraction method, device and equipment
CN110647512A (en) * 2019-09-29 2020-01-03 北京思维造物信息科技股份有限公司 Data storage and analysis method, device, equipment and readable medium
CN112069384A (en) * 2020-09-04 2020-12-11 中国平安人寿保险股份有限公司 Buried point data processing method, server and readable storage medium
CN112506960A (en) * 2020-12-17 2021-03-16 青岛以萨数据技术有限公司 Multi-model data storage method and system based on ArangoDB engine
CN113204464A (en) * 2021-04-23 2021-08-03 商盟商务服务有限公司 Real-time service monitoring method, system, terminal and medium based on service scene
CN113918651A (en) * 2021-10-13 2022-01-11 广东利通科技投资有限公司 Business data and capital flow processing method, device, equipment and medium
CN114186000A (en) * 2021-12-14 2022-03-15 上海识装信息科技有限公司 A Flink-based business data monitoring method, device and storage medium
CN114257521A (en) * 2021-12-17 2022-03-29 北京沃东天骏信息技术有限公司 Flow prediction method, device, electronic equipment and storage medium
CN114567650A (en) * 2021-12-29 2022-05-31 西安天和防务技术股份有限公司 Data processing method and Internet of things platform system
CN114153620A (en) * 2022-02-08 2022-03-08 上海柯林布瑞信息技术有限公司 Optimal allocation method and device for Hudi operating environment resources
CN114546780A (en) * 2022-02-25 2022-05-27 携程计算机技术(上海)有限公司 Data monitoring method, device, equipment, system and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116319979A (en) * 2023-02-21 2023-06-23 深圳市海邻科信息技术有限公司 Data collection method, device, equipment and storage medium

Also Published As

Publication number Publication date
CN115033179B (en) 2025-08-26

Similar Documents

Publication Publication Date Title
CN110718264A (en) Method and device for testing information of solid state disk, computer equipment and storage medium
CN109471851B (en) Data processing method, device, server and storage medium
CN110515795B (en) Big data component monitoring method and device and electronic equipment
CN110765195A (en) Data analysis method and device, storage medium and electronic equipment
US10713162B1 (en) System and method for computer data garbage collection acceleration using peer to peer data transfers
WO2024230735A1 (en) Data processing method, electronic device, storage medium, and apparatus
CN111552690A (en) Data generation method, device, terminal and storage medium
CN110457179A (en) System detection method, memory monitoring method, device, medium and electronic device
CN115016973A (en) A program crash event reproduction method, apparatus, device and medium
CN112783711A (en) Method and storage medium for analyzing program memory on NodeJS
CN115033179A (en) A data storage method, device, device and medium
CN114860432B (en) A method and device for determining memory failure information
CN111984444A (en) A kind of abnormal information processing method and device
CN115878400A (en) Test method, test apparatus, computer device, storage medium, and program product
CN111522832A (en) Big data real-time updating method, system, equipment and storage medium
CN117763024A (en) Data fragment extraction method and device
CN113064895B (en) Incremental updating method, device and system for map
US9690886B1 (en) System and method for a simulation of a block storage system on an object storage system
CN112445869A (en) Data quality inspection method and device
CN111459886A (en) A method, device, device and storage medium for matching and retrieving log content
CN115438058A (en) Data processing method and device
CN112286804A (en) System debugging method, device, equipment and medium
CN114077532A (en) Method and device for detecting SQL statement execution efficiency
US11340814B1 (en) Placing data in a data storage array based on detection of different data streams within an incoming flow of data
JP6123931B1 (en) Information processing apparatus, information processing method, and program

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载