CN114563816B - Method and device for establishing earthquake interpretation velocity model in oil and gas reservoir evaluation stage - Google Patents
Method and device for establishing earthquake interpretation velocity model in oil and gas reservoir evaluation stage Download PDFInfo
- Publication number
- CN114563816B CN114563816B CN202011353037.4A CN202011353037A CN114563816B CN 114563816 B CN114563816 B CN 114563816B CN 202011353037 A CN202011353037 A CN 202011353037A CN 114563816 B CN114563816 B CN 114563816B
- Authority
- CN
- China
- Prior art keywords
- velocity
- seismic
- average
- grid
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000011156 evaluation Methods 0.000 title claims abstract description 29
- 238000012545 processing Methods 0.000 claims abstract description 35
- 238000004458 analytical method Methods 0.000 claims abstract description 19
- 238000005070 sampling Methods 0.000 claims abstract description 10
- 238000011084 recovery Methods 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 238000012937 correction Methods 0.000 claims description 25
- 238000001228 spectrum Methods 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 16
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 238000013508 migration Methods 0.000 claims description 8
- 230000005012 migration Effects 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 5
- 238000007689 inspection Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 18
- 230000008569 process Effects 0.000 description 14
- 238000011161 development Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000012886 linear function Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/303—Analysis for determining velocity profiles or travel times
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
- G01V1/362—Effecting static or dynamic corrections; Stacking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/50—Corrections or adjustments related to wave propagation
- G01V2210/51—Migration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
- G01V2210/616—Data from specific type of measurement
- G01V2210/6161—Seismic or acoustic, e.g. land or sea measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
- G01V2210/616—Data from specific type of measurement
- G01V2210/6169—Data from specific type of measurement using well-logging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/622—Velocity, density or impedance
- G01V2210/6222—Velocity; travel time
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种油气藏评价阶段建立地震解释速度模型的方法及装置,其中该方法包括:确定地震平均速度、井点平均速度和井点层速度,并采样到预设的构造网格中;计算网格地震平均速度和网格井点平均速度;根据网格地震平均速度和网格井点平均速度确定速度各向异性系数,对网格地震平均速度进行校正;将校正地震平均速度转换为校正地震层速度;对校正地震层速度依次做去趋势处理、空间变差函数分析和恢复趋势处理,得到校正层速度模型;将井点层速度作为硬数据,校正层速度模型作为数据趋势,确定层速度模型体;将层速度模型体输入预设的地震解释速度模型框架,得到地震解释速度模型。本发明可以提高速度模型的精度和可靠性。
The present invention discloses a method and device for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage, wherein the method comprises: determining the seismic average velocity, the well point average velocity and the well point layer velocity, and sampling them into a preset structural grid; calculating the grid seismic average velocity and the grid well point average velocity; determining the velocity anisotropy coefficient according to the grid seismic average velocity and the grid well point average velocity, and correcting the grid seismic average velocity; converting the corrected seismic average velocity into the corrected seismic layer velocity; sequentially performing detrending processing, spatial variogram analysis and trend recovery processing on the corrected seismic layer velocity to obtain a corrected layer velocity model; taking the well point layer velocity as hard data and the corrected layer velocity model as data trend to determine the layer velocity model body; inputting the layer velocity model body into a preset seismic interpretation velocity model framework to obtain a seismic interpretation velocity model. The present invention can improve the accuracy and reliability of the velocity model.
Description
技术领域Technical Field
本发明涉及开发地质学科油气藏描述技术领域,尤其涉及一种油气藏评价阶段建立地震解释速度模型的方法及装置。The invention relates to the technical field of oil and gas reservoir description in the development of geological disciplines, and in particular to a method and device for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage.
背景技术Background technique
本部分旨在为权利要求书中陈述的本发明实施例提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。This section is intended to provide a background or context to the embodiments of the invention recited in the claims. No description herein is admitted to be prior art by inclusion in this section.
目前三维地震数据在油气藏描述阶段精细构造研究、提高地质模型井间预测精度等方面的应用日益增多,而常用的三维地震数据为时间域数据,要进行这些方面的应用,首先需要建立高精度的三维速度模型。At present, 3D seismic data is increasingly used in the detailed structural research in the oil and gas reservoir description stage and to improve the inter-well prediction accuracy of geological models. The commonly used 3D seismic data is time domain data. To carry out these applications, it is first necessary to establish a high-precision 3D velocity model.
建立速度模型在油气田勘探及油气藏精确描述等方面起着极为重要的作用。通常所谓的“速度建模”可以分为两大类,一类是针对地震资料处理阶段的速度建模,另外一类就是针对油气藏评价阶段的速度建模,二者既有区别又有联系:前者的速度建模主要资料来源是地震叠前道集等,主要方法包括基于叠加速度分析的建模方法、基于偏移速度分析的建模方法和基于层析反演的速度建模方法,主要应用领域是地震成像;后者的速度建模资料来源主要包括较多的钻井合成地震记录速度资料、处理阶段获取的地震速度资料、VSP速度资料等,主要的建模方法包括加权内插、克里金估计、随机模拟与随机反演等方法,应用领域主要包括构造层面的时深转换、时间域属性数据体的域转换以及获取波阻抗反演的低频成分等。The establishment of velocity model plays an extremely important role in oil and gas field exploration and accurate description of oil and gas reservoirs. Usually, the so-called "velocity modeling" can be divided into two categories, one is the velocity modeling for the seismic data processing stage, and the other is the velocity modeling for the oil and gas reservoir evaluation stage. The two are both different and related: the former's velocity modeling mainly comes from seismic pre-stack gathers, etc. The main methods include modeling methods based on stacking velocity analysis, modeling methods based on offset velocity analysis, and velocity modeling methods based on tomography inversion. The main application field is seismic imaging; the latter's velocity modeling mainly comes from a large number of drilling synthetic seismic record velocity data, seismic velocity data obtained in the processing stage, VSP velocity data, etc. The main modeling methods include weighted interpolation, Kriging estimation, random simulation and random inversion, etc. The application fields mainly include time-depth conversion at the structural level, domain conversion of time domain attribute data bodies, and obtaining low-frequency components of wave impedance inversion.
近年来,地震约束储层建模、速度建模应用日益广泛,但如何将井筒速度和地震速度这两种尺度差距较大的数据类型高质量融合一直是地球物理学家和开发地质学家研究的热点问题。实际研究中这种井震结合速度建模勘探开发的早期阶段一般是利用各种资料,如测井计算速度、VSP速度,对地震处理速度作校正后直接形成速度模型。目前油气藏评价阶段的井震联合速度建模,在速度趋势体的建立过程中,利用井速度对地震速度进行校正,校正中涉及的速度各向异性系数与深度的相关性往往较低,校正后的地震速度趋势模型建立往往也较少考虑数据存在深度趋势,其建立过程所考虑的地质统计学的限制条件也就不足,因此构建的地震解释速度模型的可靠性尚待提高。In recent years, seismic constrained reservoir modeling and velocity modeling have been increasingly widely used. However, how to integrate the two data types with large scale differences, wellbore velocity and seismic velocity, with high quality has always been a hot topic for geophysicists and development geologists. In actual research, the early stages of exploration and development of this well-seismic combined velocity modeling generally use various data, such as logging velocity calculation and VSP velocity, to directly form a velocity model after correcting the seismic processing velocity. At present, in the well-seismic combined velocity modeling in the oil and gas reservoir evaluation stage, the well velocity is used to correct the seismic velocity in the process of establishing the velocity trend body. The correlation between the velocity anisotropy coefficient involved in the correction and the depth is often low. The establishment of the corrected seismic velocity trend model often rarely considers the depth trend of the data. The geostatistical constraints considered in its establishment process are also insufficient. Therefore, the reliability of the constructed seismic interpretation velocity model needs to be improved.
发明内容Summary of the invention
本发明实施例提供一种油气藏评价阶段建立地震解释速度模型的方法,在地震解释速度模型的建立过程中考虑了速度数据常存在的深度趋势的问题,用以提高地震解释速度模型的精度和可靠性,该方法包括:The embodiment of the present invention provides a method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage. In the process of establishing the seismic interpretation velocity model, the problem of depth trend often existing in velocity data is taken into consideration to improve the accuracy and reliability of the seismic interpretation velocity model. The method includes:
获取测井数据和地震数据;Acquisition of well logging and seismic data;
根据测井数据和地震数据确定地震平均速度、井点平均速度和井点层速度;Determine the average seismic velocity, the average wellpoint velocity and the wellpoint layer velocity based on the well logging data and seismic data;
将地震平均速度、井点平均速度和井点层速度采样到预设的构造网格中;The seismic average velocity, the well point average velocity and the well point layer velocity are sampled into a preset structural grid;
根据采样到构造网格中的地震平均速度计算网格地震平均速度,根据采样到构造网格中的井点平均速度计算网格井点平均速度;Calculate the grid seismic average velocity according to the seismic average velocity sampled in the structural grid, and calculate the grid well point average velocity according to the well point average velocity sampled in the structural grid;
根据网格地震平均速度和网格井点平均速度确定速度各向异性系数,利用速度各向异性系数对网格地震平均速度进行校正,得到校正地震平均速度;Determine the velocity anisotropy coefficient according to the grid seismic average velocity and the grid well point average velocity, and use the velocity anisotropy coefficient to correct the grid seismic average velocity to obtain the corrected seismic average velocity;
将校正地震平均速度转换为校正地震层速度;Convert the corrected seismic mean velocity into corrected seismic layer velocity;
对校正地震层速度做去趋势处理,得到地震残余层速度;Detrending the corrected seismic layer velocity, the seismic residual layer velocity is obtained;
对地震残余层速度进行空间变差函数分析,建立地震残余层速度模型;Conduct spatial variogram analysis on seismic residual layer velocity and establish seismic residual layer velocity model;
对地震残余层速度模型作恢复趋势处理,得到校正层速度模型;Perform recovery trend processing on the seismic residual layer velocity model to obtain the correction layer velocity model;
将井点层速度作为硬数据,校正层速度模型作为数据趋势,确定层速度模型体;Taking the well point layer velocity as hard data and the corrected layer velocity model as data trend, the layer velocity model body is determined;
将层速度模型体输入预设的地震解释速度模型框架,得到地震解释速度模型。The layer velocity model body is input into the preset seismic interpretation velocity model framework to obtain the seismic interpretation velocity model.
本发明实施例还提供一种油气藏评价阶段建立地震解释速度模型的装置,在地震解释速度模型的建立过程中考虑了速度数据常存在的深度趋势的问题,用以提高地震解释速度模型的精度和可靠性,该装置包括:The embodiment of the present invention also provides a device for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage. In the process of establishing the seismic interpretation velocity model, the problem of depth trend often existing in velocity data is taken into account to improve the accuracy and reliability of the seismic interpretation velocity model. The device includes:
获取模块,用于获取测井数据和地震数据;An acquisition module, used to acquire well logging data and seismic data;
确定模块,用于根据测井数据和地震数据确定地震平均速度、井点平均速度和井点层速度;A determination module, for determining the average seismic velocity, the average well point velocity and the well point layer velocity according to the well logging data and the seismic data;
采样模块,用于将地震平均速度、井点平均速度和井点层速度采样到预设的构造网格中;A sampling module is used to sample the seismic average velocity, the well point average velocity and the well point layer velocity into a preset structural grid;
确定模块,还用于根据采样到构造网格中的地震平均速度计算网格地震平均速度,根据采样到构造网格中的井点平均速度计算网格井点平均速度;The determination module is further used to calculate the grid seismic average velocity according to the seismic average velocity sampled into the structural grid, and calculate the grid well point average velocity according to the well point average velocity sampled into the structural grid;
校正模块,用于根据网格地震平均速度和网格井点平均速度确定速度各向异性系数,利用速度各向异性系数对网格地震平均速度进行校正,得到校正地震平均速度;A correction module is used to determine a velocity anisotropy coefficient according to a grid seismic average velocity and a grid well point average velocity, and to correct the grid seismic average velocity using the velocity anisotropy coefficient to obtain a corrected seismic average velocity;
速度转换模块,用于将校正地震平均速度转换为校正地震层速度;A velocity conversion module, used for converting the corrected seismic average velocity into a corrected seismic layer velocity;
处理模块,用于对校正地震层速度做去趋势处理,得到地震残余层速度;A processing module is used to perform detrending processing on the corrected seismic layer velocity to obtain the seismic residual layer velocity;
处理模块,还用于对地震残余层速度进行空间变差函数分析,建立地震残余层速度模型;The processing module is also used to perform spatial variogram analysis on the seismic residual layer velocity and establish a seismic residual layer velocity model;
处理模块,还用于对地震残余层速度模型作恢复趋势处理,得到校正层速度模型;The processing module is also used to perform recovery trend processing on the seismic residual layer velocity model to obtain a correction layer velocity model;
确定模块,还用于将井点层速度作为硬数据,校正层速度模型作为数据趋势,确定层速度模型体;The determination module is also used to determine the layer velocity model body by taking the well point layer velocity as hard data and the corrected layer velocity model as data trend;
模型构建模块,用于将层速度模型体输入预设的地震解释速度模型框架,得到地震解释速度模型。The model building module is used to input the layer velocity model body into the preset seismic interpretation velocity model framework to obtain the seismic interpretation velocity model.
本发明实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述油气藏评价阶段建立地震解释速度模型的方法。An embodiment of the present invention also provides a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage is implemented.
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述油气藏评价阶段建立地震解释速度模型的方法的计算机程序。An embodiment of the present invention further provides a computer-readable storage medium storing a computer program for executing the method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage.
本发明实施例中提供的油气藏评价阶段建立地震解释速度模型的方法及装置,利用地震数据和测井数据作为数据来源,确定地震平均速度、井点平均速度和井点层速度,之后将上述速度采样到构造网格中,确定网格地震平均速度和网格井点平均速度;之后根据网格地震平均速度和网格井点平均速度获取速度各向异性系数关系,对网格地震平均速度进行校正;将校正后的地震平均速度转换为校正地震层速度,考虑到目的层段在纵向上的变化情况,同时速度数据一般具有很明显的垂向趋势(即深度趋势),对校正地震层速度进行垂向去趋势处理后建立残余层速度模型,再对模型进行恢复趋势处理获得校正层速度模型,然后再将该校正层速度模型作为趋势数据约束井数据(即井点层速度)建立层速度模型体,再利用层速度模型体获取最终的地震解释速度模型,实现井、震不同尺度速度数据的整合,很好地解决了速度变化较快地区速度场既要保持地震速度趋势又要保持井点速度一致、同时井间速度偏差尽量小的难题,有效提高油气藏评价阶段速度建模精度,保证三维构造成图的可靠性。The method and device for establishing a seismic interpretation velocity model in the reservoir evaluation stage provided in the embodiment of the present invention use seismic data and well logging data as data sources to determine the seismic average velocity, the well point average velocity and the well point layer velocity, then sample the above velocities into the structural grid to determine the grid seismic average velocity and the grid well point average velocity; then obtain the velocity anisotropy coefficient relationship based on the grid seismic average velocity and the grid well point average velocity, and correct the grid seismic average velocity; convert the corrected seismic average velocity into the corrected seismic layer velocity, taking into account the longitudinal changes of the target layer segment, and the velocity data generally has a very obvious vertical trend (i.e., depth The corrected seismic layer velocity is processed vertically to remove the trend, and then the residual layer velocity model is established. The model is then processed to restore the trend to obtain the corrected layer velocity model. The corrected layer velocity model is then used as trend data to constrain the well data (i.e., well-point layer velocity) to establish a layer velocity model body. The layer velocity model body is then used to obtain the final seismic interpretation velocity model, and the integration of well and seismic velocity data of different scales is achieved. This solves the problem that the velocity field in areas with rapid velocity changes must maintain both the seismic velocity trend and the well-point velocity consistency, while minimizing the inter-well velocity deviation. This effectively improves the velocity modeling accuracy in the reservoir evaluation stage and ensures the reliability of 3D structural mapping.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the drawings required for use in the embodiments or the prior art descriptions. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work. In the drawings:
图1为本发明实施例中一种油气藏评价阶段建立地震解释速度模型的方法的流程图;FIG1 is a flow chart of a method for establishing a seismic interpretation velocity model in an oil and gas reservoir evaluation stage according to an embodiment of the present invention;
图2为本发明实施例中实现步骤102的具体方法流程图;FIG. 2 is a flowchart of a specific method for implementing step 102 in an embodiment of the present invention;
图3为本发明实施例中根据某工区中某井的测井数据和地震数据计算得到的地震平均速度和井点平均速度的示意图;3 is a schematic diagram of the average seismic velocity and the average well point velocity calculated based on the well logging data and seismic data of a well in a certain work area in an embodiment of the present invention;
图4为本发明实施例中步骤105根据网格地震平均速度和网格井点平均速度确定速度各向异性系数,利用速度各向异性系数对网格地震平均速度进行校正,得到校正地震平均速度的具体执行方法的流程图;4 is a flowchart of a specific execution method of step 105 in an embodiment of the present invention, in which a velocity anisotropy coefficient is determined according to the grid seismic average velocity and the grid well point average velocity, and the grid seismic average velocity is corrected using the velocity anisotropy coefficient to obtain the corrected seismic average velocity;
图5(a)为本发明实施例中一种均方根速度和平均速度之间的相关性的示意图;FIG5( a ) is a schematic diagram of a correlation between a root mean square velocity and an average velocity in an embodiment of the present invention;
图5(b)为本发明实施例中一种层速度和平均速度之间的相关性的示意图;FIG5( b ) is a schematic diagram of the correlation between a layer velocity and an average velocity in an embodiment of the present invention;
图5(c)为本发明实施例中一种均方根速度和层速度之间的相关性的示意图;FIG5(c) is a schematic diagram of a correlation between a root mean square velocity and a layer velocity in an embodiment of the present invention;
图6(a)为本发明实施例中一种DP工区平均速度各向异性系数随双程时变化关系的示意图;FIG6( a ) is a schematic diagram showing the relationship between the average velocity anisotropy coefficient of a DP zone and the two-way time according to an embodiment of the present invention;
图6(b)为本发明实施例中一种DP工区层速度各向异性系数随双程时变化关系的示意图;FIG6( b ) is a schematic diagram of the relationship between the anisotropy coefficient of the layer velocity in a DP work area and the two-way time according to an embodiment of the present invention;
图7为本发明实施例中另一种油气藏评价阶段建立地震解释速度模型的方法的流程图;7 is a flow chart of another method for establishing a seismic interpretation velocity model in the reservoir evaluation stage according to an embodiment of the present invention;
图8为本发明实施例中应用DBSCAN算法与三次样条插值方法相结合求取各向异性校正函数,得到的各向异性校正曲线的示意图;8 is a schematic diagram of an anisotropic correction curve obtained by applying the DBSCAN algorithm in combination with the cubic spline interpolation method to obtain an anisotropic correction function in an embodiment of the present invention;
图9(a)为利用线性函数拟合法确定的速度各向异性系数与双程时的相关性的示意图;FIG9( a ) is a schematic diagram showing the correlation between the velocity anisotropy coefficient and the two-pass time determined by the linear function fitting method;
图9(b)为利用指数函数拟合方法确定的速度各向异性系数与双程时的相关性的示意图;FIG9( b ) is a schematic diagram showing the correlation between the velocity anisotropy coefficient and the two-pass time determined by the exponential function fitting method;
图9(c)为利用DBSCAN与三次样条插值方法确定的速度各向异性系数与双程时的相关性的示意图;FIG9( c ) is a schematic diagram showing the correlation between the velocity anisotropy coefficient and the two-way time determined using DBSCAN and the cubic spline interpolation method;
图10为本发明实施例中一种油气藏评价阶段建立地震解释速度模型的装置的结构示意图。FIG. 10 is a schematic diagram of the structure of a device for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。To make the purpose, technical solution and advantages of the embodiments of the present invention more clear, the embodiments of the present invention are further described in detail below in conjunction with the accompanying drawings. Here, the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, but are not intended to limit the present invention.
本发明实施例提供了一种油气藏评价阶段建立地震解释速度模型的方法,适用于能提供较准确速度趋势的地震偏移均方根速度、层速度或平均速度、有一定井点合成记录资料的工区,对处于勘探中后期及开发阶段的研究区具有较好适应性。An embodiment of the present invention provides a method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage. The method is suitable for work areas that can provide seismic offset root mean square velocity, layer velocity or average velocity with relatively accurate velocity trends and have certain well point synthetic record data. The method has good adaptability to research areas in the middle and late stages of exploration and the development stage.
如图1所示,该方法包括步骤101至步骤111:As shown in FIG1 , the method includes steps 101 to 111:
步骤101、获取测井数据和地震数据。Step 101: Acquire well logging data and seismic data.
步骤102、根据测井数据和地震数据确定地震平均速度、井点平均速度和井点层速度。Step 102: Determine the average seismic velocity, the average wellpoint velocity and the wellpoint layer velocity based on the well logging data and the seismic data.
在本发明实施例中,如图2所示,步骤102可以执行为如下步骤1021至步骤1024:In the embodiment of the present invention, as shown in FIG. 2 , step 102 may be performed as follows: step 1021 to step 1024:
步骤1021、根据地震数据确定地震速度谱。Step 1021: Determine the seismic velocity spectrum based on the seismic data.
在一种实现方式中,可以根据地震数据确定地震速度谱;在另一种实现方式中,由于在进入油气藏评价阶段之前已确定了速度谱,因此,还可以直接获取地震速度谱。In one implementation, the seismic velocity spectrum may be determined based on seismic data; in another implementation, since the velocity spectrum has been determined before entering the reservoir evaluation stage, the seismic velocity spectrum may also be directly acquired.
步骤1022、对地震速度谱进行解编,得到三维地震偏移均方根速度。Step 1022: decode the seismic velocity spectrum to obtain the three-dimensional seismic migration root mean square velocity.
本发明实施例中,可以处理常见的地震速度谱格式,如Paradigm格式、Omega格式等。解编后通过Dix公式将均方根速度转换为地震层速度、地震平均速度等。In the embodiment of the present invention, common seismic velocity spectrum formats can be processed, such as Paradigm format, Omega format, etc. After decompilation, the root mean square velocity is converted into seismic layer velocity, seismic average velocity, etc. by Dix formula.
将均方根速度转换为地震层速度的公式如下所示:The formula for converting RMS velocity to seismic layer velocity is as follows:
其中,Vi表示第i层的层速度,i=1,2,3,...,n;VR,i、VR,i-1分别表示第i层、第i-1层的均方根速度;t0,i、t0,i-1分别表示第i层、第i-1层的双程反射时间。Wherein, V i represents the layer velocity of the i-th layer, i=1,2,3,...,n; VR,i and VR,i-1 represent the root mean square velocities of the i-th layer and the i-1-th layer respectively; t0,i and t0,i-1 represent the two-way reflection times of the i-th layer and the i-1-th layer respectively.
将地震层速度转换为地震平均速度的公式如下所示:The formula for converting seismic layer velocity to seismic average velocity is as follows:
其中,Vav表示第i层的地震平均速度;ti表示第i层的双程时时间间隔。Where Vav represents the average earthquake velocity of the i-th layer; ti represents the two-way time interval of the i-th layer.
在地层上下速度变化小的地方也可以考虑使用地震层速度进行后续建立地震解释速度模型,层速度更能保留速度变化细节,最终再转换为平均速度用于域转换,但通常情况下层速度变化剧烈,规律性较平均速度要差,因此,在本发明实施例中,利用的是地震平均速度。In places where the velocity variation between the upper and lower strata is small, the seismic layer velocity may be used to subsequently establish a seismic interpretation velocity model. The layer velocity can better retain the details of the velocity variation and is finally converted into the average velocity for domain conversion. However, the layer velocity usually varies dramatically and its regularity is worse than that of the average velocity. Therefore, in the embodiment of the present invention, the seismic average velocity is used.
由地震速度谱解编获取的叠加速度、均方根速度等数据反映的是地下速度场变化的整体趋势,并且速度谱能保证较好的横向趋势。速度谱速度数据平面上网格步长一般为200m×200m~1000×1000m,针对具体工区地震资料处理部门可能会提供插值后数据密度较大的速度谱,其特点是数据覆盖整个工区范围,远大于井数据的平面范围,缺点是纵向数据稀疏,分辨率较难保证。一般以能控制速度趋势为原则手动拾取速度谱速度数据,拾取的速度数据的纵向间隔为50~500ms甚至更大,输出的地震速度谱数据采样间隔一般为20ms~100ms,远低于测井曲线计算速度垂向分辨率。The stacking velocity, root mean square velocity and other data obtained by the seismic velocity spectrum decoding reflect the overall trend of the underground velocity field change, and the velocity spectrum can guarantee a good lateral trend. The grid step size on the velocity spectrum velocity data plane is generally 200m×200m~1000×1000m. For a specific work area, the seismic data processing department may provide a velocity spectrum with a large data density after interpolation. Its characteristics are that the data covers the entire work area, which is much larger than the plane range of the well data. The disadvantage is that the vertical data is sparse and the resolution is difficult to guarantee. Generally, the velocity spectrum velocity data is manually picked up based on the principle of being able to control the velocity trend. The vertical interval of the picked velocity data is 50~500ms or even larger. The sampling interval of the output seismic velocity spectrum data is generally 20ms~100ms, which is much lower than the vertical resolution of the velocity calculated by the logging curve.
步骤1023、根据三维地震偏移均方根速度计算地震平均速度。Step 1023: Calculate the seismic average velocity based on the 3D seismic migration root mean square velocity.
步骤1024、利用地震数据和测井数据进行井上合成记录分析,获取井点平均速度和井点层速度。Step 1024: Use seismic data and logging data to perform on-well synthetic record analysis to obtain the well point average velocity and well point layer velocity.
其中,井点平均速度为井点沿井轨迹的平均速度。井上合成记录分析为本领域的常用技术手段,对于本步骤的具体实现,在此不做赘述。The average velocity of the well point is the average velocity of the well point along the well trajectory. The well synthetic record analysis is a common technical means in this field, and the specific implementation of this step is not described here.
在执行步骤102之后,执行步骤103之前,还可以利用地震数据和测井数据进行井上合成记录分析,获取井点的时深关系;对井点的时深关系进行时深关系一致性检查,得到检查结果;如果检查结果为时深关系不一致,则修正井点的时深关系,并在修改时深关系后重新确定井点平均速度和井点层速度。After executing step 102 and before executing step 103, seismic data and logging data can also be used to perform on-well synthetic record analysis to obtain the time-depth relationship of the well point; the time-depth relationship of the well point is checked for consistency to obtain an inspection result; if the inspection result is that the time-depth relationship is inconsistent, the time-depth relationship of the well point is corrected, and the average velocity and layer velocity of the well point are re-determined after the time-depth relationship is modified.
井上合成记录求取的井点层速度垂向分辨率高,为地震采样间隔,缺点是平面井距较大且分布常常极其不均匀。将关键井做完合成记录之后的时深关系置于同一坐标系统检查时深关系一致性。当工区内井的时深关系基本重合时,说明合成记录分析时深关系基本可靠,否则,需要查找速度异常的原因并进行分析,排除异常情况。The vertical resolution of the well point layer velocity obtained by the synthetic record on the well is high, which is the seismic sampling interval. The disadvantage is that the plane well spacing is large and the distribution is often extremely uneven. The time-depth relationship after the synthetic record of the key well is placed in the same coordinate system to check the consistency of the time-depth relationship. When the time-depth relationship of the wells in the work area basically coincides, it means that the time-depth relationship analyzed by the synthetic record is basically reliable. Otherwise, it is necessary to find the cause of the velocity anomaly and analyze it to eliminate the abnormal situation.
进一步的质量控制,还可以提取各个构造层面井点构造海拔与双程时之间的关系分析速度一致性,原理同上面描述相似,这里不再赘述。For further quality control, the relationship between the well point structural elevation and the two-way time at each structural level can be extracted to analyze the velocity consistency. The principle is similar to the above description and will not be repeated here.
步骤103、将地震平均速度、井点平均速度和井点层速度采样到预设的构造网格中。Step 103: Sample the seismic average velocity, the well point average velocity and the well point layer velocity into a preset structural grid.
将空间离散的点数据采样到设计好的构造网格中去,方便后续校正及建模工作。例如DP工区,在时间域建立构造网格,尺寸采用50m×50m×4ms,然后进行数据采样。The spatially discrete point data is sampled into the designed structural grid to facilitate subsequent correction and modeling. For example, in the DP work area, a structural grid is established in the time domain with a size of 50m×50m×4ms, and then data sampling is performed.
需要说明的是,空间中离散的点较为密集,采样的点的数量少于空间离散的点,也就是说,采样到构造网格中的点是空间中离散点的一部分。构造网格的设计及将速度采样到构造网格中是本领域常用的技术手段,对于本步骤的具体实现过程,在此不做赘述。It should be noted that the discrete points in space are relatively dense, and the number of sampled points is less than the discrete points in space, that is, the points sampled into the construction grid are part of the discrete points in space. The design of the construction grid and sampling the velocity into the construction grid are commonly used technical means in this field, and the specific implementation process of this step will not be described here.
步骤104、根据采样到构造网格中的地震平均速度计算网格地震平均速度,根据采样到构造网格中的井点平均速度计算网格井点平均速度。Step 104: Calculate the grid average seismic velocity based on the average seismic velocity sampled in the structural grid, and calculate the grid average well point velocity based on the average well point velocity sampled in the structural grid.
由于将地震平均速度、井点平均速度中的部分采样到构造网格中,为了便于进行后续的计算,重新确定网格地震平均速度和网格井点平均速度。Since part of the seismic average velocity and the well point average velocity are sampled into the structural grid, in order to facilitate subsequent calculations, the grid seismic average velocity and the grid well point average velocity are re-determined.
步骤105、根据网格地震平均速度和网格井点平均速度确定速度各向异性系数,利用速度各向异性系数对网格地震平均速度进行校正,得到校正地震平均速度。Step 105: Determine the velocity anisotropy coefficient according to the grid seismic average velocity and the grid well point average velocity, and use the velocity anisotropy coefficient to correct the grid seismic average velocity to obtain the corrected seismic average velocity.
实际应用中研究目的层井点合成记录计算的井点平均速度一般小于地震速度谱计算的地震平均速度,如图3所示,图3为根据某工区中某井的测井数据和地震数据计算得到的地震平均速度和井点平均速度的示意图,其中标注为1为虚线为地震平均速度,标注为2的虚线为井点平均速度,可以明显看出,井点平均速度在多数时刻小于地震平均速度。此外,图3中T4、T5、Tr标线为对应的地震层位。In practical applications, the average wellpoint velocity calculated by synthetic wellpoint records of the target layer is generally smaller than the average seismic velocity calculated by the seismic velocity spectrum, as shown in Figure 3, which is a schematic diagram of the average seismic velocity and the average wellpoint velocity calculated based on the logging data and seismic data of a well in a certain work area, where the dotted line marked as 1 is the average seismic velocity, and the dotted line marked as 2 is the average wellpoint velocity. It can be clearly seen that the average wellpoint velocity is smaller than the average seismic velocity at most times. In addition, the T4, T5, and Tr lines in Figure 3 are the corresponding seismic horizons.
井点平均速度小于地震平均速度,这是由于声波测井中心频率一般为20KHz,比地震速度频率高很多,不同频率的波的传播速度存在频散效应,具有各向异性特征。因此在使用地震平均速度时一般需要先进行地震平均速度的各向异性校正,从而将地震平均速度校正到与井点平均速度同一水平上。The average wellpoint velocity is lower than the average seismic velocity. This is because the center frequency of acoustic logging is generally 20KHz, which is much higher than the seismic velocity frequency. The propagation speed of waves of different frequencies has a dispersion effect and anisotropic characteristics. Therefore, when using the average seismic velocity, it is generally necessary to first perform an anisotropy correction on the average seismic velocity, so as to correct the average seismic velocity to the same level as the average wellpoint velocity.
具体的,如图4所示,步骤105可以执行为如下步骤1051至步骤1054:Specifically, as shown in FIG. 4 , step 105 may be performed as follows: step 1051 to step 1054:
步骤1051、将网格井点平均速度与网格地震平均速度的比值确定为速度各向异性系数。Step 1051: determine the ratio of the grid well point average velocity to the grid seismic average velocity as the velocity anisotropy coefficient.
计算速度各向异性系数的公式如下所示:The formula for calculating the velocity anisotropy coefficient is as follows:
Fang_ani=vavg_well/vavg_seis F ang_ani = v avg_well / v avg_seis
式中,Fang_ani表示速度各向异性系数;vavg_well表示网格井点平均速度值;vavg_seis表示网格地震平均速度。Where Fang_ani represents the velocity anisotropy coefficient; vavg_well represents the average velocity value of the grid well points; and vavg_seis represents the average grid seismic velocity.
步骤1052、利用基于密度的带噪声的空间聚类(Density-Based SpatialClustering of Applications with Noise,DBSCAN)算法计算速度各向异性系数的聚类中心。Step 1052: Calculate the cluster center of the velocity anisotropy coefficient using the density-based spatial clustering of applications with noise (DBSCAN) algorithm.
步骤1053、对聚类中心进行三次样条曲线插值,得到各项异性系数和双程时的函数关系。Step 1053: perform cubic spline interpolation on the cluster centers to obtain the functional relationship between the anisotropy coefficients and the two-way time.
各项异性系数和双程时的函数关系Fang_ani(vavg_seis,vavg_well,TWT),可以简记为Fani(TWT),其中TWT为双程时。The functional relationship between the anisotropy coefficient and the two-way time is Fang_ani (v avg_seis ,v avg_well ,TWT), which can be abbreviated as Fani (TWT), where TWT is the two-way time.
Fani(TWT)的求取有多种方式,如多项式拟合、分段多项式拟合等。而本发明实施例采用DBSCAN算法求取速度各向异性系数的聚类中心,然后对聚类中心进行三次样条曲线插值获得Fani(TWT)函数关系。主要基于以下考虑:There are many ways to obtain F ani (TWT), such as polynomial fitting, piecewise polynomial fitting, etc. The embodiment of the present invention uses the DBSCAN algorithm to obtain the cluster center of the velocity anisotropy coefficient, and then performs cubic spline curve interpolation on the cluster center to obtain the F ani (TWT) function relationship. It is mainly based on the following considerations:
当地层存在异常地质体、岩性突变等情况时,上下地层、同一地层不同区域常有较明显速度差异,整体多项式拟合能获得光滑曲线,但难以准确表达这种上下地层速度变化,从而导致拟合误差大;而分段多项式函数有时能减小局部拟合误差,但是存在分段节点处函数曲线不光滑,会出现人为的差异界面,误导地质判断;本发明实施例采用DBSCAN算法与三次样条插值方法相结合来建立各向异性校正曲线,使得计算结果兼有误差小、曲线光滑、曲率连续等众多优良性质。When there are abnormal geological bodies, lithology mutations, etc. in the strata, there are often obvious velocity differences between the upper and lower strata and between different areas of the same stratum. The overall polynomial fitting can obtain a smooth curve, but it is difficult to accurately express the velocity changes of the upper and lower strata, resulting in large fitting errors. The piecewise polynomial function can sometimes reduce the local fitting error, but the function curve is not smooth at the segmented nodes, and an artificial difference interface will appear, misleading geological judgment. The embodiment of the present invention adopts the DBSCAN algorithm combined with the cubic spline interpolation method to establish an anisotropic correction curve, so that the calculation result has many excellent properties such as small error, smooth curve, and continuous curvature.
三次样条插值函数的定义是,已知平面上n个点(xi,yi)(i=1,2,…,n),其中,x1<x2<…<xn,这些点称为样本点。如果有某函数S(x)满足下面3个条件,则称S(x)为经过这n个点的三次样条函数:The definition of the cubic spline interpolation function is that, given n points (x i , y i ) (i = 1, 2, ..., n) on a known plane, where x 1 <x 2 < ... <x n , these points are called sample points. If a function S(x) satisfies the following three conditions, then S(x) is called a cubic spline function passing through these n points:
1)S(xi)=yi(i=1,2,…,n),亦即该函数经过这些样本点;1) S( xi ) = yi (i = 1, 2, ..., n), that is, the function passes through these sample points;
2)S(x)在每个子区间[xi,xi+1]上为三次多项式2) S(x) is a cubic polynomial on each subinterval [ xi , xi+1 ]
S(x)=ci1(x-xi)3+ci2(x-xi)2+ci3(x-xi)+ci4 S(x)= ci1 ( xxi ) 3 + ci2 ( xxi ) 2 + ci3 ( xxi )+ ci4
式中ci1、ci2、ci3、ci4为三次样条函数待定系数。In the formula, c i1 , c i2 , c i3 , and c i4 are the unknown coefficients of the cubic spline function.
3)S(x)在整个区间上有连续的一阶及二阶导数。3) S(x) has continuous first and second order derivatives over the entire interval.
步骤1054、利用速度各向异性系数和双程时的函数关系对网格地震平均速度进行校正,得到校正地震平均速度。Step 1054: Correct the grid seismic average velocity using the functional relationship between the velocity anisotropy coefficient and the two-way time to obtain the corrected seismic average velocity.
具体的,利用Vavg_seis_m=Vavg_seis×Fani(TWT)计算校正地震平均速度Vavg_seis_m;其中,Vavg_seis表示网格地震平均速度;Fani(TWT)表示速度各向异性系数和双程时的函数关系。Specifically, the corrected seismic average velocity V avg_seis_m is calculated using V avg_seis_m =V avg_seis ×F ani (TWT); wherein V avg_seis represents the grid seismic average velocity; and F ani (TWT) represents the functional relationship between the velocity anisotropy coefficient and the two-way time.
利用步骤1051至步骤1054中的方法对网格地震平均速度进行校正,提高了目的层的速度校正精度,更利于油气藏评价阶段有针对性的对目的层作构造研究及地震约束建模时作域转换。The grid seismic average velocity is corrected using the method in steps 1051 to 1054, thereby improving the velocity correction accuracy of the target layer, and being more conducive to targeted structural research on the target layer and domain conversion during seismic constraint modeling during the oil and gas reservoir evaluation stage.
步骤106、将校正地震平均速度转换为校正地震层速度。Step 106: Convert the corrected seismic average velocity into the corrected seismic layer velocity.
本步骤中,可根据平均速度与均方根速度的统计关系式,将校正地震平均速度转换为校正均方根速度,然后再计算校正地震层速度。因为实际应用中,平均速度与均方根速度之间一般相关性较高,而其他速度关系往往相关性较差。示例性的,图5(a)示出了均方根速度和平均速度之间的相关性,图5(b)示出了层速度和平均速度之间的相关性,图5(c)示出了均方根速度和层速度之间的相关性,从图5(a)~图5(c)可以看出,平均速度和均方根速度之间的相关性较高。In this step, the corrected seismic average velocity can be converted into the corrected root mean square velocity according to the statistical relationship between the average velocity and the root mean square velocity, and then the corrected seismic layer velocity is calculated. Because in practical applications, the average velocity and the root mean square velocity are generally highly correlated, while other velocity relationships are often poorly correlated. For example, FIG. 5(a) shows the correlation between the root mean square velocity and the average velocity, FIG. 5(b) shows the correlation between the layer velocity and the average velocity, and FIG. 5(c) shows the correlation between the root mean square velocity and the layer velocity. It can be seen from FIG. 5(a) to FIG. 5(c) that the correlation between the average velocity and the root mean square velocity is high.
在校正网格地震平均速度后,再利用校正后的校正地震平均速度求出校正地震层速度,主要是考虑实际应用中平均速度速度各向异性系数一般纵向上与双程时相关性要远强于层速度各向异性系数与双程时的相关性。示例性的,图6(a)为DP工区平均速度各向异性系数随双程时变化关系,图6(b)为DP工区层速度各向异性系数随双程时变化关系,从图6(a)与图6(b)可以看出,平均速度各向异性系数与双程时的相关性远强于层速度各向异性系数与双程时的相关性。After correcting the grid seismic average velocity, the corrected seismic average velocity is used to calculate the corrected seismic layer velocity, mainly because in practical applications, the average velocity anisotropy coefficient is generally much more correlated with the two-way time in the vertical direction than the layer velocity anisotropy coefficient is with the two-way time. For example, Figure 6(a) shows the relationship between the average velocity anisotropy coefficient of the DP work area and the two-way time, and Figure 6(b) shows the relationship between the layer velocity anisotropy coefficient of the DP work area and the two-way time. It can be seen from Figure 6(a) and Figure 6(b) that the correlation between the average velocity anisotropy coefficient and the two-way time is much stronger than the correlation between the layer velocity anisotropy coefficient and the two-way time.
上述将平均速度转换为层速度的方法为现有技术中已成熟的方法,因此,对于将校正地震平均速度转换为校正地震层速度的具体实现过程,在此不做赘述。The above method of converting the average velocity into the layer velocity is a mature method in the prior art. Therefore, the specific implementation process of converting the corrected seismic average velocity into the corrected seismic layer velocity will not be described in detail here.
步骤107、对校正地震层速度做去趋势处理,得到地震残余层速度。Step 107: Detrend the corrected seismic layer velocity to obtain the seismic residual layer velocity.
层速度沿垂向的趋势分析有多种方法,本发明实施例采用一种较为简单的确定性处理方法:求取网格地震速度与双程时间之间的函数关系Vint0(TWT),通过该函数关系可以创建一个垂向趋势数据体Vint0。对地震层速度做去趋势处理,所用公式如下所示:There are many methods for analyzing the trend of layer velocity along the vertical direction. The embodiment of the present invention adopts a relatively simple deterministic processing method: obtain the functional relationship between the grid seismic velocity and the two-way time Vint0 (TWT), and create a vertical trend data volume Vint0 through the functional relationship. Detrending the seismic layer velocity, the formula used is as follows:
Vint_seis_res=Vint_seis_m-Vint0 V int_seis_res =V int_seis_m -V int0
式中,Vint_seis_res表示地震残余层速度(沿井轨迹的网格数据);Vint0表示地震层速度垂向趋势数据体(沿井轨迹的网格数据)。Wherein, Vint_seis_res represents the seismic residual layer velocity (grid data along the well trajectory); Vint0 represents the seismic layer velocity vertical trend data volume (grid data along the well trajectory).
步骤108、对地震残余层速度进行空间变差函数分析,建立地震残余层速度模型。Step 108: Perform spatial variogram analysis on the seismic residual layer velocity and establish a seismic residual layer velocity model.
空间变差函数分析及残余层速度模型的建立的方法在现有技术中已有提供,在此不再赘述。The methods for analyzing the spatial variogram and establishing the residual layer velocity model have been provided in the prior art and will not be described in detail here.
步骤109、对地震残余层速度模型作恢复趋势处理,得到校正层速度模型。Step 109: Perform recovery trend processing on the seismic residual layer velocity model to obtain a correction layer velocity model.
具体的,根据如下方法对地震残余层速度模型作恢复趋势处理:Specifically, the seismic residual layer velocity model is processed to restore the trend according to the following method:
Vint_seis_3d=Vint_seis_res_3d+Vint0_3d V int_seis_3d =V int_seis_res_3d +V int0_3d
式中,Vint_seis_3d表示三维的校正层速度模型;Vint_seis_res_3d表示地震残余层速度模型;Vint0_3d三维地震层速度垂向趋势数据体。Wherein, Vint_seis_3d represents the three-dimensional correction layer velocity model; Vint_seis_res_3d represents the seismic residual layer velocity model; Vint0_3d represents the three-dimensional seismic layer velocity vertical trend data body.
步骤110、将井点层速度作为硬数据,校正层速度模型作为数据趋势,确定层速度模型体。Step 110: Taking the well point layer velocity as hard data and the corrected layer velocity model as the data trend, the layer velocity model body is determined.
步骤111、将层速度模型体输入预设的地震解释速度模型框架,得到地震解释速度模型。Step 111: input the layer velocity model body into a preset seismic interpretation velocity model framework to obtain a seismic interpretation velocity model.
在执行完步骤111,得到地震解释速度模型之后,如图7所示,还可以执行如下步骤701至步骤703:After executing step 111 and obtaining the seismic interpretation velocity model, as shown in FIG7 , the following steps 701 to 703 may also be executed:
步骤701、对地震解释速度模型进行域转换,得到域转换结果。Step 701: Perform domain conversion on the seismic interpretation velocity model to obtain a domain conversion result.
步骤702、对比域转换结果与井点平均速度,确定域转换结果与井点平均速度的误差。Step 702: Compare the domain conversion result with the average velocity of the well point, and determine the error between the domain conversion result and the average velocity of the well point.
步骤703、如果误差大于预设的误差阈值,则重新建立地震残余层速度模型,并根据重新建立的地震残余层速度模型进行后续处理,重新建立地震解释速度模型。Step 703: If the error is greater than a preset error threshold, the seismic residual layer velocity model is re-established, and subsequent processing is performed based on the re-established seismic residual layer velocity model to re-establish the seismic interpretation velocity model.
也就是说,利用域转换结果与井数据对比,如果域转换结果与井点平均速度的误差大于预设的误差阈值,则确定建立的地震解释速度模型不满足要求,需要检查地震残余层速度模型,回到步骤108进一步提高地震残余层速度模型的质量,并重复第步骤108至步骤111,直至得到的地震解释速度模型满足精度要求。That is to say, by comparing the domain conversion result with the well data, if the error between the domain conversion result and the average velocity of the well point is greater than the preset error threshold, it is determined that the established seismic interpretation velocity model does not meet the requirements, and it is necessary to check the seismic residual layer velocity model, return to step 108 to further improve the quality of the seismic residual layer velocity model, and repeat steps 108 to 111 until the obtained seismic interpretation velocity model meets the accuracy requirements.
步骤701至步骤703完成之后,即实现井、震不同尺度速度数据的整合,很好地解决了速度变化较快地区速度场既要保持地震速度趋势又要保持井点速度一致、同时井间速度偏差尽量小的难题,有效提高油气藏评价阶段速度建模精度,保证三维构造成图的可靠性,提高域转换的精度。它能显著改善常规时深转换工作中简单井间速度插值或者单纯地震速度井点校正等做法的精度和井间正确速度趋势功能,整体操作性、流程可控性、可视化功能更强。After the completion of steps 701 to 703, the integration of well and seismic velocity data of different scales is realized, which solves the problem that the velocity field in the area with rapid velocity changes must maintain both the seismic velocity trend and the well point velocity consistency, and the inter-well velocity deviation is as small as possible, effectively improving the velocity modeling accuracy in the reservoir evaluation stage, ensuring the reliability of three-dimensional structural mapping, and improving the accuracy of domain conversion. It can significantly improve the accuracy of simple inter-well velocity interpolation or simple seismic velocity well point correction in conventional time-depth conversion work and the correct velocity trend function between wells, and has stronger overall operability, process controllability, and visualization functions.
域转换完成之后,地震解释速度模型整体的精度有所提高,在应用地震解释速度模型进行域转换时,其变化的趋势已无太大问题,但精细构造成图、数据体转换时,还需对局部井点在深度域进行进一步微调。After the domain conversion is completed, the overall accuracy of the seismic interpretation velocity model is improved. When the seismic interpretation velocity model is applied for domain conversion, its change trend is no longer a big problem. However, when fine-tuning the map and converting the data body, it is necessary to further fine-tune the local well points in the depth domain.
本发明实施例中提供的油气藏评价阶段建立地震解释速度模型的方法,利用地震数据和测井数据作为数据来源,确定地震平均速度、井点平均速度和井点层速度,之后将上述速度采样到构造网格中,确定网格地震平均速度和网格井点平均速度;之后根据网格地震平均速度和网格井点平均速度获取速度各向异性系数关系,对网格地震平均速度进行校正;将校正后的地震平均速度转换为校正地震层速度,考虑到目的层段在纵向上的变化情况,同时速度数据一般具有很明显的垂向趋势(即深度趋势),对校正地震层速度进行垂向去趋势处理后建立残余层速度模型,再对模型进行恢复趋势处理获得校正层速度模型,然后再将该校正层速度模型作为趋势数据约束井数据(即井点层速度)建立层速度模型体,再利用层速度模型体获取最终的地震解释速度模型,实现井、震不同尺度速度数据的整合,很好地解决了速度变化较快地区速度场既要保持地震速度趋势又要保持井点速度一致、同时井间速度偏差尽量小的难题,有效提高油气藏评价阶段速度建模精度,保证三维构造成图的可靠性。The method for establishing a seismic interpretation velocity model in the reservoir evaluation stage provided in the embodiment of the present invention uses seismic data and well logging data as data sources to determine the seismic average velocity, the well point average velocity and the well point layer velocity, and then samples the above velocities into a structural grid to determine the grid seismic average velocity and the grid well point average velocity; then obtains the velocity anisotropy coefficient relationship based on the grid seismic average velocity and the grid well point average velocity, and corrects the grid seismic average velocity; converts the corrected seismic average velocity into a corrected seismic layer velocity, taking into account the longitudinal changes of the target layer segment, and the velocity data generally has a very obvious vertical trend (i.e., depth trend). The corrected seismic layer velocity is vertically detrended to establish a residual layer velocity model, and then the model is restored to a trend to obtain a corrected layer velocity model. The corrected layer velocity model is then used as trend data to constrain well data (i.e., well-point layer velocity) to establish a layer velocity model body. The layer velocity model body is then used to obtain the final seismic interpretation velocity model, and the integration of well and seismic velocity data of different scales is achieved. This solves the problem of maintaining both the seismic velocity trend and the well-point velocity consistency in the velocity field in areas with rapid velocity changes, and minimizing the inter-well velocity deviation. This effectively improves the velocity modeling accuracy in the reservoir evaluation stage and ensures the reliability of three-dimensional structural mapping.
本发明实施例中,基于石油地质建模软件Petrel2015,以及Matlab语言计算程序,选取了我国西部柴达木盆地的DP工区进行地震解释速度模型建模,并与常规的几种速度建模方法进行了对比。建模过程如后所述。In the embodiment of the present invention, based on the petroleum geological modeling software Petrel2015 and the Matlab language calculation program, the DP work area in the Qaidam Basin in western my country was selected for seismic interpretation velocity modeling, and compared with several conventional velocity modeling methods. The modeling process is described below.
DP工区是柴达木盆地阿尔金山前2012年部署的三维地震工区,一次覆盖面积452.4km2,目的层为基岩,基岩顶面埋深为1830~4600m,高差达2770m。The DP work area is a 3D seismic work area deployed in 2012 in front of the Altun Mountains in the Qaidam Basin. It covers an area of 452.4km2 at one time. The target layer is bedrock, with a top surface burial depth of 1830 to 4600m and a height difference of 2770m.
将地震速度谱计算得到的地震平均速度,及井上合成记录计算得到的井点平均速度、井点层速度采样到构造网格中,并确定网格地震平均速度和井点地震平均速度。The seismic average velocity calculated from the seismic velocity spectrum, and the well point average velocity and well point layer velocity calculated from the well synthetic record are sampled into the structural grid, and the grid seismic average velocity and the well point seismic average velocity are determined.
之后,利用网格地震平均速度和井点地震平均速度求取平均速度速度各向异性系数,得到的速度各向异性系数如图6(a)所示,应用DBSCAN算法与三次样条插值方法相结合求取各向异性校正函数,得到各向异性校正曲线,如图8所示。图8结果表明,采用DBSCAN进行聚类分析时,共产生了5个远离聚类中心的噪声点。该方法与常规拟合方法效果对比见图9(a)~图9(c)。其中,图9(a)为利用线性函数拟合法确定的速度各向异性系数与双程时的相关性的示意图,图9(b)为利用指数函数拟合方法确定的速度各向异性系数与双程时的相关性的示意图,图9(c)为利用DBSCAN与三次样条插值方法确定的速度各向异性系数与双程时的相关性的示意图。Afterwards, the average velocity anisotropy coefficient was obtained using the grid seismic average velocity and the well point seismic average velocity. The obtained velocity anisotropy coefficient is shown in Figure 6(a). The DBSCAN algorithm was combined with the cubic spline interpolation method to obtain the anisotropy correction function, and the anisotropy correction curve was obtained, as shown in Figure 8. The results in Figure 8 show that when DBSCAN was used for cluster analysis, a total of 5 noise points far away from the cluster center were generated. The effect comparison of this method with the conventional fitting method is shown in Figures 9(a) to 9(c). Among them, Figure 9(a) is a schematic diagram of the correlation between the velocity anisotropy coefficient and the two-way time determined by the linear function fitting method, Figure 9(b) is a schematic diagram of the correlation between the velocity anisotropy coefficient and the two-way time determined by the exponential function fitting method, and Figure 9(c) is a schematic diagram of the correlation between the velocity anisotropy coefficient and the two-way time determined by the DBSCAN and cubic spline interpolation method.
利用图9(a)~图9(c)三种方法确定的速度各向异性系数与双程时的相关性的误差,误差分析数据见下表一。误差分析时,对于图8中的噪声点做了相应考虑,结果表明,残差平方和无论考虑噪声点与否,DBSCAN与三次样条插值方法的误差都明显小于线性函数拟合法和指数函数拟合方法,且各向异性曲线经过聚类中心,更准确地描述了构造高差大时由于储层非均质性等因素引起的速度偏差问题。The error of the correlation between the velocity anisotropy coefficient and the two-way time determined by the three methods in Figures 9(a) to 9(c) is shown in Table 1 below. In the error analysis, the noise points in Figure 8 were considered accordingly. The results show that the residual sum of squares, whether the noise points are considered or not, the errors of DBSCAN and cubic spline interpolation methods are significantly smaller than those of linear function fitting method and exponential function fitting method, and the anisotropy curve passes through the cluster center, which more accurately describes the velocity deviation problem caused by factors such as reservoir heterogeneity when the structural height difference is large.
表一Table I
通过将地震平均速度数据校正到井点平均速度水平,利用平均速度与均方根速度的关系,将校正地震平均速度转换为地震校正均方根速度,进一步求取校正地震层速度,通过地质统计学建模方法,建立校正层速度模型。By correcting the seismic average velocity data to the well point average velocity level, and using the relationship between the average velocity and the root mean square velocity, the corrected seismic average velocity is converted into the seismic corrected root mean square velocity, and the corrected seismic layer velocity is further obtained. Through the geostatistical modeling method, a corrected layer velocity model is established.
建立校正层速度模型后,将该模型作为速度建模的输入,建立研究区的地震解释速度模型。通过该地震解释速度模型,可以获得平均速度模型数据体,将得到的平均速度模型用于域转换,将域转换结果与选择的典型井进行对比,对此结果见表二,参考表二可见,本发明所采用的速度模型法其时深域转换的精度较常规方法有明显提高。After the correction layer velocity model is established, the model is used as the input of velocity modeling to establish the seismic interpretation velocity model of the study area. Through the seismic interpretation velocity model, the average velocity model data body can be obtained, and the obtained average velocity model is used for domain conversion. The domain conversion results are compared with the selected typical wells. The results are shown in Table 2. Referring to Table 2, it can be seen that the velocity model method used in the present invention has significantly improved the accuracy of time-depth domain conversion compared with conventional methods.
表二Table II
本发明实施例中还提供了一种油气藏评价阶段建立地震解释速度模型的装置,如下面的实施例所述。由于该装置解决问题的原理与油气藏评价阶段建立地震解释速度模型的方法相似,因此该装置的实施可以参见油气藏评价阶段建立地震解释速度模型的方法的实施,重复之处不再赘述。The present invention also provides a device for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage, as described in the following embodiments. Since the principle of the device to solve the problem is similar to the method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage, the implementation of the device can refer to the implementation of the method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage, and the repeated parts will not be repeated.
如图10所示,该装置1000包括获取模块1001、确定模块1002、采样模块1003、校正模块1004、速度转换模块1005、处理模块1006和模型构建模块1007。As shown in FIG. 10 , the device 1000 includes an acquisition module 1001 , a determination module 1002 , a sampling module 1003 , a correction module 1004 , a speed conversion module 1005 , a processing module 1006 and a model building module 1007 .
其中,获取模块1001,用于获取测井数据和地震数据;Wherein, the acquisition module 1001 is used to acquire well logging data and seismic data;
确定模块1002,用于根据测井数据和地震数据确定地震平均速度、井点平均速度和井点层速度;A determination module 1002 is used to determine the average seismic velocity, the average well point velocity and the well point layer velocity according to the well logging data and the seismic data;
采样模块1003,用于将地震平均速度、井点平均速度和井点层速度采样到预设的构造网格中;The sampling module 1003 is used to sample the seismic average velocity, the well point average velocity and the well point layer velocity into a preset structural grid;
确定模块1002,还用于根据采样到构造网格中的地震平均速度计算网格地震平均速度,根据采样到构造网格中的井点平均速度计算网格井点平均速度;The determination module 1002 is further used to calculate the grid seismic average velocity according to the seismic average velocity sampled in the structural grid, and calculate the grid well point average velocity according to the well point average velocity sampled in the structural grid;
校正模块1004,用于根据网格地震平均速度和网格井点平均速度确定速度各向异性系数,利用速度各向异性系数对网格地震平均速度进行校正,得到校正地震平均速度;The correction module 1004 is used to determine the velocity anisotropy coefficient according to the grid seismic average velocity and the grid well point average velocity, and to correct the grid seismic average velocity using the velocity anisotropy coefficient to obtain a corrected seismic average velocity;
速度转换模块1005,用于将校正地震平均速度转换为校正地震层速度;Velocity conversion module 1005, used to convert the corrected seismic average velocity into a corrected seismic layer velocity;
处理模块1006,用于对校正地震层速度做去趋势处理,得到地震残余层速度;Processing module 1006, for performing detrending processing on the corrected seismic layer velocity to obtain seismic residual layer velocity;
处理模块1006,还用于对地震残余层速度进行空间变差函数分析,建立地震残余层速度模型;The processing module 1006 is also used to perform spatial variogram analysis on the seismic residual layer velocity and establish a seismic residual layer velocity model;
处理模块1006,还用于对地震残余层速度模型作恢复趋势处理,得到校正层速度模型;The processing module 1006 is also used to perform recovery trend processing on the seismic residual layer velocity model to obtain a correction layer velocity model;
确定模块1002,还用于将井点层速度作为硬数据,校正层速度模型作为数据趋势,确定层速度模型体;The determination module 1002 is further used to determine the layer velocity model body by taking the well point layer velocity as hard data and the corrected layer velocity model as data trend;
模型构建模块1007,用于将层速度模型体输入预设的地震解释速度模型框架,得到地震解释速度模型。The model building module 1007 is used to input the layer velocity model body into the preset seismic interpretation velocity model framework to obtain the seismic interpretation velocity model.
在本发明实施例的一种实现方式中,确定模块1002,用于:In an implementation of the embodiment of the present invention, the determination module 1002 is used to:
根据地震数据确定地震速度谱;Determine seismic velocity spectrum from seismic data;
对地震速度谱进行解编,得到三维地震偏移均方根速度;Decode the seismic velocity spectrum to obtain the 3D seismic migration root mean square velocity;
根据三维地震偏移均方根速度计算地震平均速度;Calculate the average seismic velocity based on the 3D seismic migration RMS velocity;
利用地震数据和测井数据进行井上合成记录分析,获取井点平均速度和井点层速度。The seismic data and well logging data are used to perform synthetic record analysis on the well to obtain the average wellpoint velocity and wellpoint layer velocity.
在本发明实施例的一种实现方式中,确定模块1002,还用于:In an implementation of the embodiment of the present invention, the determining module 1002 is further configured to:
利用地震数据和测井数据进行井上合成记录分析,获取井点的时深关系;Use seismic data and well logging data to perform synthetic log analysis on the well to obtain the time-depth relationship of the well point;
对井点的时深关系进行时深关系一致性检查,得到检查结果;Conduct a consistency check on the time-depth relationship of the well point to obtain the check result;
如果检查结果为时深关系不一致,则修正井点的时深关系,并在修改时深关系后重新确定井点平均速度和井点层速度。If the inspection result shows that the time-depth relationship is inconsistent, the time-depth relationship of the well point is corrected, and the well point average velocity and the well point layer velocity are re-determined after the time-depth relationship is modified.
在本发明实施例的一种实现方式中,校正模块1004,用于:In one implementation of the embodiment of the present invention, the correction module 1004 is used to:
将网格井点平均速度与网格地震平均速度的比值确定为速度各向异性系数;The ratio of the grid well point average velocity to the grid seismic average velocity is determined as the velocity anisotropy coefficient;
利用DBSCAN算法计算速度各向异性系数的聚类中心;The cluster center of velocity anisotropy coefficient is calculated using DBSCAN algorithm;
对聚类中心进行三次样条曲线插值,得到各项异性系数和双程时的函数关系;The cluster centers are interpolated with cubic spline curves to obtain the functional relationship between the anisotropy coefficient and the two-way time.
利用速度各向异性系数和双程时的函数关系对网格地震平均速度进行校正,得到校正地震平均速度。The grid seismic average velocity is corrected using the functional relationship between velocity anisotropy coefficient and two-way time to obtain the corrected seismic average velocity.
在本发明实施例的一种实现方式中,校正模块1004,用于:In one implementation of the embodiment of the present invention, the correction module 1004 is used to:
利用Vavg_seis_m=Vavg_seis×Fani(TWT)计算校正地震平均速度Vavg_seis_m;Calculate the corrected seismic average velocity V avg_seis_m using V avg_seis_m = V avg_seis × F ani (TWT);
其中,Vavg_seis表示网格地震平均速度;Fani(TWT)表示速度各向异性系数和双程时的函数关系。Among them, V avg_seis represents the grid average seismic velocity; Fani (TWT) represents the functional relationship between velocity anisotropy coefficient and two-way time.
在本发明实施例的一种实现方式中,装置1000还包括:In an implementation manner of the embodiment of the present invention, the apparatus 1000 further includes:
域转换模块1008,用于对地震解释速度模型进行域转换,得到域转换结果;A domain conversion module 1008 is used to perform domain conversion on the seismic interpretation velocity model to obtain a domain conversion result;
对比模块1009,用于对比域转换结果与井点平均速度,确定域转换结果与井点平均速度的误差;A comparison module 1009 is used to compare the domain conversion result with the average velocity of the well point and determine the error between the domain conversion result and the average velocity of the well point;
处理模块1006,还用于当误差大于预设的误差阈值时,则重新建立地震残余层速度模型,并调用确定模块1002和模型构建模块1007根据重新建立的地震残余层速度模型进行后续处理,重新建立地震解释速度模型。The processing module 1006 is also used to re-establish the seismic residual layer velocity model when the error is greater than a preset error threshold, and call the determination module 1002 and the model construction module 1007 to perform subsequent processing based on the re-established seismic residual layer velocity model to re-establish the seismic interpretation velocity model.
本发明实施例中提供的油气藏评价阶段建立地震解释速度模型的装置,利用地震数据和测井数据作为数据来源,确定地震平均速度、井点平均速度和井点层速度,之后将上述速度采样到构造网格中,确定网格地震平均速度和网格井点平均速度;之后根据网格地震平均速度和网格井点平均速度获取速度各向异性系数关系,对网格地震平均速度进行校正;将校正后的地震平均速度转换为校正地震层速度,考虑到目的层段在纵向上的变化情况,同时速度数据一般具有很明显的垂向趋势(即深度趋势),对校正地震层速度进行垂向去趋势处理后建立残余层速度模型,再对模型进行恢复趋势处理获得校正层速度模型,然后再将该校正层速度模型作为趋势数据约束井数据(即井点层速度)建立层速度模型体,再利用层速度模型体获取最终的地震解释速度模型,实现井、震不同尺度速度数据的整合,很好地解决了速度变化较快地区速度场既要保持地震速度趋势又要保持井点速度一致、同时井间速度偏差尽量小的难题,有效提高油气藏评价阶段速度建模精度,保证三维构造成图的可靠性。The device for establishing a seismic interpretation velocity model in the reservoir evaluation stage provided in the embodiment of the present invention uses seismic data and well logging data as data sources to determine the seismic average velocity, the well point average velocity and the well point layer velocity, and then samples the above velocities into the structural grid to determine the grid seismic average velocity and the grid well point average velocity; then obtains the velocity anisotropy coefficient relationship according to the grid seismic average velocity and the grid well point average velocity, and corrects the grid seismic average velocity; converts the corrected seismic average velocity into the corrected seismic layer velocity, taking into account the longitudinal changes of the target layer segment, and the velocity data generally has a very obvious vertical trend (i.e., depth trend). The corrected seismic layer velocity is processed vertically to remove the trend, and then the residual layer velocity model is established. The model is then processed to restore the trend to obtain the corrected layer velocity model. The corrected layer velocity model is then used as trend data to constrain the well data (i.e., well-point layer velocity) to establish a layer velocity model body. The layer velocity model body is then used to obtain the final seismic interpretation velocity model, and the integration of well and seismic velocity data of different scales is achieved. This solves the problem that the velocity field in areas with rapid velocity changes must maintain both the seismic velocity trend and the well-point velocity consistency, while minimizing the inter-well velocity deviation. This effectively improves the velocity modeling accuracy in the reservoir evaluation stage and ensures the reliability of three-dimensional structural mapping.
本发明实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述油气藏评价阶段建立地震解释速度模型的方法。An embodiment of the present invention also provides a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage is implemented.
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述油气藏评价阶段建立地震解释速度模型的方法的计算机程序。An embodiment of the present invention further provides a computer-readable storage medium storing a computer program for executing the method for establishing a seismic interpretation velocity model in the oil and gas reservoir evaluation stage.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to the flowchart and/or block diagram of the method, device (system), and computer program product according to the embodiment of the present invention. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further illustrate the objectives, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above description is only a specific embodiment of the present invention and is not intended to limit the scope of protection of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention should be included in the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011353037.4A CN114563816B (en) | 2020-11-27 | 2020-11-27 | Method and device for establishing earthquake interpretation velocity model in oil and gas reservoir evaluation stage |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011353037.4A CN114563816B (en) | 2020-11-27 | 2020-11-27 | Method and device for establishing earthquake interpretation velocity model in oil and gas reservoir evaluation stage |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114563816A CN114563816A (en) | 2022-05-31 |
| CN114563816B true CN114563816B (en) | 2024-06-25 |
Family
ID=81711291
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011353037.4A Active CN114563816B (en) | 2020-11-27 | 2020-11-27 | Method and device for establishing earthquake interpretation velocity model in oil and gas reservoir evaluation stage |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114563816B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115932974A (en) * | 2022-12-02 | 2023-04-07 | 中国石油化工股份有限公司 | Sparse well network area velocity field correction method based on buried depth trend |
| CN115857018B (en) * | 2022-12-15 | 2025-05-16 | 中海油田服务股份有限公司 | Dipole acoustic logging dispersion correction method based on density clustering and related device |
| CN116381782A (en) * | 2023-02-17 | 2023-07-04 | 中海石油(中国)有限公司深圳分公司 | Low-amplitude structured graph forming method, device and storage device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105549082A (en) * | 2014-10-29 | 2016-05-04 | 中国石油天然气股份有限公司 | Method and system for establishing three-dimensional geomechanical field of ultra-deep carbonate reservoir |
| CN105717540A (en) * | 2016-03-14 | 2016-06-29 | 中国海洋石油总公司 | Precise prediction method for micro-amplitude structure |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108663713B (en) * | 2017-03-27 | 2021-05-25 | 中国石油化工股份有限公司 | Method for establishing depth domain structure model |
| CN110927796A (en) * | 2018-09-20 | 2020-03-27 | 中国石油化工股份有限公司 | Method for improving time-depth conversion precision of seismic data |
| US11187821B2 (en) * | 2019-01-23 | 2021-11-30 | Saudi Arabian Oil Company | Integration of seismic driven rock property into a geo-cellular model |
| CN111175825B (en) * | 2020-01-06 | 2021-07-20 | 中国石油化工股份有限公司 | Depth domain speed modeling method |
-
2020
- 2020-11-27 CN CN202011353037.4A patent/CN114563816B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105549082A (en) * | 2014-10-29 | 2016-05-04 | 中国石油天然气股份有限公司 | Method and system for establishing three-dimensional geomechanical field of ultra-deep carbonate reservoir |
| CN105717540A (en) * | 2016-03-14 | 2016-06-29 | 中国海洋石油总公司 | Precise prediction method for micro-amplitude structure |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114563816A (en) | 2022-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8923093B2 (en) | Determining the quality of a seismic inversion | |
| CN104614763B (en) | Multi-wave AVO reservoir elastic parameter inversion method and system based on reflectivity method | |
| CN104597490B (en) | Multi-wave AVO reservoir elastic parameter inversion method based on accurate Zoeppritz equations | |
| CN113759425A (en) | Method and system for combined well-seismic evaluation of filling characteristics of deep paleokarst reservoirs | |
| CN114563816B (en) | Method and device for establishing earthquake interpretation velocity model in oil and gas reservoir evaluation stage | |
| CN105277978B (en) | A kind of method and device for determining near-surface velocity model | |
| CN109188520B (en) | Thin reservoir thickness prediction method and device | |
| WO2017024702A1 (en) | Inversion system for ray elastic parameter | |
| CN113031068B (en) | A Prestack Seismic Inversion Method Based on Precise Reflection Coefficient | |
| CN107462924B (en) | A kind of absolute wave impedance inversion method independent of well-log information | |
| CN102749647B (en) | Quantitative method for space of holes in reservoir | |
| CN107065013B (en) | A method and device for determining layer velocity at seismic scale | |
| US10310117B2 (en) | Efficient seismic attribute gather generation with data synthesis and expectation method | |
| WO2016008105A1 (en) | Post-stack wave impedance inversion method based on cauchy distribution | |
| WO2005026776A1 (en) | Wide-offset-range pre-stack depth migration method for seismic exploration | |
| CN112147700A (en) | Low-frequency model construction method and system for speed abnormal area | |
| CN113820745A (en) | Seismic velocity modeling method, device, electronic apparatus, and medium | |
| CN113176613B (en) | A low-frequency model building method based on multi-information fusion based on three-level body control | |
| CN108957554B (en) | Seismic inversion method in geophysical exploration | |
| CN117388921A (en) | Prestack inversion method, device and electronic equipment for elastic parameters | |
| CN115685344A (en) | Reservoir determination method and device, storage medium and electronic equipment | |
| CN116413790A (en) | Horizontal Calibration Method and Device for Seismic Profile in Depth Domain Based on VSP | |
| CN114861515A (en) | Calculation method, device, device and medium for layer velocity data volume | |
| CN113806674A (en) | Method and device for quantifying longitudinal dimension of ancient river channel, electronic equipment and storage medium | |
| CN118210059A (en) | Reservoir fracture prediction method and system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |