CN114692507A - A Soft Sensing Modeling Method for Counting Data Based on Stacked Poisson Autoencoder Networks - Google Patents
A Soft Sensing Modeling Method for Counting Data Based on Stacked Poisson Autoencoder Networks Download PDFInfo
- Publication number
- CN114692507A CN114692507A CN202210403851.5A CN202210403851A CN114692507A CN 114692507 A CN114692507 A CN 114692507A CN 202210403851 A CN202210403851 A CN 202210403851A CN 114692507 A CN114692507 A CN 114692507A
- Authority
- CN
- China
- Prior art keywords
- poisson
- autoencoder
- network
- layer
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本发明公开了一种基于堆叠泊松自编码器网络的计数数据软测量建模方法,其中提出了一种堆叠泊松自编码器网络结构。该编码器在预训练阶段引入计数型质量变量来指导特征提取,且针对计数数据的离散性,质量变量是通过泊松回归网络层的方式集成到深度堆叠自编码器框架中,使得模型学习到的特征表示与计数型质量变量高度相关。本发明方法不仅提升了计数数据软测量模型的特征提取能力,并且提升了计数型质量变量的预测效果。
The invention discloses a counting data soft measurement modeling method based on a stacked Poisson autoencoder network, wherein a stacked Poisson autoencoder network structure is proposed. The encoder introduces count-type quality variables in the pre-training stage to guide feature extraction, and for the discreteness of count data, the quality variables are integrated into the deep stacked autoencoder framework through Poisson regression network layers, so that the model learns The feature representation of is highly correlated with count-type quality variables. The method of the invention not only improves the feature extraction ability of the count data soft measurement model, but also improves the prediction effect of the count quality variable.
Description
技术领域technical field
本发明属于工业过程预测及软测量领域,涉及一种基于堆叠泊松自编码器网络的计数数据软测量建模方法。The invention belongs to the field of industrial process prediction and soft measurement, and relates to a counting data soft measurement modeling method based on a stacked Poisson autoencoder network.
背景技术Background technique
计数数据作为一种重要数据类型,其具有离散、非负整数、高偏斜分布等特点,有必要建立离散计数数据模型,即建立某一事件发生次数(称为因变量、输出变量或响应变量)与引起其发生的因素(称为自变量、输入变量或过程变量)之间的联系,以预报事件的发生次数。As an important data type, count data has the characteristics of discrete, non-negative integer, and highly skewed distribution. ) and the factors that cause it (called independent variables, input variables, or process variables) to predict the number of occurrences of an event.
在过程工业中,软测量作为一种工具,可以用来预测产品质量或其他重要变量,可以考虑用来对计数数据建模处理。基于数据驱动的软测量建模方法常见的是多元线性回归(MLR)和偏最小二乘(PLS)回归。它们假设响应变量服从正态和同方差分布,这与观测到的计数数据高度过分散分布相违背。此外计数数据是非负整数,但MLR和PLS可能会使因变量产生负值。而非线性建模方法如支持向量回归(SVR)和人工神经网络(ANN)方法存在较差的可解释性的缺点,同时不能保证预测的非负性。In the process industry, soft sensing as a tool to predict product quality or other important variables can be considered for modeling count data. Common data-driven soft-sensor modeling methods are multiple linear regression (MLR) and partial least squares (PLS) regression. They assume that the response variable follows a normal and homoscedastic distribution, which is contrary to the observed highly overdispersed distribution of count data. Also count data are non-negative integers, but MLR and PLS may produce negative values for the dependent variable. However, nonlinear modeling methods such as Support Vector Regression (SVR) and Artificial Neural Network (ANN) methods suffer from poor interpretability and cannot guarantee the non-negativity of predictions.
针对计数数据,泊松回归模型是其建模的典型代表。但是工业流程中,过程数据存在高维、非线性等特征,泊松回归用于工业过程时有着数据特征挖掘不充分的问题。因此,提取过程数据的深度特征是计数数据软测量建模至关重要的步骤。For count data, Poisson regression model is a typical representative of its modeling. However, in the industrial process, the process data has the characteristics of high dimensionality and nonlinearity, and the Poisson regression has the problem of insufficient data feature mining when it is used in the industrial process. Therefore, extracting deep features of process data is a crucial step in soft-sensor modeling of count data.
自编码器结构作为其典型代表,已被设计并广泛应用于复杂工业过程。但是传统自编码器的预训练都是采用无监督的学习方式,通过对输入的重构并约束误差最小化来学习有效的特征表示,因此从深度网络中所提取的特征可能与计数数据软测量的预测输出并无关系,使得这部分过程显得低效。As its typical representative, the autoencoder structure has been designed and widely used in complex industrial processes. However, the pre-training of traditional autoencoders adopts an unsupervised learning method, which learns effective feature representation by reconstructing the input and constraining the error minimization. Therefore, the features extracted from the deep network may be related to the soft measurement of the count data. The predicted output of , is irrelevant, making this part of the process inefficient.
对工业过程的计数数据进行预测时,由于过程变量可能较多,同时数据存在非线性、高维等特点,因此在建立计数数据软测量模型时,提取出与计数数据类型质量变量具有高度相关性的特征是十分有必要的。针对上述特征提取阶段存在的问题,如果能够设计合理的方式去引入质量变量对于提取输入数据的特征进行有效指导,同时还能考虑计数数据的特性,那么这个问题可以迎刃而解。When predicting the counting data of an industrial process, since there may be many process variables, and the data has the characteristics of non-linearity and high dimensionality, when the soft sensing model of the counting data is established, the quality variables extracted with the counting data type are highly correlated. features are very necessary. In view of the above problems in the feature extraction stage, if a reasonable way can be designed to introduce quality variables to effectively guide the feature extraction of input data, and at the same time consider the characteristics of count data, then this problem can be easily solved.
发明内容SUMMARY OF THE INVENTION
针对常规自编码器不能提取质量变量相关特征的问题,同时考虑计数数据的离散、非负与高偏斜特性,本发明提出一种基于堆叠泊松自编码器网络的计数数据软测量建模方法。本发明方法在预训练的解码阶段引入计数型质量变量来指导特征提取,通过泊松网络层将计数型质量变量集成到深度堆叠编码器结构中,使得模型学习到的特征表示与计数型的质量变量高度相关,提升了特征提取效率,并且提升了计数型质量变量的预测效果。Aiming at the problem that the conventional autoencoder cannot extract the relevant features of the quality variable, and considering the discrete, non-negative and high skew characteristics of the count data, the present invention proposes a count data soft sensing modeling method based on a stacked Poisson autoencoder network . The method of the invention introduces count-type quality variables in the decoding stage of pre-training to guide feature extraction, and integrates the count-type quality variables into the deep stacking encoder structure through the Poisson network layer, so that the feature representation learned by the model is consistent with the count-type quality variables. The variables are highly correlated, which improves the efficiency of feature extraction and improves the prediction effect of count-type quality variables.
本发明的具体技术方案如下:The concrete technical scheme of the present invention is as follows:
一种基于堆叠泊松自编码器网络的计数数据软测量建模方法,该方法包括如下步骤:A soft-sensor modeling method for count data based on stacked Poisson autoencoder network, the method includes the following steps:
S1:收集建模用的输入输出训练数据集:其中,x代表输入变量,y代表离散计数数据类型的输出变量,N表示数据样本个数;S1: Collect input and output training datasets for modeling: Among them, x represents the input variable, y represents the output variable of the discrete count data type, and N represents the number of data samples;
S2:构建堆叠泊松自编码器网络,所述堆叠泊松自编码器网络由多个监督泊松自编码器分层堆叠而成,前一个监督泊松自编码器的隐藏层的输出作为下一个监督泊松自编码器的输入层的输入;所述监督泊松自编码器包括一个输入层、一个隐藏层和一个输出层,从隐藏层到输出层包含输入重构网络层和泊松网络层,所述输入重构网络层用于对输入向量进行重构,所述泊松网络层用于对计数型质量数据进行预测;S2: Construct a stacked Poisson autoencoder network. The stacked Poisson autoencoder network is layered by multiple supervised Poisson autoencoders, and the output of the hidden layer of the previous supervised Poisson autoencoder is used as the lower An input to the input layer of a supervised Poisson autoencoder; the supervised Poisson autoencoder includes an input layer, a hidden layer, and an output layer, from the hidden layer to the output layer, including the input reconstruction network layer and the Poisson network layer , the input reconstruction network layer is used to reconstruct the input vector, and the Poisson network layer is used to predict the counted quality data;
随机初始化堆叠泊松自编码器网络的泊松网络权重、神经网络连接权重及偏置参数。Randomly initialize the Poisson network weights, neural network connection weights, and bias parameters of the stacked Poisson autoencoder network.
S3:将训练数据输入给堆叠泊松自编码器网络,根据最小化损失函数训练第一个监督泊松自编码器,获得第一个监督泊松自编码器的权重和偏置参数和隐藏层的输出将h1作为第二个监督泊松自编码器的输入层的输入,根据最小化损失函数训练第二个监督泊松自编码器,获得对应的权重和偏置参数,以此层层递进,使用hk -1,根据训练第k个监督泊松自编码器SPAEk获得参数和hk,直到最后一个监督泊松自编码器训练完成;k≤L,其中,L为监督泊松自编码器的数量;S3: Input the training data to the stacked Poisson autoencoder network, train the first supervised Poisson autoencoder according to the minimized loss function, and obtain the weight and bias parameters of the first supervised Poisson autoencoder and the output of the hidden layer Take h 1 as the input of the input layer of the second supervised Poisson autoencoder, train the second supervised Poisson autoencoder according to the minimized loss function, obtain the corresponding weight and bias parameters, and progress through this layer by layer , using h k -1 , parameters obtained from training the k-th supervised Poisson autoencoder SPAE k and h k until the last supervised Poisson autoencoder is trained; k≤L, where L is the number of supervised Poisson autoencoders;
S4:结束S3的逐层训练后,在第L个监督泊松自编码器的隐藏层的输出hL和输出变量y之间建立泊松网络进行回归,根据预测误差对回归网络参数进行调整更新;回归网络训练结束并保存堆叠泊松自编码器网络;S4: After the layer-by-layer training of S3, a Poisson network is established between the output h L of the hidden layer of the L-th supervised Poisson autoencoder and the output variable y for regression, and the parameters of the regression network are adjusted and updated according to the prediction error. ; The regression network training ends and the stacked Poisson autoencoder network is saved;
S5:将待预测输入数据输入到保存的堆叠泊松自编码器网络,经过堆叠泊松自编码器网络的前向传播即可得到计数型质量变量预测值。S5: Input the input data to be predicted into the saved stacked Poisson autoencoder network, and the predicted value of the counted quality variable can be obtained through the forward propagation of the stacked Poisson autoencoder network.
进一步地,所述S3中,监督泊松自编码器中的编码器表示为:Further, in S3, the encoder in the supervised Poisson autoencoder is expressed as:
h=σ(We·x+be)h=σ(W e ·x +be )
其中,σ代表sigmoid激活函数,x是输入层的输入向量,h是隐藏层的输出向量,We和be分别表示编码器的权重和偏置;where σ represents the sigmoid activation function, x is the input vector of the input layer, h is the output vector of the hidden layer , and We and be represent the weight and bias of the encoder, respectively;
监督泊松自编码器中的解码器表示为:The decoder in a supervised Poisson autoencoder is represented as:
其中,exp代表指数函数,Wr和br分别表示解码器中重构输入向量的权重和偏置;Wp和bp分别表示泊松网络层的权重和偏差参数,表示重构后的输入向量,分别预测的输出向量;where exp represents the exponential function, W r and br represent the weight and bias of the reconstructed input vector in the decoder, respectively; W p and bp represent the weight and bias parameters of the Poisson network layer, respectively, represents the reconstructed input vector, separately predicted output vectors;
所述损失函数Lrec表示为:The loss function Lrec is expressed as:
其中,λ表示对输入向量的重构误差和输出向量的预测误差的权重的比值;的含义为二范数,⊙表示哈达玛积。Among them, λ represents the ratio of the weight of the reconstruction error of the input vector to the prediction error of the output vector; The meaning of is the second norm, and ⊙ represents the Hadamard product.
进一步地,所述S3中,第k个监督泊松自编码器的训练过程表示如下:Further, in S3, the training process of the k-th supervised Poisson autoencoder is expressed as follows:
其中,k=1,2,…L,和分别是第i个样本在第k个监督泊松自编码器的输入数据和重构的数据,和分别是第k层编码器和解码器的权重矩阵以及偏置项;Among them, k=1,2,...L, and are the input data and reconstructed data of the i-th sample in the k-th supervised Poisson autoencoder, respectively, and are the weight matrices and bias terms of the encoder and decoder of the kth layer, respectively;
通过如下的子步骤来实现:This is achieved through the following sub-steps:
第k个监督泊松自编码器训练的损失函数如下:The loss function trained by the k-th supervised Poisson autoencoder is as follows:
其中,yi和分别代表第i个样本对应的计数型质量变量实际观测值和其在第k个监督泊松自编码器的预测值。where y i and respectively represent the actual observed value of the count-type quality variable corresponding to the ith sample and its predicted value in the kth supervised Poisson autoencoder.
进一步地,所述S4中,预测的输出变量的计算公式如下:Further, in the S4, the predicted output variable The calculation formula is as follows:
其中,Wy和by分别表示泊松网络的权重和偏置;where W y and b y represent the weight and bias of the Poisson network, respectively;
损失函数如下:The loss function is as follows:
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明提出的基于堆叠泊松自编码器网络的计数数据软测量建模方法用于计数数据质量预测,来解决常规自编码器特征提取效率低下且不适用于计数数据建模的问题。通过把计数型质量变量添加到解码阶段的输出层,且考虑到计数数据的离散性、非负性,计数数据是经过泊松回归网络层的方式集成到深度自编码器框架中,改进了损失函数,使得模型可以学习到与计数数据质量变量高度相关的特征,模型在计数数据上的的预测效果得到改善。The counting data soft-sensor modeling method based on stacked Poisson autoencoder network proposed in the present invention is used for counting data quality prediction, so as to solve the problem that the feature extraction efficiency of conventional autoencoders is low and is not suitable for counting data modeling. By adding a count-type quality variable to the output layer of the decoding stage, and considering the discreteness and non-negativity of the count data, the count data is integrated into the deep autoencoder framework through a Poisson regression network layer, which improves the loss. function, so that the model can learn features that are highly correlated with the quality variables of the count data, and the prediction effect of the model on the count data is improved.
附图说明Description of drawings
图1是深度堆叠泊松自编码器(SSPAE)结构图;Figure 1 is a structural diagram of a deep stacked Poisson autoencoder (SSPAE);
图2是基于SSPAE的计数数据软测量建模流程图;Fig. 2 is a flow chart of soft sensing modeling of counting data based on SSPAE;
图3是钢铁铸轧工艺缺陷系统流程图;Fig. 3 is the flow chart of iron and steel casting and rolling process defect system;
图4是SSPAE、STAE和SAE方法预测结果图,分别对应子图(c)、(b)和(a),其中横坐标代表测量样本,纵坐标代表质量数据的值,图中“+”代表模型预测值,“*”代表真实值。Figure 4 shows the prediction results of SSPAE, STAE and SAE methods, corresponding to sub-figures (c), (b) and (a) respectively, where the abscissa represents the measurement sample, the ordinate represents the value of the quality data, and "+" in the figure represents Model predicted value, "*" represents the true value.
具体实施方式Detailed ways
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention will be described in detail below according to the accompanying drawings and preferred embodiments, and the purpose and effects of the present invention will become clearer.
本发明的方法基于堆叠泊松自编码器网络(SSPAE)结构,在原始自编码器的基础上将编码器进行改进,在预训练的解码阶段引入质量变量来指导特征提取,此外,考虑到计数数据的离散性,质量变量是通过泊松回归网络层的方式集成到深度堆叠自编码器框架中,使得模型学习到的特征表示与计数数据类型质量变量高度相关,提升特征提取效率,同时提高对计数数据的软测量精度。The method of the present invention is based on the stacked Poisson autoencoder network (SSPAE) structure, improves the encoder on the basis of the original autoencoder, and introduces a quality variable in the pre-training decoding stage to guide feature extraction. In addition, considering the count The discreteness of the data and the quality variable are integrated into the deep stacked autoencoder framework through the Poisson regression network layer, so that the feature representation learned by the model is highly correlated with the count data type quality variable, which improves the feature extraction efficiency and improves the accuracy of the data. Soft-sensor accuracy for count data.
如图1所示,本发明的方法具体步骤如下:As shown in Figure 1, the concrete steps of the method of the present invention are as follows:
S1:收集设备数据,组成建模用的输入输出训练数据集:其中,x代表输入变量,y代表离散计数数据类型的输出变量,N表示数据样本个数;并将数据集分为训练集、验证集和测试集,根据不同工况进行数据预处理;S1: Collect device data to form input and output training data sets for modeling: Among them, x represents the input variable, y represents the output variable of the discrete count data type, and N represents the number of data samples; the data set is divided into training set, verification set and test set, and data preprocessing is performed according to different working conditions;
S2:构建堆叠泊松自编码器网络SSPAE,如图2所示,SSPAE由多个监督泊松自编码器SPAE分层堆叠而成,前一个监督泊松自编码器的隐藏层的输出作为下一个监督泊松自编码器的输入层的输入;所述监督泊松自编码器包括一个输入层、一个隐藏层和一个输出层,从隐藏层到输出层包含输入重构网络层和泊松网络层,所述输入重构网络层用于对输入向量进行重构,所述泊松网络层用于对计数型质量数据进行预测;S2: Build a stacked Poisson autoencoder network SSPAE, as shown in Figure 2, SSPAE is composed of multiple supervised Poisson autoencoder SPAE layers stacked, and the output of the hidden layer of the previous supervised Poisson autoencoder is used as the lower An input to the input layer of a supervised Poisson autoencoder; the supervised Poisson autoencoder includes an input layer, a hidden layer, and an output layer, from the hidden layer to the output layer, including the input reconstruction network layer and the Poisson network layer , the input reconstruction network layer is used to reconstruct the input vector, and the Poisson network layer is used to predict the counted quality data;
假设x是输入向量,h是隐藏向量,y是质量变量。SPAE在解码器中会同时重建其输入数据且预测计数数据,这两个数据分别表示为和SPAE预测质量数据采用针对计数数据的泊松网络。Suppose x is the input vector, h is the hidden vector, and y is the quality variable. In the decoder, SPAE will simultaneously reconstruct its input data and predict the count data, which are expressed as and SPAE predicts quality data using a Poisson network for count data.
{We,be}和{Wd,bd}分别用于表示编码器和解码器的参数集。编码器表示为:{W e , be } and {W d ,b d } are used to denote the parameter sets of the encoder and decoder, respectively. The encoder is represented as:
h=σ(We·x+be)h=σ(W e ·x +be )
其中,σ代表sigmoid激活函数。where σ represents the sigmoid activation function.
由于解码器由两部分组成,其解码权重矩阵和解码偏置向量可以分解为输入数据和计数数据质量变量两部分。也就是说,它的参数可以分解为:Since the decoder consists of two parts, its decoding weight matrix and decoding bias vector can be decomposed into two parts: input data and count data quality variables. That is, its parameters can be decomposed into:
在SPAE的输出层,重构的输入数据由隐藏数据经过输入重构网络层映射可得:In the output layer of SPAE, the reconstructed input data is mapped by the hidden data through the input reconstruction network layer:
特别地,针对离散的计数数据建模,隐藏特征到输出数据的映射是泊松网络层,如下所示:In particular, for discrete count data modeling, the mapping of hidden features to output data is a Poisson network layer as follows:
其中,其中,exp代表指数函数,{Wp,bp}表示泊松网络层的权重和偏差参数。一方面,泊松网络层的泊松分布的误差结构使数据可以具有非线性的特征和非恒定方差结构;另一方面,泊松网络层可以保证预测的非负性。Among them, exp represents the exponential function, {W p , b p } represents the weight and bias parameters of the Poisson network layer. On the one hand, the error structure of the Poisson distribution of the Poisson network layer enables the data to have nonlinear characteristics and non-constant variance structure; on the other hand, the Poisson network layer can guarantee the non-negativity of the prediction.
所以,SPAE的解码器输出可以表示为:So, the decoder output of SPAE can be expressed as:
(2)给定输入训练数据X={x1,x2,…,xN}和对应的计数质量数据Y={y1,y2,…,yN},SPAE网络学习参数的方式是通过最小化输出层的损失函数,如下所示:(2) Given input training data X={x 1 ,x 2 ,...,x N } and corresponding counting quality data Y={y 1 ,y 2 ,...,y N }, the way SPAE network learns parameters is By minimizing the loss function of the output layer as follows:
其中,λ表示对输入向量的重构误差和输出向量的预测误差的权重的比值;的含义为二范数,⊙表示哈达玛积。Among them, λ represents the ratio of the weight of the reconstruction error of the input vector to the prediction error of the output vector; The meaning of is the second norm, and ⊙ represents the Hadamard product.
(3)根据以上最小化损失函数训练第一个监督泊松自编码器,获得参数和第一潜在特征表示 (3) Train the first supervised Poisson autoencoder according to the above minimized loss function to obtain parameters and the first latent feature representation
随机初始化SSPAE模型的泊松网络权重、神经网络连接权重及偏置参数。Randomly initialize the Poisson network weights, neural network connection weights and bias parameters of the SSPAE model.
S3:将训练数据输入给堆叠泊松自编码器网络,根据最小化损失函数训练第一个监督泊松自编码器,获得第一个监督泊松自编码器的权重和偏置参数和隐藏层的输出将h1作为第二个监督泊松自编码器的输入层的输入,根据最小化损失函数训练第二个监督泊松自编码器,获得对应的权重和偏置参数,以此层层递进,使用hk -1,根据训练第k个监督泊松自编码器SPAEk获得参数和hk,直到最后一个监督泊松自编码器训练完成;k≤L,其中,L为监督泊松自编码器的数量;S3: Input the training data to the stacked Poisson autoencoder network, train the first supervised Poisson autoencoder according to the minimized loss function, and obtain the weight and bias parameters of the first supervised Poisson autoencoder and the output of the hidden layer Take h 1 as the input of the input layer of the second supervised Poisson autoencoder, train the second supervised Poisson autoencoder according to the minimized loss function, obtain the corresponding weight and bias parameters, and progress through this layer by layer , using h k -1 , parameters obtained from training the k-th supervised Poisson autoencoder SPAE k and h k until the last supervised Poisson autoencoder is trained; k≤L, where L is the number of supervised Poisson autoencoders;
S3具体包括如下子步骤:S3 specifically includes the following sub-steps:
(1)通过分层堆叠多个SPAE构建深度SPAE网络,将输入数据传输到SSPAE的输入层,经过具有参数集的第一隐藏层,生成相应的第一级特征数据SPAE1在其输出层使用输入重构网络层重构原始输入数据以及泊松网络层预测质量数据。其预训练是通过最小化训练数据上的重建和预测误差来进行的,如下所示:(1) Build a deep SPAE network by stacking multiple SPAEs in layers, and transmit the input data to the input layer of SSPAE. The first hidden layer of , generates the corresponding first-level feature data SPAE 1 uses the input reconstruction network layer to reconstruct the original input data and the Poisson network layer to predict the quality data in its output layer. Its pre-training is performed by minimizing the reconstruction and prediction errors on the training data as follows:
(2)SPAE1经过预训练后,其编码器部分保留在整个SPAE网络中,可以计算出紧接着,第一层隐藏特征向量会作为第二个SPAE的输入,经过映射获得第二层特征向量。在SPAE2的输出层,第一层特征向量和计数数据质量向量也由第二层特征向量重构和预测。以此获得第二级特征数据对于其余层次的特征,可以通过类似的方式逐步获得。(2) After SPAE 1 is pre-trained, its encoder part remains in the entire SPAE network, which can be calculated Next, the hidden feature vector of the first layer will be used as the input of the second SPAE, and the feature vector of the second layer will be obtained through mapping. At the output layer of SPAE 2 , the first-layer feature vectors and count data quality vectors are also reconstructed and predicted from the second-layer feature vectors. In this way, the second-level feature data is obtained For the features of the remaining levels, it can be obtained step by step in a similar way.
假设第k-1层特征隐层已经学习到,它将通过参数集为的非线性函数获得第k层特征隐层然后在输出层通过输入重构网络层映射重构hk-1,特别地,由泊松网络层预测输出计数数据。Suppose the k-1th feature hidden layer It has been learned that it will pass the parameter set as The nonlinear function of get the k-th feature hidden layer Then at the output layer the reconstruction h k-1 is mapped by the input reconstruction network layer, in particular, the output count data is predicted by the Poisson network layer.
该过程如下所示:The process looks like this:
其中,k=1,2,…L,和分别是第i个样本在第k个自编码器的输入数据和重构的数据,和分别是第k层编码器和解码器的权重矩阵以及偏置项。Among them, k=1,2,...L, and are the input data and reconstructed data of the i-th sample in the k-th autoencoder, respectively, and are the weight matrices and bias terms of the encoder and decoder of the kth layer, respectively.
S4:结束S3的逐层训练后,在第L个监督泊松自编码器的隐藏层的输出hL和输出变量y之间建立泊松网络进行回归,根据预测误差对回归网络参数进行调整更新;回归网络训练结束并保存堆叠泊松自编码器网络;S4: After the layer-by-layer training of S3, a Poisson network is established between the output h L of the hidden layer of the L-th supervised Poisson autoencoder and the output variable y for regression, and the parameters of the regression network are adjusted and updated according to the prediction error. ; The regression network training ends and the stacked Poisson autoencoder network is saved;
在结束前向逐层训练后,输出映射网络被添加在在顶层,利用最后一层隐层特征向量hL来预测输出数据并最小化预测误差的损失函数去更新SSPAE网络的相关参数:After the forward layer-by-layer training, the output mapping network is added at the top layer, and the output data is predicted by using the feature vector h L of the last hidden layer And minimize the loss function of the prediction error to update the relevant parameters of the SSPAE network:
其中,Wy和by分别表示泊松网络的权重和偏置。where W y and b y represent the weights and biases of the Poisson network, respectively.
S6:将待预测输入数据输入到保存的SSPAE模型,经过SSPAE网络的前向传播即可得到计数型质量变量预测值。S6: Input the input data to be predicted into the saved SSPAE model, and through the forward propagation of the SSPAE network, the predicted value of the counted quality variable can be obtained.
以下结合一个具体的工业例子来说明本发明的有效性。为了提高产品质量和节约生产成本,实时地预测钢板的缺陷发生数量至关重要。例如,基于对缺陷数量的在线预测,操作者可以改变操作条件来控制缺陷的发生;此外,缺陷预测模型提供了缺陷数量的早期度量,这有助于操作者防止操作条件的进一步恶化;此外,基于缺陷预测模型,可以进一步探究影响缺陷发生率的关键因素。The effectiveness of the present invention will be described below with reference to a specific industrial example. In order to improve product quality and save production costs, it is very important to predict the number of defects in steel plates in real time. For example, based on the online prediction of the number of defects, the operator can change the operating conditions to control the occurrence of defects; in addition, the defect prediction model provides an early measure of the number of defects, which helps the operator to prevent further deterioration of the operating conditions; in addition, Based on the defect prediction model, the key factors affecting the incidence of defects can be further explored.
采用的数据是从某炼钢厂收集的某一种类型的钢铁缺陷数据,其收集于二次精炼、连铸、轧制和冷却等过程,如图3所示。数据包含过程变量数据和质量变量数据。过程变量数据包括加热温度等146个过程操作变量,是连续型变量,数据存在较强的非线性。质量变量代表缺陷的数量,属于离散计数数据类型。本次实验中,收集的2500个样本被随机分为三个数据集,其中1500个样本作为训练数据集用于模型训练,500个样本作为验证数据集用于模型参数选择,500个样本作为测试数据集用于模型测试。,The data used is a certain type of steel defect data collected from a steelmaking plant during secondary refining, continuous casting, rolling and cooling, as shown in Figure 3. The data contains process variable data and quality variable data. The process variable data includes 146 process operation variables such as heating temperature, which are continuous variables, and the data has strong nonlinearity. The quality variable represents the number of defects and is a discrete count data type. In this experiment, the collected 2500 samples were randomly divided into three data sets, of which 1500 samples were used as training data set for model training, 500 samples were used as validation data set for model parameter selection, and 500 samples were used for testing The dataset is used for model testing. ,
表1:网络结构参数Table 1: Network Structure Parameters
为了做对比分析,包括堆叠监督泊松自编码器SSPAE、堆叠目标相关自编码器STAE、堆叠自编码器SAE和泊松回归PS在内的多种方法被用于该工业过程的计数数据软测量建模。SSPAE、STAE和SAE的网络结构参数如表1所示。SSPAE模型中的关键超参数λ设置为1.5。For comparative analysis, various methods including Stacked Supervised Poisson Autoencoder SSPAE, Stacked Target Dependent Autoencoder STAE, Stacked Autoencoder SAE and Poisson Regression PS were used for soft sensing construction of count data in this industrial process. mold. The network structure parameters of SSPAE, STAE and SAE are shown in Table 1. The key hyperparameter λ in the SSPAE model is set to 1.5.
表2:各个对比方法在测试集上的预测性能对比Table 2: Comparison of the prediction performance of each comparison method on the test set
表2提供了各个对比方法在均方根误差RMSE和相关系数R2两种模型评价指标下的预测精度对比。RMSE越小以及,代表模型预测误差越小。R2越大,代表模型预测精度越高。从两个指标可以看出,本发明方法SSPAE的预测表现是最好的,具有最小的预测误差和最高的预测精度。Table 2 provides the comparison of the prediction accuracy of each comparison method under the two model evaluation indicators of root mean square error RMSE and correlation coefficient R 2 . The smaller the RMSE and the smaller the model prediction error. The larger the R 2 , the higher the prediction accuracy of the model. It can be seen from the two indicators that the prediction performance of the method SSPAE of the present invention is the best, with the smallest prediction error and the highest prediction accuracy.
图4分别展示SSPAE模型和STAE模型、SAE模型的部分预测效果图,其中横坐标代表测量样本,纵坐标代表质量数据的值。图4(c)为本发明方法,从图中可以看出,本发明方法SSPAE对于钢铁缺陷数量的预测值与真实值的拟合更加紧密,预测结果更加准确。Figure 4 shows the partial prediction effect diagrams of the SSPAE model, the STAE model, and the SAE model, respectively, where the abscissa represents the measurement samples, and the ordinate represents the value of the quality data. Figure 4(c) shows the method of the present invention. It can be seen from the figure that the SSPAE method of the present invention fits the predicted value of the number of steel defects more closely with the actual value, and the prediction result is more accurate.
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。Those of ordinary skill in the art can understand that the above are only preferred examples of the invention and are not intended to limit the invention. Although the invention has been described in detail with reference to the foregoing examples, those skilled in the art can still Modifications are made to the technical solutions described in the foregoing examples, or equivalent replacements are made to some of the technical features. All modifications and equivalent replacements made within the spirit and principle of the invention shall be included within the protection scope of the invention.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210403851.5A CN114692507B (en) | 2022-04-18 | 2022-04-18 | Soft-sensing modeling method for count data based on stacked Poisson autoencoder network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210403851.5A CN114692507B (en) | 2022-04-18 | 2022-04-18 | Soft-sensing modeling method for count data based on stacked Poisson autoencoder network |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114692507A true CN114692507A (en) | 2022-07-01 |
| CN114692507B CN114692507B (en) | 2024-08-06 |
Family
ID=82143067
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210403851.5A Active CN114692507B (en) | 2022-04-18 | 2022-04-18 | Soft-sensing modeling method for count data based on stacked Poisson autoencoder network |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114692507B (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115374848A (en) * | 2022-08-18 | 2022-11-22 | 浙江大学 | Product quality prediction method based on gated multi-expert hybrid stacking self-encoder |
| CN116307145A (en) * | 2023-03-06 | 2023-06-23 | 浙江大学 | Prediction Method of Steel Plate Defect Quantity Based on Gaussian-Poisson Mixed Variational Autoencoder |
| CN116389706A (en) * | 2023-06-06 | 2023-07-04 | 北京深势科技有限公司 | Combined training method and device for encoder and decoder of electronic microscope projection chart |
| CN116644377A (en) * | 2023-05-16 | 2023-08-25 | 华东理工大学 | A soft sensor model construction method based on one-dimensional convolution-stacked autoencoder |
| CN118313166A (en) * | 2024-06-07 | 2024-07-09 | 山东泰和科技股份有限公司 | Soft measurement modeling method integrating data enhancement and automatic weighting |
| WO2024182977A1 (en) * | 2023-03-06 | 2024-09-12 | 浙江大学 | Count-type quality variable prediction method based on variational bayesian gaussian-poisson mixture regression model |
| CN118690791A (en) * | 2024-08-22 | 2024-09-24 | 湘江实验室 | A multi-sampling rate soft-sensing method based on weighted block updating autoencoder |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106887025A (en) * | 2017-01-16 | 2017-06-23 | 浙江大学 | A kind of method that mixing tracer dynamic PET concentration distributed image based on stack self-encoding encoder is rebuild |
| CN108760668A (en) * | 2018-06-01 | 2018-11-06 | 南京林业大学 | Pinus massoniana Seedlings root moisture method for fast measuring based on weighting autocoder |
| CN112734669A (en) * | 2021-01-07 | 2021-04-30 | 苏州浪潮智能科技有限公司 | Training method of anomaly detection model based on improved noise reduction self-encoder |
| WO2021128510A1 (en) * | 2019-12-27 | 2021-07-01 | 江苏科技大学 | Bearing defect identification method based on sdae and improved gwo-svm |
| CN113505477A (en) * | 2021-06-29 | 2021-10-15 | 西北师范大学 | Process industry soft measurement data supplementing method based on SVAE-WGAN |
| CN113947567A (en) * | 2021-09-23 | 2022-01-18 | 西安电子科技大学广州研究院 | Defect detection method based on multi-task learning |
| CN114004346A (en) * | 2021-08-17 | 2022-02-01 | 中国地质大学(武汉) | Soft sensing modeling method and storage medium based on gated stacked isomorphic autoencoder |
-
2022
- 2022-04-18 CN CN202210403851.5A patent/CN114692507B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106887025A (en) * | 2017-01-16 | 2017-06-23 | 浙江大学 | A kind of method that mixing tracer dynamic PET concentration distributed image based on stack self-encoding encoder is rebuild |
| WO2018129891A1 (en) * | 2017-01-16 | 2018-07-19 | 浙江大学 | Stacked autoencoder-based mixed tracer agent dynamic pet concentration distribution image reconstruction method |
| CN108760668A (en) * | 2018-06-01 | 2018-11-06 | 南京林业大学 | Pinus massoniana Seedlings root moisture method for fast measuring based on weighting autocoder |
| WO2021128510A1 (en) * | 2019-12-27 | 2021-07-01 | 江苏科技大学 | Bearing defect identification method based on sdae and improved gwo-svm |
| CN112734669A (en) * | 2021-01-07 | 2021-04-30 | 苏州浪潮智能科技有限公司 | Training method of anomaly detection model based on improved noise reduction self-encoder |
| CN113505477A (en) * | 2021-06-29 | 2021-10-15 | 西北师范大学 | Process industry soft measurement data supplementing method based on SVAE-WGAN |
| CN114004346A (en) * | 2021-08-17 | 2022-02-01 | 中国地质大学(武汉) | Soft sensing modeling method and storage medium based on gated stacked isomorphic autoencoder |
| CN113947567A (en) * | 2021-09-23 | 2022-01-18 | 西安电子科技大学广州研究院 | Defect detection method based on multi-task learning |
Non-Patent Citations (2)
| Title |
|---|
| XINMIN ZHANG 等: "Stacked supervised Poisson autoencoders-based soft-sensor for defects prediction in steelmaking process", 《COMPUTERS&CHEMICAL ENGINEERING》, 30 April 2023 (2023-04-30), pages 1 - 12 * |
| 王明明;王莎;邢卉;孙晓云;路霖;: "堆叠自编码器在锚杆锚固缺陷类型识别中的应用", 中国矿业, no. 07, 13 July 2020 (2020-07-13), pages 85 - 89 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115374848A (en) * | 2022-08-18 | 2022-11-22 | 浙江大学 | Product quality prediction method based on gated multi-expert hybrid stacking self-encoder |
| CN116307145A (en) * | 2023-03-06 | 2023-06-23 | 浙江大学 | Prediction Method of Steel Plate Defect Quantity Based on Gaussian-Poisson Mixed Variational Autoencoder |
| WO2024182977A1 (en) * | 2023-03-06 | 2024-09-12 | 浙江大学 | Count-type quality variable prediction method based on variational bayesian gaussian-poisson mixture regression model |
| CN116644377A (en) * | 2023-05-16 | 2023-08-25 | 华东理工大学 | A soft sensor model construction method based on one-dimensional convolution-stacked autoencoder |
| CN116389706A (en) * | 2023-06-06 | 2023-07-04 | 北京深势科技有限公司 | Combined training method and device for encoder and decoder of electronic microscope projection chart |
| CN116389706B (en) * | 2023-06-06 | 2023-09-29 | 北京深势科技有限公司 | Combined training method and device for encoder and decoder of electronic microscope projection chart |
| CN118313166A (en) * | 2024-06-07 | 2024-07-09 | 山东泰和科技股份有限公司 | Soft measurement modeling method integrating data enhancement and automatic weighting |
| CN118690791A (en) * | 2024-08-22 | 2024-09-24 | 湘江实验室 | A multi-sampling rate soft-sensing method based on weighted block updating autoencoder |
| CN118690791B (en) * | 2024-08-22 | 2024-10-29 | 湘江实验室 | A multi-sampling rate soft-sensing method based on weighted block updating autoencoder |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114692507B (en) | 2024-08-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114692507A (en) | A Soft Sensing Modeling Method for Counting Data Based on Stacked Poisson Autoencoder Networks | |
| CN109931678B (en) | Air conditioner fault diagnosis method based on deep learning LSTM | |
| CN110705692B (en) | A non-linear dynamic industrial process product prediction method based on spatiotemporal attention network | |
| CN109165664B (en) | Attribute-missing data set completion and prediction method based on generation of countermeasure network | |
| CN116757534A (en) | A reliability analysis method for smart refrigerators based on neural training network | |
| CN112884056A (en) | Optimized LSTM neural network-based sewage quality prediction method | |
| CN108875772B (en) | A Fault Classification Model and Method Based on Stacked Sparse Gaussian Bernoulli Restricted Boltzmann Machine and Reinforcement Learning | |
| AU2021106540A4 (en) | Prediction method and system for river algal blooms | |
| CN107832789B (en) | Feature weighting K nearest neighbor fault diagnosis method based on average influence value data transformation | |
| CN113344288B (en) | Water level prediction method, device and computer-readable storage medium for cascade hydropower station group | |
| CN115062528A (en) | A forecasting method for industrial process time series data | |
| CN118310746A (en) | An unsupervised generator bearing fault detection method based on variational autoencoder | |
| CN112414715B (en) | Bearing fault diagnosis method based on mixed feature and improved gray level symbiosis algorithm | |
| CN111046961A (en) | Fault classification method based on bidirectional long-and-short-term memory unit and capsule network | |
| CN114298413B (en) | A method for predicting the swing trend of hydropower units | |
| CN114297921A (en) | AM-TCN-based fault diagnosis method | |
| CN114970813B (en) | Dissolved oxygen concentration data restoration and prediction method | |
| CN112116002A (en) | A detection model determination method, verification method and device | |
| CN116842358A (en) | Soft measurement modeling method based on multi-scale convolution and self-adaptive feature fusion | |
| CN117216525A (en) | Sparse graph attention soft measurement modeling method based on CNN-LKA | |
| CN118204832B (en) | Tool wear prediction method based on TCNCSA-BiGRU of Bayesian deep learning | |
| CN114880490A (en) | Knowledge graph completion method based on graph attention network | |
| CN114896864B (en) | Soft-sensing modeling method for count data based on attention Poisson autoencoder network | |
| CN114638421A (en) | A forecasting method for generator spare parts demand | |
| CN115659809B (en) | Equipment life prediction method and device based on multi-source domain hierarchy migration |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |