CN115035556A - Face retrieval method and device, electronic equipment and storage medium - Google Patents
Face retrieval method and device, electronic equipment and storage medium Download PDFInfo
- Publication number
- CN115035556A CN115035556A CN202110237123.7A CN202110237123A CN115035556A CN 115035556 A CN115035556 A CN 115035556A CN 202110237123 A CN202110237123 A CN 202110237123A CN 115035556 A CN115035556 A CN 115035556A
- Authority
- CN
- China
- Prior art keywords
- similarity
- similarities
- threshold
- maximum
- original
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
Abstract
本发明提供了一种人脸检索方法、装置、电子设备及存储介质,该方法包括:对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量;分别确定所述待检索特征向量与底库中底库图片的特征向量之间的相似度;根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值;根据所述最大相似度与所述调整后的相似度阈值,确定检索结果。本发明充分考虑了不同的图像质量导致的差异,从而可以减小在不同图像质量下的检索精度差别,提高不同图像质量下的检索精度,从而可以提高人脸检索的召回率。
The invention provides a face retrieval method, device, electronic equipment and storage medium. The method includes: performing feature extraction on a face image to be retrieved, and obtaining a feature vector of the face image to be retrieved as the feature vector to be retrieved; The similarity between the feature vector to be retrieved and the feature vector of the bottom library picture in the base library; according to the distribution information between the largest top N similarities in each similarity and/or the maximum similarity in each similarity , the original similarity threshold is adjusted to obtain the adjusted similarity threshold; the retrieval result is determined according to the maximum similarity and the adjusted similarity threshold. The present invention fully considers the differences caused by different image qualities, so that the difference in retrieval precision under different image qualities can be reduced, the retrieval accuracy under different image qualities can be improved, and the recall rate of face retrieval can be improved.
Description
技术领域technical field
本发明涉及人脸识别技术领域,特别是涉及一种人脸检索方法、装置、电子设备及存储介质。The present invention relates to the technical field of face recognition, in particular to a face retrieval method, device, electronic device and storage medium.
背景技术Background technique
人脸识别方法是通过一个深度神经网络模型对人脸图片进行编码,根据编码后的特征之间的相似度来度量两张图片是否是同一个人。在人脸检索场景中,算法需要给出一张待检索人脸图片中的人脸是否存在在底库(base)中,以及是底库中哪一张图片。目前的算法分两步来计算:1)计算待检索人脸图片对应的特征与底库中每张人脸图片对应特征的的相似度,并找到底库中与待检索人脸图片的特征相似度最大的人脸特征;2)判断最大的这个相似度是否大于某个阈值,如果大于该阈值则认为待检索人脸图片的人脸在底库中存在,输出对应的底库人脸图片,如果小于该阈值则认为待检索人脸图片的人脸不存在底库中,输出无匹配图片。The face recognition method is to encode the face pictures through a deep neural network model, and measure whether the two pictures are the same person according to the similarity between the encoded features. In the face retrieval scenario, the algorithm needs to give whether the face in the face image to be retrieved exists in the base, and which image in the base. The current algorithm is calculated in two steps: 1) Calculate the similarity between the feature corresponding to the face image to be retrieved and the corresponding feature of each face image in the base library, and find the feature in the base library that is similar to the face image to be retrieved 2) Determine whether the maximum similarity is greater than a certain threshold, if it is greater than the threshold, it is considered that the face of the face image to be retrieved exists in the base library, and the corresponding base library face image is output, If it is less than the threshold, it is considered that the face of the face image to be retrieved does not exist in the base library, and no matching image is output.
现有技术采用一个固定的相似度阈值来判定两幅人脸图像是否是同一个人,无法解决因为待检索人脸图片自身特征导致的相似度分布偏移。比如一个清晰的待检索人脸图片,按现有技术方法可以搜索到其在底库中的图片,但如果待检索人脸图片变模糊,导致其与底库中所有图片相似度均变小,尽管底库中匹配到相似度最大的仍然是同一个人的图片,但是由于相似度整体的偏移变小,导致该相似度无法过阈值,从而无法输出其正确的底库图片,使得算法整体的召回率变低。In the prior art, a fixed similarity threshold is used to determine whether two face images are of the same person, which cannot solve the shift of the similarity distribution caused by the characteristics of the face images to be retrieved. For example, a clear face picture to be retrieved can be searched for its pictures in the base library according to the prior art method, but if the face picture to be searched becomes blurred, the similarity with all the pictures in the base library will become smaller. Although the image of the same person is still matched with the highest similarity in the base library, the overall similarity cannot exceed the threshold due to the smaller offset of the overall similarity, so the correct base image cannot be output, which makes the algorithm as a whole The recall rate becomes lower.
发明内容SUMMARY OF THE INVENTION
鉴于上述问题,提出了本发明实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种人脸检索方法、装置、电子设备及存储介质。In view of the above problems, the embodiments of the present invention are proposed to provide a face retrieval method, apparatus, electronic device and storage medium that overcome the above problems or at least partially solve the above problems.
依据本发明实施例的第一方面,提供了一种人脸检索方法,包括:According to a first aspect of the embodiments of the present invention, a face retrieval method is provided, including:
对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量;Perform feature extraction on the face image to be retrieved, and obtain the feature vector of the face image to be retrieved as the feature vector to be retrieved;
分别确定所述待检索特征向量与底库中底库图片的特征向量之间的相似度;respectively determining the similarity between the feature vector to be retrieved and the feature vector of the bottom library picture in the bottom library;
根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值;Adjust the original similarity threshold according to the distribution information between the largest top N similarities in each similarity and/or the maximum similarity in each similarity to obtain the adjusted similarity threshold;
根据所述最大相似度与所述调整后的相似度阈值,确定检索结果。The retrieval result is determined according to the maximum similarity and the adjusted similarity threshold.
依据本发明实施例的第二方面,提供了一种人脸检索装置,包括:According to a second aspect of the embodiments of the present invention, a face retrieval apparatus is provided, including:
特征提取模块,用于对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量;The feature extraction module is used to perform feature extraction on the face image to be retrieved, and obtain the feature vector of the face image to be retrieved as the feature vector to be retrieved;
相似度确定模块,用于分别确定所述待检索特征向量与底库中底库图片的特征向量之间的相似度;a similarity determination module, used for respectively determining the similarity between the feature vector to be retrieved and the feature vector of the bottom library picture in the bottom library;
阈值调整模块,用于根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值;The threshold adjustment module is used to adjust the original similarity threshold according to the distribution information between the largest top N similarities in each similarity and/or the maximum similarity in each similarity, and obtain the adjusted similarity threshold ;
检索结果确定模块,用于根据所述最大相似度与所述调整后的相似度阈值,确定检索结果。The retrieval result determination module is configured to determine the retrieval result according to the maximum similarity and the adjusted similarity threshold.
依据本发明实施例的第三方面,提供了一种电子设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面中所述的人脸检索方法。According to a third aspect of the embodiments of the present invention, there is provided an electronic device, comprising: a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being When executed by the processor, the face retrieval method as described in the first aspect is implemented.
依据本发明实施例的第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的人脸检索方法。According to a fourth aspect of the embodiments of the present invention, there is provided a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the first aspect is implemented face retrieval method.
本发明实施例提供的人脸检索方法、装置、电子设备及存储介质,通过对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量,分别确定待检索特征向量与底库中底库图片的特征向量之间的相似度,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,根据最大相似度与调整后的相似度阈值确定检索结果,由于根据最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度来对原始相似度阈值进行调整,充分考虑了不同的图像质量导致的差异,从而可以减小在不同图像质量下的检索精度差别,提高不同图像质量下的检索精度,从而可以提高人脸检索的召回率。In the face retrieval method, device, electronic device, and storage medium provided by the embodiments of the present invention, the feature extraction of the face image to be retrieved is performed to obtain the feature vector of the face image to be retrieved, and the feature vector to be retrieved is used as the feature vector to be retrieved, and the feature to be retrieved is determined respectively. The similarity between the vector and the feature vector of the bottom library image in the base library, according to the distribution information between the largest top N similarities in each similarity and/or the maximum similarity in each similarity, the original similarity The threshold is adjusted to obtain the adjusted similarity threshold, and the retrieval result is determined according to the maximum similarity and the adjusted similarity threshold. Since the distribution information between the largest top N similarities and/or the largest similarity in each similarity is determined. Similarity is used to adjust the original similarity threshold, fully considering the differences caused by different image qualities, so that the difference in retrieval accuracy under different image qualities can be reduced, and the retrieval accuracy under different image qualities can be improved. retrieval recall.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solutions of the present invention, in order to be able to understand the technical means of the present invention more clearly, it can be implemented according to the content of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand , the following specific embodiments of the present invention are given.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be considered limiting of the invention.
图1是本发明实施例提供的一种人脸检索方法的步骤流程图;1 is a flowchart of steps of a method for retrieving a face provided by an embodiment of the present invention;
图2是本发明实施例提供的一种人脸检索测装置的结构框图。FIG. 2 is a structural block diagram of a face retrieval and detection apparatus provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present invention are shown in the drawings, it should be understood that the present invention may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present invention will be more thoroughly understood, and will fully convey the scope of the present invention to those skilled in the art.
图1是本发明实施例提供的一种人脸检索方法的步骤流程图,如图1所示,该方法可以包括:FIG. 1 is a flowchart of steps of a face retrieval method provided by an embodiment of the present invention. As shown in FIG. 1 , the method may include:
步骤101,对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量。Step 101: Perform feature extraction on the to-be-retrieved face picture to obtain a feature vector of the to-be-retrieved face picture as the to-be-retrieved feature vector.
通过神经网络模型对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,将待检索人脸图片的特征向量作为待检索特征向量。The feature extraction is performed on the face image to be retrieved through the neural network model, the feature vector of the face image to be retrieved is obtained, and the feature vector of the face image to be retrieved is used as the feature vector to be retrieved.
步骤102,分别确定所述待检索特征向量与底库中底库图片的特征向量之间的相似度。
通过神经网络模型分别对待检索人脸图片进行特征提取,得到底库中底库图片的特征向量。分别确定待检索特征向量与底库中底库图片的特征向量之间的相似度。其中,所述相似度可以是余弦相似度,或者还可以是以距离表示的相似度,相似度与距离成反比关系,二个向量之间距离越小相似度越大,距离越大相似度越小,从而最大相似度对应着最小距离。所述距离可以是L2距离等。Through the neural network model, the features of the face images to be retrieved are extracted respectively, and the feature vectors of the images in the base library and the base library are obtained. The similarity between the feature vector to be retrieved and the feature vector of the bottom library image in the bottom library is determined respectively. The similarity may be a cosine similarity, or may also be a similarity expressed by a distance. The similarity is inversely proportional to the distance. The smaller the distance between the two vectors, the greater the similarity. The greater the distance, the greater the similarity. is small, so that the largest similarity corresponds to the smallest distance. The distance may be the L2 distance or the like.
可以预先通过神经网络模型分别对底库中每一张底库图片进行特征提取,得到底库中底库图片的特征向量,并保存每一张底库图片的特征向量,从而在获取到待检索人脸图片时,可以直接计算待检索人脸图片对应的待检索特征向量分别与保存的每一张底库图片的特征向量之间的相似度,提高人脸检索速度,节省人脸检索时间。The feature extraction of each base image in the base library can be carried out in advance through the neural network model to obtain the feature vector of the base image in the base library, and the feature vector of each base image is saved, so as to obtain the to-be-retrieved feature vector. When using a face image, the similarity between the to-be-retrieved feature vector corresponding to the to-be-retrieved face image and the stored feature vector of each base image can be directly calculated, which improves the face retrieval speed and saves the face retrieval time.
步骤103,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值。Step 103: Adjust the original similarity threshold according to the distribution information between the largest top N similarities and/or the largest similarity in each similarity to obtain an adjusted similarity threshold.
在确定待检索特征向量分别与底库中底库图片的特征向量之间的相似度后,比较这些相似度,确定最大的前N个相似度,并确定前N个相似度的分布信息,比如最大相似度远远大于第2-N个相似度,或者最大相似度略大于第2-N个相似度,或者最大相似度与第2-N个相似度均比较接近等,之后基于最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对相似度进行调整,得到调整后原始相似度阈值。其中,N是预先设置的数量,例如可以为10。一例中,可预先设定远远大于、略大于还是比较接近的判断标准。例如,最大相似度比第2个相似度大10%以上,可以认为最大相似度远远大于第2-N个相似度;最大相似度与第2个相似度之差小于10%、大于3%,可以认为最大相似度略大于第2-N个相似度,否则认为最大相似度与第2-N个相似度均比较接近。可以认为最大相似度略大于第2-N个相似度,或者最大相似度与第2-N个相似度均比较接近时,最大相似度不远大于第2-N个相似度。也可认为最大相似度与第2-N个相似度均比较接近时,最大相似度不远大于第2-N个相似度。After determining the similarity between the feature vector to be retrieved and the feature vector of the base image in the base library, compare these similarities, determine the largest top N similarities, and determine the distribution information of the top N similarities, such as The maximum similarity is much larger than the 2-Nth similarity, or the maximum similarity is slightly larger than the 2-Nth similarity, or the maximum similarity is relatively close to the 2-Nth similarity, etc. The distribution information between the N similarities and/or the maximum similarity among the similarities is adjusted to obtain the adjusted original similarity threshold. Among them, N is a preset number, for example, it can be 10. In one example, a judgment standard that is much larger, slightly larger, or relatively close can be preset. For example, if the maximum similarity is more than 10% greater than the second similarity, it can be considered that the maximum similarity is far greater than the 2-Nth similarity; the difference between the maximum similarity and the second similarity is less than 10% and greater than 3% , it can be considered that the maximum similarity is slightly larger than the 2-Nth similarity, otherwise it is considered that the maximum similarity is relatively close to the 2-Nth similarity. It can be considered that the maximum similarity is slightly larger than the 2-Nth similarity, or when the maximum similarity is relatively close to the 2-Nth similarity, the maximum similarity is not much larger than the 2-Nth similarity. It can also be considered that when the maximum similarity is relatively close to the 2-Nth similarity, the maximum similarity is not much larger than the 2-Nth similarity.
在本发明的一个实施例中,从各相似度中确定最大的前N个相似度,可选包括:按照相似度从大到小的顺序,对所述各相似度进行排序;从排序后的相似度中确定排在前面N个的相似度,并确定排在第一位的相似度为最大相似度。In an embodiment of the present invention, determining the largest top N similarities from the similarities, optionally including: sorting the similarities in descending order of the similarities; Among the similarities, the first N similarities are determined, and the first similarity is determined as the maximum similarity.
在确定待检索特征向量与底库中底库图片的特征向量的相似度后,将得到的所有相似度按照从大到小的顺序进行排序,排序后从第一位开始选取N个相似度,排在第一位的相似度为最大相似度。其中,所述N大于或等于2。After determining the similarity between the feature vector to be retrieved and the feature vector of the base image in the base library, sort all the obtained similarities in descending order, and select N similarities from the first position after sorting. The similarity ranked first is the maximum similarity. Wherein, the N is greater than or equal to 2.
在本发明的另一个实施例中,从各相似度中确定最大的前N个相似度,可选包括:按照相似度从小到大的顺序,对所述各相似度进行排序;从排序后的相似度中确定排在后面N个的相似度,并确定排在最后一位的相似度为最大相似度。In another embodiment of the present invention, determining the largest top N similarities from among the similarities may optionally include: sorting the similarities in ascending order of the similarities; Among the similarities, the following N similarities are determined, and the last similarity is determined as the maximum similarity.
在确定待检索特征向量与底库中底库图片的特征向量的相似度后,将得到的所有相似度按照从小到大的顺序进行排序,排序后从最后一位开始选取N个相似度,排在最后一位的相似度为最大相似度。其中,所述N大于或等于2。After determining the similarity between the feature vector to be retrieved and the feature vector of the base image in the base library, sort all the obtained similarities in ascending order. The similarity in the last digit is the maximum similarity. Wherein, the N is greater than or equal to 2.
在本发明的一个实施例中,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,包括:In an embodiment of the present invention, the original similarity threshold is adjusted according to the distribution information between the largest top N similarities in each similarity and/or the largest similarity in each similarity to obtain the adjusted similarity threshold. Similarity thresholds, including:
如果所述最大相似度远大于第2-第N个相似度,则对原始相似度阈值进行调整,使调整后的相似度阈值小于原始相似度阈值。If the maximum similarity is far greater than the 2nd-Nth similarity, the original similarity threshold is adjusted so that the adjusted similarity threshold is smaller than the original similarity threshold.
其中,远大于是指分布信息大于分布阈值。Among them, far greater than means that the distribution information is greater than the distribution threshold.
如果最大相似度远远大于第2-N个相似度,说明最大相似度对应的底库图片很可能是待检索图片对应的底库图片,这时为了避免无法召回底库图片的情况,可以稍微调小原始相似度阈值。If the maximum similarity is far greater than the 2-Nth similarity, it means that the base image corresponding to the maximum similarity is likely to be the base image corresponding to the image to be retrieved. Decrease the original similarity threshold.
例如,若原始相似度阈值为70%,最大相似度为70.2%,按照从大到小的顺序排序后排在第2位的相似度为48%,排在第3位的相似度为47%,从而确定相似度的分布信息为最大相似度远远大于待检索图片与其他底库图片的相似度,则可以适当降低原始相似度阈值,确定待检索图片比中最大相似度对应的底库图像。For example, if the original similarity threshold is 70% and the maximum similarity is 70.2%, the similarity in the second place is 48% and the similarity in the third place is 47% after sorting in descending order. , so as to determine that the distribution information of the similarity is that the maximum similarity is far greater than the similarity between the to-be-retrieved picture and other base images, the original similarity threshold can be appropriately reduced to determine the base image corresponding to the maximum similarity in the ratio of the images to be searched. .
在本发明的另一个实施例中,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,包括:In another embodiment of the present invention, the original similarity threshold is adjusted according to the distribution information between the largest top N similarities in each similarity and/or the largest similarity in each similarity, and the adjusted threshold is obtained after adjustment. The similarity threshold of , including:
如果所述最大相似度远大于第2-第N个相似度且所述最大相似度小于所述原始相似度阈值,则对原始相似度阈值进行调整,使调整后的相似度阈值小于原始相似度阈值。If the maximum similarity is far greater than the 2nd-Nth similarity and the maximum similarity is smaller than the original similarity threshold, adjust the original similarity threshold so that the adjusted similarity threshold is smaller than the original similarity threshold.
如果最大相似度远远大于第2-第N个相似度,而且最大相似度小于原始相似度阈值,说明可能是由图像质量引起的最大相似度无法超过原始相似度阈值,这时为了避免这种问题,可以对原始相似度阈值进行调整,使调整后的相似度阈值小于原始相似度阈值。If the maximum similarity is far greater than the 2nd-Nth similarity, and the maximum similarity is smaller than the original similarity threshold, it means that the maximum similarity caused by the image quality cannot exceed the original similarity threshold. At this time, in order to avoid this The original similarity threshold can be adjusted so that the adjusted similarity threshold is smaller than the original similarity threshold.
例如,若原始相似度阈值为70%,最大相似度为69%,按照从大到小的顺序排序后排在第2位的相似度为40%,排在第3位的相似度为38%,从而确定相似度的分布信息为最大相似度远远大于待检索图片与其他底库图片的相似度,则说明待检索图片比中最大相似度对应的底库图片的可能性增加,这时可以适当降低原始相似度阈值。For example, if the original similarity threshold is 70%, the maximum similarity is 69%, the similarity in the second place after sorting from largest to smallest is 40%, and the similarity in the third place is 38% , so that the distribution information of the similarity is determined that the maximum similarity is far greater than the similarity between the to-be-retrieved picture and other base images, which means that the possibility of the base image corresponding to the maximum similarity of the to-be-retrieved image is increased. Appropriately lower the original similarity threshold.
在本发明的一个实施例中,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,包括:In an embodiment of the present invention, the original similarity threshold is adjusted according to the distribution information between the largest top N similarities in each similarity and/or the largest similarity in each similarity to obtain the adjusted similarity threshold. Similarity thresholds, including:
如果所述最大相似度不远大于第2-第N个相似度,则对原始相似度阈值进行调整,使调整后的相似度阈值大于原始相似度阈值。If the maximum similarity is not far greater than the 2nd-Nth similarity, the original similarity threshold is adjusted so that the adjusted similarity threshold is greater than the original similarity threshold.
如果最大相似度不远大于第2-第N个相似度,即分布信息小于分布阈值,也就是每个相似度都较为接近,可以适当调大原始相似度阈值,即使得调整后的相似度阈值大于原始相似度阈值。If the maximum similarity is not much larger than the 2nd-Nth similarity, that is, the distribution information is smaller than the distribution threshold, that is, each similarity is relatively close, the original similarity threshold can be appropriately increased, even if the adjusted similarity threshold is obtained greater than the original similarity threshold.
在本发明的另一个实施例中,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,包括:In another embodiment of the present invention, the original similarity threshold is adjusted according to the distribution information between the largest top N similarities in each similarity and/or the largest similarity in each similarity, and the adjusted threshold is obtained after adjustment. The similarity threshold of , including:
如果所述最大相似度不远大于第2-第N个相似度且所述最大相似度大于所述原始相似度阈值,则对原始相似度阈值进行调整,使调整后的相似度阈值大于原始相似度阈值。If the maximum similarity is not far greater than the 2nd-Nth similarity and the maximum similarity is greater than the original similarity threshold, adjust the original similarity threshold so that the adjusted similarity threshold is greater than the original similarity degree threshold.
如果最大相似度不远大于第2-第N个相似度,即分布信息小于分布阈值,也即每个相似度都较为接近,此时如果最大相似度大于原始相似度阈值,有可能会召回错误的底库图片,为了避免这种问题,可以适当调大原始相似度阈值,即使得调整后的相似度阈值大于原始相似度阈值。If the maximum similarity is not much greater than the 2nd-Nth similarity, that is, the distribution information is less than the distribution threshold, that is, each similarity is relatively close, then if the maximum similarity is greater than the original similarity threshold, there may be a recall error In order to avoid this problem, the original similarity threshold can be appropriately increased, that is, the adjusted similarity threshold is larger than the original similarity threshold.
例如,若原始相似度阈值为70%,最大相似度为70.2%,按照从大到小的顺序排序后排在第2位的相似度为68%,排在第3位的相似度为67%,从而确定相似度的分布信息为各相似度均比较接近,则最大相似度虽然高于原始相似度阈值,但是也有一定概率是误识(比如待检索图片对应的人不在底库中),此时可适当增加原始相似度阈值。For example, if the original similarity threshold is 70%, the maximum similarity is 70.2%, the similarity in the second place after sorting from largest to smallest is 68%, and the similarity in the third place is 67% , so as to determine that the similarity distribution information is that each similarity is relatively close, then although the maximum similarity is higher than the original similarity threshold, there is also a certain probability of misrecognition (for example, the person corresponding to the image to be retrieved is not in the base library). The original similarity threshold can be appropriately increased.
在本发明的一个实施例中,所述分布信息通过如下步骤确定:根据各相似度中最大的前N个相似度,确定参考相似度;根据所述最大相似度和所述参考相似度,确定所述分布信息。In an embodiment of the present invention, the distribution information is determined by the following steps: determining a reference similarity according to the largest top N similarities in each similarity; determining a reference similarity according to the maximum similarity and the reference similarity the distribution information.
在所述N为2时,可以将第2个相似度作为参考相似度,在N>2时,可以根据最大相似度分别与第2-N个相似度确定参考相似度。在确定参考相似度后,可以基于最大相似度和参考相似度得到分布信息。之后可以根据分别信息按照预设方式对原始相似度阈值进行调整,得到调整后的的相似度阈值。通过确定参考相似度,以及分布信息,并基于分布信息对原始相似度阈值进行调整,可以充分利用待检索图片自身特征导致的特征相似度的分布变化,从而使得原始相似度阈值调整的较为合适,以提高人脸检索的召回率。When the N is 2, the second similarity may be used as the reference similarity, and when N>2, the reference similarity may be determined according to the maximum similarity and the 2-Nth similarity respectively. After the reference similarity is determined, distribution information can be obtained based on the maximum similarity and the reference similarity. Afterwards, the original similarity threshold may be adjusted in a preset manner according to the respective information to obtain an adjusted similarity threshold. By determining the reference similarity and distribution information, and adjusting the original similarity threshold based on the distribution information, it is possible to make full use of the distribution change of the feature similarity caused by the characteristics of the image to be retrieved, so that the original similarity threshold can be adjusted more appropriately. To improve the recall rate of face retrieval.
在一种可选的实施方式中,所述根据各相似度中最大的前N个相似度,确定参考相似度,包括:In an optional implementation manner, the determining the reference similarity according to the largest top N similarities in each similarity includes:
将第2个相似度确定为所述参考相似度;或者determining the second similarity as the reference similarity; or
将第2-N个相似度作为所述参考相似度;或者Taking the 2-Nth similarity as the reference similarity; or
将第2-N个相似度的平均值作为所述参考相似度。The average value of the 2-Nth similarity is taken as the reference similarity.
可以将第2个相似度作为参考相似度,或者,还可以将2-N个相似度作为参考相似度,或者,还可以将第2-N个相似度的平均值作为参考相似度,这样可以清楚的反映出第2-N个相似度的分布情况。The second similarity can be used as the reference similarity, or the 2-N similarity can be used as the reference similarity, or the average value of the 2-N similarity can be used as the reference similarity. Clearly reflects the distribution of the 2-Nth similarity.
在一种可选的实施方式中,根据所述最大相似度和所述参考相似度,确定所述分布信息,包括:根据所述最大相似度与所述参考相似度的差值,确定所述分布信息;或者,根据所述最大相似度与所述参考相似度的比值,确定所述分布信息。In an optional implementation manner, determining the distribution information according to the maximum similarity and the reference similarity includes: determining the distribution information according to a difference between the maximum similarity and the reference similarity distribution information; or, determining the distribution information according to the ratio of the maximum similarity to the reference similarity.
将最大相似度与参考相似度的差值作为分布信息,可以明确的计算出最大相似度相比至少一个相似度多出的值,从而可以根据该值对原始相似度阈值进行调整。例如,分布信息越大,可以将原始相似度阈值适当降低;分布信息越小,说明最大相似度和其他相似度均比较接近,这时可以适当增加原始相似度阈值。Taking the difference between the maximum similarity and the reference similarity as distribution information, the value of the maximum similarity that is more than at least one similarity can be clearly calculated, so that the original similarity threshold can be adjusted according to this value. For example, the larger the distribution information, the lower the original similarity threshold; the smaller the distribution information, the closer the maximum similarity and other similarities are, in this case, the original similarity threshold can be appropriately increased.
一例中,根据所述最大相似度与所述参考相似度的差值,确定所述分布信息,此时分布信息与最大相似度和参考相似度的关系表示如下:In an example, the distribution information is determined according to the difference between the maximum similarity and the reference similarity, and the relationship between the distribution information and the maximum similarity and the reference similarity is expressed as follows:
distgap=s[0]–f(s)distgap=s[0]-f(s)
其中,distgap为分布信息,s[0]为最大相似度,f(s)为参考相似度,参考相似度可以使用下述两种方式中的一种进行表示:Among them, distgap is the distribution information, s[0] is the maximum similarity, f(s) is the reference similarity, and the reference similarity can be expressed in one of the following two ways:
f(s)=s[1]f(s)=s[1]
其中,f(s)为参考相似度函数,s[1]为第2个相似度,s[i]为第i+1个相似度,n为N-1。Among them, f(s) is the reference similarity function, s[1] is the second similarity, s[i] is the i+1th similarity, and n is N-1.
除了上述方式可以表示相似度的分布信息外,还可以将最大相似度与参考相似度的比值确定为分布信息,可以明确的计算出最大相似度相对第2-N个相似度的倍数,从而可以根据该值对原始相似度阈值进行调整。例如,相似度分布比值越大,可以将原始相似度阈值适当降低;相似度分布比值越小,说明最大相似度和第2-N个相似度均比较接近,这时可以适当增加原始相似度阈值。In addition to the above methods that can represent the distribution information of the similarity, the ratio of the maximum similarity to the reference similarity can also be determined as the distribution information, and the multiple of the maximum similarity relative to the 2-Nth similarity can be clearly calculated. The original similarity threshold is adjusted according to this value. For example, the larger the similarity distribution ratio, the lower the original similarity threshold; the smaller the similarity distribution ratio, which means that the maximum similarity and the 2nd-Nth similarity are relatively close, and the original similarity threshold can be appropriately increased. .
在一种可选的实施方式中,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,包括:根据所述分布信息与分布调整系数的积和/或所述最大相似度与所述最大相似度调整系数的积,对所述原始相似度阈值进行调整,得到调整后的相似度阈值。In an optional implementation manner, the original similarity threshold is adjusted according to the distribution information between the largest top N similarities in each similarity and/or the largest similarity in each similarity, and the adjusted threshold is obtained. The similarity threshold value includes: adjusting the original similarity threshold according to the product of the distribution information and the distribution adjustment coefficient and/or the product of the maximum similarity and the maximum similarity adjustment coefficient, and obtaining the adjusted similarity threshold. similarity threshold.
其中,所述分布调整系数和/或所述最大相似度调整系数是通过在校正数据集上进行验证得到的。Wherein, the distribution adjustment coefficient and/or the maximum similarity adjustment coefficient are obtained through verification on a calibration data set.
可以预先在校正数据集上对人脸检索方法进行验证,并拟合出在召回率、误识率等指标上表现最好的分布调整系数或最大相似度调整系数。得到分布调整系数后,便可以应用于对原始相似度阈值的调整。可以按照如下公式对原始相似度阈值进行调整:The face retrieval method can be verified on the calibration data set in advance, and the distribution adjustment coefficient or the maximum similarity adjustment coefficient with the best performance on the recall rate, misrecognition rate and other indicators can be fitted. After the distribution adjustment coefficient is obtained, it can be applied to the adjustment of the original similarity threshold. The original similarity threshold can be adjusted according to the following formula:
thnew=th+k*distgapth new =th+k*distgap
其中,thnew为调整后的相似度阈值,th为所述原始相似度阈值,k为分布调整系数,distgap为分布信息。即在对原始相似度阈值进行调整时,将分布信息与分布调整系数的乘积作为原始相似度阈值的调整值,之后将原始相似度阈值与调整值相加得到调整后相似度阈值。Wherein, th new is the adjusted similarity threshold, th is the original similarity threshold, k is a distribution adjustment coefficient, and distgap is distribution information. That is, when adjusting the original similarity threshold, the product of the distribution information and the distribution adjustment coefficient is used as the adjustment value of the original similarity threshold, and then the original similarity threshold and the adjustment value are added to obtain the adjusted similarity threshold.
在对原始相似度阈值进行调整时,还可以将最大相似度与最大相似度调整系数的乘积作为原始相似度阈值的调整值,之后将原始相似度阈值与该调整值相加得到调整后相似度阈值。When adjusting the original similarity threshold, the product of the maximum similarity and the maximum similarity adjustment coefficient can also be used as the adjustment value of the original similarity threshold, and then the original similarity threshold and the adjustment value are added to obtain the adjusted similarity threshold.
在对原始相似度阈值进行调整时,还可以将分布信息与分布调整系数的乘积作为原始相似度阈值的第一调整值,将最大相似度与最大相似度调整系数的乘积作为原始相似度阈值的第二调整值,之后将原始相似度阈值与第一调整值和第二调整值相加得到调整后相似度阈值。When adjusting the original similarity threshold, the product of the distribution information and the distribution adjustment coefficient can also be used as the first adjustment value of the original similarity threshold, and the product of the maximum similarity and the maximum similarity adjustment coefficient can be used as the original similarity threshold. The second adjustment value, and then adding the original similarity threshold, the first adjustment value and the second adjustment value to obtain the adjusted similarity threshold.
通过分布调整系数和最大相似度调整系数,实现了对原始相似度阈值的动态调整。Through the distribution adjustment coefficient and the maximum similarity adjustment coefficient, the dynamic adjustment of the original similarity threshold is realized.
步骤104,根据所述最大相似度与所述调整后的相似度阈值,确定检索结果。Step 104: Determine a retrieval result according to the maximum similarity and the adjusted similarity threshold.
将最大相似度与调整后原始相似度阈值进行比较,根据比较结果,确定检索结果。The maximum similarity is compared with the adjusted original similarity threshold, and the retrieval result is determined according to the comparison result.
在本发明的一个实施例中,根据所述最大相似度与所述调整后的相似度阈值,确定检索结果,包括:若所述最大相似度大于或等于所述调整后的相似度阈值,则将所述最大相似度对应的底库图片作为所述检索结果。In an embodiment of the present invention, determining the retrieval result according to the maximum similarity and the adjusted similarity threshold includes: if the maximum similarity is greater than or equal to the adjusted similarity threshold, then The base image corresponding to the maximum similarity is used as the retrieval result.
在对原始相似度阈值进行调整后,如果最大相似度大于或等于调整后的相似度阈值,则将最大相似度对应的底库图片作为检索结果,如果最大相似度小于调整后的相似度阈值,则确定检索结果为底库中没有匹配图片。After adjusting the original similarity threshold, if the maximum similarity is greater than or equal to the adjusted similarity threshold, the base image corresponding to the maximum similarity is used as the retrieval result. If the maximum similarity is less than the adjusted similarity threshold, Then it is determined that the search result is that there is no matching picture in the base library.
本实施例提供的人脸检索方法,通过对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量,分别确定待检索特征向量与底库中底库图片的特征向量之间的相似度,根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,根据最大相似度与调整后的相似度阈值确定检索结果,由于根据最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度来对原始相似度阈值进行调整,充分考虑了不同的图像质量导致的差异,从而可以减小在不同图像质量下的检索精度差别,提高不同图像质量下的检索精度,从而可以提高人脸检索的召回率。In the face retrieval method provided in this embodiment, a feature vector of the face image to be retrieved is obtained by extracting the feature of the face image to be retrieved, which is used as the feature vector to be retrieved, and the feature vector to be retrieved and the image in the base library are determined respectively. For the similarity between feature vectors, adjust the original similarity threshold according to the distribution information between the largest top N similarities in each similarity and/or the largest similarity in each similarity, and obtain the adjusted similarity The degree threshold, the retrieval result is determined according to the maximum similarity and the adjusted similarity threshold, since the original similarity threshold is determined according to the distribution information between the largest top N similarities and/or the maximum similarity in each similarity. The adjustment fully considers the differences caused by different image qualities, so that the difference in retrieval accuracy under different image qualities can be reduced, the retrieval accuracy under different image qualities can be improved, and the recall rate of face retrieval can be improved.
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。It should be noted that, for the sake of simple description, the method embodiments are described as a series of action combinations, but those skilled in the art should know that the embodiments of the present invention are not limited by the described action sequences, because According to embodiments of the present invention, certain steps may be performed in other sequences or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification are all preferred embodiments, and the actions involved are not necessarily required by the embodiments of the present invention.
图2是本发明实施例提供的一种人脸检索装置的结构框图,如图2所示,该人脸检索装置可以包括:FIG. 2 is a structural block diagram of a face retrieval apparatus provided by an embodiment of the present invention. As shown in FIG. 2 , the face retrieval apparatus may include:
特征提取模块201,用于对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量;The
相似度确定模块202,用于分别确定所述待检索特征向量与底库中底库图片的特征向量之间的相似度;A
阈值调整模块203,用于根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值;
检索结果确定模块204,用于根据所述最大相似度与所述调整后的相似度阈值,确定检索结果。The retrieval
可选的,所述阈值调整模块包括:Optionally, the threshold adjustment module includes:
第一调整单元,用于如果所述最大相似度远大于第2-第N个相似度,则对原始相似度阈值进行调整,使调整后的相似度阈值小于原始相似度阈值。The first adjustment unit is configured to adjust the original similarity threshold if the maximum similarity is far greater than the 2-Nth similarity, so that the adjusted similarity threshold is smaller than the original similarity threshold.
可选的,所述阈值调整模块包括:Optionally, the threshold adjustment module includes:
第二调整单元,用于如果所述最大相似度远大于第2-第N个相似度且所述最大相似度小于所述原始相似度阈值,则对原始相似度阈值进行调整,使调整后的相似度阈值小于原始相似度阈值。The second adjustment unit is configured to adjust the original similarity threshold if the maximum similarity is far greater than the 2-Nth similarity and the maximum similarity is smaller than the original similarity threshold, so that the adjusted The similarity threshold is smaller than the original similarity threshold.
可选的,所述阈值调整模块包括:Optionally, the threshold adjustment module includes:
第三调整单元,如果所述最大相似度不远大于第2-第N个相似度,则对原始相似度阈值进行调整,使调整后的相似度阈值大于原始相似度阈值。The third adjustment unit, if the maximum similarity is not far greater than the 2nd-Nth similarity, adjusts the original similarity threshold so that the adjusted similarity threshold is greater than the original similarity threshold.
可选的,所述阈值调整模块包括:Optionally, the threshold adjustment module includes:
第四调整单元,如果所述最大相似度不远大于第2-第N个相似度且所述最大相似度大于所述原始相似度阈值,则对原始相似度阈值进行调整,使调整后的相似度阈值大于原始相似度阈值。The fourth adjustment unit, if the maximum similarity is not far greater than the 2nd-Nth similarity and the maximum similarity is greater than the original similarity threshold, adjust the original similarity threshold to make the adjusted similarity The degree threshold is greater than the original similarity threshold.
可选的,所述装置还包括:Optionally, the device further includes:
参考相似度确定模块,用于根据各相似度中最大的前N个相似度,确定参考相似度;The reference similarity determination module is used to determine the reference similarity according to the largest top N similarities in each similarity;
分布信息确定模块,用于根据所述最大相似度和所述参考相似度,确定所述分布信息。A distribution information determination module, configured to determine the distribution information according to the maximum similarity and the reference similarity.
可选的,所述参考相似度确定模块具体用于:Optionally, the reference similarity determination module is specifically used for:
将第2个相似度确定为所述参考相似度;或者determining the second similarity as the reference similarity; or
将第2-N个相似度作为所述参考相似度;或者,Taking the 2-Nth similarity as the reference similarity; or,
将第2-N个相似度的平均值作为所述参考相似度。The average value of the 2-Nth similarity is taken as the reference similarity.
可选的,所述分布信息确定模块具体用于:Optionally, the distribution information determination module is specifically used for:
根据所述最大相似度与所述参考相似度的差值,确定所述分布信息;或者,Determine the distribution information according to the difference between the maximum similarity and the reference similarity; or,
根据所述最大相似度与所述参考相似度的比值,确定所述分布信息。The distribution information is determined according to the ratio of the maximum similarity to the reference similarity.
可选的,所述阈值调整模块具体用于:Optionally, the threshold adjustment module is specifically used for:
根据所述分布信息与分布调整系数的积和/或所述最大相似度与所述最大相似度调整系数的积,对所述原始相似度阈值进行调整,得到调整后的相似度阈值。The original similarity threshold is adjusted according to the product of the distribution information and the distribution adjustment coefficient and/or the product of the maximum similarity and the maximum similarity adjustment coefficient to obtain an adjusted similarity threshold.
其中,所述分布调整系数和/或所述最大相似度调整系数是通过在校正数据集上进行验证得到的。Wherein, the distribution adjustment coefficient and/or the maximum similarity adjustment coefficient are obtained through verification on a calibration data set.
可选的,所述检索结果确定模块具体用于:Optionally, the retrieval result determination module is specifically used for:
若所述最大相似度大于或等于所述调整后的相似度阈值,则将所述最大相似度对应的底库图片作为所述检索结果。If the maximum similarity is greater than or equal to the adjusted similarity threshold, the base image corresponding to the maximum similarity is used as the retrieval result.
本实施例提供的人脸检索装置,通过特征提取模块对待检索人脸图片进行特征提取,得到待检索人脸图片的特征向量,作为待检索特征向量,相似度确定模块分别确定待检索特征向量与底库中底库图片的特征向量之间的相似度,阈值调整模块根据各相似度中最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度,对原始相似度阈值进行调整,得到调整后的相似度阈值,检索结果确定模块根据最大相似度与调整后的相似度阈值确定检索结果,由于根据最大的前N个相似度之间的分布信息和/或各相似度中的最大相似度来对原始相似度阈值进行调整,充分考虑了不同的图像质量导致的差异,从而可以减小在不同图像质量下的检索精度差别,提高不同图像质量下的检索精度,从而可以提高人脸检索的召回率。In the face retrieval apparatus provided in this embodiment, the feature extraction module performs feature extraction on the face image to be retrieved, and the feature vector of the face image to be retrieved is obtained as the feature vector to be retrieved, and the similarity determination module determines the feature vector to be retrieved and The similarity between the feature vectors of the bottom library images in the base library, the threshold adjustment module, according to the distribution information between the largest top N similarities in each similarity and/or the maximum similarity in each similarity, to the original similarity Adjust the degree threshold to obtain the adjusted similarity threshold, and the retrieval result determination module determines the retrieval result according to the maximum similarity and the adjusted similarity threshold. The maximum similarity in the similarity is used to adjust the original similarity threshold, and the difference caused by different image quality is fully considered, so that the difference in retrieval accuracy under different image quality can be reduced and the retrieval accuracy under different image quality can be improved. Thus, the recall rate of face retrieval can be improved.
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。As for the apparatus embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and reference may be made to the partial description of the method embodiment for related parts.
进一步地,根据本发明的一个实施例,提供了一种电子设备,所述电子设备可以为计算机等终端设备、或者也可以为服务器等,所述电子设备包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现前述实施例的人脸检索方法。Further, according to an embodiment of the present invention, an electronic device is provided, the electronic device may be a terminal device such as a computer, or a server, etc., the electronic device includes: a processor, a memory, and a A computer program on the memory and executable on the processor, when the computer program is executed by the processor, implements the face retrieval method of the foregoing embodiment.
根据本发明的一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质包括但不限于磁盘存储器、CD-ROM、光学存储器等,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现前述实施例的人脸检索方法。According to an embodiment of the present invention, a computer-readable storage medium is also provided, the computer-readable storage medium includes but not limited to magnetic disk storage, CD-ROM, optical storage, etc., on which storage medium is stored There is a computer program that, when executed by a processor, implements the face retrieval method of the foregoing embodiment.
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments may be referred to each other.
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。It should be understood by those skilled in the art that the embodiments of the embodiments of the present invention may be provided as a method, an apparatus, or a computer program product. Accordingly, embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present invention may take the form of a computer program product implemented on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, CD-ROM, optical storage, and the like.
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。Embodiments of the present invention are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal equipment to produce a machine that causes the instructions to be executed by the processor of the computer or other programmable data processing terminal equipment Means are created for implementing the functions specified in the flow or flows of the flowcharts and/or the blocks or blocks of the block diagrams.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing terminal equipment, so that a series of operational steps are performed on the computer or other programmable terminal equipment to produce a computer-implemented process, thereby executing on the computer or other programmable terminal equipment The instructions executed on the above provide steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。Although preferred embodiments of the embodiments of the present invention have been described, additional changes and modifications to these embodiments may be made by those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiments as well as all changes and modifications that fall within the scope of the embodiments of the present invention.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or that there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or terminal device comprising a list of elements includes not only those elements, but also a non-exclusive list of elements. other elements, or also include elements inherent to such a process, method, article or terminal equipment. Without further limitation, an element defined by the phrase "comprises a..." does not preclude the presence of additional identical elements in the process, method, article or terminal device comprising said element.
以上对本发明所提供的一种人脸检索方法、装置、电子设备及存储介质,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The above provides a detailed introduction to a face retrieval method, device, electronic device and storage medium provided by the present invention. In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only It is used to help understand the method of the present invention and its core idea; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific embodiments and application scope. The contents of the description should not be construed as limiting the present invention.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110237123.7A CN115035556A (en) | 2021-03-03 | 2021-03-03 | Face retrieval method and device, electronic equipment and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110237123.7A CN115035556A (en) | 2021-03-03 | 2021-03-03 | Face retrieval method and device, electronic equipment and storage medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115035556A true CN115035556A (en) | 2022-09-09 |
Family
ID=83117777
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110237123.7A Pending CN115035556A (en) | 2021-03-03 | 2021-03-03 | Face retrieval method and device, electronic equipment and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115035556A (en) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108197250A (en) * | 2017-12-29 | 2018-06-22 | 深圳云天励飞技术有限公司 | Picture retrieval method, electronic equipment and storage medium |
| US20180181594A1 (en) * | 2016-12-22 | 2018-06-28 | Baidu Online Network Technology (Beijing) Co., Ltd. | Searching Method and Apparatus |
| CN108875493A (en) * | 2017-10-12 | 2018-11-23 | 北京旷视科技有限公司 | The determination method and determining device of similarity threshold in recognition of face |
| CN108985232A (en) * | 2018-07-18 | 2018-12-11 | 平安科技(深圳)有限公司 | Facial image comparison method, device, computer equipment and storage medium |
| CN111079517A (en) * | 2019-10-31 | 2020-04-28 | 福建天泉教育科技有限公司 | Face management and recognition method and computer-readable storage medium |
| CN111738059A (en) * | 2020-05-07 | 2020-10-02 | 中山大学 | A face recognition method for non-sensing scenes |
| WO2020199773A1 (en) * | 2019-04-04 | 2020-10-08 | 京东方科技集团股份有限公司 | Image retrieval method and apparatus, and computer-readable storage medium |
| WO2020238555A1 (en) * | 2019-05-30 | 2020-12-03 | 深圳壹账通智能科技有限公司 | Method and apparatus for dynamically adjusting time threshold, computer device, and storage medium |
| CN112395449A (en) * | 2019-08-15 | 2021-02-23 | 华为技术有限公司 | Face retrieval method and device |
-
2021
- 2021-03-03 CN CN202110237123.7A patent/CN115035556A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180181594A1 (en) * | 2016-12-22 | 2018-06-28 | Baidu Online Network Technology (Beijing) Co., Ltd. | Searching Method and Apparatus |
| CN108875493A (en) * | 2017-10-12 | 2018-11-23 | 北京旷视科技有限公司 | The determination method and determining device of similarity threshold in recognition of face |
| CN108197250A (en) * | 2017-12-29 | 2018-06-22 | 深圳云天励飞技术有限公司 | Picture retrieval method, electronic equipment and storage medium |
| CN108985232A (en) * | 2018-07-18 | 2018-12-11 | 平安科技(深圳)有限公司 | Facial image comparison method, device, computer equipment and storage medium |
| WO2020015076A1 (en) * | 2018-07-18 | 2020-01-23 | 平安科技(深圳)有限公司 | Facial image comparison method and apparatus, computer device, and storage medium |
| WO2020199773A1 (en) * | 2019-04-04 | 2020-10-08 | 京东方科技集团股份有限公司 | Image retrieval method and apparatus, and computer-readable storage medium |
| WO2020238555A1 (en) * | 2019-05-30 | 2020-12-03 | 深圳壹账通智能科技有限公司 | Method and apparatus for dynamically adjusting time threshold, computer device, and storage medium |
| CN112395449A (en) * | 2019-08-15 | 2021-02-23 | 华为技术有限公司 | Face retrieval method and device |
| CN111079517A (en) * | 2019-10-31 | 2020-04-28 | 福建天泉教育科技有限公司 | Face management and recognition method and computer-readable storage medium |
| CN111738059A (en) * | 2020-05-07 | 2020-10-02 | 中山大学 | A face recognition method for non-sensing scenes |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101523415B (en) | Method of deriving a representation of an image, method of recognizing and comparing images, and apparatus therefor | |
| CN106228129B (en) | A kind of human face in-vivo detection method based on MATV feature | |
| US9202255B2 (en) | Identifying multimedia objects based on multimedia fingerprint | |
| KR102048638B1 (en) | Method and system for recognizing content | |
| JP5607261B2 (en) | System and method for improving feature generation in object recognition | |
| WO2015004434A1 (en) | Compact and robust signature for large scale visual search, retrieval and classification | |
| WO2015196964A1 (en) | Matching picture search method, picture search method and apparatuses | |
| CN103582884A (en) | Robust feature matching for visual search | |
| US9116898B2 (en) | Information conversion device, computer-readable recording medium, and information conversion method | |
| WO2010043954A1 (en) | Method, apparatus and computer program product for providing pattern detection with unknown noise levels | |
| US10387731B2 (en) | Systems and methods for extracting and matching descriptors from data structures describing an image sequence | |
| CN109447023B (en) | Method for determining image similarity, and method and device for identifying video scene switching | |
| CN107423306A (en) | A kind of image search method and device | |
| CN114494775A (en) | Video segmentation method, device, device and storage medium | |
| CN107609149B (en) | Video positioning method and device | |
| CN104239306A (en) | Multimedia fingerprint Hash vector construction method and device | |
| CN108090117A (en) | A kind of image search method and device, electronic equipment | |
| CN113177533A (en) | Face recognition method and device and electronic equipment | |
| CN110263196B (en) | Image retrieval method, image retrieval device, electronic equipment and storage medium | |
| CN114969412B (en) | A method and device for archiving face pictures and a computer-readable storage medium | |
| CN111177403B (en) | Sample data processing method and device | |
| CN115035556A (en) | Face retrieval method and device, electronic equipment and storage medium | |
| CN106339492B (en) | A kind of music recommended method based on geographical location information | |
| CN113420699A (en) | Face matching method and device and electronic equipment | |
| CN114612967B (en) | Method, device, equipment and storage medium for face clustering |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20251003 |