CN114695082A - Processing method for generating oxide layer after conductive layer is exposed - Google Patents
Processing method for generating oxide layer after conductive layer is exposed Download PDFInfo
- Publication number
- CN114695082A CN114695082A CN202210316804.7A CN202210316804A CN114695082A CN 114695082 A CN114695082 A CN 114695082A CN 202210316804 A CN202210316804 A CN 202210316804A CN 114695082 A CN114695082 A CN 114695082A
- Authority
- CN
- China
- Prior art keywords
- layer
- control gate
- electrode
- conductive layer
- exposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/02068—Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本发明属于集成电路制造技术领域,具体涉及一种导电层暴露后生成氧化层的处理方法、MIM电容的形成方法和存储器及其形成方法。The invention belongs to the technical field of integrated circuit manufacturing, and in particular relates to a processing method for generating an oxide layer after a conductive layer is exposed, a method for forming a MIM capacitor, a memory and a method for forming the same.
背景技术Background technique
金属-绝缘体-金属(MIM:Metal-insulator-Metal)结构作为一种集成电容,可用于存储各种半导体器件中的电荷,其在射频集成电路和模拟/混合信号集成电路中有着广泛应用。MIM电容横向地形成在半导体晶圆上,其中两个金属极板将电介质层夹在中间。A metal-insulator-metal (MIM: Metal-insulator-Metal) structure, as an integrated capacitor, can be used to store charges in various semiconductor devices, and it is widely used in radio frequency integrated circuits and analog/mixed-signal integrated circuits. MIM capacitors are formed laterally on a semiconductor wafer with two metal plates sandwiching a dielectric layer.
MIM电容制作过程中,在暴露出导电层(通常为金属层并作为MIM电容的电极)的工艺中,影响了后续导电层的制作质量。包含该MIM电容的存储器,应用该导电层作为存储器的引线层,暴露出的导电层易被氧化,导致存储器读写程序的失败率较高。During the fabrication of the MIM capacitor, the process of exposing the conductive layer (usually a metal layer and serving as the electrode of the MIM capacitor) affects the fabrication quality of the subsequent conductive layer. In the memory including the MIM capacitor, the conductive layer is used as the lead layer of the memory, and the exposed conductive layer is easily oxidized, resulting in a high failure rate of the memory read and write procedures.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种导电层暴露后生成氧化层的处理方法、MIM电容的返工方法和存储器及其形成方法。确保导电层能正常被刻蚀,不受氧化层的影响;提高了导电层的制作质量;降低了存储器读写程序的失败率,提高了存储器的良率。The purpose of the present invention is to provide a processing method for generating an oxide layer after the conductive layer is exposed, a rework method for an MIM capacitor, a memory and a method for forming the same. It is ensured that the conductive layer can be etched normally and is not affected by the oxide layer; the fabrication quality of the conductive layer is improved; the failure rate of the reading and writing procedures of the memory is reduced, and the yield rate of the memory is improved.
本发明提供一种导电层暴露后生成氧化层的处理方法,包括:The present invention provides a processing method for generating an oxide layer after the conductive layer is exposed, comprising:
提供一基底,所述基底上形成有导电层和覆盖所述导电层的覆盖层;providing a substrate on which a conductive layer and a cover layer covering the conductive layer are formed;
采用刻蚀或灰化工艺去除部分或全部的所述覆盖层,以暴露出部分或全部的所述导电层;Use an etching or ashing process to remove part or all of the cover layer to expose part or all of the conductive layer;
暴露出的所述导电层的表面被氧化生成氧化层;The exposed surface of the conductive layer is oxidized to form an oxide layer;
采用含HF的溶液清洗去除所述氧化层。The oxide layer is removed by washing with an HF-containing solution.
进一步的,所述含HF的溶液包括H2SO4、HF和H2O的混合溶液。Further, the HF-containing solution includes a mixed solution of H 2 SO 4 , HF and H 2 O.
进一步的,所述含HF的溶液中,H2SO4、HF和H2O三者的体积比例范围为0.5~2:0.5~2.5:9~13,HF的浓度为500ppm~800ppm。Further, in the solution containing HF, the volume ratio of H 2 SO 4 , HF and H 2 O ranges from 0.5 to 2:0.5 to 2.5:9 to 13, and the concentration of HF ranges from 500ppm to 800ppm.
进一步的,所述导电层的材料包括氮化钛、钛、铝、铜、铜合金、铝合金或铜铝合金中的至少一种。Further, the material of the conductive layer includes at least one of titanium nitride, titanium, aluminum, copper, copper alloy, aluminum alloy, or copper aluminum alloy.
进一步的,所述覆盖层的材料包括:氮化硅、氧化硅、氮氧化硅、高介电常数的介电材料以及光阻中的至少一种。Further, the material of the cover layer includes at least one of silicon nitride, silicon oxide, silicon oxynitride, a high dielectric constant dielectric material and a photoresist.
本发明还提供一种金属-绝缘体-金属(MIM)电容的返工方法,包括:The present invention also provides a rework method for a metal-insulator-metal (MIM) capacitor, comprising:
提供基底,所述基底上自上而下形成有第一导电层、第一绝缘层和第二导电层,所述第一导电层上形成光阻层;providing a substrate on which a first conductive layer, a first insulating layer and a second conductive layer are formed from top to bottom, and a photoresist layer is formed on the first conductive layer;
光刻工艺出现异常,采用灰化工艺返工去除所述光阻层,暴露出所述第一导电层;An abnormality occurs in the photolithography process, and the photoresist layer is removed by rework with an ashing process to expose the first conductive layer;
暴露出的所述第一导电层表面在所述灰化工艺中被氧化生成氧化层;The exposed surface of the first conductive layer is oxidized in the ashing process to form an oxide layer;
采用上述导电层暴露后生成氧化层的处理方法去除所述氧化层。The oxide layer is removed by using the above-mentioned processing method of generating an oxide layer after exposing the conductive layer.
进一步的,去除所述氧化层之后,还包括:Further, after removing the oxide layer, the method further includes:
刻蚀所述第一导电层,形成第一电极,所述第一电极暴露出部分所述第一绝缘层;etching the first conductive layer to form a first electrode, and the first electrode exposes part of the first insulating layer;
形成覆盖所述第一电极上表面和侧壁、以及暴露出的所述第一绝缘层表面的第二绝缘层;forming a second insulating layer covering the upper surface and sidewall of the first electrode and the exposed surface of the first insulating layer;
刻蚀所述第二绝缘层和所述第一绝缘层,剩余在所述第一电极侧壁表面的第二绝缘层及其下方的第一绝缘层构成侧墙,位于所述第一电极下方的第一绝缘层构成电介质层;所述刻蚀暴露出所述第一电极上表面和所述侧墙远离所述第一电极一侧的所述第二导电层;The second insulating layer and the first insulating layer are etched, and the second insulating layer remaining on the surface of the sidewall of the first electrode and the first insulating layer below it form a sidewall, which is located below the first electrode The first insulating layer constitutes a dielectric layer; the etching exposes the upper surface of the first electrode and the second conductive layer on the side of the sidewall spacer away from the first electrode;
刻蚀所述第二导电层,形成第二电极。The second conductive layer is etched to form a second electrode.
本发明还提供一种存储器的形成方法,包括:The present invention also provides a method for forming a memory, comprising:
提供一基底,所述基底上形成有存储层,所述存储层包括共用字线、位于所述共用字线的一侧的第一浮栅和第一控制栅,以及位于所述共用字线的另一侧形的第二浮栅和第二控制栅;A substrate is provided on which a storage layer is formed, the storage layer includes a common word line, a first floating gate and a first control gate located on one side of the common word line, and a the other side-shaped second floating gate and second control gate;
形成MIM电容,所述MIM电容与所述存储层电连接;所述MIM电容自上而下包括:第一电极、电介质层和第二导电层,所述第一电极和所述电介质层的侧壁形成有侧墙;在形成所述侧墙的过程中,暴露出的所述第一电极的上表面和/或暴露出的所述第二导电层的上表面被氧化生成氧化层;A MIM capacitor is formed, and the MIM capacitor is electrically connected to the storage layer; the MIM capacitor includes from top to bottom: a first electrode, a dielectric layer and a second conductive layer, and the sides of the first electrode and the dielectric layer are A spacer is formed on the wall; in the process of forming the spacer, the exposed upper surface of the first electrode and/or the exposed upper surface of the second conductive layer is oxidized to form an oxide layer;
采用上述导电层暴露后生成氧化层的处理方法去除所述氧化层。The oxide layer is removed by using the above-mentioned processing method of generating an oxide layer after exposing the conductive layer.
刻蚀所述第二导电层,形成第二电极和间隔分布的控制栅引线层,所述间隔分布的控制栅引线层分别与所述第一控制栅和所述第二控制栅电连接。The second conductive layer is etched to form a second electrode and control gate lead layers distributed at intervals, and the control gate lead layers distributed at intervals are respectively electrically connected to the first control gate and the second control gate.
本发明还提供一种存储器,包括:The present invention also provides a memory, comprising:
基底,所述基底上形成有存储层,所述存储层包括共用字线、位于所述共用字线的一侧的第一浮栅和第一控制栅,以及位于所述共用字线的另一侧形的第二浮栅和第二控制栅;a substrate on which a storage layer is formed, the storage layer including a common word line, a first floating gate and a first control gate located on one side of the common word line, and another one located on the common word line side-shaped second floating gate and second control gate;
MIM电容,所述MIM电容与所述存储层电连接;所述MIM电容自上而下包括:第一电极、电介质层和第二电极,所述第一电极和所述电介质层的侧壁形成有侧墙;MIM capacitor, the MIM capacitor is electrically connected to the storage layer; the MIM capacitor includes from top to bottom: a first electrode, a dielectric layer and a second electrode, the first electrode and the sidewall of the dielectric layer are formed have side walls;
间隔分布的控制栅引线层,所述间隔分布的控制栅引线层与所述第二电极位于同一层且材质相同;所述间隔分布的控制栅引线层分别与所述第一控制栅和所述第二控制栅电连接。Control gate wiring layers distributed at intervals, the control gate wiring layers distributed at intervals are located in the same layer and of the same material as the second electrode; the control gate wiring layers distributed at intervals are respectively the same as the first control gate and the second electrode. The second control gate is electrically connected.
进一步的,所述存储层与所述MIM电容之间设置有层间互连结构层,所述间隔分布的控制栅引线层通过位于所述层间互连结构层中的互连层分别与所述第一控制栅和所述第二控制栅电连接。Further, an interlayer interconnection structure layer is provided between the storage layer and the MIM capacitor, and the spaced control gate lead layers are respectively connected with the interlayer interconnection structure layer through the interconnection layer located in the interlayer interconnection structure layer. The first control gate and the second control gate are electrically connected.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供一种导电层暴露后生成氧化层的处理方法、MIM电容的返工方法和存储器及其形成方法。导电层暴露后生成氧化层的处理方法中,采用含HF的溶液清洗去除导电层暴露后生成的氧化层,确保导电层能正常被刻蚀,不受氧化层的影响。The invention provides a processing method for generating an oxide layer after the conductive layer is exposed, a rework method for an MIM capacitor, a memory and a method for forming the same. In the processing method for generating an oxide layer after the conductive layer is exposed, a solution containing HF is used to clean and remove the oxide layer generated after the conductive layer is exposed, so as to ensure that the conductive layer can be etched normally and is not affected by the oxide layer.
MIM电容的返工方法中,采用含HF的溶液清洗去除导电层(第一导电层)灰化工艺暴露后生成的氧化层,使第一导电层能够被正常刻蚀(刻穿),形成第一电极。In the rework method of the MIM capacitor, a solution containing HF is used to clean and remove the oxide layer generated by the ashing process of the conductive layer (the first conductive layer), so that the first conductive layer can be etched (etched through) normally to form the first conductive layer. electrode.
存储器及其形成方法中,刻蚀形成侧墙后,采用含HF的溶液清洗去除所述氧化层。使第二导电层能够被正常刻蚀(刻穿),形成第二电极和间隔分布的控制栅引线层,使间隔分布的控制栅引线层之间不发生桥接,对应的存储器的第一控制栅和所述第二控制栅不会短路,能分别独立的对第一控制栅和所述第二控制栅施加电压进行读写程序,读写程序的失败率降低,提高了存储器的良率。In the memory and the method for forming the same, after etching to form the sidewall, the oxide layer is removed by cleaning with a solution containing HF. The second conductive layer can be normally etched (etched through) to form the second electrode and the control gate wiring layer distributed at intervals, so that no bridge occurs between the control gate wiring layers distributed at intervals, and the corresponding first control gate of the memory There is no short circuit with the second control gate, and the read and write procedures can be independently applied to the first control gate and the second control gate respectively, the failure rate of the read and write procedures is reduced, and the yield of the memory is improved.
附图说明Description of drawings
图1为本发明实施例的一种导电层暴露后生成氧化层的处理方法流程示意图。FIG. 1 is a schematic flowchart of a processing method for generating an oxide layer after exposing a conductive layer according to an embodiment of the present invention.
图2至图9a为本发明实施例的存储器的形成方法各步骤示意图。2 to 9a are schematic diagrams of steps of a method for forming a memory according to an embodiment of the present invention.
图9a为采用本发明实施例的存储器的形成方法第二导电层刻蚀成功的示意图;9a is a schematic diagram illustrating successful etching of the second conductive layer using the method for forming a memory according to an embodiment of the present invention;
图9b为存储器中的导电层暴露后生成氧化层导致第二导电层刻蚀失败的示意图;FIG. 9b is a schematic diagram illustrating the failure of etching of the second conductive layer due to the formation of an oxide layer after the conductive layer in the memory is exposed;
图9c为对应图9b第二导电层刻蚀失败发生桥接(粘连)示意图。FIG. 9c is a schematic diagram of bridging (adhesion) occurring corresponding to the etching failure of the second conductive layer in FIG. 9b.
图10为本发明实施例的存储器示意图。FIG. 10 is a schematic diagram of a memory according to an embodiment of the present invention.
图11a为改进后采用本实施例的存储器的形成方法,去除导电层暴露后生成的氧化层形成存储器的测试图。FIG. 11a is a test diagram of forming a memory by removing the oxide layer formed after the conductive layer is exposed by using the improved method for forming a memory of this embodiment.
图11b为改进前存储器中导电层暴露后生成氧化层未处理形成存储器的测试图。FIG. 11b is a test diagram of an untreated memory formed by an oxide layer formed after the conductive layer in the memory before improvement is exposed.
图12至图14为本发明实施例的MIM电容的返工方法各步骤示意图。FIG. 12 to FIG. 14 are schematic diagrams of steps of a rework method for an MIM capacitor according to an embodiment of the present invention.
其中,附图标记如下:Among them, the reference numerals are as follows:
100-基底;110-第二导电层;1101-导电层一;1102-导电层二;1103-导电层三;111-第二电极;112-控制栅引线层;120-第一绝缘层;121-电介质层;130-第一导电层;131-第一电极;140-第二绝缘层;150-侧墙;16-氧化层;170-第三绝缘层;180-光阻层;190-氧化层。100-substrate; 110-second conductive layer; 1101-conductive layer one; 1102-conductive layer two; 1103-conductive layer three; 111-second electrode; 112-control gate lead layer; 120-first insulating layer; 121 - Dielectric layer; 130 - first conductive layer; 131 - first electrode; 140 - second insulating layer; 150 - spacer; 16 - oxide layer; 170 - third insulating layer; 180 - photoresist layer; 190 - oxide Floor.
T-存储层;200-栅氧化层;210-第一浮栅;220-第一控制栅;310-第二浮栅;320-第二控制栅;410-共用字线。200-gate oxide layer; 210-first floating gate; 220-first control gate; 310-second floating gate; 320-second control gate; 410-shared word line.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图均采用非常简化的形式且使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become more apparent from the following description. It should be noted that the accompanying drawings are in a very simplified form and use inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
为了便于描述,本申请一些实施例可以使用诸如“在…上方”、“在…之下”、“顶部”、“下方”等空间相对术语,以描述如实施例各附图所示的一个元件或部件与另一个(或另一些)元件或部件之间的关系。应当理解的是,除了附图中描述的方位之外,空间相对术语还旨在包括装置在使用或操作中的不同方位。例如若附图中的装置被翻转,则被描述为在其它元件或部件“下方”或“之下”的元件或部件,随后将被定位为在其它元件或部件“上方”或“之上”。下文中的术语“第一”、“第二”、等用于在类似要素之间进行区分,且未必是用于描述特定次序或时间顺序。要理解,在适当情况下,如此使用的这些术语可替换。For the convenience of description, some embodiments of the present application may use spatially relative terms such as "above", "below", "top", "below", etc., to describe an element as shown in the drawings of the embodiments or the relationship of a component to another (or other) elements or components. It should be understood that spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as "below" or "beneath" other elements or features would then be oriented "above" or "over" the other elements or features. The terms "first," "second," etc. hereinafter are used to distinguish between similar elements, and are not necessarily used to describe a particular order or temporal order. It is to be understood that these terms so used may be substituted under appropriate circumstances.
本发明实施例提供了一种导电层暴露后生成氧化层的处理方法,如图1所示,包括:An embodiment of the present invention provides a processing method for generating an oxide layer after the conductive layer is exposed, as shown in FIG. 1 , including:
步骤S11、提供一基底,所述基底上形成有导电层和覆盖所述导电层的覆盖层;Step S11, providing a substrate on which a conductive layer and a cover layer covering the conductive layer are formed;
步骤S12、采用刻蚀或灰化工艺去除部分或全部的所述覆盖层,以暴露出部分或全部的所述导电层;Step S12, using an etching or ashing process to remove part or all of the cover layer to expose part or all of the conductive layer;
步骤S13、暴露出的所述导电层的表面被氧化生成氧化层;Step S13, the exposed surface of the conductive layer is oxidized to form an oxide layer;
步骤S14、采用含HF的溶液清洗去除所述氧化层。Step S14, using a solution containing HF to remove the oxide layer.
具体的,所述含HF的溶液包括H2SO4、HF和H2O的混合溶液。示例性的,所述含HF的溶液中,H2SO4、HF和H2O三者的体积比例范围为0.5~2:0.5~2.5:9~13,HF的浓度为500ppm~800ppm。较佳的H2SO4、HF和H2O三者的体积比例范围为1:1.33:11,HF的浓度为500ppm~800ppm。示例性的,所述含HF的溶液的由H2SO4、HF和H2O三者混合而成,例如0.5X~2X的H2SO4、0.5X~2.5X的HF、9X~13X的H2O三者混合而成,其中X为体积单位,例如L、mL等。Specifically, the HF-containing solution includes a mixed solution of H 2 SO 4 , HF and H 2 O. Exemplarily, in the HF-containing solution, the volume ratio of H 2 SO 4 , HF and H 2 O ranges from 0.5 to 2:0.5 to 2.5:9 to 13, and the concentration of HF ranges from 500ppm to 800ppm. The preferred volume ratio of H 2 SO 4 , HF and H 2 O is 1:1.33:11, and the concentration of HF is 500ppm-800ppm. Exemplarily, the HF-containing solution is formed by mixing H 2 SO 4 , HF and H 2 O, such as 0.5X-2X H 2 SO 4 , 0.5X-2.5X HF, 9X-13X H 2 O mixed with three, where X is a volume unit, such as L, mL, etc.
所述导电层的材料包括氮化钛、钛、铝、铜、铜合金、铝合金或铜铝合金中的至少一种。所述覆盖层的材料包括:氮化硅、氧化硅、氮氧化硅、高介电常数的介电材料以及光阻中的至少一种。The material of the conductive layer includes at least one of titanium nitride, titanium, aluminum, copper, copper alloy, aluminum alloy or copper aluminum alloy. The material of the cover layer includes: at least one of silicon nitride, silicon oxide, silicon oxynitride, high dielectric constant dielectric material and photoresist.
本发明实施例还提供了一种存储器的形成方法,包括:An embodiment of the present invention also provides a method for forming a memory, including:
步骤S21、提供一基底,所述基底上形成有存储层,所述存储层包括共用字线、位于所述共用字线的一侧的第一浮栅和第一控制栅,以及位于所述共用字线的另一侧形的第二浮栅和第二控制栅;Step S21, providing a substrate on which a storage layer is formed, the storage layer including a common word line, a first floating gate and a first control gate located on one side of the common word line, and a first floating gate and a first control gate located on one side of the common word line, a second floating gate and a second control gate formed on the other side of the word line;
步骤S22、形成MIM电容,所述MIM电容与所述存储层电连接;所述MIM电容自上而下包括:第一电极、电介质层和第二导电层,所述第一电极和所述电介质层的侧壁形成有侧墙;在形成所述侧墙的过程中,暴露出的所述第一电极的上表面和/或暴露出的所述第二导电层的上表面被氧化生成氧化层;Step S22, forming a MIM capacitor, the MIM capacitor is electrically connected to the storage layer; the MIM capacitor includes from top to bottom: a first electrode, a dielectric layer and a second conductive layer, the first electrode and the dielectric A spacer is formed on the sidewall of the layer; in the process of forming the spacer, the exposed upper surface of the first electrode and/or the exposed upper surface of the second conductive layer is oxidized to form an oxide layer ;
步骤S23、采用上述导电层暴露后生成氧化层的处理方法去除所述氧化层;Step S23, removing the oxide layer by using the above-mentioned processing method for generating an oxide layer after the conductive layer is exposed;
步骤S24、刻蚀所述第二导电层,形成第二电极和间隔分布的控制栅引线层,所述间隔分布的控制栅引线层分别与所述第一控制栅和所述第二控制栅电连接。Step S24, etching the second conductive layer to form a second electrode and a control gate lead layer distributed at intervals, and the control gate lead layer distributed at intervals is electrically connected to the first control gate and the second control gate respectively. connect.
具体的,如图9a至图10所示,步骤S21、提供一基底100,所述基底100上形成有存储层T,所述存储层T包括位于基底100上的栅氧化层200,位于栅氧化层200上方的共用字线410、位于所述共用字线410的一侧的第一浮栅210和第一控制栅220,以及位于所述共用字线410的另一侧形的第二浮栅310和第二控制栅320。Specifically, as shown in FIGS. 9 a to 10 , in step S21 , a
步骤S22、形成MIM电容,以下结合图2至图8详细介绍形成MIM电容的各步骤。图2至图8重点介绍MIM电容,未示出存储层T。Step S22 , forming the MIM capacitor. The steps of forming the MIM capacitor are described in detail below with reference to FIGS. 2 to 8 . Figures 2 to 8 focus on MIM capacitors, and the storage layer T is not shown.
参考图2,提供基底100,所述基底100上自上而下依次具有第一导电层130、第一绝缘层120和第二导电层110。Referring to FIG. 2 , a
本实施例中,所述基底100为硅晶圆。所述基底100内可以形成有多种半导体器件单元及其之间的连接结构和隔离结构,例如,所述半导体器件单元可以为金属氧化物半导体场效应晶体管(MOSFET)、双极结晶体管(BJT)、高压晶体管、高频晶体管、二极管、光学器件、MEMS(Micro-electro mechanical System)器件或其他元件。在其他一些实施例中,所述基底100还可以为其他半导体材料或绝缘材料。例如,所述基底100还可以为锗硅、锗或III-V族半导体材料等,或者为Si-SiGe、Si-SiC、绝缘体上硅(SOI)或者绝缘体上锗(GOI)等多层结构材料;或者为玻璃等绝缘材料。In this embodiment, the
所述第二导电层110、第一绝缘层120和第一导电层130可以依次通过沉积的工艺自下而上地形成于所述基底100的表面上,在后续工艺中分别用于形成MIM电容的第二电极、电介质层和第一电极。所述第一导电层130和所述第二导电层110的结构可以为单层或者多层,材料可以为金属或者其他导电材料,例如可以为氮化钛、钛、铝、铜、铜合金、铝合金或铜铝合金中的至少一种。所述第一绝缘层120的结构也可以为单层或者多层,材料可以为氮化硅、氧化硅、氮氧化硅或者高介电常数的介电材料中的至少一种。The second
本实施例中,所述第一导电层130的材料例如为氮化钛;所述第一绝缘层120的材料例如为氮化硅;所述第二导电层110自下而上依次包括导电层一1101、导电层二1102和导电层三1103;导电层一1101包括氮化钛(TiN)层和/或钛(Ti)层,导电层二1102例如为铝层,导电层三1103也包括氮化钛(TiN)层和/或钛(Ti)层。In this embodiment, the material of the first
接着,如图2和图3所示,刻蚀所述第一导电层130以形成第一电极131,所述第一电极131暴露出部分所述第一绝缘层120。Next, as shown in FIG. 2 and FIG. 3 , the first
具体地,可以先在所述第一导电层130上形成掩膜层(未示出),所述掩膜层通过光刻工艺形成有与待形成的第一电极131形状对应的图形,所述掩膜层可以为光阻层或者硬掩膜层;接着按所述掩膜层上的图形对所述第一导电层130进行刻蚀,直至暴露出所述第一绝缘层120的表面,去除待形成的第一电极外的第一导电层材料,形成第一电极;最后去除所述掩膜层。本实施例中,所述刻蚀工艺所采用的刻蚀气体对氮化钛和氮化硅具有较高的选择比,可以使得刻蚀工艺停止在第一绝缘层120的表面。Specifically, a mask layer (not shown) may be formed on the first
本实施例中,在刻蚀所述第一导电层130,形成第一电极131后,还对所述基底100和其上的第一电极131和第一绝缘层120等进行清洗。在刻蚀工艺后,通常会形成有机聚合物和溅射残留物,对所形成器件的电阻率、漏电流和良率有负面影响。所述清洗工艺用于去除所述有机聚合物和溅射残留物。所述清洗工艺所采用的溶液可根据具体工艺和材料选择,本发明对此不作限定。In this embodiment, after the first
在其他一些实施例中,刻蚀所述第一导电层130,形成第一电极131后,还可以继续对第一电极131暴露出的第一绝缘层120进行刻蚀,去除部分所述第一绝缘层120。对所述第一绝缘层120继续刻蚀,使所述第一电极131暴露出的第一绝缘层120的厚度减薄,可以使得第一电极131外的第一导电层材料被去除干净,还可以减小后续工艺中第一绝缘层120的刻蚀难度。In some other embodiments, after the first
接着,如图4所示,形成覆盖所述第一电极131上表面和侧壁、以及部分所述第一绝缘层120上表面的第二绝缘层140。Next, as shown in FIG. 4 , a second insulating
具体地,可以采用化学气相沉积、物理气相沉积或者原子层沉积工艺形成所述第二绝缘层140。所述第二绝缘层140的材料为氮化硅、氮氧化硅或者氧化硅中的一种或多种。本实施例中,所述第二绝缘层140与所述第一绝缘层120的材料相同,均为氮化硅。所述第二绝缘层140的厚度与待形成的侧墙的宽度相关。本实施例中,为了使得所述侧墙能够充分保护电介质层,所述第二绝缘层140的厚度例如为100埃~2000埃。由于后续工艺中需要对所述第二绝缘层140和所述第一绝缘层120进行刻蚀形成侧墙,所述第二绝缘层140与所述第一绝缘层120的材料相同,一方面可以降低刻蚀难度,另一方面也可以增强两者之间的结合强度。Specifically, the second insulating
接着,如图4和图5所示,刻蚀所述第二绝缘层140和所述第一绝缘层120,剩余在所述第一电极131侧壁表面的第二绝缘层1502及其下方的第一绝缘层1501构成侧墙150,位于所述第一电极131下方的第一绝缘层构成电介质层121;所述刻蚀暴露出所述第一电极131上表面和所述侧墙150远离所述第一电极131一侧的所述第二导电层110。Next, as shown in FIG. 4 and FIG. 5 , the second insulating
具体地,在形成所述第二绝缘层140后,进行无掩膜的侧墙刻蚀,所述刻蚀工艺采用等离子体刻蚀,具有较好的方向性;由于所述第一电极131侧壁上的第二绝缘层材料在垂直方向的厚度较大,当所述第一电极131上表面和第一绝缘层120上的第二绝缘层材料被去除时,所述第一电极131侧壁上的第二绝缘层材料得以部分保留;随着刻蚀工艺的进行,所述第一电极131覆盖区域外的第一绝缘层120继续被刻蚀去除,位于所述第一电极131下方以及所述第一电极131侧壁表面剩余第二绝缘材料层下的第一绝缘层被保留;当所述刻蚀工艺结束后,剩余在所述第一电极131侧壁表面的第二绝缘层1502,以及所述第一电极131侧壁表面的第二绝缘层1502下方的第一绝缘层1501共同构成侧墙150。上述刻蚀工艺中所采用的刻蚀气体对氮化硅和氮化钛具有较高的选择比,可以使得刻蚀工艺停止在第二导电层110的表面。还需要说明的是,上述描述中所采用的“下”,“下方”是指垂直于所述第一电极131并朝向所述基底100的方向。Specifically, after the second insulating
本发明实施中,通过刻蚀所述第二绝缘层140和第一绝缘层120形成了侧墙150,所述侧墙150可以保护所述第一电极131下的电介质层121,减少所述电介质层121在刻蚀过程中受到的等离子体损伤,改善了最终形成的MIM的电容与时间相关电介质击穿(TDDB:TimeDependent Dielectric Breakdown)特性。而且,由于所述电介质层121有侧墙150保护,所述电介质层121的厚度可以做到更小,增大了最终所形成的MIM电容器的电容值。In the implementation of the present invention, the
接着,如图6和图7所示,形成侧墙150的刻蚀工艺中,暴露出所述第一电极131的上表面和所述侧墙150远离所述第一电极131一侧的所述第二导电层110的上表面。暴露出的所述第一电极131的上表面和暴露出的所述第二导电层110的上表面被氧化生成氧化层160。该氧化层160是在刻蚀气氛中自然氧化形成的,是不期望的。氧化层160为第二导电层110的氧化产物,例如包括氧化钛、氧化铝或氧化铜中的至少一种。Next, as shown in FIG. 6 and FIG. 7 , in the etching process of forming the
步骤S23、如图6和图7所示,本实施例在刻蚀形成侧墙150后,采用含HF的溶液清洗去除所述氧化层160。所述含HF的溶液包括H2SO4、HF和H2O的混合溶液。具体的,所述含HF的溶液中,H2SO4、HF和H2O三者的体积比例范围为0.5~2:0.5~2.5:9~13,较佳的H2SO4、HF和H2O三者的体积比例范围为1:1.33:11,HF的浓度为500ppm~800ppm。示例性的,所述含HF的溶液的由H2SO4、HF和H2O三者混合而成,例如0.5X~2X的H2SO4、0.5X~2.5X的HF、9X~13X的H2O三者混合而成,其中X为体积单位,例如L、mL等。本实施例还对所述基底100及其上的第一电极131、侧墙150和第二导电层110等进行了清洗,以去除刻蚀过程中的有机聚合物和溅射残留物。本实施例采用含HF的溶液清洗去除导电层(第一电极131和/第二导电层110)暴露后生成的氧化层,使第二导电层110能够被正常刻蚀(刻穿),从而增大了后续第二导电层110刻蚀工艺的窗口,提高了第二导电层110的制作质量。解决了常规采用EKC清洗液(包括羟胺、醇类、邻苯二酚和极性溶剂的混合溶液)去除不了表面生成的氧化层的问题。Step S23 , as shown in FIG. 6 and FIG. 7 , in this embodiment, after the
接着,如图8所示,沉积第三绝缘层170,所述第三绝缘层170覆盖所述第一电极131、所述侧墙150和部分所述第二导电层110。所述第三绝缘层170的材料为氮化硅、氮氧化硅或者氧化硅中的一种或多种。本实施例中,所述第三绝缘层170的材料为氮氧化硅。所述第三绝缘层170可以在后续的对第二导电层110的刻蚀工艺中,保护所述第一电极131和所述电介质层121;此外,由于所述第二导电层110通常为金属,对光线的反射比较强烈,所述第三绝缘层170还可以作为光刻工艺过程中的暗层,减少光线反射。Next, as shown in FIG. 8 , a third
步骤S24、刻蚀所述第二导电层;图9a为采用本发明实施例的存储器的形成方法第二导电层刻蚀成功的示意图;图9b为存储器中的导电层暴露后生成氧化层导致第二导电层刻蚀失败的示意图;图9c为对应图9b第二导电层刻蚀失败发生桥接(粘连)示意图。图10为本发明实施例的存储器示意图。如图9a至图10所示,刻蚀所述第二导电层,形成第二电极111和间隔分布的控制栅引线层112,所述间隔分布的控制栅引线层分别与所述第一控制栅220和所述第二控制栅320电连接。Step S24, etching the second conductive layer; FIG. 9a is a schematic diagram of the successful etching of the second conductive layer using the method for forming a memory according to an embodiment of the present invention; FIG. 9b is an oxide layer generated after the conductive layer in the memory is exposed. Figure 9c is a schematic diagram of bridging (adhesion) corresponding to the failure of etching the second conductive layer in Figure 9b. FIG. 10 is a schematic diagram of a memory according to an embodiment of the present invention. As shown in FIG. 9a to FIG. 10 , the second conductive layer is etched to form
具体的,如图8、图9a和图10所示,在所述第三绝缘层170上形成图形化的掩膜层(未图示),所述图形化的掩膜层可以为自下而上的DARC(底部抗反射涂层)层和光阻层的堆叠层。沿所述图形化的掩膜层中的开口对所述第三绝缘层170和所述第二导电层110进行刻蚀,直至暴露出所述基底100的表面,亦即将第二导电层110刻穿,形成第二电极111和间隔分布的控制栅引线层112,第二电极111作为MIM电容的下电极;所述间隔分布的控制栅引线层112分别与所述第一控制栅220和所述第二控制栅320电连接;例如控制栅引线层112a与第一控制栅220电连接,控制栅引线层112b与第二控制栅320电连接。Specifically, as shown in FIG. 8 , FIG. 9 a and FIG. 10 , a patterned mask layer (not shown) is formed on the third insulating
所述第二电极111的形状和尺寸根据具体应用设计,本发明对此不作限定。如图9a所示,所述第二电极111的尺寸可以大于所述第一电极131的尺寸。本实施中,在刻蚀所述第二导电层110后,还对所述基底100及其上的第一电极131、侧墙结构150和第二电极111进行了清洗,去除有机聚合物和溅射残留物。The shape and size of the
图9b为存储器中的导电层暴露后生成氧化层导致第二导电层刻蚀失败的示意图。如图9b所示,研究发现,若暴露出的所述第一电极131的上表面和/或暴露出的所述第二导电层的上表面生成的氧化层160不做处理,氧化层160的存在,增加了存储器中被刻蚀的层的厚度,带来刻蚀的工艺不稳定。例如按正常工序设置的刻蚀参数不能将第二导电层(包括导电层一1101、导电层二1102和导电层三1103)刻蚀到底(刻穿),区域IV内的第二导电层刻蚀不到底(刻穿),导致间隔分布的控制栅引线层112之间(例如a处)发生桥接(粘连),例如相邻的控制栅引线层112a与控制栅引线层112b发生桥接(粘连),最终导致存储器的第一控制栅220和所述第二控制栅320短路。FIG. 9b is a schematic diagram illustrating the failure of etching of the second conductive layer due to the formation of an oxide layer after the conductive layer in the memory is exposed. As shown in FIG. 9b, studies have found that if the exposed upper surface of the
图9a为采用本发明实施例的存储器的形成方法第二导电层刻蚀成功的示意图;如图9a所示,本发明实施例的存储器的形成方法中,本实施例在刻蚀形成侧墙150后,采用含HF的溶液清洗去除所述氧化层160。使第二导电层110能够被正常刻蚀(刻穿),形成第二电极111和间隔分布的控制栅引线层112,间隔分布的控制栅引线层112之间不发生桥接(粘连),对应的,存储器的第一控制栅220和所述第二控制栅320不会短路,能分别独立的对第一控制栅220和所述第二控制栅320施加电压进行读写程序,读写程序的失败率降低,提高了存储器的良率。FIG. 9a is a schematic diagram illustrating that the second conductive layer is successfully etched by the method for forming a memory according to an embodiment of the present invention; as shown in FIG. 9a, in the method for forming a memory according to an embodiment of the present invention, the
图11a为改进后采用本实施例的存储器的形成方法,去除导电层暴露后生成氧化层形成存储器的测试图;图11b为改进前存储器中导电层暴露后生成氧化层未处理的测试图。图11a和图11b晶圆中的点表示该位置芯片读写程序失败;图11b可以看出,改进前存储器发生芯片读写程序失败的点非常多,芯片读写程序失败的概率很大,而且分布集中。图11a与图11b相比,改进后存储器发生芯片读写程序失败的点明显减少,而且呈随机分布状态。图11a与图11b对比图,进一步证实了采用本发明实施例的存储器的形成方法,提高了存储器的良率。FIG. 11a is a test diagram of the improved memory using the method for forming a memory of this embodiment, and an oxide layer is formed after the conductive layer is removed and exposed; FIG. The dots in the wafers in Figures 11a and 11b indicate that the chip read and write procedures failed at that location; Figure 11b shows that there are many points where the chip read and write procedures fail in the memory before the improvement, and the chip read and write procedures have a high probability of failure, and concentrated distribution. Compared with FIG. 11b , in FIG. 11 a , the points where the chip read and write program failures occur in the memory after the improvement are significantly reduced, and the points are in a random distribution state. 11a and FIG. 11b are compared, further confirming that the method for forming a memory according to an embodiment of the present invention improves the yield of the memory.
本发明实施例还提供一种存储器,如图9a和图10所示,包括:An embodiment of the present invention further provides a memory, as shown in FIG. 9a and FIG. 10 , including:
基底100,所述基底100上形成有存储层T,所述存储层T包括共用字线410、位于所述共用字线410的一侧的第一浮栅210和第一控制栅220,以及位于所述共用字线410的另一侧形的第二浮栅310和第二控制栅320;A
MIM电容,所述MIM电容与所述存储层电连接;所述MIM电容自上而下包括:第一电极131、电介质层121和第二电极111,所述第一电极131和所述电介质层121的侧壁形成有侧墙150;MIM capacitor, the MIM capacitor is electrically connected to the storage layer; the MIM capacitor includes from top to bottom: a
间隔分布的控制栅引线层112,所述间隔分布的控制栅引线层112与所述第二电极111位于同一层且材质相同;所述间隔分布的控制栅引线层分别与所述第一控制栅220和所述第二控制栅320电连接。间隔分布的控制栅引线层112可为阵列条状分布。Control gate lead layers 112 distributed at intervals, the control gate lead layers 112 distributed at intervals and the
所述存储层T与所述MIM电容之间还可设置有层间互连结构层,层间互连结构层中可设置有硅通孔或接触孔,在硅通孔或接触孔中形成互连层,所述互连层的材质包括铜、钨或铝中的至少一种。所述间隔分布的控制栅引线层112通过位于所述层间互连结构层中的互连层分别与所述第一控制栅220和所述第二控制栅320电连接。An interlayer interconnection structure layer may also be provided between the storage layer T and the MIM capacitor, and the interlayer interconnection structure layer may be provided with a through-silicon hole or a contact hole, and an interconnection is formed in the through-silicon hole or the contact hole. The interconnection layer is made of at least one of copper, tungsten or aluminum. The control gate wiring layers 112 distributed at intervals are electrically connected to the
本发明还提供一种金属-绝缘体-金属(MIM)电容的返工方法,包括:The present invention also provides a rework method for a metal-insulator-metal (MIM) capacitor, comprising:
如图12所示,提供基底100,所述基底100上自上而下形成有第一导电层130、第一绝缘层120和第二导电层110,在所述第一导电层130上形成光阻层180;As shown in FIG. 12 , a
如图13所示,光刻工艺出现异常,采用灰化工艺返工去除所述光阻层,暴露出所述第一导电层130;暴露出的所述第一导电层130表面在所述灰化工艺后被氧化生成氧化层190;As shown in FIG. 13 , an abnormality occurs in the photolithography process, and an ashing process is used to rework to remove the photoresist layer to expose the first
如图14所示,采用上述导电层暴露后生成氧化层的处理方法去除所述氧化层190。As shown in FIG. 14 , the
研究发现在第一导电层130表面形成光阻层180,在光刻出现异常,例如光刻形成的关键尺寸不合格、有颗粒缺陷或者曝光图形没有对准等因素,导致需要返工去除原先的光阻层180。去除光阻层180后暴露出的第一导电层130表面在所述灰化工艺后易被氧化生成氧化层190,若不对该氧化层190处理会影响后续MIM电容的刻蚀工艺。具体的,返工重新制作光阻层形成在氧化层190表面,氧化层190是自然氧化多出来的层,不在设计范围内,在后续刻蚀第一导电层130形成第一电极131的过程中,预定的刻蚀参数由于氧化层190的影响,导致第一导电层130不能被刻蚀到预定深度,或者刻蚀到预定深度实际花的时间比设计时间长,从而影响MIM电容的正常制作。通过采用含HF的溶液清洗去除灰化后生成的氧化层190,确保了后续MIM电容的刻蚀工艺正常稳定。The study found that the
去除所述氧化层之后,还包括:After removing the oxide layer, the method further includes:
刻蚀所述第一导电层,形成第一电极,所述第一电极暴露出部分所述第一绝缘层;etching the first conductive layer to form a first electrode, and the first electrode exposes part of the first insulating layer;
形成覆盖所述第一电极上表面和侧壁、以及暴露出的所述第一绝缘层表面的第二绝缘层;forming a second insulating layer covering the upper surface and sidewall of the first electrode and the exposed surface of the first insulating layer;
刻蚀所述第二绝缘层和所述第一绝缘层,剩余在所述第一电极侧壁表面的第二绝缘层及其下方的第一绝缘层构成侧墙,位于所述第一电极下方的第一绝缘层构成电介质层;所述刻蚀暴露出所述第一电极上表面和所述侧墙远离所述第一电极一侧的所述第二导电层;The second insulating layer and the first insulating layer are etched, and the second insulating layer remaining on the surface of the sidewall of the first electrode and the first insulating layer below it form a sidewall, which is located below the first electrode The first insulating layer constitutes a dielectric layer; the etching exposes the upper surface of the first electrode and the second conductive layer on the side of the sidewall spacer away from the first electrode;
刻蚀所述第二导电层,形成第二电极。The second conductive layer is etched to form a second electrode.
去除所述氧化层之后,MIM电容的后续制作方法,同上述步骤S22、形成MIM电容的方法相同,不再赘述。After the oxide layer is removed, the subsequent fabrication method of the MIM capacitor is the same as the method for forming the MIM capacitor in the above step S22, and will not be described again.
综上所述,本发明提供一种导电层暴露后生成氧化层的处理方法、MIM电容的返工方法和存储器及其形成方法。导电层暴露后生成氧化层的处理方法中,采用含HF的溶液清洗去除导电层暴露后生成的氧化层,确保导电层能正常被刻蚀,不受氧化层的影响。To sum up, the present invention provides a processing method for generating an oxide layer after the conductive layer is exposed, a reworking method for an MIM capacitor, a memory and a method for forming the same. In the processing method for generating an oxide layer after the conductive layer is exposed, a solution containing HF is used to clean and remove the oxide layer generated after the conductive layer is exposed, so as to ensure that the conductive layer can be etched normally and is not affected by the oxide layer.
MIM电容的返工方法中,采用含HF的溶液清洗去除导电层(第一导电层)暴露后生成的氧化层,使第一导电层能够按照预设的工艺参数被正常刻蚀,形成第一电极。In the rework method of the MIM capacitor, a solution containing HF is used to clean and remove the oxide layer generated after the conductive layer (the first conductive layer) is exposed, so that the first conductive layer can be etched normally according to the preset process parameters to form the first electrode. .
存储器及其形成方法中,刻蚀形成侧墙后,采用含HF的溶液清洗去除所述氧化层。使第二导电层能够被正常刻蚀(刻穿),形成第二电极和间隔分布的控制栅引线层,间隔分布的控制栅引线层之间不发生桥接,对应的存储器的第一控制栅和所述第二控制栅不会短路,能分别独立的对第一控制栅和所述第二控制栅施加电压进行读写程序,读写程序的失败率降低,提高了存储器的良率。In the memory and the method for forming the same, after etching to form the sidewall, the oxide layer is removed by cleaning with a solution containing HF. The second conductive layer can be etched (etched through) normally to form the second electrode and the control gate wiring layers distributed at intervals, and no bridging occurs between the control gate wiring layers distributed at intervals, and the corresponding first control gate and The second control gate is not short-circuited, and the read and write procedures can be independently applied to the first control gate and the second control gate respectively, the failure rate of the read and write procedures is reduced, and the yield of the memory is improved.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于与实施例公开的器件相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. As for the method disclosed in the embodiment, since it corresponds to the device disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
上述描述仅是对本发明较佳实施例的描述,并非对本发明权利范围的任何限定,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the rights of the present invention. Any person skilled in the art can use the methods and technical contents disclosed above to improve the present invention without departing from the spirit and scope of the present invention. The technical solutions are subject to possible changes and modifications. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention belong to the technical solutions of the present invention. protected range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210316804.7A CN114695082A (en) | 2022-03-28 | 2022-03-28 | Processing method for generating oxide layer after conductive layer is exposed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210316804.7A CN114695082A (en) | 2022-03-28 | 2022-03-28 | Processing method for generating oxide layer after conductive layer is exposed |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114695082A true CN114695082A (en) | 2022-07-01 |
Family
ID=82140942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210316804.7A Pending CN114695082A (en) | 2022-03-28 | 2022-03-28 | Processing method for generating oxide layer after conductive layer is exposed |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114695082A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5960294A (en) * | 1998-01-13 | 1999-09-28 | Micron Technology, Inc. | Method of fabricating a semiconductor device utilizing polysilicon grains |
KR20030059743A (en) * | 2002-01-04 | 2003-07-10 | 김재정 | Treatment method of wafer surface |
CN101609844A (en) * | 2008-06-18 | 2009-12-23 | 和舰科技(苏州)有限公司 | A kind of nonvolatile storage location and manufacture method thereof |
CN102427039A (en) * | 2011-11-02 | 2012-04-25 | 上海宏力半导体制造有限公司 | Photoresist removing method |
CN102693946A (en) * | 2012-06-11 | 2012-09-26 | 上海宏力半导体制造有限公司 | Methods for manufacturing semiconductor and memory |
CN105514092A (en) * | 2015-12-29 | 2016-04-20 | 上海华虹宏力半导体制造有限公司 | Metal-insulator-metal capacitor and method for forming same |
CN105590967A (en) * | 2014-11-12 | 2016-05-18 | 英飞凌科技股份有限公司 | Capacitors with Barrier Dielectric Layers, and Methods of Formation Thereof |
CN112103179A (en) * | 2020-11-03 | 2020-12-18 | 晶芯成(北京)科技有限公司 | Manufacturing method of MIM capacitor |
-
2022
- 2022-03-28 CN CN202210316804.7A patent/CN114695082A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5960294A (en) * | 1998-01-13 | 1999-09-28 | Micron Technology, Inc. | Method of fabricating a semiconductor device utilizing polysilicon grains |
KR20030059743A (en) * | 2002-01-04 | 2003-07-10 | 김재정 | Treatment method of wafer surface |
CN101609844A (en) * | 2008-06-18 | 2009-12-23 | 和舰科技(苏州)有限公司 | A kind of nonvolatile storage location and manufacture method thereof |
CN102427039A (en) * | 2011-11-02 | 2012-04-25 | 上海宏力半导体制造有限公司 | Photoresist removing method |
CN102693946A (en) * | 2012-06-11 | 2012-09-26 | 上海宏力半导体制造有限公司 | Methods for manufacturing semiconductor and memory |
US20130330894A1 (en) * | 2012-06-11 | 2013-12-12 | Grace Semiconductor Manufacturing Corporation | Method of manufacturing semiconductor device |
CN105590967A (en) * | 2014-11-12 | 2016-05-18 | 英飞凌科技股份有限公司 | Capacitors with Barrier Dielectric Layers, and Methods of Formation Thereof |
CN105514092A (en) * | 2015-12-29 | 2016-04-20 | 上海华虹宏力半导体制造有限公司 | Metal-insulator-metal capacitor and method for forming same |
CN112103179A (en) * | 2020-11-03 | 2020-12-18 | 晶芯成(北京)科技有限公司 | Manufacturing method of MIM capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112368822B (en) | Fully self-aligned via with selective bilayer dielectric regeneration | |
US20080305628A1 (en) | Semiconductor device with connecting via and dummy via and method of manufacturing the same | |
US9478602B2 (en) | Method of forming an embedded metal-insulator-metal (MIM) capacitor | |
US6645864B1 (en) | Physical vapor deposition of an amorphous silicon liner to eliminate resist poisoning | |
TW201901896A (en) | Semiconductor device and fabrication method thereof | |
US10204859B2 (en) | Interconnect structure and fabricating method thereof | |
CN114695082A (en) | Processing method for generating oxide layer after conductive layer is exposed | |
US9257496B2 (en) | Method of fabricating capacitor structure | |
US11798840B2 (en) | Self-assembled dielectric on metal RIE lines to increase reliability | |
US7622331B2 (en) | Method for forming contacts of semiconductor device | |
US7682957B2 (en) | Method of forming pad and fuse in semiconductor device | |
US12362231B2 (en) | Self-assembled dielectric on metal rie lines to increase reliability | |
KR100861305B1 (en) | Manufacturing method of semiconductor device | |
CN101246844B (en) | Method for manufacturing opening and via opening | |
KR100638984B1 (en) | Method of manufacturing metal-insulator-metal capacitor | |
US11990504B2 (en) | Capacitor with MIM | |
US20230335488A1 (en) | Semiconductor structure with resistor and capacitor | |
US20240145377A1 (en) | Planarization structure for mim topography | |
US7576374B2 (en) | Semiconductor device with robust polysilicon fuse | |
US20050077629A1 (en) | Photoresist ash process with reduced inter-level dielectric ( ILD) damage | |
KR100591182B1 (en) | Wiring Formation Method of Semiconductor Device | |
KR100521453B1 (en) | Method of forming multilayer interconnection line for semiconductor device | |
CN119153448A (en) | Integrated chip and forming method thereof | |
KR101097786B1 (en) | Method for forming semiconductor device | |
KR100641984B1 (en) | Method of manufacturing metal-insulator-metal capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |