CN114676522A - Aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning - Google Patents
Aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning Download PDFInfo
- Publication number
- CN114676522A CN114676522A CN202210313084.9A CN202210313084A CN114676522A CN 114676522 A CN114676522 A CN 114676522A CN 202210313084 A CN202210313084 A CN 202210313084A CN 114676522 A CN114676522 A CN 114676522A
- Authority
- CN
- China
- Prior art keywords
- design
- data
- optimization
- sample
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Computer Hardware Design (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Mathematical Optimization (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Analysis (AREA)
- Molecular Biology (AREA)
- Pure & Applied Mathematics (AREA)
- Fluid Mechanics (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Feedback Control In General (AREA)
Abstract
融合GAN和迁移学习的气动形状优化设计方法及系统及设备,包括以下步骤:采集设计参数建立计算流体动力学模拟流程;获取已完成相似优化任务的样本信息;建立生成对抗神经网络GAN,得到潜变量设计空间;基于潜变量设计空间,收集对应的样本集;搜索EI函数最大化的坐标得到新坐标;对新坐标的几何设计进行性能评估,将评估后得到的两组样本加入样本集合中;对于更新后的样本集合循环执行建立代理模型,搜索新样本,添加新样本的步骤直到满足优化停止条件。本发明解决了不同设计任务参数化空间无法兼容的问题,利用已完成的类似任务的解,加速目标任务的求解,突破经典设计优化方法针对各具体优化问题“从零开始”的局限,提高新任务的优化效率。
The aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning include the following steps: collecting design parameters to establish a computational fluid dynamics simulation process; obtaining sample information that has completed similar optimization tasks; Variable design space; collect the corresponding sample set based on the latent variable design space; search for the coordinates where the EI function maximizes to obtain new coordinates; evaluate the performance of the geometric design of the new coordinates, and add the two groups of samples obtained after the evaluation to the sample set; The steps of building a surrogate model, searching for new samples, and adding new samples are performed cyclically for the updated sample set until the optimization stopping condition is satisfied. The invention solves the problem of incompatibility of parameterized spaces of different design tasks, accelerates the solution of target tasks by using the solutions of similar tasks that have been completed, breaks through the limitation of "starting from scratch" for each specific optimization problem of the classical design optimization method, and improves new task optimization efficiency.
Description
技术领域technical field
本发明属于气动形状设计优化领域,特别涉及融合GAN和迁移学习的气动形状优化设计方法及系统及设备。The invention belongs to the field of aerodynamic shape design optimization, and particularly relates to an aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning.
背景技术Background technique
近年来,在机械部件气动形状工程优化领域,自动化的优化设计方法受到越来越广泛的应用。自动优化设计方法需要人为确定一个可以参数化的设计空间,空间中的每个样本都对应一个具体的几何设计方案。以计算机模拟计算的结果作为寻优的目标,借助特定的优化算法就可以自动化地设计得到具有优异气动性能的部件几何形状。自动化设计方法的使用可以有效减少对于设计人员经验的需求,快速高质量地完成设计。In recent years, in the field of aerodynamic shape engineering optimization of mechanical components, automatic optimization design methods have been more and more widely used. The automatic optimization design method needs to manually determine a design space that can be parameterized, and each sample in the space corresponds to a specific geometric design scheme. Taking the results of computer simulation calculations as the optimization goal, the geometry of components with excellent aerodynamic performance can be automatically designed with the help of specific optimization algorithms. The use of automated design methods can effectively reduce the need for designer experience and complete designs quickly and with high quality.
然而,高精度的CFD样本计算往往需要消耗大量了的时间和计算资源,因此减少优化设计过程中的样本计算次数、提高优化设计的效率具有重大的工程意义。However, high-precision CFD sample calculation often consumes a lot of time and computing resources, so it is of great engineering significance to reduce the number of sample calculations in the optimization design process and improve the efficiency of the optimization design.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种融合GAN和迁移学习的气动形状优化设计方法及系统及设备,通过对已完成相似优化任务样本信息的灵活利用以实现。The purpose of the present invention is to provide an aerodynamic shape optimization design method, system and device integrating GAN and transfer learning, which can be realized by flexibly utilizing the sample information of similar optimization tasks that have been completed.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
融合GAN和迁移学习的气动形状优化设计方法,包括以下步骤:An aerodynamic shape optimization design method integrating GAN and transfer learning, including the following steps:
采集设计对象的设计参数建立计算流体动力学模拟流程,同时确定优化设计的优化目标性能;Collect the design parameters of the design object to establish a computational fluid dynamics simulation process, and at the same time determine the optimal target performance of the optimal design;
获取已完成相似优化任务的样本信息。在此相似的优化任务定义为具有相似流动特征的优化任务,比如两个同样工作在亚音速工况下但马赫数、雷诺数等工况参数不完全相同的叶栅。将对上述相似任务的样本进行采集,并采用相同的散点表示形式进行型线数据表征。Get sample information on similar optimization tasks that have been completed. Similar optimization tasks are defined here as optimization tasks with similar flow characteristics, such as two cascades that also work under subsonic conditions but with different operating parameters such as Mach number and Reynolds number. Samples from similar tasks as described above will be collected and the same scatter representation will be used to characterize the profile data.
记这些样本数据为{Xdata,Ydata},假设已有样本的个数为ndata,每个样本包含几何设计数据Xdata与代表优化目标的性能结果数据Ydata;Denote these sample data as {X data , Y data }, assuming that the number of existing samples is n data , each sample contains geometric design data X data and performance result data Y data representing the optimization goal;
使用几何设计数据Xdata建立生成对抗神经网络GAN,得到新的潜变量设计空间,设计空间的设计变量个数为d;Using the geometric design data X data to build a generative adversarial neural network GAN, a new latent variable design space is obtained, and the number of design variables in the design space is d;
通过训练完成的对抗神经网络,输入d维数据后输出一个几何设计,将所获得的潜变量设计空间用Z表示;使用GA算法将几何设计源数据样本{Xdata,Ydata}投影到空间Z中,记为{ZS,YS};Through the trained adversarial neural network, input d-dimensional data and output a geometric design, and denote the obtained latent variable design space as Z; use the GA algorithm to project the geometric design source data samples {X data , Y data } to the space Z , denoted as {Z S ,Y S };
空间Z中的初始样本的数量为nini=6d,Z空间中的样本坐标集合记为ZT,对获取的样本进行评估,获得对应的评估值YT;The number of initial samples in the space Z is n ini =6d, the sample coordinate set in the Z space is denoted as Z T , and the obtained samples are evaluated to obtain the corresponding evaluation value Y T ;
使用样本集合{ZT,YT},分别建立代理模型,搜索EI函数最大化的坐标得到新坐标 Use the sample set {Z T , Y T } to establish surrogate models respectively, and search for the coordinates that maximize the EI function to obtain new coordinates
分别对新坐标对于的几何设计进行性能评估,将评估后得到的两组样本加入样本集合{ZT,YT}中;respectively for the new coordinates For the performance evaluation of the geometric design, the two groups of samples obtained after the evaluation are added to the sample set {Z T , Y T };
对于更新后的样本集合循环执行建立代理模型,搜索新样本,添加新样本的步骤直到满足优化停止条件。The steps of building a surrogate model, searching for new samples, and adding new samples are performed cyclically for the updated sample set until the optimization stopping condition is satisfied.
进一步的,采集设计对象的设计参数建立计算流体动力学模拟流程。Further, the design parameters of the design object are collected to establish a computational fluid dynamics simulation process.
进一步的,从数据库中获取已完成相似优化任务的样本信息。Further, sample information that has completed similar optimization tasks is obtained from the database.
进一步的,设计变量个数d为自行确定的整数,数值越大,空间中几何设计的变化范围就越大,设计细节就越丰富。Further, the number d of design variables is a self-determined integer. The larger the value, the larger the variation range of geometric design in space, and the richer the design details.
进一步的,训练完成的对抗神经网络中,生成器的输入变量z为d维的在[0,1]区间内均匀分布的随机变量,GAN神经网络中设置训练的迭代次数为50000步。Further, in the trained adversarial neural network, the input variable z of the generator is a d-dimensional random variable uniformly distributed in the [0,1] interval, and the number of training iterations in the GAN neural network is set to 50,000 steps.
进一步的,在空间Z中采用LHS方法进行初始采样。Further, the LHS method is used for initial sampling in space Z.
进一步的,使用样本集合{ZT,YT},建立单保真度的Kriging代理模型对于所建立的代理模型,搜索EI函数最大化的坐标得到新坐标 Further, use the sample set {Z T , Y T } to establish a single-fidelity Kriging surrogate model For the established surrogate model, search for the coordinates where the EI function maximizes to get new coordinates
进一步的,使用样本集合{ZT,YT}作为高精度样本,使用样本集合{ZS,YS}作为低精度样本,建立多保真度co-Kriging代理模型对于所建立的代理模型,搜索EI函数最大化的坐标得到新坐标 Further, a multi-fidelity co-Kriging surrogate model is established using the sample set {Z T , Y T } as high-precision samples and the sample set {Z S , Y S } as low-precision samples For the established surrogate model, search for the coordinates where the EI function maximizes to get new coordinates
进一步的,融合GAN和迁移学习的气动形状优化系统,包括:Further, aerodynamic shape optimization systems that integrate GAN and transfer learning include:
流体动力学模拟流程建立模块,用于采集设计对象的参数建立计算流体动力学模拟流程,同时确定优化设计的优化目标性能;The fluid dynamics simulation process establishment module is used to collect the parameters of the design object to establish the computational fluid dynamics simulation process, and at the same time determine the optimized target performance of the optimized design;
数据获取模块,用于获取已完成相似优化任务的样本信息,记这些样本数据为{Xdata,Ydata},假设已有样本的个数为ndata,每个样本包含几何设计数据Xdata与代表优化目标的性能结果数据Ydata;The data acquisition module is used to obtain sample information that has completed similar optimization tasks, record these sample data as {X data , Y data }, assuming that the number of existing samples is n data , each sample contains geometric design data X data and The performance result data Y data representing the optimization objective;
对抗神经网络建立模块,用于使用几何设计数据Xdata建立生成对抗神经网络GAN,得到新的潜变量设计空间,设计空间的设计变量个数为d;通过训练完成的对抗神经网络,输入d维数据后输出一个几何设计,将所获得的潜变量设计空间用Z表示;几何设计源数据样本{Xdata,Ydata}均投影到空间Z中,记为{ZS,YS};在投影过程中,通过GA算法优化来逼近几何模型在空间Z中的对应坐标ZS,优化搜索的输入为Z空间中的坐标,优化的目标是使得Z空间中坐标通过生成器生成的几何模型与Xdata中实际模型的误差最小;YS的取值与Ydata相同。The adversarial neural network building module is used to build a generative adversarial neural network GAN using the geometric design data X data , and obtain a new latent variable design space. After the data, a geometric design is output, and the obtained latent variable design space is represented by Z; the geometric design source data samples {X data , Y data } are projected into the space Z, denoted as {Z S , Y S }; In the process, the GA algorithm is optimized to approximate the corresponding coordinate Z S of the geometric model in the space Z. The input of the optimization search is the coordinate in the Z space. The goal of optimization is to make the coordinate in the Z space pass through the generator. The error of the actual model in data is the smallest; the value of Y S is the same as that of Y data .
评估值获取模块,用于空间Z中的初始样本的数量为nini=6d,Z空间中的样本坐标集合记为ZT,对获取的样本进行评估,获得对应的评估值YT;The evaluation value acquisition module is used for the number of initial samples in the space Z to be n ini =6d, the sample coordinate set in the Z space is denoted as Z T , and the obtained samples are evaluated to obtain the corresponding evaluation value Y T ;
新坐标获取模块,用于使用样本集合{ZT,YT},分别建立代理模型,搜索EI函数最大化的坐标得到新坐标 The new coordinate acquisition module is used to use the sample set {Z T , Y T } to establish surrogate models respectively, and search for the coordinates that maximize the EI function to obtain new coordinates
评估模块,用于分别对新坐标对于的几何设计进行性能评估,将评估后得到的两组样本加入样本集合{ZT,YT}中;对于更新后的样本集合循环执行建立代理模型,搜索新样本,添加新样本的步骤直到满足优化停止条件。Evaluation module for separately evaluating the new coordinates For the performance evaluation of the geometric design, the two groups of samples obtained after evaluation are added to the sample set {Z T , Y T }; for the updated sample set, the steps of establishing a surrogate model, searching for new samples, and adding new samples are performed cyclically until The optimization stop condition is satisfied.
进一步的,一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现融合GAN和迁移学习的气动形状优化设计方法的步骤。Further, a computer device, comprising a memory, a processor, and a computer program stored in the memory and running on the processor, when the processor executes the computer program, the integration of GAN and transfer learning is realized. Steps of aerodynamic shape optimization design method.
与现有技术相比,本发明有以下技术效果:Compared with the prior art, the present invention has the following technical effects:
本发明使用了深度学习技术GAN网络来进行新的设计空间参数化造型方法的建立,这一方法解决了不同设计任务参数化空间无法兼容的问题,使得数据库中已完成的设计任务的数据可以无障碍地应用到新的设计任务中,从而提高新任务的优化效率。The invention uses the deep learning technology GAN network to establish a new design space parameterized modeling method, this method solves the problem that the parameterized space of different design tasks is incompatible, so that the data of the completed design tasks in the database can be used without Barriers can be applied to new design tasks, thereby improving the optimization efficiency of new tasks.
本方法使用了深度学习技术GAN网络来完成优化的参数化造型环节,相对于传统的造型方法,本方法并不局限于固定的参考设计,可以在较大的变化尺度范围内构造出合理的部件几何造型,拓宽了优化设计的探索范围。This method uses the deep learning technology GAN network to complete the optimized parametric modeling. Compared with the traditional modeling method, this method is not limited to a fixed reference design, and can construct reasonable components within a large range of variation scales. Geometric modeling broadens the exploration scope of optimal design.
本方法在优化过程中提出了GTO优化算法,通过同时构造单保真度代理模型和多保真度代理模型,在保真优化鲁棒性的同时有效利用了数据库中的积累数据提升了优化的效率。This method proposes a GTO optimization algorithm in the optimization process. By constructing a single-fidelity surrogate model and a multi-fidelity surrogate model at the same time, the robustness of the optimization is fidelity and the accumulated data in the database is effectively used to improve the optimization performance. efficiency.
附图说明Description of drawings
图1为本发明实施例的原理图。FIG. 1 is a schematic diagram of an embodiment of the present invention.
图2为本发明实施例的潜空间构造方法的具体流程示意图。FIG. 2 is a schematic diagram of a specific flow of a latent space construction method according to an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明进一步说明:Below in conjunction with accompanying drawing, the present invention is further described:
一种融合GAN和迁移学习的气动形状设计优化方法,包括以下步骤:An aerodynamic shape design optimization method integrating GAN and transfer learning, including the following steps:
根据设计对象的设计需求和优化目标,建立计算流体动力学模拟流程,同时确定优化设计的优化目标性能。对于每一个输入的几何设计,都可以得到唯一的气动性能参数输出;According to the design requirements and optimization objectives of the design object, the computational fluid dynamics simulation process is established, and the optimization target performance of the optimization design is determined at the same time. For each input geometric design, a unique aerodynamic performance parameter output can be obtained;
从数据库中获取已完成相似优化任务的样本信息,记这些样本数据为{Xdata,Ydata},假设已有样本的个数为ndata,每个样本包含可以由点云表示的几何设计数据Xdata与代表优化目标的性能结果数据Ydata。Obtain sample information of similar optimization tasks that have been completed from the database, and denote these sample data as {X data , Y data }, assuming that the number of existing samples is n data , each sample contains geometric design data that can be represented by point clouds X data and performance result data Y data representing the optimization objective.
对于一类特定的设计任务,往往存在着记录之前的设计结果的数据库,数据库中信息的来源可以是国内外成熟产品已公开的设计几何信息,也可以是使用者自己积累的以往设计数据。For a specific type of design task, there is often a database that records the previous design results. The source of the information in the database can be the design geometry information of mature products at home and abroad, or the previous design data accumulated by users themselves.
使用几何设计数据Xdata建立生成对抗神经网络(GAN),由此得到一个新的潜变量设计空间。A generative adversarial neural network (GAN) is built using the geometric design data X data , thereby obtaining a new latent variable design space.
确定所构造的设计空间的设计变量个数d。d为由使用者自行确定的整数,d的数值越大,空间中几何设计的变化范围就越大,设计细节就越丰富,但也会提高优化搜索的难度。Determine the number d of design variables in the constructed design space. d is an integer determined by the user. The larger the value of d, the greater the variation range of the geometric design in the space, and the richer the design details, but it will also increase the difficulty of optimization search.
如图2所示的,生成器的输入变量z为d维的在[0,1]区间内均匀分布的随机变量,GAN神经网络中生成器与判别器的具体设置细节如表1所示。设置训练的迭代次数为50000步。As shown in Figure 2, the input variable z of the generator is a d-dimensional random variable uniformly distributed in the [0,1] interval. The specific settings of the generator and discriminator in the GAN neural network are shown in Table 1. Set the number of iterations for training to 50000 steps.
表1GAN网络设置细节Table 1GAN network setup details
通过训练完成的神经网络,输入d维数据后即可输出一个几何设计。将所获得的潜变量设计空间用Z表示。几何设计源数据样本{Xdata,Ydata}均可以投影到空间Z中,记为{ZS,YS}。在投影过程中,通过GA算法优化来逼近几何模型在空间Z中的对应坐标ZS,优化搜索的输入为Z空间中的坐标,优化的目标是使得Z空间中坐标通过生成器生成的几何模型与Xdata中实际模型的误差最小;YS的取值与Ydata相同。Through the trained neural network, a geometric design can be output after inputting d-dimensional data. The obtained latent variable design space is denoted by Z. The geometric design source data samples {X data , Y data } can be projected into the space Z, denoted as {Z S , Y S }. In the projection process, the corresponding coordinate Z S of the geometric model in the space Z is approximated by the GA algorithm optimization. The input of the optimization search is the coordinate in the Z space. The goal of optimization is to make the coordinates in the Z space pass through the generator. Generated geometric model The error with the actual model in X data is the smallest; the value of Y S is the same as that in Y data .
在空间Z中LHS方法进行初始采样,初始样本的数量为nini=6d,Z空间中的样本坐标集合记为ZT。对获取的样本进行评估,获得对应的评估值YT。The LHS method performs initial sampling in space Z, the number of initial samples is n ini =6d, and the set of sample coordinates in Z space is denoted as Z T . The obtained samples are evaluated to obtain the corresponding evaluation value Y T .
使用样本集合{ZT,YT},建立单保真度的Kriging代理模型对于所建立的代理模型,搜索EI函数最大化的坐标得到新坐标 Use the sample set {Z T ,Y T } to build a single-fidelity Kriging surrogate model For the established surrogate model, search for the coordinates where the EI function maximizes to get new coordinates
使用样本集合{ZT,YT}作为高精度样本,使用样本集合{ZS,YS}作为低精度样本,建立多保真度co-Kriging代理模型对于所建立的代理模型,搜索EI函数最大化的坐标得到新坐标 Use the sample set {Z T , Y T } as high-precision samples and the sample set {Z S , Y S } as low-precision samples to establish a multi-fidelity co-Kriging surrogate model For the established surrogate model, search for the coordinates where the EI function maximizes to get new coordinates
分别对新坐标对于的几何设计进行性能评估,将评估后得到的两组样本加入样本集合{ZT,YT}中。respectively for the new coordinates For the performance evaluation of the geometric design, the two groups of samples obtained after the evaluation are added to the sample set {Z T , Y T }.
对于更新后的样本集合循环执行建立代理模型,搜索新样本,添加新样本的步骤直到满足优化停止条件。The steps of building a surrogate model, searching for new samples, and adding new samples are performed cyclically for the updated sample set until the optimization stopping condition is satisfied.
如图1所示,本实施例提供了一种融合GAN和迁移学习的气动形状设计优化方法并应用于气动造型优化设计中,具体包括以下步骤:As shown in Figure 1, this embodiment provides an aerodynamic shape design optimization method integrating GAN and transfer learning and applies it to the aerodynamic shape optimization design, which specifically includes the following steps:
1.优化设计任务的建立1. Establishment of optimization design tasks
本施例选择最为常用的低速翼型作为设计对象。优化的目标为最大化翼型的升力阻力比例L/D,翼型设计的外流条件为:雷诺数Re=1.8×106,马赫数Ma=0.01,设置翼型的攻角为0度。In this embodiment, the most commonly used low-speed airfoil is selected as the design object. The optimization goal is to maximize the lift-drag ratio L/D of the airfoil. The outflow conditions of the airfoil design are: Reynolds number Re=1.8×10 6 , Mach number Ma=0.01, and the attack angle of the airfoil is set to 0 degrees.
2.性能评估模型的建立2. Establishment of performance evaluation model
采用XFOIL软件对所获得的二维几何模型进行自动化评估,输出结果为翼型的升阻比。The XFOIL software is used to automatically evaluate the obtained two-dimensional geometric model, and the output is the lift-drag ratio of the airfoil.
3.设计空间的建立3. Establishment of design space
本发明的优化设计空间依据已完成任务样本使用GAN方法来自动建立,在本施例中,使用一组已完成优化的样本{Xdata,Ydata}为源样本,该已完成优化任务的外流马赫数Ma=0.45。使用几何样本的点云作为输入,设置设计空间变量个数d=13,如表1所示建立GAN神经网络。以训练后的GAN网络作为参数化造型方法建立潜变量设计空间Z。并将几何设计源数据样本{Xdata,Ydata}均投影到空间Z中,记为{ZS,YS};在投影过程中,通过GA算法优化来逼近几何模型在空间Z中的对应坐标ZS,优化搜索的输入为Z空间中的坐标,优化的目标是使得Z空间中坐标通过生成器生成的几何模型与Xdata中实际模型的误差最小;YS的取值与Ydata相同。The optimization design space of the present invention is automatically established by using the GAN method according to the completed task samples. In this embodiment, a set of optimized samples {X data , Y data } are used as the source samples, and the outflow of the completed optimization task is used. Mach number Ma=0.45. Using the point cloud of geometric samples as input, set the number of design space variables d = 13, and build a GAN neural network as shown in Table 1. The latent variable design space Z is established by using the trained GAN network as a parametric modeling method. The geometric design source data samples {X data , Y data } are projected into space Z, denoted as {Z S , Y S }; in the projection process, the GA algorithm is optimized to approximate the corresponding geometric model in space Z Coordinate Z S , the input of the optimization search is the coordinates in the Z space, and the goal of optimization is to minimize the error between the geometric model generated by the generator in the Z space and the actual model in the X data ; the value of Y S is the same as that of the Y data .
4.优化设计的具体过程4. The specific process of optimizing the design
参考图1,其具体过程如下:Referring to Figure 1, the specific process is as follows:
4a.在建立的设计空间Z中使用LHS方法获得分布较为均匀的78个样本坐标,使用建立的性能评估模型对其进行性能评估获得这78个设计样本的升阻比,得到包含78个样本的集合{ZT,YT}。4a. In the established design space Z, use the LHS method to obtain the coordinates of 78 samples with a relatively uniform distribution, and use the established performance evaluation model to evaluate the performance to obtain the lift-to-drag ratio of the 78 design samples, and to obtain the 78 samples. The set {Z T ,Y T }.
4b.使用4a中获得的样本坐标ZT和样本值YT建立单保真度Kriging代理模型,通过对建立的单保真度Kriging代理模型进行最大化EI搜索,得到新坐标(由于默认优化过程中的目标为最小值,样本值设置为升阻比乘以-1)4b. Use the sample coordinates Z T and sample values Y T obtained in 4a to establish a single-fidelity Kriging surrogate model, and obtain new coordinates by maximizing EI search on the established single-fidelity Kriging surrogate model (Since the target in the default optimization process is the minimum value, the sample value is set to the lift-drag ratio multiplied by -1)
4c.使用4a中获得的样本集合{ZT,YT}作为高精度来源,使用转化后的已完成任务数据{ZS,YS}作为低精度来源,建立多保真度co-Kriging代理模型,通过对建立的多保真度co-Kriging代理模型进行最大化EI搜索,得到新坐标 4c. Use the sample set {Z T , Y T } obtained in 4a as the high-precision source and the transformed completed task data {Z S , Y S } as the low-precision source to build a multi-fidelity co-Kriging agent model, obtain new coordinates by maximizing EI search on the established multi-fidelity co-Kriging surrogate model
4d.使用建立的性能评估模型对新坐标对应的几何设计进行性能评估获得其升阻比,将这两个样本的数据加入集合{ZT,YT}。4d. Use the established performance evaluation model for the new coordinates The corresponding geometric design is evaluated for performance to obtain its lift-to-drag ratio, and the data of these two samples are added to the set {Z T , Y T }.
4f.重复步骤4b~4d,直到满足优化的停止条件。4f. Repeat steps 4b to 4d until the optimized stopping conditions are met.
5.优化设计的结果:5. Results of the optimized design:
重复上述步骤进行10次独立的优化,翼型优化设计的结果如表2所示。Repeat the above steps for 10 independent optimizations, and the results of the airfoil optimization design are shown in Table 2.
表2优化结果细节Table 2 Optimization results details
本发明的原理如下:The principle of the present invention is as follows:
本发明的最大特点与创新体现在应用GAN神经网络获得可复用于多个类似设计任务的,潜变量设计空间生成方法和实现气动形状迁移优化的GTO优化算法两个部分。这两种方法的共同使用可以将已完成相似优化任务的数据应用到新的优化设计任务中去,有效提升新任务的优化效率,节约The biggest feature and innovation of the present invention is reflected in the application of GAN neural network to obtain two parts, the latent variable design space generation method and the GTO optimization algorithm for realizing aerodynamic shape transfer optimization, which can be reused for multiple similar design tasks. The joint use of these two methods can apply the data of similar optimization tasks to the new optimization design task, which can effectively improve the optimization efficiency of the new task and save money.
潜变量设计空间生成方法使用GAN神经网络算法来建立符合源任务几何设计特征的参数化空间。The latent variable design space generation method uses a GAN neural network algorithm to build a parametric space that conforms to the geometric design characteristics of the source task.
GTO迁移优化算法通过同时建立包含源任务迁移信息的多保真度代理模型和不包含迁移信息的单保真代理模型来完成优化加点。相对与只建立单保真度模型的EGO算法,GTO算法由于使用了迁移信息而具有更高的效率;相对于只建立多保真度模型的STO算法,GTO算法具有更强的鲁棒性,也可以避免由于负迁移导致的优化停滞。The GTO migration optimization algorithm completes optimization points by simultaneously building a multi-fidelity surrogate model that includes source task migration information and a single-fidelity surrogate model that does not include migration information. Compared with the EGO algorithm that only builds a single-fidelity model, the GTO algorithm has higher efficiency due to the use of migration information; compared with the STO algorithm that only builds a multi-fidelity model, the GTO algorithm has stronger robustness. Optimization stalls due to negative transfer can also be avoided.
本发明在一实施例中,提供一种融合GAN和迁移学习的气动形状设计优化系统,能够用于实现上述的融合GAN和迁移学习的气动形状设计优化方法,具体的,该融合GAN和迁移学习的气动形状设计优化系统包括:In one embodiment of the present invention, an aerodynamic shape design optimization system integrating GAN and transfer learning is provided, which can be used to realize the above-mentioned aerodynamic shape design optimization method integrating GAN and transfer learning. The aerodynamic shape design optimization system includes:
流体动力学模拟流程建立模块,用设计对象的设计参数建立计算流体动力学模拟流程,同时确定优化设计的优化目标性能;The fluid dynamics simulation process establishment module uses the design parameters of the design object to establish the computational fluid dynamics simulation process, and at the same time determines the optimal target performance of the optimal design;
数据获取模块,用于获取已完成相似优化任务的样本信息,记这些样本数据为{Xdata,Ydata},假设已有样本的个数为ndata,每个样本包含几何设计数据Xdata与代表优化目标的性能结果数据Ydata;The data acquisition module is used to obtain sample information that has completed similar optimization tasks, record these sample data as {X data , Y data }, assuming that the number of existing samples is n data , each sample contains geometric design data X data and The performance result data Y data representing the optimization objective;
对抗神经网络建立模块,用于使用几何设计数据Xdata建立生成对抗神经网络GAN,得到新的几何设计空间,设计空间的设计变量个数为d;通过训练完成的对抗神经网络,输入d维数据后输出一个几何设计,将所获得的潜变量设计空间用Z表示;使用GA算法将几何设计源数据样本{Xdata,Ydata}投影到空间Z中,记为{ZS,YS};The adversarial neural network building module is used to build a generative adversarial neural network GAN using the geometric design data X data to obtain a new geometric design space. The number of design variables in the design space is d; for the adversarial neural network completed through training, input d-dimensional data Then output a geometric design, and denote the obtained latent variable design space as Z; use the GA algorithm to project the geometric design source data sample {X data , Y data } into the space Z, denoted as { Z S , Y S };
评估值获取模块,用于空间Z中的初始样本的数量为nini=6d,Z空间中的样本坐标集合记为ZT,对获取的样本进行评估,获得对应的评估值YT;The evaluation value acquisition module is used for the number of initial samples in the space Z to be n ini =6d, the sample coordinate set in the Z space is denoted as Z T , and the obtained samples are evaluated to obtain the corresponding evaluation value Y T ;
新坐标获取模块,用于使用样本集合{ZT,YT},分别建立代理模型,搜索EI函数最大化的坐标得到新坐标 The new coordinate acquisition module is used to use the sample set {Z T , Y T } to establish surrogate models respectively, and search for the coordinates that maximize the EI function to obtain new coordinates
评估模块,用于分别对新坐标对于的几何设计进行性能评估,将评估后得到的两组样本加入样本集合{ZT,YT}中;对于更新后的样本集合循环执行建立代理模型,搜索新样本,添加新样本的步骤直到满足优化停止条件。Evaluation module for separately evaluating the new coordinates For the performance evaluation of the geometric design, the two groups of samples obtained after evaluation are added to the sample set {Z T , Y T }; for the updated sample set, the steps of establishing a surrogate model, searching for new samples, and adding new samples are performed cyclically until The optimization stop condition is satisfied.
本发明再一个实施例中,提供了一种计算机设备,该计算机设备包括处理器以及存储器,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于执行所述计算机存储介质存储的程序指令。处理器可能是中央处理单元(CentralProcessing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital SignalProcessor、DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其是终端的计算核心以及控制核心,其适于实现一条或一条以上指令,具体适于加载并执行计算机存储介质内一条或一条以上指令从而实现相应方法流程或相应功能;本发明实施例所述的处理器可以用于融合GAN和迁移学习的气动形状设计优化的操作。In yet another embodiment of the present invention, a computer device is provided, the computer device includes a processor and a memory, the memory is used for storing a computer program, the computer program includes program instructions, and the processor is used for executing the computer Program instructions stored in the storage medium. The processor may be a central processing unit (CPU), other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs), and off-the-shelf programmable gate arrays. (Field-Programmable GateArray, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc., which are the computing core and control core of the terminal, which are suitable for implementing one or more instructions, specifically suitable for One or more instructions in the computer storage medium are loaded and executed to realize the corresponding method process or corresponding function; the processor according to the embodiment of the present invention can be used for the operation of integrating GAN and transfer learning for aerodynamic shape design optimization.
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be Modifications or equivalent replacements are made to the specific embodiments of the present invention, and any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210313084.9A CN114676522B (en) | 2022-03-28 | 2022-03-28 | Aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210313084.9A CN114676522B (en) | 2022-03-28 | 2022-03-28 | Aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114676522A true CN114676522A (en) | 2022-06-28 |
| CN114676522B CN114676522B (en) | 2024-03-29 |
Family
ID=82077000
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210313084.9A Active CN114676522B (en) | 2022-03-28 | 2022-03-28 | Aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114676522B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115310209A (en) * | 2022-09-15 | 2022-11-08 | 西安交通大学 | VAE-based aerodynamic shape migration optimization method and related devices |
| CN116628854A (en) * | 2023-05-26 | 2023-08-22 | 上海大学 | Wing section aerodynamic characteristic prediction method, system, electronic equipment and storage medium |
| WO2024104485A1 (en) * | 2022-11-18 | 2024-05-23 | 中广核研究院有限公司 | Multi-fidelity network construction method and apparatus for nuclear reactor simulation test |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111597698A (en) * | 2020-05-08 | 2020-08-28 | 浙江大学 | A multi-precision optimization algorithm based on deep learning to realize aerodynamic optimization design method |
| WO2021007812A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳大学 | Deep neural network hyperparameter optimization method, electronic device and storage medium |
| CN114169100A (en) * | 2021-12-08 | 2022-03-11 | 西安交通大学 | A method, system and application for efficient design and optimization of super-variable impeller machinery |
-
2022
- 2022-03-28 CN CN202210313084.9A patent/CN114676522B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021007812A1 (en) * | 2019-07-17 | 2021-01-21 | 深圳大学 | Deep neural network hyperparameter optimization method, electronic device and storage medium |
| CN111597698A (en) * | 2020-05-08 | 2020-08-28 | 浙江大学 | A multi-precision optimization algorithm based on deep learning to realize aerodynamic optimization design method |
| CN114169100A (en) * | 2021-12-08 | 2022-03-11 | 西安交通大学 | A method, system and application for efficient design and optimization of super-variable impeller machinery |
Non-Patent Citations (1)
| Title |
|---|
| 夏露;王丹;: "基于Kriging自适应代理模型的气动优化方法", 航空计算技术, no. 01, 31 January 2013 (2013-01-31), pages 13 - 17 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115310209A (en) * | 2022-09-15 | 2022-11-08 | 西安交通大学 | VAE-based aerodynamic shape migration optimization method and related devices |
| CN115310209B (en) * | 2022-09-15 | 2024-06-21 | 西安交通大学 | Aerodynamic shape migration optimization method and related device based on VAE |
| WO2024104485A1 (en) * | 2022-11-18 | 2024-05-23 | 中广核研究院有限公司 | Multi-fidelity network construction method and apparatus for nuclear reactor simulation test |
| CN116628854A (en) * | 2023-05-26 | 2023-08-22 | 上海大学 | Wing section aerodynamic characteristic prediction method, system, electronic equipment and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114676522B (en) | 2024-03-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114676522B (en) | Aerodynamic shape optimization design method, system and equipment integrating GAN and transfer learning | |
| CN112187554B (en) | Operation and maintenance system fault positioning method and system based on Monte Carlo tree search | |
| CN110276442A (en) | A search method and device for a neural network architecture | |
| CN103310058B (en) | 3D Model-Based Dimensional Chain Checking Method | |
| CN111159184B (en) | Metadata tracing method and device and server | |
| CN113052955A (en) | Point cloud completion method, system and application | |
| CN106446134B (en) | Local multi-query optimization method based on predicate specification and cost estimation | |
| CN103778304A (en) | Design method of motor vehicle drive axle | |
| CN113283186A (en) | Universal grid self-adaption method for CFD | |
| CN116611546B (en) | Knowledge-graph-based landslide prediction method and system for target research area | |
| CN103778191B (en) | Vector contour line data partitioning method with space proximity relation considered | |
| CN110674183A (en) | Scientific research community division and core student discovery method, system, medium and terminal | |
| CN111831354B (en) | Data precision configuration method, device, chip array, equipment and medium | |
| CN113869350A (en) | Ocean current prediction method and system based on spatial feature difference | |
| CN102254093B (en) | Connected domain statistical correlation algorithm based on Thiessen polygon | |
| CN117609005B (en) | Code similarity detection method | |
| CN115310209B (en) | Aerodynamic shape migration optimization method and related device based on VAE | |
| WO2025001443A1 (en) | Neural network model generation method and apparatus | |
| CN118035744A (en) | Method and related device for performing model parameter update | |
| CN114756980B (en) | Info-GAN-based multi-design space coupling pneumatic shape optimization method and system | |
| CN117992197A (en) | Neural network model mapping scheduling operation method and device, electronic equipment and medium | |
| CN117666471A (en) | Micro-line segment global smoothing method and system based on improved particle swarm genetic algorithm | |
| CN106202522A (en) | The multiplexing method of a kind of flow field integral curve and system | |
| CN116796007A (en) | Target knowledge graph embedding method, device and electronic equipment thereof | |
| CN112633559B (en) | Social relationship prediction method and system based on dynamic graph convolutional neural network |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |