CN114323723B - A method for controllable loading of structural surfaces based on flexible gaskets and rigid bases - Google Patents
A method for controllable loading of structural surfaces based on flexible gaskets and rigid bases Download PDFInfo
- Publication number
- CN114323723B CN114323723B CN202210035040.4A CN202210035040A CN114323723B CN 114323723 B CN114323723 B CN 114323723B CN 202210035040 A CN202210035040 A CN 202210035040A CN 114323723 B CN114323723 B CN 114323723B
- Authority
- CN
- China
- Prior art keywords
- flexible gasket
- parameters
- thickness
- front surface
- loaded structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Gasket Seals (AREA)
Abstract
本发明公开了一种基于柔性垫片和刚性基座的结构表面可控加载方法,涉及力学实验技术领域和结构设计领域,该方法根据被加载结构的表面的几何特征参数确定加载工装的前表面的几何特征参数,根据加载工装的前表面的几何特征参数和被加载结构的表面的目标载荷分布参数,基于数值模拟的方法确定加载工装的三维结构的几何特征参数;按照三维结构的几何特征参数制作加载工装,并将加载工装的前表面贴合被加载结构的表面,将加载工装的后表面连接作动器,将刚性基底的直线位移转化成满足目标载荷分布参数需求的可控分布面载荷,该方法可适应较复杂三维表面,且成本较低、灵活性与可靠性较高。
The invention discloses a controllable loading method of a structure surface based on a flexible gasket and a rigid base, which relates to the technical field of mechanical experiments and the field of structure design. The method determines the front surface of a loading tool according to the geometric characteristic parameters of the surface of the loaded structure According to the geometric feature parameters of the front surface of the loading tool and the target load distribution parameters of the surface of the loaded structure, the geometric feature parameters of the three-dimensional structure of the loaded tool are determined based on the method of numerical simulation; according to the geometric feature parameters of the three-dimensional structure Make a loading tool, fit the front surface of the loading tool to the surface of the loaded structure, connect the rear surface of the loading tool to the actuator, and convert the linear displacement of the rigid base into a controllable distributed surface load that meets the requirements of the target load distribution parameters , the method can adapt to more complex three-dimensional surfaces, and has low cost, high flexibility and reliability.
Description
技术领域technical field
本发明涉及力学实验技术领域和结构设计领域,尤其是一种基于柔性垫片和刚性基座的结构表面可控加载方法。The invention relates to the technical field of mechanical experiments and the field of structural design, in particular to a controllable loading method of a structural surface based on a flexible gasket and a rigid base.
背景技术Background technique
表面加载技术是结构力学实验的常用技术,其是对整个结构表面施加面载荷的技术,表面加载技术应用过程中既需要控制施加的载荷的大小,又需要控制施加在表面上各处载荷的分布,与仅对一个受力点施加载荷的单点加载技术相比,控制难度较大。Surface loading technology is a commonly used technology in structural mechanics experiments. It is a technology of applying surface loads to the entire surface of the structure. During the application of surface loading technology, it is necessary to control both the magnitude of the applied load and the distribution of the load applied to the surface. , which is more difficult to control than the single-point loading technique that only applies a load to one force point.
基于柔性垫片-刚性基座的结构为表面加载提供了一种思路,利用这种结构,通过作动器对刚性基座施加位移载荷,再通过柔性垫片将位移载荷转化为面载荷施加至结构表面。但是目前这种存在较大的缺陷:针对平面加载,使用这种结构仅能实现均布载荷加载;而针对曲面加载,加载分布情况取决于曲面结构的几何特征,无法针对具体需求进行设计,且无法实现均布载荷加载。The structure based on the flexible gasket-rigid base provides an idea for surface loading. Using this structure, a displacement load is applied to the rigid base through an actuator, and then the displacement load is converted into a surface load through the flexible gasket and applied to the surface. structured surface. However, at present, there is a big defect: for plane loading, the use of this structure can only achieve uniform load loading; for surface loading, the loading distribution depends on the geometric characteristics of the surface structure, which cannot be designed for specific needs, and Uniform load loading cannot be achieved.
发明内容SUMMARY OF THE INVENTION
本发明人针对上述问题及技术需求,提出了一种基于柔性垫片和刚性基座的结构表面可控加载方法,本发明的技术方案如下:In view of the above-mentioned problems and technical requirements, the inventor proposes a controllable loading method for the structural surface based on a flexible gasket and a rigid base. The technical solution of the present invention is as follows:
一种基于柔性垫片和刚性基座的结构表面可控加载方法,该方法包括:A method for controllable loading of a structural surface based on a flexible gasket and a rigid base, the method comprising:
根据被加载结构的表面的几何特征参数确定加载工装的前表面的几何特征参数,加载工装包括柔性垫片和刚性基座,柔性垫片的前表面作为加载工装的前表面,柔性垫片的后表面与刚性基座的前表面贴合,刚性基座的后表面作为加载工装的后表面;The geometric characteristic parameters of the front surface of the loading tool are determined according to the geometric characteristic parameters of the surface of the loaded structure. The loading tool includes a flexible gasket and a rigid base. The front surface of the flexible gasket serves as the front surface of the loading tool, and the rear surface of the flexible gasket The surface is attached to the front surface of the rigid base, and the rear surface of the rigid base serves as the rear surface of the loading tool;
根据加载工装的前表面的几何特征参数和被加载结构的表面的目标载荷分布参数,基于数值模拟的方法确定加载工装的三维结构的几何特征参数;According to the geometric characteristic parameters of the front surface of the loading tool and the target load distribution parameters of the surface of the loaded structure, the geometric characteristic parameters of the three-dimensional structure of the loaded tool are determined based on the method of numerical simulation;
按照三维结构的几何特征参数制作加载工装,并将加载工装的前表面贴合被加载结构的表面,将加载工装的后表面连接作动器,控制作动器施加垂直于被加载结构的表面中心处切面的直线位移、通过加载工装的传递按照目标载荷分布参数施加在被加载结构的表面。According to the geometric characteristic parameters of the three-dimensional structure, the loading tool is made, the front surface of the loading tool is attached to the surface of the loaded structure, the rear surface of the loading tool is connected to the actuator, and the actuator is controlled to be applied perpendicular to the center of the surface of the loaded structure. The linear displacement of the cut plane, transmitted through the loading tool, is applied to the surface of the loaded structure according to the target load distribution parameters.
其进一步的技术方案为,该方法还包括:Its further technical scheme is, the method also includes:
根据被加载结构的表面的目标载荷分布参数确定采用的柔性垫片的制作材料;According to the target load distribution parameters on the surface of the loaded structure, determine the material of the flexible gasket used;
则在按照三维结构的几何特征参数制作加载工装时,采用对应的制作材料制作得到柔性垫片。Then, when the loading tooling is manufactured according to the geometric characteristic parameters of the three-dimensional structure, the corresponding manufacturing material is used to manufacture the flexible gasket.
其进一步的技术方案为,根据被加载结构的表面的目标载荷分布参数确定采用的柔性垫片的材料,包括:Its further technical solution is to determine the material of the flexible gasket to be used according to the target load distribution parameters of the surface of the loaded structure, including:
根据被加载结构的表面的目标载荷分布参数确定最大载荷Pmax;Determine the maximum load P max according to the target load distribution parameters of the surface of the loaded structure;
选取杨氏模量为E=Pmax/εmax的材料作为柔性垫片的制作材料,εmax为最大应变。The material whose Young's modulus is E=P max /ε max is selected as the material for making the flexible gasket, and ε max is the maximum strain.
其进一步的技术方案为,基于数值模拟的方法确定加载工装的三维结构的几何特征参数,包括:Its further technical solution is to determine the geometric characteristic parameters of the three-dimensional structure of the loaded tooling based on the method of numerical simulation, including:
根据加载工装的前表面的几何特征参数和被加载结构的表面的目标载荷分布参数,基于数值模拟的方法确定柔性垫片的厚度分布参数;According to the geometric characteristic parameters of the front surface of the loading tool and the target load distribution parameters of the surface of the loaded structure, the thickness distribution parameters of the flexible gasket are determined based on the method of numerical simulation;
根据加载工装的前表面的几何特征参数和柔性垫片的厚度分布参数确定柔性垫片的后表面的几何特征参数;Determine the geometric characteristic parameters of the rear surface of the flexible gasket according to the geometric characteristic parameters of the front surface of the loading tool and the thickness distribution parameters of the flexible gasket;
根据柔性垫片的后表面的几何特征参数确定刚性基座的前表面的几何特征参数,并根据作动器的结构要求确定刚性基座的后表面的几何特征参数。The geometric characteristic parameters of the front surface of the rigid base are determined according to the geometric characteristic parameters of the rear surface of the flexible gasket, and the geometric characteristic parameters of the rear surface of the rigid base are determined according to the structural requirements of the actuator.
其进一步的技术方案为,基于数值模拟的方法确定柔性垫片的厚度分布参数,包括:Its further technical solution is to determine the thickness distribution parameters of the flexible gasket based on the method of numerical simulation, including:
根据被加载结构的表面的目标载荷分布参数确定柔性垫片的厚度分布规律;Determine the thickness distribution law of the flexible gasket according to the target load distribution parameters on the surface of the loaded structure;
按照厚度分布规律确定初始的厚度分布参数,并基于柔性垫片的前表面的几何特征参数和厚度分布参数建立柔性垫片的有限元模型;The initial thickness distribution parameters are determined according to the thickness distribution law, and the finite element model of the flexible gasket is established based on the geometric characteristic parameters and thickness distribution parameters of the front surface of the flexible gasket;
对柔性垫片的有限元模型进行数值模拟,并迭代调整厚度分布参数以修正有限元模型,直至利用有限元模型确定柔性垫片的前表面的载荷分布参数的数值模拟结果与目标载荷分布参数在误差范围内时,得到柔性垫片的厚度分布参数。Carry out numerical simulation on the finite element model of the flexible gasket, and iteratively adjust the thickness distribution parameters to correct the finite element model, until the numerical simulation results of the load distribution parameters of the front surface of the flexible gasket are determined by using the finite element model and the target load distribution parameters are in the same range. Within the error range, the thickness distribution parameters of the flexible gasket are obtained.
其进一步的技术方案为,对柔性垫片的有限元模型进行数值模拟,包括:Its further technical solution is to perform numerical simulation on the finite element model of the flexible gasket, including:
对柔性垫片的有限元模型的前表面施加位移约束,对柔性垫片的有限元模型的后表面施加均匀位移载荷,进行数值模拟。A displacement constraint is applied to the front surface of the finite element model of the flexible gasket, and a uniform displacement load is applied to the rear surface of the finite element model of the flexible gasket to conduct numerical simulations.
其进一步的技术方案为,根据被加载结构的表面的目标载荷分布参数确定柔性垫片的厚度分布规律,包括:Its further technical solution is to determine the thickness distribution law of the flexible gasket according to the target load distribution parameter of the surface of the loaded structure, including:
若被加载结构的表面的目标载荷分布参数指示被加载结构的表面的载荷均匀分布,则确定柔性垫片的厚度分布规律为厚度从柔性垫片的中心向四周连续减小。If the target load distribution parameter on the surface of the loaded structure indicates that the load on the surface of the loaded structure is uniformly distributed, the thickness distribution law of the flexible gasket is determined as the thickness continuously decreases from the center of the flexible gasket to the periphery.
其进一步的技术方案为,迭代调整厚度分布参数以修正有限元模型,包括:Its further technical solution is to iteratively adjust the thickness distribution parameters to correct the finite element model, including:
计算柔性垫片的前表面的载荷分布参数的数值模拟结果的中心点与边缘处的应力偏差η=(σm-σo)/σo,σm是中心点的数值模拟结果,σo是边缘处的数值模拟结果;Calculate the stress deviation between the center point and the edge of the numerical simulation results of the load distribution parameters of the front surface of the flexible gasket η = (σ m -σ o )/σ o , σ m is the numerical simulation result of the center point, σ o is Numerical simulation results at the edge;
若η≤|ηmax|,则确定柔性垫片的前表面的载荷分布参数的数值模拟结果与目标载荷分布参数在误差范围内,ηmax是应力偏差阈值;If η≤| ηmax |, it is determined that the numerical simulation result of the load distribution parameter of the front surface of the flexible gasket and the target load distribution parameter are within the error range, and ηmax is the stress deviation threshold;
若η>|ηmax|,则基于应力偏差η调整柔性垫片的中心点的厚度为Bn+1=Bn/(1+η),Bn是当前的厚度分布参数中的柔性垫片的中心点的厚度;保持柔性垫片的边缘处的厚度与当前的厚度分布参数一致,并根据调整后的中心点的厚度Bn+1利用样条曲线拟合得到调整后的厚度分布参数。If η>|η max |, the thickness of the center point of the flexible gasket is adjusted based on the stress deviation η as B n+1 =B n /(1+η), where B n is the flexible gasket in the current thickness distribution parameters The thickness of the center point of the flexible gasket is maintained; the thickness at the edge of the flexible gasket is consistent with the current thickness distribution parameters, and the adjusted thickness distribution parameters are obtained by spline curve fitting according to the adjusted thickness B n+1 of the center point.
其进一步的技术方案为,迭代调整厚度分布参数以修正有限元模型,包括:计算柔性垫片的前表面的任意第k个标定点处的数值模拟结果σ′k与目标载荷分布参数σk之间的应力偏差ηk=(σ′k-σk)/σk;若所有标定点处的应力偏差均不超过应力偏差阈值ηmax,则确定柔性垫片的前表面的载荷分布参数的数值模拟结果与目标载荷分布参数在误差范围内;若存在至少一个标定点处的应力偏差超过应力偏差阈值ηmax,则将应力偏差超过应力偏差阈值ηmax的标定点处的厚度调整为Bi,n+1=Bi,n/(1+ηi)、保持其他标定点处的厚度与当前的厚度分布参数一致,并根据调整后的厚度利用样条曲线拟合得到调整后的厚度分布参数;其中,ηi是超过应力偏差阈值ηmax的任意第i个标定点处的应力偏差,Bi,n是当前的厚度分布参数中的第i个标定点处的厚度。Its further technical solution is to iteratively adjust the thickness distribution parameters to correct the finite element model, including: calculating the difference between the numerical simulation result σ′ k and the target load distribution parameter σ k at any kth calibration point on the front surface of the flexible gasket. The stress deviation η k =(σ′ k -σ k )/σ k ; if the stress deviation at all calibration points does not exceed the stress deviation threshold η max , determine the value of the load distribution parameter of the front surface of the flexible gasket The simulation results and the target load distribution parameters are within the error range; if the stress deviation at at least one calibration point exceeds the stress deviation threshold η max , the thickness at the calibration point where the stress deviation exceeds the stress deviation threshold η max is adjusted to B i, n+1 =B i,n /(1+η i ), keep the thickness at other calibration points consistent with the current thickness distribution parameters, and use spline curve fitting to obtain the adjusted thickness distribution parameters according to the adjusted thickness ; where η i is the stress deviation at any ith calibration point that exceeds the stress deviation threshold η max , and B i,n is the thickness at the ith calibration point in the current thickness distribution parameters.
其进一步的技术方案为,加载工装的后表面与作动器之间可拆卸连接。A further technical solution is that the rear surface of the loading tool and the actuator are detachably connected.
本发明的有益技术效果是:The beneficial technical effects of the present invention are:
本申请公开了一种基于柔性垫片和刚性基座的结构表面可控加载方法,该方法根据被加载结构的表面的几何特征参数以及目标载荷分布参数,基于理论分析和数值模拟技术设计相应三维结构的柔性垫片和刚性基座,将刚性基底的直线位移转化成满足目标载荷分布参数需求的可控分布面载荷,相较于利用充气式柔性垫片只能实现几十千帕量级的表面均匀加载的现有技术,该方法可以实现表面兆帕级载荷可控分布加载,可适应较复杂三维表面,且成本较低、灵活性与可靠性较高。The present application discloses a method for controllable loading of a structure surface based on a flexible gasket and a rigid base. The method designs a corresponding three-dimensional structure based on theoretical analysis and numerical simulation technology according to the geometric characteristic parameters of the surface of the loaded structure and the target load distribution parameters. The flexible gasket and rigid base of the structure convert the linear displacement of the rigid base into a controllable distributed surface load that meets the requirements of the target load distribution parameters. The existing technology of uniform loading of the surface, this method can realize the controllable distributed loading of the surface megapa-level load, can adapt to more complex three-dimensional surfaces, and has low cost, high flexibility and high reliability.
附图说明Description of drawings
图1是一个实施例中的结构表面可控加载方法的流程图。FIG. 1 is a flow chart of a method for controllable loading of a structured surface in one embodiment.
图2是柔性垫片、刚性基座与被加载结构的表面和作动器的装配示意图。Figure 2 is a schematic diagram of the assembly of the flexible gasket, the rigid base and the surface of the loaded structure and the actuator.
图3是一个实施例中确定加载工装的三维结构的几何特征参数的步骤的流程图。FIG. 3 is a flow chart of the steps of determining geometric characteristic parameters of the three-dimensional structure of the loaded tool in one embodiment.
图4是一个实施例中得到柔性垫片的厚度分布参数的流程图。FIG. 4 is a flow chart of obtaining the thickness distribution parameters of the flexible gasket in one embodiment.
图5是均布载荷加载柔性垫片的有限元模型的厚度和应力示意图。Figure 5 is a schematic diagram of the thickness and stress of the finite element model of the flexible gasket loaded with uniform load.
图6是梯度载荷加载柔性垫片的有限元模型的厚度和应力示意图。Figure 6 is a schematic diagram of the thickness and stress of a finite element model of a flexible gasket loaded with gradient loads.
图7中的(a)是利用本申请的方法实现对平面的被加载结构实现均匀分布载荷加载的结构示意图,图7中的(b)是利用本申请的方法实现对平面的被加载结构实现梯度分布载荷加载的结构示意图。(a) in FIG. 7 is a schematic structural diagram of using the method of the present application to realize uniformly distributed load loading on a plane loaded structure, and (b) in FIG. 7 is a method of the present application to realize the realization of the plane loaded structure Schematic diagram of the structure of gradient distributed load loading.
图8中的(a)是利用本申请的方法实现对凸面的被加载结构实现均匀分布载荷加载的结构示意图,图8中的(b)是利用本申请的方法实现对凸面的被加载结构实现梯度分布载荷加载的结构示意图。(a) in FIG. 8 is a schematic structural diagram of using the method of the present application to realize uniformly distributed load loading on the loaded structure of the convex surface, and (b) in FIG. 8 is the realization of the loaded structure of the convex surface by using the method of the present application. Schematic diagram of the structure of gradient distributed load loading.
图9的(a)是利用本申请的方法实现对凹面的被加载结构实现均匀分布载荷加载的结构示意图,图9中的(b)是利用本申请的方法实现对凹面的被加载结构实现梯度分布载荷加载的结构示意图。Fig. 9(a) is a schematic structural diagram of using the method of the present application to achieve uniformly distributed load loading on a concave loaded structure, and Fig. 9 (b) is a method of the present application to achieve gradients for the concave loaded structure Structural diagram of distributed load loading.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式做进一步说明。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings.
本申请公开了一种基于柔性垫片和刚性基座的结构表面可控加载方法,该方法包括如下步骤,请参考图1所示的流程图:The present application discloses a method for controllable loading of a structural surface based on a flexible gasket and a rigid base. The method includes the following steps, please refer to the flowchart shown in FIG. 1 :
步骤102,根据被加载结构的表面的几何特征参数确定加载工装的前表面的几何特征参数。Step 102: Determine the geometric feature parameters of the front surface of the loading tool according to the geometric feature parameters of the surface of the loaded structure.
在本申请中,如图2所示,被加载结构的表面200为平面或曲面或其他更为复杂的三维表面。且当被加载结构的表面为曲面时,被加载结构的表面为任意曲率的凸面或任意曲率的凹面。图2以被加载结构的表面200为凸面为例进行示意图。In the present application, as shown in FIG. 2 , the
如图2所示,加载工装包括柔性垫片210和刚性基座220,柔性垫片210的前表面211作为整个加载工装的前表面,用于与被加载结构的表面200贴合,图2以两者贴合为例。柔性垫片210的后表面212与刚性基座220的前表面221贴合,图2为了清楚示意,将柔性垫片210和刚性基座220分离示意。刚性基座220的后表面222作为整个加载工装的后表面。柔性垫片210采用柔性材料制成、会受力发生形变,而刚性基座220采用刚性材料制成、在误差范围内可以认为不会发生受力形变。As shown in FIG. 2 , the loading tool includes a
被加载结构的表面的几何特征参数包括被加载结构的表面的平面尺寸形状以及立体起伏形貌。在根据被加载结构的表面的几何特征参数确定加载工装的前表面的几何特征参数时,确定加载工装的前表面的几何特征参数所实现的前表面与被加载结构的表面全贴合,使得加载工装的前表面与被加载结构的表面在不加载的条件下可以实现全贴合。The geometric characteristic parameters of the surface of the loaded structure include the plane size and shape and the three-dimensional relief of the surface of the loaded structure. When the geometric feature parameters of the front surface of the loading tool are determined according to the geometric feature parameters of the surface of the loaded structure, the front surface realized by determining the geometric feature parameters of the front surface of the loading tool is fully fitted with the surface of the loaded structure, so that the loading The front surface of the tool and the surface of the loaded structure can achieve full fit without loading.
步骤104,根据加载工装的前表面的几何特征参数和被加载结构的表面的目标载荷分布参数,基于数值模拟的方法确定加载工装的三维结构的几何特征参数。Step 104 , according to the geometric feature parameters of the front surface of the loading tool and the target load distribution parameters of the surface of the loaded structure, determine the geometric feature parameters of the three-dimensional structure of the loaded tool based on a numerical simulation method.
被加载结构的表面的目标载荷分布参数指示被加载结构的表面需要被加载的各个位置处的载荷,无论被加载结构的表面为何种表面形貌,被加载结构的表面的各个位置处的均匀分布或非均匀分布,非均匀分布也即按预定梯度变化规律分布。The target load distribution parameter of the surface of the loaded structure indicates the load at each position where the surface of the loaded structure needs to be loaded, regardless of the surface topography of the loaded structure, the uniform distribution at each position of the surface of the loaded structure Or non-uniform distribution, non-uniform distribution is distributed according to the predetermined gradient change law.
加载工装的三维结构的几何特征参数不仅包括各个表面的几何特征参数,还包括立体的厚度参数。如上所述,加载工装包括柔性垫片210和刚性基座220,由于刚性基座220几乎不发生形变,因此可以认为施加在刚性基座220后表面的直线位移会在前表面形成均匀分布的同向位移,实现所需载荷的传递。而由于柔性垫片210会受力发生形变,因此施加在柔性垫片210后表面的同向位移会因为柔性垫片210的形变而在前表面处发生变化,使得前表面处的载荷发生变化,所以该步骤的重点在于确定柔性垫片210的三维结构的几何特征参数。The geometric feature parameters of the three-dimensional structure loaded with the tooling include not only the geometric feature parameters of each surface, but also the thickness parameters of the solid. As mentioned above, the loading tool includes the
而进一步的,考虑到不同的柔性材料抵抗形变的能力不同,因此在一个实施例中,还需要确定柔性垫片210的制作材料。在该实施例中,根据被加载结构的表面的目标载荷分布参数确定采用的柔性垫片的制作材料。具体的:根据被加载结构的表面的目标载荷分布参数确定最大载荷Pmax。选取杨氏模量为E=Pmax/εmax的材料作为柔性垫片210的制作材料,εmax为最大应变为预设值。比如εmax=20%,Pmax=1MPa,则可以确定杨氏模量E=5MPa,此时可以选用普通橡胶作为柔性垫片210的制作材料。Further, considering that different flexible materials have different resistance to deformation, in one embodiment, the material for making the
确定加载工装的三维结构的几何特征参数的方法包括如下几个步骤,请参考图3所示流程图:The method for determining the geometric feature parameters of the three-dimensional structure of the loaded tooling includes the following steps, please refer to the flowchart shown in Figure 3:
步骤302,根据加载工装的前表面的几何特征参数和被加载结构的表面的目标载荷分布参数,基于数值模拟的方法确定柔性垫片210的厚度分布参数。该步骤包括如下几个步骤,请参考图4:
步骤402,根据被加载结构的表面的目标载荷分布参数确定柔性垫片的厚度分布规律,柔性垫片的厚度分布规律指示柔性垫片的各个位置处的厚度变化情况,柔性垫片的厚度是柔性垫片的前表面与后表面之间在垂直于被加载结构的表面中心处切面的方向上的距离。主要包括如下两种情况:Step 402: Determine the thickness distribution law of the flexible gasket according to the target load distribution parameter of the surface of the loaded structure. The thickness distribution law of the flexible gasket indicates the thickness variation at each position of the flexible gasket, and the thickness of the flexible gasket is flexible. The distance between the front and rear surfaces of the shim in the direction perpendicular to the tangent plane at the center of the surface of the loaded structure. It mainly includes the following two situations:
(1)若被加载结构的表面的目标载荷分布参数指示被加载结构的表面的载荷均匀分布,则确定柔性垫片的厚度分布规律为厚度从柔性垫片的中心向四周连续减小。(1) If the target load distribution parameter of the surface of the loaded structure indicates that the load on the surface of the loaded structure is uniformly distributed, then the thickness distribution rule of the flexible gasket is determined as the thickness continuously decreases from the center of the flexible gasket to the periphery.
(2)若被加载结构的表面的目标载荷分布参数指示被加载结构的表面的载荷按预定梯度变化规律分布,则根据载荷的预定梯度变化规律以及被加载结构的表面的曲率确定柔性垫片的厚度分布规律,具体可以利用现有软件通过理论分析或数值模拟来拟合得到。(2) If the target load distribution parameter of the surface of the loaded structure indicates that the load on the surface of the loaded structure is distributed according to a predetermined gradient change law, then the flexible gasket is determined according to the predetermined gradient change law of the load and the curvature of the surface of the loaded structure. The thickness distribution law can be obtained by fitting the existing software through theoretical analysis or numerical simulation.
步骤404,按照厚度分布规律确定初始的厚度分布参数,柔性垫片的厚度分布规律指示柔性垫片的各个位置处的厚度。Step 404: Determine the initial thickness distribution parameter according to the thickness distribution law, and the thickness distribution law of the flexible gasket indicates the thickness of each position of the flexible gasket.
在确定厚度分布规律后,还需要确定厚度的绝对值,一般确定柔性垫片210的中心的厚度后,即可以根据厚度分布规律确定其他各个位置处的厚度,由此得到厚度分布参数。而柔性垫片210的中心的厚度可以根据被加载结构的表面的中心所需的载荷与作动器230施加的载荷的设计值确定,一般认为作动器230施加的载荷正对刚性基座220的中心以及柔性垫片210的中心,继而作用在被加载结构的表面的中心,而经过加载工装的传递,在柔性垫片210的形变作用下,作用器230施加的载荷会有一定程度的衰减,柔性垫片210的中心的厚度不同时,对载荷的衰减作用不同。作用器230施加的载荷的设计值是可以调节且已知的,而被加载结构的表面的中心所需的载荷可以由被加载结构的表面的目标载荷分布参数确定,由此可以得到柔性垫片210的中心的厚度。具体得到厚度的方法可以根据经验或数值拟合得到。After the thickness distribution law is determined, the absolute value of the thickness also needs to be determined. Generally, after the thickness of the center of the
在确定初始的厚度分布参数后,基于柔性垫片的前表面的几何特征参数和厚度分布参数建立柔性垫片的有限元模型。在建模时,按照上述方法所确定的柔性垫片的制作材料的特性来建立有限元模型并进行后续数值模拟。After determining the initial thickness distribution parameters, a finite element model of the flexible gasket is established based on the geometric characteristic parameters and thickness distribution parameters of the front surface of the flexible gasket. During modeling, a finite element model is established and subsequent numerical simulations are performed according to the properties of the flexible gasket material determined by the above method.
步骤406,对柔性垫片的有限元模型进行数值模拟,在进行数值模拟时,对柔性垫片的有限元模型的前表面施加位移约束,对柔性垫片的有限元模型的后表面施加均匀位移载荷进行数值模拟,由此可以模拟得到柔性垫片的前表面的载荷分布参数的数值模拟结果。
步骤408,若此时柔性垫片的前表面的载荷分布参数的数值模拟结果与目标载荷分布参数之间的误差超过预设的误差范围,则迭代调整厚度分布参数以修正有限元模型重新进行数值模拟。
1、当目标载荷分布参数指示被加载结构的表面的载荷均匀分布数据时,迭代调整厚度分布参数以修正有限元模型的具体做法为:1. When the target load distribution parameter indicates uniform load distribution data on the surface of the loaded structure, iteratively adjust the thickness distribution parameter to correct the finite element model as follows:
(1)计算柔性垫片的前表面的载荷分布参数的数值模拟结果的中心点与边缘处的应力偏差η=(σm-σo)/σo。σm是柔性垫片的前表面的中心点的数值模拟结果,σo是柔性垫片的前表面的边缘处的数值模拟结果,可以取任意一个边缘处。如图5所示。(1) Calculate the stress deviation η=(σ m −σ o )/σ o between the center point and the edge of the numerical simulation results of the load distribution parameters of the front surface of the flexible gasket. σ m is the numerical simulation result of the center point of the front surface of the flexible gasket, and σ o is the numerical simulation result of the edge of the front surface of the flexible gasket, and any edge can be taken. As shown in Figure 5.
(2)若η≤|ηmax|,则确定柔性垫片的前表面的载荷分布参数的数值模拟结果与目标载荷分布参数在误差范围内。ηmax是应力偏差阈值,表示工程中所允许的均匀加载表面载荷最大误差,比如可以设为2%。(2) If η≤| ηmax |, it is determined that the numerical simulation results of the load distribution parameters of the front surface of the flexible gasket and the target load distribution parameters are within the error range. η max is the stress deviation threshold, which represents the maximum error of the uniform loading surface load allowed in the project, for example, it can be set to 2%.
(3)若η>|ηmax|,则基于应力偏差η调整柔性垫片的中心点的厚度为Bn+1=Bn/(1+η),Bn是当前的厚度分布参数中的柔性垫片的中心点的厚度,也即图5中的OA之间的距离。保持柔性垫片的边缘处的厚度与当前的厚度分布参数一致,也即保持A′和A″不变,并根据调整后的中心点的厚度Bn+1利用样条曲线拟合得到调整后的厚度分布参数。(3) If η>|η max |, adjust the thickness of the center point of the flexible gasket based on the stress deviation η as B n+1 =B n /(1+η), where B n is the current thickness distribution parameter The thickness of the center point of the flexible gasket, that is, the distance between OA in Figure 5. Keep the thickness at the edge of the flexible gasket consistent with the current thickness distribution parameters, that is, keep A' and A" unchanged, and use spline curve fitting to obtain the adjusted thickness B n+1 at the center point after adjustment. thickness distribution parameters.
2、当目标载荷分布参数指示被加载结构的表面的载荷按预定梯度变化规律分布时,迭代调整厚度分布参数以修正有限元模型的具体做法为:2. When the target load distribution parameter indicates that the load on the surface of the loaded structure is distributed according to the predetermined gradient variation law, the specific method of iteratively adjusting the thickness distribution parameter to correct the finite element model is as follows:
(1)计算柔性垫片的前表面的任意第k个标定点处的数值模拟结果σ′k与该标定点的目标载荷分布参数σk之间的应力偏差ηk=(σ′k-σk)/σk。柔性垫片的前表面预先选定有若干个标定点,且为了准确性,一般在不同区域均布选定多个标定点,图6假设一共有K个标定点。(1) Calculate the stress deviation between the numerical simulation result σ′ k at any k-th calibration point on the front surface of the flexible gasket and the target load distribution parameter σ k of the calibration point η k =(σ′ k -σ k )/σ k . Several calibration points are pre-selected on the front surface of the flexible gasket, and for accuracy, multiple calibration points are generally selected evenly in different areas. Figure 6 assumes that there are a total of K calibration points.
(2)若所有标定点处的应力偏差均不超过应力偏差阈值ηmax,则确定柔性垫片的前表面的载荷分布参数的数值模拟结果与目标载荷分布参数在误差范围内。同样的,ηmax是应力偏差阈值,表示工程中所允许的均匀加载表面载荷最大误差,比如可以设为2%。(2) If the stress deviation at all calibration points does not exceed the stress deviation threshold η max , it is determined that the numerical simulation results of the load distribution parameters of the front surface of the flexible gasket and the target load distribution parameters are within the error range. Similarly, η max is the stress deviation threshold, which represents the maximum error of the uniform loading surface load allowed in the project, for example, it can be set to 2%.
(3)若存在至少一个标定点处的应力偏差超过应力偏差阈值ηmax,则将应力偏差超过应力偏差阈值ηmax的标定点处的厚度调整为Bi,n+1=Bi,n/(1+ηi)、保持其他标定点处的厚度与当前的厚度分布参数一致,并根据调整后的厚度利用样条曲线拟合得到调整后的厚度分布参数;其中,ηi是超过应力偏差阈值ηmax的任意第i个标定点处的应力偏差,Bi,n是当前的厚度分布参数中的第i个标定点处的厚度。比如图6中,假设只有第i个标定点处计算得到的ηi超过ηmax、其他标定点处计算得到的应力偏差均小于ηmax,则将第i个标定点处的厚度、也即调整图6中的OiAi之间的距离,保持其他标定点处的厚度O1A1、O2A2…OKAK与当前的厚度分布参数一致,并利用样条曲线拟合得到调整后的厚度分布参数。(3) If the stress deviation at at least one calibration point exceeds the stress deviation threshold η max , adjust the thickness at the calibration point where the stress deviation exceeds the stress deviation threshold η max as B i,n+1 =B i,n / (1+η i ), keep the thickness at other calibration points consistent with the current thickness distribution parameters, and use spline curve fitting to obtain the adjusted thickness distribution parameters according to the adjusted thickness; wherein, η i is the excess stress deviation The stress deviation at any ith calibration point of the threshold η max , B i,n is the thickness at the ith calibration point in the current thickness distribution parameters. For example, in Fig. 6, assuming that only the η i calculated at the ith calibration point exceeds η max , and the stress deviations calculated at other calibration points are all smaller than η max , then the thickness at the ith calibration point, that is, the adjustment The distance between O i A i in Fig. 6 keeps the thickness O 1 A 1 , O 2 A 2 . Adjusted thickness distribution parameters.
步骤410,若此时柔性垫片的前表面的载荷分布参数的数值模拟结果与目标载荷分布参数之间的误差在预设的误差范围内,则结束迭代,并得到柔性垫片的厚度分布参数。
步骤304,根据加载工装的前表面的几何特征参数和柔性垫片的厚度分布参数确定柔性垫片的后表面的几何特征参数。Step 304: Determine the geometric feature parameters of the rear surface of the flexible gasket according to the geometric feature parameters of the front surface of the loading tool and the thickness distribution parameters of the flexible gasket.
步骤306,根据柔性垫片的后表面的几何特征参数确定刚性基座的前表面的几何特征参数。刚性基座的前表面的几何特征参数所构建的前表面与柔性垫片的后表面全贴合,使得刚性基座的前表面与柔性垫片后表面在不加载的条件下可以实现全贴合。并根据作动器的结构要求确定刚性基座的后表面的几何特征参数,一般可以将刚性基座的后表面设计为平面。Step 306: Determine the geometric feature parameters of the front surface of the rigid base according to the geometric feature parameters of the rear surface of the flexible gasket. The front surface constructed by the geometric feature parameters of the front surface of the rigid base fully fits the rear surface of the flexible gasket, so that the front surface of the rigid base and the rear surface of the flexible gasket can be fully fitted without loading. . The geometric characteristic parameters of the rear surface of the rigid base are determined according to the structural requirements of the actuator. Generally, the rear surface of the rigid base can be designed as a plane.
步骤106,按照三维结构的几何特征参数制作加载工装。在制作时,按照上述步骤确定的柔性垫片的制作材料制作得到柔性垫片210。Step 106 , making a loading tool according to the geometric feature parameters of the three-dimensional structure. During manufacture, the
在制作完成加载工装后,将加载工装的前表面贴合被加载结构的表面,将加载工装的后表面连接作动器。在一个实施例中,柔性垫片210的前表面211与被加载结构的表面200之间固定连接、柔性垫片210的后表面212与刚性基座220的前表面221之间也固定连接,避免加载过程中出现接触面相互滑移的现象,常见的比如通过胶水粘接。而加载工装的后表面,也即刚性基座220的后表面222与作动器230之间可拆卸连接,在保证连接紧固性的同时,方便根据需求更换刚性基座220或作动器230,比如常见的通过螺栓连接。After the loading tool is fabricated, the front surface of the loading tool is attached to the surface of the loaded structure, and the rear surface of the loading tool is connected to the actuator. In one embodiment, the
安装完成后,控制作动器230施加垂直于被加载结构的表面中心处切面的直线位移,作动器230按照设计值施加相应大小的载荷。作动器230施加的直线位置在刚性基座220的前表面221的各点处形成均匀分布的同向位移,且施加在柔性垫片210的后表面212,经具有相应的厚度分布参数的柔性垫片210传递后,转化为所需的分布载荷施加在被加载结构的表面,也即作动器230按照设计值施加的载荷通过加载工装的传递按照目标载荷分布参数施加在被加载结构的表面。After the installation is completed, the
利用本申请的方法,可以实现对各种表面结构的被加载结构的各种载荷分布参数的可控加载。比如,被加载结构的表面为平面时,可以利用本申请的方法设计柔性垫片210和刚性基座220的结构如图7中的(a)所示以实现均匀分布载荷加载。或者,可以利用本申请的方法设计柔性垫片210和刚性基座220的结构如图7中的(b)所示以实现梯度分布载荷加载。Using the method of the present application, controllable loading of various load distribution parameters of the loaded structures of various surface structures can be realized. For example, when the surface of the loaded structure is flat, the structure of the
再比如,被加载结构的表面为凸面时,可以利用本申请的方法设计柔性垫片210和刚性基座220的结构如图8中的(a)所示以实现均匀分布载荷加载。或者,可以利用本申请的方法设计柔性垫片210和刚性基座220的结构如图8中的(b)所示以实现梯度分布载荷加载。For another example, when the surface of the loaded structure is convex, the structure of the
再比如,被加载结构的表面为凹面时,可以利用本申请的方法设计柔性垫片210和刚性基座220的结构如图9中的(a)所示以实现均匀分布载荷加载。或者,可以利用本申请的方法设计柔性垫片210和刚性基座220的结构如图9中的(b)所示以实现梯度分布载荷加载。For another example, when the surface of the loaded structure is concave, the structure of the
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present application, and the present invention is not limited to the above embodiments. It can be understood that other improvements and changes directly derived or thought of by those skilled in the art without departing from the spirit and concept of the present invention should be considered to be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210035040.4A CN114323723B (en) | 2022-01-13 | 2022-01-13 | A method for controllable loading of structural surfaces based on flexible gaskets and rigid bases |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210035040.4A CN114323723B (en) | 2022-01-13 | 2022-01-13 | A method for controllable loading of structural surfaces based on flexible gaskets and rigid bases |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114323723A CN114323723A (en) | 2022-04-12 |
| CN114323723B true CN114323723B (en) | 2022-09-09 |
Family
ID=81026965
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210035040.4A Active CN114323723B (en) | 2022-01-13 | 2022-01-13 | A method for controllable loading of structural surfaces based on flexible gaskets and rigid bases |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114323723B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1438859A (en) * | 1999-04-02 | 2003-08-27 | 巴里M·费尔 | Surgically implantable knee prosthesis |
| CN111274719A (en) * | 2018-12-03 | 2020-06-12 | 中国商用飞机有限责任公司 | Load simulation device |
| CN113584283A (en) * | 2021-07-29 | 2021-11-02 | 中南大学 | Design method of creep age forming die for multi-thickness component |
| CN113779707A (en) * | 2021-11-11 | 2021-12-10 | 成都航空职业技术学院 | Deformation control method of ultra-large thin-walled parts based on displacement load simulation analysis |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140163697A1 (en) * | 2012-05-04 | 2014-06-12 | University Of Washington Through Its Center For Commercialization | Systems and Methods for Modifying Prosthetic Sockets |
-
2022
- 2022-01-13 CN CN202210035040.4A patent/CN114323723B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1438859A (en) * | 1999-04-02 | 2003-08-27 | 巴里M·费尔 | Surgically implantable knee prosthesis |
| CN111274719A (en) * | 2018-12-03 | 2020-06-12 | 中国商用飞机有限责任公司 | Load simulation device |
| CN113584283A (en) * | 2021-07-29 | 2021-11-02 | 中南大学 | Design method of creep age forming die for multi-thickness component |
| CN113779707A (en) * | 2021-11-11 | 2021-12-10 | 成都航空职业技术学院 | Deformation control method of ultra-large thin-walled parts based on displacement load simulation analysis |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114323723A (en) | 2022-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6862148B2 (en) | Systems and methods for shimming flexible bodies | |
| US9921572B2 (en) | Springback compensation in formed sheet metal parts | |
| CN104615809B (en) | Using the springback compensation method of the reverse factor | |
| CN108021095B (en) | Multi-dimensional space contour error estimation method based on confidence domain algorithm | |
| CN102082319B (en) | Method for correcting moulding surface of forming mould for antenna cover | |
| CN110211645B (en) | Damage and fatigue life evaluation method for microscopic-macroscopic scale metal plate forming process model | |
| CN107908917B (en) | A method for predicting springback in stamping forming of high-strength plates | |
| CN104392016B (en) | A kind of blank preparation method of rubber pocket shaping thin-walled parts | |
| CN104866666A (en) | Robust adjusting method of surface precision on cable network reflective surface based on finite element model correction | |
| JP2011501799A (en) | Coil spring design method using reverse engineering | |
| CN113505506A (en) | Design method of wheel disc dangerous part crack propagation simulation piece | |
| JP6736108B2 (en) | Design method to optimize the shape of the space thin film structure jig that suppresses wrinkles | |
| CN114323723B (en) | A method for controllable loading of structural surfaces based on flexible gaskets and rigid bases | |
| CN111229879A (en) | Springback ratio matrix description and springback compensation method for double-curvature plate forming springback | |
| CN115659726B (en) | Failure suppression method around connection holes of aircraft CFRP panels based on assembly stress equilibrium control | |
| CN112784456A (en) | Design method and system for automobile glass forming die surface | |
| CN110955993A (en) | An optimal design method for the beam-membrane structure of a micro-pressure sensor | |
| CN120315375A (en) | NC machining path control system based on artificial intelligence | |
| CN119261220A (en) | A double-layer adhesive and three-layer film method for making diamond stickers | |
| CN103116683A (en) | Superposition computing method for deformation of absorber annular valve sheet under unevenly distributed pressure | |
| CN113646108B (en) | molding equipment | |
| CN112651153A (en) | Method for determining material parameters of crystal plastic finite element model | |
| CN109726406B (en) | Vehicle body joint optimization design method and device, terminal and storage medium | |
| CN110728085B (en) | Method for simulating composite material deformation caused by workpiece-mould interaction | |
| CN106957951B (en) | Laser peening Integral Wing Panel shape control method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |